diff --git a/CAD/V-NOTCH_SHEAR/V_NOTCH_SHEAR_JIG.20250821-135541.FCBak b/CAD/V-NOTCH_SHEAR/V_NOTCH_SHEAR_JIG.20250821-135541.FCBak deleted file mode 100644 index 4b9b09e..0000000 Binary files a/CAD/V-NOTCH_SHEAR/V_NOTCH_SHEAR_JIG.20250821-135541.FCBak and /dev/null differ diff --git a/CAD/V-NOTCH_SHEAR/V_NOTCH_SHEAR_JIG.20250821-170356.FCBak b/CAD/V-NOTCH_SHEAR/V_NOTCH_SHEAR_JIG.20250821-170356.FCBak new file mode 100644 index 0000000..be1d399 Binary files /dev/null and b/CAD/V-NOTCH_SHEAR/V_NOTCH_SHEAR_JIG.20250821-170356.FCBak differ diff --git a/CAD/V-NOTCH_SHEAR/V_NOTCH_SHEAR_JIG.FCStd b/CAD/V-NOTCH_SHEAR/V_NOTCH_SHEAR_JIG.FCStd index 5c43444..c38c81a 100644 Binary files a/CAD/V-NOTCH_SHEAR/V_NOTCH_SHEAR_JIG.FCStd and b/CAD/V-NOTCH_SHEAR/V_NOTCH_SHEAR_JIG.FCStd differ diff --git a/CAD/V-NOTCH_SHEAR/imports/DIN912_M6x40.20250821-133601.FCBak b/CAD/V-NOTCH_SHEAR/imports/DIN912_M6x40.20250821-133601.FCBak deleted file mode 100644 index 3e28454..0000000 Binary files a/CAD/V-NOTCH_SHEAR/imports/DIN912_M6x40.20250821-133601.FCBak and /dev/null differ diff --git a/CAD/V-NOTCH_SHEAR/imports/DIN912_M6x40.20250821-133804.FCBak b/CAD/V-NOTCH_SHEAR/imports/DIN912_M6x40.20250821-133804.FCBak new file mode 100644 index 0000000..f443d6c Binary files /dev/null and b/CAD/V-NOTCH_SHEAR/imports/DIN912_M6x40.20250821-133804.FCBak differ diff --git a/CAD/V-NOTCH_SHEAR/imports/DIN912_M6x40.FCStd b/CAD/V-NOTCH_SHEAR/imports/DIN912_M6x40.FCStd index f443d6c..998c086 100644 Binary files a/CAD/V-NOTCH_SHEAR/imports/DIN912_M6x40.FCStd and b/CAD/V-NOTCH_SHEAR/imports/DIN912_M6x40.FCStd differ diff --git a/CAD/V-NOTCH_SHEAR/imports/DIN934_M6.20250821-133804.FCBak b/CAD/V-NOTCH_SHEAR/imports/DIN934_M6.20250821-134046.FCBak similarity index 62% rename from CAD/V-NOTCH_SHEAR/imports/DIN934_M6.20250821-133804.FCBak rename to CAD/V-NOTCH_SHEAR/imports/DIN934_M6.20250821-134046.FCBak index a1b33d9..61436d6 100644 Binary files a/CAD/V-NOTCH_SHEAR/imports/DIN934_M6.20250821-133804.FCBak and b/CAD/V-NOTCH_SHEAR/imports/DIN934_M6.20250821-134046.FCBak differ diff --git a/CAD/V-NOTCH_SHEAR/imports/DIN934_M6.FCStd b/CAD/V-NOTCH_SHEAR/imports/DIN934_M6.FCStd index 61436d6..521e9bf 100644 Binary files a/CAD/V-NOTCH_SHEAR/imports/DIN934_M6.FCStd and b/CAD/V-NOTCH_SHEAR/imports/DIN934_M6.FCStd differ diff --git a/CAD/V-NOTCH_SHEAR/imports/EPRUVETA_SMIK.20250820-193710.FCBak b/CAD/V-NOTCH_SHEAR/imports/EPRUVETA_SMIK.20250820-193710.FCBak deleted file mode 100644 index eb62d06..0000000 Binary files a/CAD/V-NOTCH_SHEAR/imports/EPRUVETA_SMIK.20250820-193710.FCBak and /dev/null differ diff --git a/CAD/V-NOTCH_SHEAR/imports/EPRUVETA_SMIK.20250821-134731.FCBak b/CAD/V-NOTCH_SHEAR/imports/EPRUVETA_SMIK.20250821-134731.FCBak new file mode 100644 index 0000000..a4518a0 Binary files /dev/null and b/CAD/V-NOTCH_SHEAR/imports/EPRUVETA_SMIK.20250821-134731.FCBak differ diff --git a/CAD/V-NOTCH_SHEAR/imports/EPRUVETA_SMIK.FCStd b/CAD/V-NOTCH_SHEAR/imports/EPRUVETA_SMIK.FCStd index a4518a0..883fb3c 100644 Binary files a/CAD/V-NOTCH_SHEAR/imports/EPRUVETA_SMIK.FCStd and b/CAD/V-NOTCH_SHEAR/imports/EPRUVETA_SMIK.FCStd differ diff --git a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.aux b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.aux index ce10778..2ee510e 100644 --- a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.aux +++ b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.aux @@ -193,15 +193,35 @@ \newlabel{fig:epruveta_vlak_skica}{{16}{24}{}{figure.16}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Materijali, oprema i postavke}{24}{}\protected@file@percent } \newlabel{subsec:materijali_i_oprema}{{3.5}{24}{}{subsection.3.5}{}} +\abx@aux@cite{0}{Stamopoulos2020} +\abx@aux@segm{0}{0}{Stamopoulos2020} \@writefile{lot}{\contentsline {table}{\numberline {11}{\ignorespaces Mechanical properties of 3D printed PLA specimens}}{25}{}\protected@file@percent } \newlabel{tab:azurefilm_svojstva}{{11}{25}{}{table.11}{}} \@writefile{lot}{\contentsline {table}{\numberline {12}{\ignorespaces Parametri za izradu uzorka}}{25}{}\protected@file@percent } \newlabel{tab:test_specimens_print_settings}{{12}{25}{}{table.12}{}} \@writefile{lot}{\contentsline {table}{\numberline {13}{\ignorespaces Preporučene postavke}}{25}{}\protected@file@percent } \newlabel{tab:printing_reccomendation}{{13}{25}{}{table.13}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {3.6}Metode ispitivanja čvrstoće}{25}{}\protected@file@percent } -\newlabel{subsec:metode_ispitivanja_cvrstoce}{{3.6}{25}{}{subsection.3.6}{}} -\abx@aux@read@bbl@mdfivesum{8D9089A7F7B00AF4C01313D2F5CAF4DC} +\@writefile{toc}{\contentsline {subsection}{\numberline {3.6}Postav za ispitivanje smične čvrstoće}{25}{}\protected@file@percent } +\newlabel{subsec:postav_za_ispitivanje_smicne_cvrstoce}{{3.6}{25}{}{subsection.3.6}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Prikaz naprave za smično opterečenje epruvete}}{26}{}\protected@file@percent } +\newlabel{fig:naprava_smik}{{17}{26}{}{figure.17}{}} +\@writefile{toc}{\contentsline {section}{\numberline {4}Provedba eksperimenta}{27}{}\protected@file@percent } +\newlabel{sec:provedba_eksperimenta}{{4}{27}{}{section.4}{}} +\@writefile{toc}{\contentsline {section}{\numberline {5}Analiza podataka}{28}{}\protected@file@percent } +\newlabel{sec:analiza_podataka}{{5}{28}{}{section.5}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Računalna analiza poprečnog presjeka}{28}{}\protected@file@percent } +\newlabel{subsec:racunalna_analiza_poprecnog_presjeka}{{5.1}{28}{}{subsection.5.1}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {18}{\ignorespaces 2D prikaz ispune ispitnog uzorka u orijentaciji uspravnog ispisa.}}{28}{}\protected@file@percent } +\newlabel{fig:vlak_2d_stojeci}{{18}{28}{}{figure.18}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {19}{\ignorespaces 2D prikaz ispune ispitnog uzorka u orijentaciji ležećeg ispisa.}}{29}{}\protected@file@percent } +\newlabel{fig:vlak_2d_lezeci}{{19}{29}{}{figure.19}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {20}{\ignorespaces Promjena površine po X i Y osi za bazu 10x10mm.}}{30}{}\protected@file@percent } +\newlabel{fig:promjena_povrsine_10x10}{{20}{30}{}{figure.20}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {21}{\ignorespaces Promjena površine po X i Y osi za bazu 10x70mm.}}{30}{}\protected@file@percent } +\newlabel{fig:promjena_povrsine_10x70}{{21}{30}{}{figure.21}{}} +\@writefile{toc}{\contentsline {section}{Prilog A – Python skripta za analizu poprečnih presjeka}{34}{}\protected@file@percent } +\@writefile{lol}{\contentsline {lstlisting}{\numberline {1}{\ignorespaces Python skripta za analizu poprečnih presjeka.}}{34}{}\protected@file@percent } +\abx@aux@read@bbl@mdfivesum{3569AB5A48CADD3873A346B2982F931D} \abx@aux@defaultrefcontext{0}{aboelella2025layer}{nty/global//global/global/global} \abx@aux@defaultrefcontext{0}{aoyagi2002viscosity}{nty/global//global/global/global} \abx@aux@defaultrefcontext{0}{aulia2021tensileanisotropy}{nty/global//global/global/global} @@ -220,6 +240,7 @@ \abx@aux@defaultrefcontext{0}{panoto2019shear}{nty/global//global/global/global} \abx@aux@defaultrefcontext{0}{prusaInfillPatterns}{nty/global//global/global/global} \abx@aux@defaultrefcontext{0}{rods2001diffusion}{nty/global//global/global/global} +\abx@aux@defaultrefcontext{0}{Stamopoulos2020}{nty/global//global/global/global} \abx@aux@defaultrefcontext{0}{sun2008effect}{nty/global//global/global/global} \abx@aux@defaultrefcontext{0}{zandi2020mechanical}{nty/global//global/global/global} -\gdef \@abspage@last{27} +\gdef \@abspage@last{37} diff --git a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl index 0ecc885..f0edac2 100644 --- a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl +++ b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl @@ -730,6 +730,55 @@ \field{pages}{144\bibrangedash 152} \range{pages}{9} \endentry + \entry{Stamopoulos2020}{article}{}{} + \name{author}{3}{}{% + {{hash=fafeace11f32b6cb21f14cd692cbf26b}{% + family={Stamopoulos}, + familyi={S\bibinitperiod}, + given={Antonios\bibnamedelima G.}, + giveni={A\bibinitperiod\bibinitdelim G\bibinitperiod}}}% + {{hash=418a46b0274087acdbdb581e0e5d6fbb}{% + family={Genova}, + familyi={G\bibinitperiod}, + given={Luca\bibnamedelimb Glauco\bibnamedelima Di}, + giveni={L\bibinitperiod\bibinitdelim G\bibinitperiod\bibinitdelim D\bibinitperiod}}}% + {{hash=bc9f7b50e0dcf80aa14834055c033af8}{% + family={Ilio}, + familyi={I\bibinitperiod}, + given={Antoniomaria\bibnamedelima Di}, + giveni={A\bibinitperiod\bibinitdelim D\bibinitperiod}}}% + } + \list{publisher}{1}{% + {EDP Sciences}% + } + \strng{namehash}{5062a3a548a7b1189c1ba12d783f3b4d} + \strng{fullhash}{5062a3a548a7b1189c1ba12d783f3b4d} + \strng{fullhashraw}{5062a3a548a7b1189c1ba12d783f3b4d} + \strng{bibnamehash}{5062a3a548a7b1189c1ba12d783f3b4d} + \strng{authorbibnamehash}{5062a3a548a7b1189c1ba12d783f3b4d} + \strng{authornamehash}{5062a3a548a7b1189c1ba12d783f3b4d} + \strng{authorfullhash}{5062a3a548a7b1189c1ba12d783f3b4d} + \strng{authorfullhashraw}{5062a3a548a7b1189c1ba12d783f3b4d} + \field{sortinit}{S} + \field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{journaltitle}{Manufacturing Rev.} + \field{title}{Assessment of the shear properties of thermoplastic composites using the ±45° tension and the V-notched rail shear methods} + \field{volume}{7} + \field{year}{2020} + \field{pages}{10} + \range{pages}{1} + \verb{doi} + \verb 10.1051/mfreview/2020007 + \endverb + \verb{urlraw} + \verb https://doi.org/10.1051/mfreview/2020007 + \endverb + \verb{url} + \verb https://doi.org/10.1051/mfreview/2020007 + \endverb + \endentry \entry{sun2008effect}{article}{}{} \name{author}{4}{}{% {{hash=8e935d2e8b401b4d9e64ed1f9a77574d}{% diff --git a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl-SAVE-ERROR b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl-SAVE-ERROR index 0ecc885..f0edac2 100644 --- a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl-SAVE-ERROR +++ b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl-SAVE-ERROR @@ -730,6 +730,55 @@ \field{pages}{144\bibrangedash 152} \range{pages}{9} \endentry + \entry{Stamopoulos2020}{article}{}{} + \name{author}{3}{}{% + {{hash=fafeace11f32b6cb21f14cd692cbf26b}{% + family={Stamopoulos}, + familyi={S\bibinitperiod}, + given={Antonios\bibnamedelima G.}, + giveni={A\bibinitperiod\bibinitdelim G\bibinitperiod}}}% + {{hash=418a46b0274087acdbdb581e0e5d6fbb}{% + family={Genova}, + familyi={G\bibinitperiod}, + given={Luca\bibnamedelimb Glauco\bibnamedelima Di}, + giveni={L\bibinitperiod\bibinitdelim G\bibinitperiod\bibinitdelim D\bibinitperiod}}}% + {{hash=bc9f7b50e0dcf80aa14834055c033af8}{% + family={Ilio}, + familyi={I\bibinitperiod}, + given={Antoniomaria\bibnamedelima Di}, + giveni={A\bibinitperiod\bibinitdelim D\bibinitperiod}}}% + } + \list{publisher}{1}{% + {EDP Sciences}% + } + \strng{namehash}{5062a3a548a7b1189c1ba12d783f3b4d} + \strng{fullhash}{5062a3a548a7b1189c1ba12d783f3b4d} + \strng{fullhashraw}{5062a3a548a7b1189c1ba12d783f3b4d} + \strng{bibnamehash}{5062a3a548a7b1189c1ba12d783f3b4d} + \strng{authorbibnamehash}{5062a3a548a7b1189c1ba12d783f3b4d} + \strng{authornamehash}{5062a3a548a7b1189c1ba12d783f3b4d} + \strng{authorfullhash}{5062a3a548a7b1189c1ba12d783f3b4d} + \strng{authorfullhashraw}{5062a3a548a7b1189c1ba12d783f3b4d} + \field{sortinit}{S} + \field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{journaltitle}{Manufacturing Rev.} + \field{title}{Assessment of the shear properties of thermoplastic composites using the ±45° tension and the V-notched rail shear methods} + \field{volume}{7} + \field{year}{2020} + \field{pages}{10} + \range{pages}{1} + \verb{doi} + \verb 10.1051/mfreview/2020007 + \endverb + \verb{urlraw} + \verb https://doi.org/10.1051/mfreview/2020007 + \endverb + \verb{url} + \verb https://doi.org/10.1051/mfreview/2020007 + \endverb + \endentry \entry{sun2008effect}{article}{}{} \name{author}{4}{}{% {{hash=8e935d2e8b401b4d9e64ed1f9a77574d}{% diff --git a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bcf b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bcf index ed3567a..9b9a50b 100644 --- a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bcf +++ b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bcf @@ -2403,6 +2403,7 @@ bazjanacNauka1 bazjanacNauka1 cojocaru2025dogbone + Stamopoulos2020 diff --git a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bcf-SAVE-ERROR b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bcf-SAVE-ERROR index 673aa7c..d4baec6 100644 --- a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bcf-SAVE-ERROR +++ b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bcf-SAVE-ERROR @@ -2403,3 +2403,4 @@ bazjanacNauka1 bazjanacNauka1 cojocaru2025dogbone + Stamopoulos2020 diff --git a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.blg b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.blg index 3fa9936..5728d08 100644 --- a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.blg +++ b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.blg @@ -1,17 +1,17 @@ [0] Config.pm:308> INFO - This is Biber 2.20 [0] Config.pm:311> INFO - Logfile is 'ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.blg' -[42] biber:342> INFO - === Thu Aug 21, 2025, 11:07:22 -[50] Biber.pm:420> INFO - Reading 'ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bcf' -[80] Biber.pm:994> INFO - Found 20 citekeys in bib section 0 -[88] Biber.pm:4463> INFO - Processing section 0 -[93] Biber.pm:4654> INFO - Looking for bibtex file 'literatura.bib' for section 0 -[94] bibtex.pm:1713> INFO - LaTeX decoding ... -[103] bibtex.pm:1519> INFO - Found BibTeX data source 'literatura.bib' -[180] UCollate.pm:68> INFO - Overriding locale 'hr-HR' defaults 'variable = shifted' with 'variable = non-ignorable' -[180] UCollate.pm:68> INFO - Overriding locale 'hr-HR' defaults 'normalization = NFD' with 'normalization = prenormalized' -[180] Biber.pm:4283> INFO - Sorting list 'nty/global//global/global/global' of type 'entry' with template 'nty' and locale 'hr-HR' -[192] bbl.pm:677> INFO - Writing 'ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl' with encoding 'UTF-8' -[195] bbl.pm:780> INFO - Output to ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl -[196] Biber.pm:131> WARN - Duplicate entry key: 'kuznetsov2018strengthPLA' in file 'literatura.bib', skipping ... -[196] Biber.pm:131> WARN - legacy year field '1963.' in entry 'bazjanacNauka1' is not an integer - this will probably not sort properly. -[196] Biber.pm:133> INFO - WARNINGS: 2 +[48] biber:342> INFO - === Sat Aug 23, 2025, 14:16:35 +[59] Biber.pm:420> INFO - Reading 'ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bcf' +[92] Biber.pm:994> INFO - Found 21 citekeys in bib section 0 +[105] Biber.pm:4463> INFO - Processing section 0 +[110] Biber.pm:4654> INFO - Looking for bibtex file 'literatura.bib' for section 0 +[111] bibtex.pm:1713> INFO - LaTeX decoding ... +[121] bibtex.pm:1519> INFO - Found BibTeX data source 'literatura.bib' +[227] UCollate.pm:68> INFO - Overriding locale 'hr-HR' defaults 'normalization = NFD' with 'normalization = prenormalized' +[227] UCollate.pm:68> INFO - Overriding locale 'hr-HR' defaults 'variable = shifted' with 'variable = non-ignorable' +[227] Biber.pm:4283> INFO - Sorting list 'nty/global//global/global/global' of type 'entry' with template 'nty' and locale 'hr-HR' +[243] bbl.pm:677> INFO - Writing 'ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl' with encoding 'UTF-8' +[248] bbl.pm:780> INFO - Output to ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl +[248] Biber.pm:131> WARN - Duplicate entry key: 'kuznetsov2018strengthPLA' in file 'literatura.bib', skipping ... +[248] Biber.pm:131> WARN - legacy year field '1963.' in entry 'bazjanacNauka1' is not an integer - this will probably not sort properly. +[248] Biber.pm:133> INFO - WARNINGS: 2 diff --git a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.fdb_latexmk b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.fdb_latexmk index 84d8966..4ba4d47 100644 --- a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.fdb_latexmk +++ b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.fdb_latexmk @@ -1,14 +1,15 @@ # Fdb version 4 -["biber ispitivanje_cvrstoce_fdm_3d_printanog_uzorka"] 1755767241.78125 "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bcf" "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl" "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka" 1755768950.49458 0 - "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bcf" 1755768950.41923 110859 94e5bf57c6d455024a9a45dfe4f7bfa8 "pdflatex" - "literatura.bib" 1755688924.09158 7875 fc150ea06baf56ac030f0b194add21dd "" +["biber ispitivanje_cvrstoce_fdm_3d_printanog_uzorka"] 1755951395.17455 "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bcf" "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl" "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka" 1755952331.32623 0 + "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bcf" 1755952331.24557 110930 78500a82cbacb8c6073d8b4b0765071c "pdflatex" + "literatura.bib" 1755950408.49282 8363 10f2631a3c522628af031baf6131e8ab "" (generated) "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl" "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.blg" (rewritten before read) -["pdflatex"] 1755768948.96458 "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.tex" "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.pdf" "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka" 1755768950.49484 0 +["pdflatex"] 1755952329.49209 "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.tex" "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.pdf" "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka" 1755952331.32682 0 "/etc/texmf/web2c/texmf.cnf" 1741769514 43179 d4d8625c4224f516afc2b9ae03b45f2d "" "/usr/share/texmf/fonts/enc/dvips/base/8r.enc" 1165713224 4850 80dc9bab7f31fb78a000ccfed0e27cab "" + "/usr/share/texmf/fonts/enc/dvips/inconsolata/i4-ot1-0.enc" 1561323594 2496 4d35740f3a177992ff7b134746c0a1db "" "/usr/share/texmf/fonts/map/fontname/texfonts.map" 1577235249 3524 cb3e574dea2d1052e39280babc910dc8 "" "/usr/share/texmf/fonts/tfm/adobe/helvetic/phvb7t.tfm" 1136768653 2240 eb56c13537f4d8a0bd3fafc25572b1bd "" "/usr/share/texmf/fonts/tfm/adobe/helvetic/phvb8r.tfm" 1136768653 4484 b828043cbd581d289d955903c1339981 "" @@ -32,14 +33,16 @@ "/usr/share/texmf/fonts/tfm/public/cm/cmsy10.tfm" 1136768653 1124 6c73e740cf17375f03eec0ee63599741 "" "/usr/share/texmf/fonts/tfm/public/cm/cmsy6.tfm" 1136768653 1116 933a60c408fc0a863a92debe84b2d294 "" "/usr/share/texmf/fonts/tfm/public/cm/cmsy8.tfm" 1136768653 1120 8b7d695260f3cff42e636090a8002094 "" - "/usr/share/texmf/fonts/tfm/public/cm/cmtt12.tfm" 1136768653 772 9a936b7f5e2ff0557fce0f62822f0bbf "" + "/usr/share/texmf/fonts/tfm/public/inconsolata/ot1-zi4b-0.tfm" 1561323594 932 205ca7c5a2bd6ac4a57d1dc6ac13918b "" + "/usr/share/texmf/fonts/tfm/public/inconsolata/ot1-zi4r-0.tfm" 1561323594 912 a20aa2a2ed86fa42e5ec387898cd02d6 "" "/usr/share/texmf/fonts/type1/public/amsfonts/cm/cmex10.pfb" 1248133631 30251 6afa5cb1d0204815a708a080681d4674 "" "/usr/share/texmf/fonts/type1/public/amsfonts/cm/cmmi12.pfb" 1248133631 36741 fa121aac0049305630cf160b86157ee4 "" "/usr/share/texmf/fonts/type1/public/amsfonts/cm/cmmi8.pfb" 1248133631 35469 70d41d2b9ea31d5d813066df7c99281c "" "/usr/share/texmf/fonts/type1/public/amsfonts/cm/cmr12.pfb" 1248133631 32722 d7379af29a190c3f453aba36302ff5a9 "" "/usr/share/texmf/fonts/type1/public/amsfonts/cm/cmr8.pfb" 1248133631 32726 0a1aea6fcd6468ee2cf64d891f5c43c8 "" "/usr/share/texmf/fonts/type1/public/amsfonts/cm/cmsy10.pfb" 1248133631 32569 5e5ddc8df908dea60932f3c484a54c0d "" - "/usr/share/texmf/fonts/type1/public/amsfonts/cm/cmtt12.pfb" 1248133631 24252 1e4e051947e12dfb50fee0b7f4e26e3a "" + "/usr/share/texmf/fonts/type1/public/inconsolata/Inconsolata-zi4b.pfb" 1558214095 80472 80293bde06887d309938fd1de50ad188 "" + "/usr/share/texmf/fonts/type1/public/inconsolata/Inconsolata-zi4r.pfb" 1558214095 55526 184de5d68af8c544d6d1653244a2b006 "" "/usr/share/texmf/fonts/type1/urw/helvetic/uhvb8a.pfb" 1136849748 35941 f27169cc74234d5bd5e4cca5abafaabb "" "/usr/share/texmf/fonts/type1/urw/helvetic/uhvbo8a.pfb" 1136849748 39013 b244066151b1e3e718f9b8e88a5ff23b "" "/usr/share/texmf/fonts/type1/urw/helvetic/uhvr8a.pfb" 1136849748 44648 23115b2a545ebfe2c526c3ca99db8b95 "" @@ -108,18 +111,28 @@ "/usr/share/texmf/tex/latex/graphics/graphics.sty" 1730496337 18363 dee506cb8d56825d8a4d020f5d5f8704 "" "/usr/share/texmf/tex/latex/graphics/graphicx.sty" 1717359999 8010 6f2ad8c2b2ffbd607af6475441c7b5e4 "" "/usr/share/texmf/tex/latex/graphics/keyval.sty" 1717359999 2671 70891d50dac933918b827d326687c6e8 "" + "/usr/share/texmf/tex/latex/graphics/lscape.sty" 1717359999 1822 ce7e39e35ea3027d24b527bd5c5034d5 "" "/usr/share/texmf/tex/latex/graphics/mathcolor.ltx" 1667332637 2885 9c645d672ae17285bba324998918efd8 "" "/usr/share/texmf/tex/latex/graphics/trig.sty" 1717359999 4023 2c9f39712cf7b43d3eb93a8bbd5c8f67 "" "/usr/share/texmf/tex/latex/ifoddpage/ifoddpage.sty" 1666126449 2142 eae42205b97b7a3ad0e58db5fe99e3e6 "" + "/usr/share/texmf/tex/latex/inconsolata/inconsolata.sty" 1558214095 4327 344b968526dbd149d23066f8b2160aa4 "" + "/usr/share/texmf/tex/latex/inconsolata/ot1zi4.fd" 1516054831 1033 63d23fc5e9712c8312d76d4376f88831 "" "/usr/share/texmf/tex/latex/kvoptions/kvoptions.sty" 1655478651 22555 6d8e155cfef6d82c3d5c742fea7c992e "" "/usr/share/texmf/tex/latex/kvsetkeys/kvsetkeys.sty" 1665067230 13815 760b0c02f691ea230f5359c4e1de23a7 "" "/usr/share/texmf/tex/latex/l3backend/l3backend-pdftex.def" 1716410060 29785 9f93ab201fe5dd053afcc6c1bcf7d266 "" "/usr/share/texmf/tex/latex/l3kernel/expl3.sty" 1738271527 6565 f51d809db6193fae7b06c1bc26ca8f75 "" "/usr/share/texmf/tex/latex/l3packages/xparse/xparse.sty" 1724879202 9783 ab4bee47700c04aadedb8da27591b0ab "" "/usr/share/texmf/tex/latex/latexconfig/epstopdf-sys.cfg" 1279039959 678 4792914a8f45be57bb98413425e4c7af "" + "/usr/share/texmf/tex/latex/listings/listings.cfg" 1727126400 1865 301ae3c26fb8c0243307b619a6aa2dd3 "" + "/usr/share/texmf/tex/latex/listings/listings.sty" 1727126400 81640 997090b6c021dc4af9ee00a97b85c5b4 "" + "/usr/share/texmf/tex/latex/listings/lstlang1.sty" 1727126400 206518 4eb59a801ad842a713fa168c34227290 "" + "/usr/share/texmf/tex/latex/listings/lstmisc.sty" 1727126400 77051 be68720e5402397a830abb9eed5a2cb4 "" + "/usr/share/texmf/tex/latex/listings/lstpatch.sty" 1710360531 353 9024412f43e92cd5b21fe9ded82d0610 "" "/usr/share/texmf/tex/latex/logreq/logreq.def" 1284153563 1620 fb1c32b818f2058eca187e5c41dfae77 "" "/usr/share/texmf/tex/latex/logreq/logreq.sty" 1284153563 6187 b27afc771af565d3a9ff1ca7d16d0d46 "" "/usr/share/texmf/tex/latex/multirow/multirow.sty" 1731446765 6696 886c9f3087d0b973ed2c19aa79cb3023 "" + "/usr/share/texmf/tex/latex/pdflscape/pdflscape-nometadata.sty" 1667072951 6572 ea530fbbe537629fd97736d33babc07d "" + "/usr/share/texmf/tex/latex/pdflscape/pdflscape.sty" 1667072951 2224 1230ab76aa62221ccbd90bca8c8c015e "" "/usr/share/texmf/tex/latex/psnfss/helvet.sty" 1586716065 1499 de0ad166b701b820e03588a29bb30798 "" "/usr/share/texmf/tex/latex/psnfss/ot1phv.fd" 1586716065 1679 51f99a09d5536398d3a0ad1d44df9625 "" "/usr/share/texmf/tex/latex/psnfss/ts1phv.fd" 1586716065 1181 ec0c641cd2e0fb69a449534a0279b5ca "" @@ -127,6 +140,7 @@ "/usr/share/texmf/tex/latex/setspace/setspace.sty" 1670275497 22490 8cac309b79a4c53a4ffce4b1b07aead0 "" "/usr/share/texmf/tex/latex/tools/array.sty" 1730496337 14552 27664839421e418b87f56fa4c6f66b1a "" "/usr/share/texmf/tex/latex/tools/longtable.sty" 1730496337 15900 3cb191e576c7a313634d2813c55d4bf1 "" + "/usr/share/texmf/tex/latex/upquote/upquote.sty" 1334873510 1048 517e01cde97c1c0baf72e69d43aa5a2e "" "/usr/share/texmf/tex/latex/url/url.sty" 1388531844 12796 8edb7d69a20b857904dd0ea757c14ec9 "" "/usr/share/texmf/tex/latex/varwidth/varwidth.sty" 1238697683 10894 d359a13923460b2a73d4312d613554c8 "" "/usr/share/texmf/tex/latex/xcolor/xcolor.sty" 1727642399 55384 b454dec21c2d9f45ec0b793f0995b992 "" @@ -134,10 +148,14 @@ "/usr/share/texmf/web2c/texmf.cnf" 1741769514 43179 d4d8625c4224f516afc2b9ae03b45f2d "" "/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map" 1743149983 5467020 ca0c94f2ee48321ee55e91e42ecff204 "" "/var/lib/texmf/web2c/pdftex/pdflatex.fmt" 1743149993 3345506 2fd014ec6c5db62599a88e1145e5502c "" - "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.aux" 1755768950.41523 18730 28e9113d4d8797901e214c6a322d4d07 "pdflatex" - "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl" 1755767242.28137 33009 8d9089a7f7b00af4c01313d2f5caf4dc "biber ispitivanje_cvrstoce_fdm_3d_printanog_uzorka" - "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.run.xml" 1755768950.42076 2586 0df33ae4847716b3dce228e82b7d5d25 "pdflatex" - "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.tex" 1755767528.91379 58015 7c70355b9c1b75d83dbe46688774f690 "" + "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.aux" 1755952331.24157 20829 afe3767950a17df40047e8a1a4a52f85 "pdflatex" + "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl" 1755951395.78803 35091 3569ab5a48cadd3873a346b2982f931d "biber ispitivanje_cvrstoce_fdm_3d_printanog_uzorka" + "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.run.xml" 1755952331.24717 2586 0df33ae4847716b3dce228e82b7d5d25 "pdflatex" + "ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.tex" 1755952328.68068 72338 f8406033004798e48c9caef64b3e06c3 "" + "media/imgs/analiza_podataka/promjena_povrsine_10x10.jpg" 1755792541.22554 94970 a002c4ee68ebf13e3d4cf13f399439c6 "" + "media/imgs/analiza_podataka/promjena_povrsine_10x70.jpg" 1755792747.65033 117458 05930e6248bd5070412ced98667c5457 "" + "media/imgs/analiza_podataka/vlak_2d_lezeci.jpg" 1755791868.36192 74633 29d884550cbf67019223836feec6d66e "" + "media/imgs/analiza_podataka/vlak_2d_stojeci.jpg" 1755791956.43296 93736 2971830f6cf9fef255d474733a52e620 "" "media/imgs/infills/3d_honeycomb_infill.jpg" 1755426102.54509 422943 e10d1b654635215123b69d03e528af68 "" "media/imgs/infills/adaptive_cubic_infill.png" 1755426102.54509 302790 be18a05ec5401c8eec805a7cb9f6101d "" "media/imgs/infills/aligned_rectlinear_infill.jpg" 1755426102.54509 370934 661f445fa0306dbeeb661ddb1c13dfe5 "" @@ -165,6 +183,7 @@ "media/imgs/planiranje_eksperimenta/epruveta_smik_skica.jpg" 1755768923.53462 38264 bf2818c73f037e9937a3ce19f46b3b87 "" "media/imgs/planiranje_eksperimenta/epruveta_vlak_3d.jpg" 1755710007.77309 13665 db04a4126922a77b59397de09ed5fe59 "" "media/imgs/planiranje_eksperimenta/epruveta_vlak_skica.jpg" 1755712545.78801 33578 634504ea65b945734f2c49641710563b "" + "media/imgs/planiranje_eksperimenta/naprava_smik.jpg" 1755950996.43271 13947 69007ed15abcd0fd63204cea1875f1ce "" "media/imgs/planiranje_eksperimenta/orijentacije.jpg" 1755614665.21303 11364 1af0fc5d07cf7bdd4495f7e9702df753 "" "media/imgs/planiranje_eksperimenta/prihvat_epruvete.jpg" 1755687048.55941 19722 b905f7b98016c1fe332c7092b861ad80 "" "media/imgs/planiranje_eksperimenta/suzenje_struka.jpg" 1755689819.49408 85562 3af040bdbd3b73cb968bdaf6a987c83c "" diff --git a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.fls b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.fls index 8a3d239..c53aff1 100644 --- a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.fls +++ b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.fls @@ -165,6 +165,25 @@ INPUT /usr/share/texmf/tex/latex/l3packages/xparse/xparse.sty INPUT /usr/share/texmf/tex/latex/l3packages/xparse/xparse.sty INPUT /usr/share/texmf/tex/latex/multirow/multirow.sty INPUT /usr/share/texmf/tex/latex/multirow/multirow.sty +INPUT /usr/share/texmf/tex/latex/listings/listings.sty +INPUT /usr/share/texmf/tex/latex/listings/listings.sty +INPUT /usr/share/texmf/tex/latex/listings/lstpatch.sty +INPUT /usr/share/texmf/tex/latex/listings/lstpatch.sty +INPUT /usr/share/texmf/tex/latex/listings/lstpatch.sty +INPUT /usr/share/texmf/tex/latex/listings/lstmisc.sty +INPUT /usr/share/texmf/tex/latex/listings/lstmisc.sty +INPUT /usr/share/texmf/tex/latex/listings/lstmisc.sty +INPUT /usr/share/texmf/tex/latex/listings/listings.cfg +INPUT /usr/share/texmf/tex/latex/listings/listings.cfg +INPUT /usr/share/texmf/tex/latex/listings/listings.cfg +INPUT /usr/share/texmf/tex/latex/inconsolata/inconsolata.sty +INPUT /usr/share/texmf/tex/latex/inconsolata/inconsolata.sty +INPUT /usr/share/texmf/tex/latex/pdflscape/pdflscape.sty +INPUT /usr/share/texmf/tex/latex/pdflscape/pdflscape.sty +INPUT /usr/share/texmf/tex/latex/pdflscape/pdflscape-nometadata.sty +INPUT /usr/share/texmf/tex/latex/pdflscape/pdflscape-nometadata.sty +INPUT /usr/share/texmf/tex/latex/graphics/lscape.sty +INPUT /usr/share/texmf/tex/latex/graphics/lscape.sty INPUT /usr/share/texmf/tex/latex/sectsty/sectsty.sty INPUT /usr/share/texmf/tex/latex/sectsty/sectsty.sty INPUT /usr/share/texmf/tex/latex/fancyhdr/fancyhdr.sty @@ -194,6 +213,8 @@ INPUT ./ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl INPUT ./ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl INPUT ./ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl INPUT ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl +INPUT /usr/share/texmf/tex/latex/upquote/upquote.sty +INPUT /usr/share/texmf/tex/latex/upquote/upquote.sty INPUT /usr/share/texmf/fonts/tfm/adobe/helvetic/phvr7t.tfm INPUT /usr/share/texmf/fonts/tfm/adobe/helvetic/phvb7t.tfm INPUT /usr/share/texmf/fonts/tfm/adobe/helvetic/phvb7t.tfm @@ -390,20 +411,60 @@ INPUT ./media/imgs/planiranje_eksperimenta/epruveta_vlak_skica.jpg INPUT ./media/imgs/planiranje_eksperimenta/epruveta_vlak_skica.jpg INPUT ./media/imgs/planiranje_eksperimenta/epruveta_vlak_skica.jpg INPUT ./media/imgs/planiranje_eksperimenta/epruveta_vlak_skica.jpg +INPUT ./media/imgs/planiranje_eksperimenta/naprava_smik.jpg +INPUT ./media/imgs/planiranje_eksperimenta/naprava_smik.jpg +INPUT ./media/imgs/planiranje_eksperimenta/naprava_smik.jpg +INPUT ./media/imgs/planiranje_eksperimenta/naprava_smik.jpg +INPUT ./media/imgs/planiranje_eksperimenta/naprava_smik.jpg +INPUT ./media/imgs/analiza_podataka/vlak_2d_stojeci.jpg +INPUT ./media/imgs/analiza_podataka/vlak_2d_stojeci.jpg +INPUT ./media/imgs/analiza_podataka/vlak_2d_stojeci.jpg +INPUT ./media/imgs/analiza_podataka/vlak_2d_stojeci.jpg +INPUT ./media/imgs/analiza_podataka/vlak_2d_stojeci.jpg +INPUT ./media/imgs/analiza_podataka/vlak_2d_lezeci.jpg +INPUT ./media/imgs/analiza_podataka/vlak_2d_lezeci.jpg +INPUT ./media/imgs/analiza_podataka/vlak_2d_lezeci.jpg +INPUT ./media/imgs/analiza_podataka/vlak_2d_lezeci.jpg +INPUT ./media/imgs/analiza_podataka/vlak_2d_lezeci.jpg +INPUT ./media/imgs/analiza_podataka/promjena_povrsine_10x10.jpg +INPUT ./media/imgs/analiza_podataka/promjena_povrsine_10x10.jpg +INPUT ./media/imgs/analiza_podataka/promjena_povrsine_10x10.jpg +INPUT ./media/imgs/analiza_podataka/promjena_povrsine_10x10.jpg +INPUT ./media/imgs/analiza_podataka/promjena_povrsine_10x10.jpg +INPUT ./media/imgs/analiza_podataka/promjena_povrsine_10x70.jpg +INPUT ./media/imgs/analiza_podataka/promjena_povrsine_10x70.jpg +INPUT ./media/imgs/analiza_podataka/promjena_povrsine_10x70.jpg +INPUT ./media/imgs/analiza_podataka/promjena_povrsine_10x70.jpg +INPUT ./media/imgs/analiza_podataka/promjena_povrsine_10x70.jpg +INPUT /usr/share/texmf/tex/latex/inconsolata/ot1zi4.fd +INPUT /usr/share/texmf/tex/latex/inconsolata/ot1zi4.fd +INPUT /usr/share/texmf/tex/latex/inconsolata/ot1zi4.fd +INPUT /usr/share/texmf/fonts/tfm/public/inconsolata/ot1-zi4r-0.tfm +INPUT /usr/share/texmf/fonts/enc/dvips/inconsolata/i4-ot1-0.enc INPUT /usr/share/texmf/fonts/tfm/adobe/helvetic/phvrc7t.tfm -INPUT /usr/share/texmf/fonts/tfm/public/cm/cmtt12.tfm INPUT /usr/share/texmf/fonts/vf/adobe/helvetic/phvrc7t.vf INPUT /usr/share/texmf/fonts/tfm/adobe/helvetic/phvr8r.tfm +INPUT /usr/share/texmf/fonts/tfm/public/inconsolata/ot1-zi4r-0.tfm +INPUT /usr/share/texmf/fonts/tfm/public/inconsolata/ot1-zi4r-0.tfm +INPUT /usr/share/texmf/tex/latex/listings/lstlang1.sty +INPUT /usr/share/texmf/tex/latex/listings/lstlang1.sty +INPUT /usr/share/texmf/tex/latex/listings/lstlang1.sty +INPUT /usr/share/texmf/fonts/tfm/public/inconsolata/ot1-zi4r-0.tfm +INPUT /usr/share/texmf/fonts/tfm/adobe/helvetic/phvr7t.tfm +INPUT /usr/share/texmf/fonts/tfm/public/inconsolata/ot1-zi4b-0.tfm +INPUT /usr/share/texmf/fonts/vf/adobe/helvetic/phvr7t.vf +INPUT /usr/share/texmf/fonts/tfm/adobe/helvetic/phvr8r.tfm INPUT ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.aux INPUT ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.run.xml OUTPUT ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.run.xml +INPUT /usr/share/texmf/fonts/type1/public/inconsolata/Inconsolata-zi4b.pfb +INPUT /usr/share/texmf/fonts/type1/public/inconsolata/Inconsolata-zi4r.pfb INPUT /usr/share/texmf/fonts/type1/public/amsfonts/cm/cmex10.pfb INPUT /usr/share/texmf/fonts/type1/public/amsfonts/cm/cmmi12.pfb INPUT /usr/share/texmf/fonts/type1/public/amsfonts/cm/cmmi8.pfb INPUT /usr/share/texmf/fonts/type1/public/amsfonts/cm/cmr12.pfb INPUT /usr/share/texmf/fonts/type1/public/amsfonts/cm/cmr8.pfb INPUT /usr/share/texmf/fonts/type1/public/amsfonts/cm/cmsy10.pfb -INPUT /usr/share/texmf/fonts/type1/public/amsfonts/cm/cmtt12.pfb INPUT /usr/share/texmf/fonts/type1/urw/helvetic/uhvb8a.pfb INPUT /usr/share/texmf/fonts/type1/urw/helvetic/uhvbo8a.pfb INPUT /usr/share/texmf/fonts/type1/urw/helvetic/uhvr8a.pfb diff --git a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.log b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.log index bc5f10c..5d1d3a5 100644 --- a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.log +++ b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.log @@ -1,4 +1,4 @@ -This is pdfTeX, Version 3.141592653-2.6-1.40.27 (TeX Live 2025/TeX Live for SUSE Linux) (preloaded format=pdflatex 2025.3.28) 21 AUG 2025 11:35 +This is pdfTeX, Version 3.141592653-2.6-1.40.27 (TeX Live 2025/TeX Live for SUSE Linux) (preloaded format=pdflatex 2025.3.28) 23 AUG 2025 14:32 entering extended mode restricted \write18 enabled. %&-line parsing enabled. @@ -635,6 +635,52 @@ Package: multirow 2024/11/12 v2.9 Span multiple rows of a table \multirow@dima=\skip85 \bigstrutjot=\dimen259 ) +(/usr/share/texmf/tex/latex/listings/listings.sty +\lst@mode=\count434 +\lst@gtempboxa=\box67 +\lst@token=\toks35 +\lst@length=\count435 +\lst@currlwidth=\dimen260 +\lst@column=\count436 +\lst@pos=\count437 +\lst@lostspace=\dimen261 +\lst@width=\dimen262 +\lst@newlines=\count438 +\lst@lineno=\count439 +\lst@maxwidth=\dimen263 + +(/usr/share/texmf/tex/latex/listings/lstpatch.sty +File: lstpatch.sty 2024/09/23 1.10c (Carsten Heinz) +) +(/usr/share/texmf/tex/latex/listings/lstmisc.sty +File: lstmisc.sty 2024/09/23 1.10c (Carsten Heinz) +\c@lstnumber=\count440 +\lst@skipnumbers=\count441 +\lst@framebox=\box68 +) +(/usr/share/texmf/tex/latex/listings/listings.cfg +File: listings.cfg 2024/09/23 1.10c listings configuration +)) +Package: listings 2024/09/23 1.10c (Carsten Heinz) + +(/usr/share/texmf/tex/latex/inconsolata/inconsolata.sty +Package: inconsolata 2019/05/17 v1.12 + +`inconsolata-zi4' v1.12, 2019/05/17 Text macros for Inconsolata (msharpe) +\zifour@ocount=\count442 +) +(/usr/share/texmf/tex/latex/pdflscape/pdflscape.sty +Package: pdflscape 2022-10-27 v0.13 Display of landscape pages in PDF + +(/usr/share/texmf/tex/latex/pdflscape/pdflscape-nometadata.sty +Package: pdflscape-nometadata 2022-10-28 v0.13 Display of landscape pages in PD +F (HO) + +(/usr/share/texmf/tex/latex/graphics/lscape.sty +Package: lscape 2020/05/28 v3.02 Landscape Pages (DPC) +) +Package pdflscape Info: Auto-detected driver: pdftex on input line 81. +)) (/usr/share/texmf/tex/latex/sectsty/sectsty.sty Package: sectsty 2002/02/25 v2.0.2 Commands to change all sectional heading sty les @@ -664,64 +710,64 @@ Package: fancyhdr 2025/02/07 v5.2 Extensive control of page headers and footers \f@nch@widthL=\skip97 \f@nch@widthC=\skip98 \f@nch@widthR=\skip99 -\@temptokenb=\toks35 +\@temptokenb=\toks36 ) Package biblatex Warning: 'babel/polyglossia' detected but 'csquotes' missing. (biblatex) Loading 'csquotes' recommended. -\@quotelevel=\count434 -\@quotereset=\count435 -LaTeX Font Info: Trying to load font information for OT1+phv on input line 5 +\@quotelevel=\count443 +\@quotereset=\count444 +LaTeX Font Info: Trying to load font information for OT1+phv on input line 8 4. (/usr/share/texmf/tex/latex/psnfss/ot1phv.fd File: ot1phv.fd 2020/03/25 scalable font definitions for OT1/phv. ) LaTeX Font Info: Font shape `OT1/phv/m/n' will be -(Font) scaled to size 11.03998pt on input line 54. +(Font) scaled to size 11.03998pt on input line 84. (./ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.aux) \openout1 = `ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.aux'. -LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 54. -LaTeX Font Info: ... okay on input line 54. -LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 54. -LaTeX Font Info: ... okay on input line 54. -LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 54. -LaTeX Font Info: ... okay on input line 54. -LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 54. -LaTeX Font Info: ... okay on input line 54. -LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 54. -LaTeX Font Info: ... okay on input line 54. -LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 54. -LaTeX Font Info: ... okay on input line 54. -LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 54. -LaTeX Font Info: ... okay on input line 54. +LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 84. +LaTeX Font Info: ... okay on input line 84. +LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 84. +LaTeX Font Info: ... okay on input line 84. +LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 84. +LaTeX Font Info: ... okay on input line 84. +LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 84. +LaTeX Font Info: ... okay on input line 84. +LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 84. +LaTeX Font Info: ... okay on input line 84. +LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 84. +LaTeX Font Info: ... okay on input line 84. +LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 84. +LaTeX Font Info: ... okay on input line 84. \symgns@font=\mathgroup4 LaTeX Font Info: Overwriting symbol font `gns@font' in version `bold' -(Font) TS1/phv/m/n --> TS1/phv/b/n on input line 54. -Package gensymb Info: Math companion symbols declared on input line 54. -LaTeX Info: Redefining \degree on input line 54. -LaTeX Info: Redefining \celsius on input line 54. +(Font) TS1/phv/m/n --> TS1/phv/b/n on input line 84. +Package gensymb Info: Math companion symbols declared on input line 84. +LaTeX Info: Redefining \degree on input line 84. +LaTeX Info: Redefining \celsius on input line 84. Package gensymb Info: Using text companion symbols for \degree, \celsius and \p -erthousand on input line 54. -LaTeX Info: Redefining \ohm on input line 54. -Package gensymb Info: Using \textohm for \ohm on input line 54. -Package gensymb Info: Using \textmu for \micro on input line 54. +erthousand on input line 84. +LaTeX Info: Redefining \ohm on input line 84. +Package gensymb Info: Using \textohm for \ohm on input line 84. +Package gensymb Info: Using \textmu for \micro on input line 84. (/usr/share/texmf/tex/context/base/mkii/supp-pdf.mkii [Loading MPS to PDF converter (version 2006.09.02).] -\scratchcounter=\count436 -\scratchdimen=\dimen260 -\scratchbox=\box67 -\nofMPsegments=\count437 -\nofMParguments=\count438 -\everyMPshowfont=\toks36 -\MPscratchCnt=\count439 -\MPscratchDim=\dimen261 -\MPnumerator=\count440 -\makeMPintoPDFobject=\count441 -\everyMPtoPDFconversion=\toks37 +\scratchcounter=\count445 +\scratchdimen=\dimen264 +\scratchbox=\box69 +\nofMPsegments=\count446 +\nofMParguments=\count447 +\everyMPshowfont=\toks37 +\MPscratchCnt=\count448 +\MPscratchDim=\dimen265 +\MPnumerator=\count449 +\makeMPintoPDFobject=\count450 +\everyMPtoPDFconversion=\toks38 ) (/usr/share/texmf/tex/latex/epstopdf-pkg/epstopdf-base.sty Package: epstopdf-base 2020-01-24 v2.11 Base part for package epstopdf Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 4 @@ -766,6 +812,7 @@ e * (1in=72.27pt=25.4mm, 1cm=28.453pt) Package caption Info: Begin \AtBeginDocument code. +Package caption Info: listings package is loaded. Package caption Info: End \AtBeginDocument code. Package biblatex Info: Trying to load language 'croatian'... Package biblatex Info: ... file 'croatian.lbx' found. @@ -782,20 +829,26 @@ Package biblatex Info: ... file 'ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.b bl' found. (./ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.bbl) -Package biblatex Info: Reference section=0 on input line 54. -Package biblatex Info: Reference segment=0 on input line 54. +Package biblatex Info: Reference section=0 on input line 84. +Package biblatex Info: Reference segment=0 on input line 84. +\c@lstlisting=\count451 + +(/usr/share/texmf/tex/latex/upquote/upquote.sty +Package: upquote 2012/04/19 v1.3 upright-quote and grave-accent glyphs in verba +tim +) LaTeX Font Info: Font shape `OT1/phv/m/n' will be -(Font) scaled to size 15.89755pt on input line 56. +(Font) scaled to size 15.89755pt on input line 86. LaTeX Font Info: Font shape `OT1/phv/b/n' will be -(Font) scaled to size 15.89755pt on input line 56. +(Font) scaled to size 15.89755pt on input line 86. LaTeX Font Info: Font shape `OT1/phv/b/n' will be -(Font) scaled to size 12.87997pt on input line 56. +(Font) scaled to size 12.87997pt on input line 86. LaTeX Font Info: Font shape `OT1/phv/m/it' in size <12> not available -(Font) Font shape `OT1/phv/m/sl' tried instead on input line 71. +(Font) Font shape `OT1/phv/m/sl' tried instead on input line 101. LaTeX Font Info: Font shape `OT1/phv/m/sl' will be -(Font) scaled to size 11.03998pt on input line 71. +(Font) scaled to size 11.03998pt on input line 101. Package fancyhdr Warning: \headheight is too small (12.0pt): (fancyhdr) Make it at least 14.49998pt, for example: @@ -808,23 +861,23 @@ c/dvips/base/8r.enc} ] LaTeX Font Info: Font shape `OT1/phv/m/n' will be -(Font) scaled to size 13.24796pt on input line 76. +(Font) scaled to size 13.24796pt on input line 106. LaTeX Font Info: Font shape `OT1/phv/b/n' will be -(Font) scaled to size 13.24796pt on input line 76. +(Font) scaled to size 13.24796pt on input line 106. LaTeX Font Info: Font shape `OT1/phv/b/n' will be -(Font) scaled to size 11.03998pt on input line 76. +(Font) scaled to size 11.03998pt on input line 106. -Underfull \hbox (badness 10000) in paragraph at lines 99--103 +Underfull \hbox (badness 10000) in paragraph at lines 129--133 [] -Underfull \hbox (badness 10000) in paragraph at lines 105--107 +Underfull \hbox (badness 10000) in paragraph at lines 135--137 [] -Underfull \hbox (badness 10000) in paragraph at lines 108--111 +Underfull \hbox (badness 10000) in paragraph at lines 138--141 [] @@ -839,11 +892,11 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): [2] LaTeX Font Info: Font shape `OT1/phv/b/it' in size <12> not available -(Font) Font shape `OT1/phv/b/sl' tried instead on input line 115. +(Font) Font shape `OT1/phv/b/sl' tried instead on input line 145. LaTeX Font Info: Font shape `OT1/phv/b/sl' will be -(Font) scaled to size 11.03998pt on input line 115. +(Font) scaled to size 11.03998pt on input line 145. -Underfull \hbox (badness 10000) in paragraph at lines 144--148 +Underfull \hbox (badness 10000) in paragraph at lines 174--178 [] @@ -857,7 +910,7 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): (fancyhdr) \addtolength{\topmargin}{-2.49998pt}. [3] -Underfull \hbox (badness 10000) in paragraph at lines 153--159 +Underfull \hbox (badness 10000) in paragraph at lines 183--189 [] @@ -867,10 +920,10 @@ File: media/imgs/parameters_description/visina_sloja.jpg Graphic file (type jpg ) Package pdftex.def Info: media/imgs/parameters_description/visina_sloja.jpg us -ed on input line 163. +ed on input line 193. (pdftex.def) Requested size: 364.19667pt x 91.79903pt. -Underfull \hbox (badness 10000) in paragraph at lines 171--175 +Underfull \hbox (badness 10000) in paragraph at lines 201--205 [] @@ -880,7 +933,7 @@ File: media/imgs/parameters_description/sirina_ekstruzije.jpg Graphic file (typ e jpg) Package pdftex.def Info: media/imgs/parameters_description/sirina_ekstruzije.jp -g used on input line 178. +g used on input line 208. (pdftex.def) Requested size: 273.14923pt x 165.35905pt. @@ -893,7 +946,7 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): [4 <./media/imgs/parameters_description/visina_sloja.jpg> <./media/imgs/paramet ers_description/sirina_ekstruzije.jpg>] -Underfull \hbox (badness 10000) in paragraph at lines 186--190 +Underfull \hbox (badness 10000) in paragraph at lines 216--220 [] @@ -903,10 +956,10 @@ File: media/imgs/parameters_description/postotak_ispune.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/parameters_description/postotak_ispune.jpg - used on input line 193. + used on input line 223. (pdftex.def) Requested size: 273.14923pt x 133.62396pt. -Underfull \hbox (badness 10000) in paragraph at lines 199--207 +Underfull \hbox (badness 10000) in paragraph at lines 229--237 [] @@ -920,96 +973,96 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): (fancyhdr) \addtolength{\topmargin}{-2.49998pt}. [5 <./media/imgs/parameters_description/postotak_ispune.jpg>] -Underfull \hbox (badness 10000) in paragraph at lines 213--218 +Underfull \hbox (badness 10000) in paragraph at lines 243--248 [] -Overfull \hbox (51.82632pt too wide) in alignment at lines 220--226 +Overfull \hbox (51.82632pt too wide) in alignment at lines 250--256 [] [] [] [] -Overfull \hbox (51.82632pt too wide) in alignment at lines 226--231 +Overfull \hbox (51.82632pt too wide) in alignment at lines 256--261 [] [] [] [] -Overfull \hbox (51.82632pt too wide) in alignment at lines 231--233 +Overfull \hbox (51.82632pt too wide) in alignment at lines 261--263 [] [] [] [] LaTeX Font Info: Trying to load font information for TS1+phv on input line 2 -36. +66. (/usr/share/texmf/tex/latex/psnfss/ts1phv.fd File: ts1phv.fd 2020/03/25 scalable font definitions for TS1/phv. ) LaTeX Font Info: Font shape `TS1/phv/m/n' will be -(Font) scaled to size 11.03998pt on input line 236. +(Font) scaled to size 11.03998pt on input line 266. File: media/imgs/infills/rectlinear_infill.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/infills/rectlinear_infill.jpg used on inpu -t line 241. +t line 271. (pdftex.def) Requested size: 71.13188pt x 53.33192pt. File: media/imgs/infills/aligned_rectlinear_infill.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/infills/aligned_rectlinear_infill.jpg used - on input line 251. + on input line 281. (pdftex.def) Requested size: 71.13188pt x 53.33192pt. File: media/imgs/infills/grid_infill.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/infills/grid_infill.jpg used on input line - 261. + 291. (pdftex.def) Requested size: 71.13188pt x 53.36664pt. File: media/imgs/infills/triangles_infill.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/infills/triangles_infill.jpg used on input - line 271. + line 301. (pdftex.def) Requested size: 71.13188pt x 53.33192pt. File: media/imgs/infills/stars_infill.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/infills/stars_infill.jpg used on input lin -e 281. +e 311. (pdftex.def) Requested size: 71.13188pt x 53.33192pt. File: media/imgs/infills/line_infill.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/infills/line_infill.jpg used on input line - 291. + 321. (pdftex.def) Requested size: 71.13188pt x 53.33192pt. File: media/imgs/infills/concentric_infill.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/infills/concentric_infill.jpg used on inpu -t line 301. +t line 331. (pdftex.def) Requested size: 71.13188pt x 53.33192pt. File: media/imgs/infills/honeycomb_infill.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/infills/honeycomb_infill.jpg used on input - line 311. + line 341. (pdftex.def) Requested size: 71.13188pt x 53.33192pt. File: media/imgs/infills/hilbert_curve_infill.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/infills/hilbert_curve_infill.jpg used on i -nput line 321. +nput line 351. (pdftex.def) Requested size: 71.13188pt x 53.33192pt. File: media/imgs/infills/archimedean_chords_infill.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/infills/archimedean_chords_infill.jpg used - on input line 331. + on input line 361. (pdftex.def) Requested size: 71.13188pt x 53.33192pt. -Overfull \hbox (51.82632pt too wide) in alignment at lines 233--333 +Overfull \hbox (51.82632pt too wide) in alignment at lines 263--363 [] [] [] [] @@ -1025,41 +1078,41 @@ ectlinear_infill.jpg> <./media/imgs/infills/grid_infill.jpg> <./media/imgs/infi lls/triangles_infill.jpg> <./media/imgs/infills/stars_infill.jpg> <./media/imgs /infills/line_infill.jpg> <./media/imgs/infills/concentric_infill.jpg>] LaTeX Font Info: Font shape `TS1/phv/m/n' will be -(Font) scaled to size 7.35999pt on input line 342. +(Font) scaled to size 7.35999pt on input line 372. LaTeX Font Info: Font shape `TS1/phv/m/n' will be -(Font) scaled to size 5.51999pt on input line 342. +(Font) scaled to size 5.51999pt on input line 372. File: media/imgs/infills/cubic_infill.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/infills/cubic_infill.jpg used on input lin -e 353. +e 383. (pdftex.def) Requested size: 71.13188pt x 53.33192pt. File: media/imgs/infills/support_cubic_infill.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/infills/support_cubic_infill.jpg used on i -nput line 363. +nput line 393. (pdftex.def) Requested size: 71.13188pt x 53.33633pt. File: media/imgs/infills/adaptive_cubic_infill.png Graphic file (type png) Package pdftex.def Info: media/imgs/infills/adaptive_cubic_infill.png used on -input line 373. +input line 403. (pdftex.def) Requested size: 71.13188pt x 58.81096pt. File: media/imgs/infills/3d_honeycomb_infill.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/infills/3d_honeycomb_infill.jpg used on in -put line 383. +put line 413. (pdftex.def) Requested size: 71.13188pt x 53.33192pt. File: media/imgs/infills/gyroid_infill.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/infills/gyroid_infill.jpg used on input li -ne 393. +ne 423. (pdftex.def) Requested size: 71.13188pt x 53.33192pt. -Overfull \hbox (51.82632pt too wide) in paragraph at lines 342--397 +Overfull \hbox (51.82632pt too wide) in paragraph at lines 372--427 [][] [] @@ -1077,7 +1130,7 @@ rve_infill.jpg> <./media/imgs/infills/archimedean_chords_infill.jpg> <./media/i mgs/infills/cubic_infill.jpg> <./media/imgs/infills/support_cubic_infill.jpg> < ./media/imgs/infills/adaptive_cubic_infill.png> <./media/imgs/infills/3d_honeyc omb_infill.jpg> <./media/imgs/infills/gyroid_infill.jpg>] -Underfull \hbox (badness 10000) in paragraph at lines 402--408 +Underfull \hbox (badness 10000) in paragraph at lines 432--438 [] @@ -1088,10 +1141,10 @@ pg Graphic file (type jpg) Package pdftex.def Info: media/imgs/parameters_description/orijentacija_modela_ -na_radnoj_podlozi.jpg used on input line 411. +na_radnoj_podlozi.jpg used on input line 441. (pdftex.def) Requested size: 409.71692pt x 178.13362pt. -Underfull \hbox (badness 10000) in paragraph at lines 417--420 +Underfull \hbox (badness 10000) in paragraph at lines 447--450 [] @@ -1101,10 +1154,10 @@ File: media/imgs/parameters_description/broj_slojeva_stijenke.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/parameters_description/broj_slojeva_stijenk -e.jpg used on input line 423. +e.jpg used on input line 453. (pdftex.def) Requested size: 409.71692pt x 118.67303pt. -Underfull \hbox (badness 10000) in paragraph at lines 434--437 +Underfull \hbox (badness 10000) in paragraph at lines 464--467 [] @@ -1119,7 +1172,7 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): [8 <./media/imgs/parameters_description/orijentacija_modela_na_radnoj_podlozi.j pg> <./media/imgs/parameters_description/broj_slojeva_stijenke.jpg>] -Overfull \hbox (6.92891pt too wide) in paragraph at lines 439--444 +Overfull \hbox (6.92891pt too wide) in paragraph at lines 469--474 \OT1/phv/m/n/12 Tijekom talo[]zenja slo-jeva, novi sloj ras-top-lje-nog fi-la-m enta do-lazi u kon-takt s ve[]c ohla[]denim [] @@ -1135,9 +1188,9 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): [9] LaTeX Font Info: Font shape `OT1/phv/m/n' will be -(Font) scaled to size 7.35999pt on input line 495. +(Font) scaled to size 7.35999pt on input line 525. LaTeX Font Info: Font shape `OT1/phv/m/n' will be -(Font) scaled to size 5.51999pt on input line 495. +(Font) scaled to size 5.51999pt on input line 525. @@ -1157,7 +1210,7 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): (fancyhdr) \addtolength{\topmargin}{-2.49998pt}. [11] -Underfull \hbox (badness 10000) in paragraph at lines 533--539 +Underfull \hbox (badness 10000) in paragraph at lines 563--569 [] @@ -1171,23 +1224,23 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): (fancyhdr) \addtolength{\topmargin}{-2.49998pt}. [12] -Overfull \hbox (4.46724pt too wide) in paragraph at lines 564--566 +Overfull \hbox (4.46724pt too wide) in paragraph at lines 594--596 \OT1/phv/m/n/12 Kako bi do-bili za-do-vo-lja-vaju[]cu va-ri-ja-ciju u []cvrsto[ ]cama is-pit-nih uzo-raka po-trebnu za pro-nala[]zenje [] -Underfull \hbox (badness 10000) in paragraph at lines 568--573 +Underfull \hbox (badness 10000) in paragraph at lines 598--603 [] -Underfull \hbox (badness 10000) in paragraph at lines 592--595 +Underfull \hbox (badness 10000) in paragraph at lines 622--625 [] -Underfull \hbox (badness 10000) in paragraph at lines 614--621 +Underfull \hbox (badness 10000) in paragraph at lines 644--651 [] @@ -1207,7 +1260,7 @@ File: media/imgs/planiranje_eksperimenta/usporedba_postotka_ispune.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/planiranje_eksperimenta/usporedba_postotka_ -ispune.jpg used on input line 624. +ispune.jpg used on input line 654. (pdftex.def) Requested size: 455.24411pt x 182.75647pt. @@ -1219,12 +1272,12 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): (fancyhdr) \addtolength{\topmargin}{-2.49998pt}. [14 <./media/imgs/planiranje_eksperimenta/usporedba_postotka_ispune.jpg>] -Underfull \hbox (badness 10000) in paragraph at lines 698--700 +Underfull \hbox (badness 10000) in paragraph at lines 728--730 [] -Underfull \hbox (badness 10000) in paragraph at lines 703--710 +Underfull \hbox (badness 10000) in paragraph at lines 733--740 [] @@ -1234,7 +1287,7 @@ File: media/imgs/planiranje_eksperimenta/orijentacije.jpg Graphic file (type jp g) Package pdftex.def Info: media/imgs/planiranje_eksperimenta/orijentacije.jpg u -sed on input line 717. +sed on input line 747. (pdftex.def) Requested size: 455.24411pt x 149.97537pt. @@ -1248,7 +1301,7 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): [15] LaTeX Warning: Reference `tab:taguchi_l18' on page 16 undefined on input line 7 -67. +97. @@ -1260,7 +1313,7 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): (fancyhdr) \addtolength{\topmargin}{-2.49998pt}. [16 <./media/imgs/planiranje_eksperimenta/orijentacije.jpg>] -Underfull \hbox (badness 10000) in paragraph at lines 804--811 +Underfull \hbox (badness 10000) in paragraph at lines 834--841 [] @@ -1274,7 +1327,7 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): (fancyhdr) \addtolength{\topmargin}{-2.49998pt}. [17] -Underfull \hbox (badness 10000) in paragraph at lines 848--852 +Underfull \hbox (badness 10000) in paragraph at lines 878--882 [] @@ -1288,17 +1341,17 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): (fancyhdr) \addtolength{\topmargin}{-2.49998pt}. [18] -Underfull \hbox (badness 10000) in paragraph at lines 897--901 +Underfull \hbox (badness 10000) in paragraph at lines 927--931 [] -Underfull \hbox (badness 10000) in paragraph at lines 903--907 +Underfull \hbox (badness 10000) in paragraph at lines 933--937 [] -Underfull \hbox (badness 10000) in paragraph at lines 909--913 +Underfull \hbox (badness 10000) in paragraph at lines 939--943 [] @@ -1318,7 +1371,7 @@ File: media/imgs/planiranje_eksperimenta/epruveta_bez_potpore.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/planiranje_eksperimenta/epruveta_bez_potpor -e.jpg used on input line 916. +e.jpg used on input line 946. (pdftex.def) Requested size: 364.19667pt x 155.519pt. @@ -1326,7 +1379,7 @@ File: media/imgs/planiranje_eksperimenta/epruveta_sa_potporom.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/planiranje_eksperimenta/epruveta_sa_potporo -m.jpg used on input line 923. +m.jpg used on input line 953. (pdftex.def) Requested size: 364.19667pt x 155.519pt. @@ -1334,7 +1387,7 @@ File: media/imgs/planiranje_eksperimenta/suzenje_struka.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/planiranje_eksperimenta/suzenje_struka.jpg - used on input line 940. + used on input line 970. (pdftex.def) Requested size: 364.19667pt x 167.23065pt. @@ -1353,7 +1406,7 @@ File: media/imgs/planiranje_eksperimenta/prihvat_epruvete.jpg Graphic file (typ e jpg) Package pdftex.def Info: media/imgs/planiranje_eksperimenta/prihvat_epruvete.jp -g used on input line 957. +g used on input line 987. (pdftex.def) Requested size: 364.19667pt x 260.88644pt. @@ -1361,7 +1414,7 @@ File: media/imgs/planiranje_eksperimenta/epruveta_s_prihvatom.jpg Graphic file (type jpg) Package pdftex.def Info: media/imgs/planiranje_eksperimenta/epruveta_s_prihvato -m.jpg used on input line 964. +m.jpg used on input line 994. (pdftex.def) Requested size: 364.19667pt x 187.17839pt. @@ -1374,7 +1427,7 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): [21 <./media/imgs/planiranje_eksperimenta/suzenje_struka.jpg> <./media/imgs/pla niranje_eksperimenta/prihvat_epruvete.jpg>] -Underfull \hbox (badness 10000) in paragraph at lines 970--972 +Underfull \hbox (badness 10000) in paragraph at lines 1000--1002 [] @@ -1384,7 +1437,7 @@ File: media/imgs/planiranje_eksperimenta/epruveta_vlak_3d.jpg Graphic file (typ e jpg) Package pdftex.def Info: media/imgs/planiranje_eksperimenta/epruveta_vlak_3d.jp -g used on input line 976. +g used on input line 1006. (pdftex.def) Requested size: 364.19667pt x 288.19754pt. @@ -1392,7 +1445,7 @@ File: media/imgs/planiranje_eksperimenta/epruveta_smik_3d.jpg Graphic file (typ e jpg) Package pdftex.def Info: media/imgs/planiranje_eksperimenta/epruveta_smik_3d.jp -g used on input line 983. +g used on input line 1013. (pdftex.def) Requested size: 364.19667pt x 293.25626pt. @@ -1405,7 +1458,7 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): [22 <./media/imgs/planiranje_eksperimenta/epruveta_s_prihvatom.jpg> <./media/im gs/planiranje_eksperimenta/epruveta_vlak_3d.jpg>] -Underfull \hbox (badness 10000) in paragraph at lines 988--989 +Underfull \hbox (badness 10000) in paragraph at lines 1018--1019 [] @@ -1415,7 +1468,7 @@ File: media/imgs/planiranje_eksperimenta/epruveta_smik_skica.jpg Graphic file ( type jpg) Package pdftex.def Info: media/imgs/planiranje_eksperimenta/epruveta_smik_skica -.jpg used on input line 992. +.jpg used on input line 1022. (pdftex.def) Requested size: 364.19667pt x 205.43262pt. @@ -1423,7 +1476,7 @@ File: media/imgs/planiranje_eksperimenta/epruveta_vlak_skica.jpg Graphic file ( type jpg) Package pdftex.def Info: media/imgs/planiranje_eksperimenta/epruveta_vlak_skica -.jpg used on input line 999. +.jpg used on input line 1029. (pdftex.def) Requested size: 364.19667pt x 208.51228pt. @@ -1445,6 +1498,19 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): (fancyhdr) \addtolength{\topmargin}{-2.49998pt}. [24 <./media/imgs/planiranje_eksperimenta/epruveta_vlak_skica.jpg>] +Underfull \hbox (badness 10000) in paragraph at lines 1108--1113 + + [] + + +File: media/imgs/planiranje_eksperimenta/naprava_smik.jpg Graphic file (type jp +g) + +Package pdftex.def Info: media/imgs/planiranje_eksperimenta/naprava_smik.jpg u +sed on input line 1116. +(pdftex.def) Requested size: 318.66948pt x 302.3019pt. + Package fancyhdr Warning: \headheight is too small (12.0pt): @@ -1454,15 +1520,42 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): (fancyhdr) \addtolength{\topmargin}{-2.49998pt}. [25] -LaTeX Font Info: Font shape `OT1/phv/m/sc' will be -(Font) scaled to size 11.03998pt on input line 1085. -Overfull \hbox (5.74829pt too wide) in paragraph at lines 1085--1085 -\OT1/phv/m/n/12 ssed: 2025-08-16. 2023. \OT1/phv/m/sc/12 url\OT1/phv/m/n/12 : $ -\OT1/cmtt/m/n/12 https : / / clevercreations . org / what -[] is -[] strongest --[] + +Package fancyhdr Warning: \headheight is too small (12.0pt): +(fancyhdr) Make it at least 14.49998pt, for example: +(fancyhdr) \setlength{\headheight}{14.49998pt}. +(fancyhdr) You might also make \topmargin smaller: +(fancyhdr) \addtolength{\topmargin}{-2.49998pt}. + +[26 <./media/imgs/planiranje_eksperimenta/naprava_smik.jpg>] + + +Package fancyhdr Warning: \headheight is too small (12.0pt): +(fancyhdr) Make it at least 14.49998pt, for example: +(fancyhdr) \setlength{\headheight}{14.49998pt}. +(fancyhdr) You might also make \topmargin smaller: +(fancyhdr) \addtolength{\topmargin}{-2.49998pt}. + +[27] +Underfull \hbox (badness 10000) in paragraph at lines 1135--1138 + [] + +File: media/imgs/analiza_podataka/vlak_2d_stojeci.jpg Graphic file (type jpg) + +Package pdftex.def Info: media/imgs/analiza_podataka/vlak_2d_stojeci.jpg used +on input line 1151. +(pdftex.def) Requested size: 227.62206pt x 234.79387pt. + +File: media/imgs/analiza_podataka/vlak_2d_lezeci.jpg Graphic file (type jpg) + +Package pdftex.def Info: media/imgs/analiza_podataka/vlak_2d_lezeci.jpg used o +n input line 1158. +(pdftex.def) Requested size: 227.62206pt x 351.91733pt. @@ -1472,7 +1565,16 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): (fancyhdr) You might also make \topmargin smaller: (fancyhdr) \addtolength{\topmargin}{-2.49998pt}. -[26] +[28 <./media/imgs/analiza_podataka/vlak_2d_stojeci.jpg>] + +File: media/imgs/analiza_podataka/promjena_povrsine_10x10.jpg Graphic file (typ +e jpg) + +Package pdftex.def Info: media/imgs/analiza_podataka/promjena_povrsine_10x10.jp +g used on input line 1173. +(pdftex.def) Requested size: 273.14923pt x 270.93883pt. + Package fancyhdr Warning: \headheight is too small (12.0pt): @@ -1481,7 +1583,125 @@ Package fancyhdr Warning: \headheight is too small (12.0pt): (fancyhdr) You might also make \topmargin smaller: (fancyhdr) \addtolength{\topmargin}{-2.49998pt}. -[27] (./ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.aux) +[29 <./media/imgs/analiza_podataka/vlak_2d_lezeci.jpg>] + +File: media/imgs/analiza_podataka/promjena_povrsine_10x70.jpg Graphic file (typ +e jpg) + +Package pdftex.def Info: media/imgs/analiza_podataka/promjena_povrsine_10x70.jp +g used on input line 1180. +(pdftex.def) Requested size: 273.14923pt x 270.94676pt. + +Underfull \hbox (badness 10000) in paragraph at lines 1185--1187 + + [] + +LaTeX Font Info: Trying to load font information for OT1+zi4 on input line 1 +189. +(/usr/share/texmf/tex/latex/inconsolata/ot1zi4.fd +File: ot1zi4.fd 2018/01/14 OT1/zi4 (Inconsolata) +) +LaTeX Font Info: Font shape `OT1/zi4/m/n' will be +(Font) scaled to size 12.0pt on input line 1189. + + + +Package fancyhdr Warning: \headheight is too small (12.0pt): +(fancyhdr) Make it at least 14.49998pt, for example: +(fancyhdr) \setlength{\headheight}{14.49998pt}. +(fancyhdr) You might also make \topmargin smaller: +(fancyhdr) \addtolength{\topmargin}{-2.49998pt}. + +[30 <./media/imgs/analiza_podataka/promjena_povrsine_10x10.jpg> <./media/imgs/a +naliza_podataka/promjena_povrsine_10x70.jpg>] + + +Package fancyhdr Warning: \headheight is too small (12.0pt): +(fancyhdr) Make it at least 14.49998pt, for example: +(fancyhdr) \setlength{\headheight}{14.49998pt}. +(fancyhdr) You might also make \topmargin smaller: +(fancyhdr) \addtolength{\topmargin}{-2.49998pt}. + +[31{/usr/share/texmf/fonts/enc/dvips/inconsolata/i4-ot1-0.enc}] +LaTeX Font Info: Font shape `OT1/phv/m/sc' will be +(Font) scaled to size 11.03998pt on input line 1215. + + + +Package fancyhdr Warning: \headheight is too small (12.0pt): +(fancyhdr) Make it at least 14.49998pt, for example: +(fancyhdr) \setlength{\headheight}{14.49998pt}. +(fancyhdr) You might also make \topmargin smaller: +(fancyhdr) \addtolength{\topmargin}{-2.49998pt}. + +[32] +LaTeX Font Info: Font shape `OT1/zi4/m/n' will be +(Font) scaled to size 8.0pt on input line 1215. +LaTeX Font Info: Font shape `OT1/zi4/m/n' will be +(Font) scaled to size 6.0pt on input line 1215. + + + +Package fancyhdr Warning: \headheight is too small (12.0pt): +(fancyhdr) Make it at least 14.49998pt, for example: +(fancyhdr) \setlength{\headheight}{14.49998pt}. +(fancyhdr) You might also make \topmargin smaller: +(fancyhdr) \addtolength{\topmargin}{-2.49998pt}. + +[33] +Overfull \hbox (2.1649pt too wide) in paragraph at lines 1224--1225 +\OT1/phv/m/n/12 Sljede[]ci kod izvr[]savan je unu-tar okru[]zenja \OT1/phv/b/n/ +12 Jupyter-Lab\OT1/phv/m/n/12 , a ko-risti bi-bli-oteku \OT1/zi4/m/n/12 NumPy \ +OT1/phv/m/n/12 i \OT1/zi4/m/n/12 Matplotlib\OT1/phv/m/n/12 . + [] + +(/usr/share/texmf/tex/latex/listings/lstlang1.sty +File: lstlang1.sty 2024/09/23 1.10c listings language file +) +LaTeX Font Info: Font shape `OT1/zi4/m/n' will be +(Font) scaled to size 10.0pt on input line 1226. +LaTeX Font Info: Font shape `OT1/phv/m/n' will be +(Font) scaled to size 9.19998pt on input line 1227. +LaTeX Font Info: Font shape `OT1/zi4/b/n' will be +(Font) scaled to size 10.0pt on input line 1227. + + + +Package fancyhdr Warning: \headheight is too small (12.0pt): +(fancyhdr) Make it at least 14.49998pt, for example: +(fancyhdr) \setlength{\headheight}{14.49998pt}. +(fancyhdr) You might also make \topmargin smaller: +(fancyhdr) \addtolength{\topmargin}{-2.49998pt}. + +[34] + + +Package fancyhdr Warning: \headheight is too small (12.0pt): +(fancyhdr) Make it at least 14.49998pt, for example: +(fancyhdr) \setlength{\headheight}{14.49998pt}. +(fancyhdr) You might also make \topmargin smaller: +(fancyhdr) \addtolength{\topmargin}{-2.49998pt}. + +[35] + + +Package fancyhdr Warning: \headheight is too small (12.0pt): +(fancyhdr) Make it at least 14.49998pt, for example: +(fancyhdr) \setlength{\headheight}{14.49998pt}. +(fancyhdr) You might also make \topmargin smaller: +(fancyhdr) \addtolength{\topmargin}{-2.49998pt}. + +[36] + + +Package fancyhdr Warning: \headheight is too small (12.0pt): +(fancyhdr) Make it at least 14.49998pt, for example: +(fancyhdr) \setlength{\headheight}{14.49998pt}. +(fancyhdr) You might also make \topmargin smaller: +(fancyhdr) \addtolength{\topmargin}{-2.49998pt}. + +[37] (./ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.aux) *********** LaTeX2e <2024-11-01> patch level 2 L3 programming layer <2025-01-18> @@ -1496,27 +1716,28 @@ _uzorka.run.xml'. ) Here is how much of TeX's memory you used: - 16868 strings out of 473190 - 318129 string characters out of 5725178 - 1161398 words of memory out of 5000000 - 39907 multiletter control sequences out of 15000+600000 - 577336 words of font info for 70 fonts, out of 8000000 for 9000 + 19017 strings out of 473190 + 350405 string characters out of 5725178 + 1322671 words of memory out of 5000000 + 42017 multiletter control sequences out of 15000+600000 + 579952 words of font info for 76 fonts, out of 8000000 for 9000 1141 hyphenation exceptions out of 8191 - 69i,15n,117p,733b,1662s stack positions out of 10000i,1000n,20000p,200000b,200000s - -Output written on ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.pdf (27 pages, 6 -811672 bytes). + 69i,15n,117p,733b,2113s stack positions out of 10000i,1000n,20000p,200000b,200000s +< +/usr/share/texmf/fonts/type1/urw/helvetic/uhvbo8a.pfb> +Output written on ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.pdf (37 pages, 7 +181308 bytes). PDF statistics: - 196 PDF objects out of 1000 (max. 8388607) - 96 compressed objects within 1 object stream + 247 PDF objects out of 1000 (max. 8388607) + 124 compressed objects within 2 object streams 0 named destinations out of 1000 (max. 500000) - 156 words of extra memory for PDF output out of 10000 (max. 10000000) + 181 words of extra memory for PDF output out of 10000 (max. 10000000) diff --git a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.pdf b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.pdf index cab6565..96431fc 100644 Binary files a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.pdf and b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.pdf differ diff --git a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.tex b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.tex index e5338e2..72c20a8 100644 --- a/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.tex +++ b/radno/ispitivanje_cvrstoce_fdm_3d_printanog_uzorka.tex @@ -19,6 +19,36 @@ \usepackage{caption} \usepackage[backend=biber,style=numeric]{biblatex} \usepackage{multirow} +\usepackage{listings} +\usepackage{inconsolata} % ako želiš lijepi monospaced font +\usepackage{listings} +\usepackage{xcolor} +\usepackage{pdflscape} + +\lstdefinestyle{python}{ + language=Python, + basicstyle=\ttfamily\footnotesize, + numbers=left, + numberstyle=\tiny, + stepnumber=1, + numbersep=5pt, + backgroundcolor=\color{gray!10}, + keywordstyle=\color{blue}\bfseries, + stringstyle=\color{orange}, + commentstyle=\color{gray}, + showspaces=false, + showstringspaces=false, + frame=single, + captionpos=b +} + +\lstset{ + basicstyle=\ttfamily\scriptsize, + breaklines=true, + breakatwhitespace=true, + frame=single, + columns=fullflexible, +} \addbibresource{literatura.bib} @@ -1073,8 +1103,108 @@ Charpy unnotched [kJ/m$^2$] & 23 °C & 10.4 \\ \ \end{tabular} \end{table} -\subsection{Metode ispitivanja čvrstoće}\label{subsec:metode_ispitivanja_cvrstoce} +\subsection{Postav za ispitivanje smične čvrstoće}\label{subsec:postav_za_ispitivanje_smicne_cvrstoce} +%---- → UBACITI DIO SA JIGOM ZA SMIK +Pošto je jedini dostupni stroj za ispitivanje čvrstoće univerzalna kidalica, ispitivanje smične čvrstoće biti će izvedeno uzorkom s V-utorom na linearnim vodilicama. +Potrebno je iz tog razloga napraviti napravu za univerzalnu kidalicu koji će omogućiti da se razvlačenjem naprave ostvari smik u kritičnom presjeku ispitnog uzorka. +Po uzoru na \cite{Stamopoulos2020} napravljena je naprava prikazana na slici \ref{fig:naprava_smik} koja pomoću dvije čeljusti steže ispitni uzorak opisan +u poglavlju \ref{subsubsec:konstrukcija_epruveta} te ju pomoću dvaju linearnih vodilica razvlači na način da u kritičnom presjeku (V-utoru) ostvaruje (gotovo) čisto +smično naprezanje.\\ +\begin{figure}[H] + \centering + \includegraphics[width=0.7\textwidth]{media/imgs/planiranje_eksperimenta/naprava_smik.jpg} + \caption{Prikaz naprave za smično opterečenje epruvete} + \label{fig:naprava_smik} +\end{figure} + +\begin{flushleft} +Pošto obrada odvajanjem čestica nije dostupna na korištenje u ovom radu, naprava će biti izrađena metodom FDM 3D printanja. Iz istog je razloga potrebno voditi +računa o čvrstoći iste kako ne bi došlo do deformacije naprave u razini u kojoj bi dovela točnost mjerenja pomaka u ispitnom uzorka u pitanje.\\ + +\end{flushleft} + +\pagebreak +\section{Provedba eksperimenta}\label{sec:provedba_eksperimenta} + +\pagebreak +\section{Analiza podataka}\label{sec:analiza_podataka} + +\subsection{Računalna analiza poprečnog presjeka}\label{subsec:racunalna_analiza_poprecnog_presjeka} + +Za proračun naprezanja potrebno je odrediti stvarne površine poprečnih presjeka ispitnih uzoraka, koje su ovisne o geometriji ispune (vrsti ispune), širini ekstruzije +(širini traga), postotku ispune, broju stijenki i orijentaciji slojeva. U tu svrhu napisan je Python alat koji simulira unutarnju strukturu 3D printanog uzorka u 2D +rasteru. Na temelju navedenih parametara, program generira booleovu masku koja prikazuje raspored materijala u poprečnom presjeku.\\ +\begin{flushleft} +Alat nakon generiranja booleove maske izračunava: +\begin{itemize} + \item ukupnu površinu presjeka u XY ravnini (pošto je XY ravnina normalna na Z-os ispisa, ova je površina konstantna u 2D ispunama) + \item površine presjeka u ravninama paralelnim s XZ i YZ ravninama (što je relevantno za različite orijentacije ispisa) +\end{itemize} + +Primjer vizualizacije presjeka za obije orijentacije potrebne za vlačno testiranje nalazi se na slikama \ref{fig:vlak_2d_stojeci}, \ref{fig:vlak_2d_lezeci}.\\ + +\end{flushleft} + +\begin{figure}[H] + \centering + \includegraphics[width=0.5\textwidth]{media/imgs/analiza_podataka/vlak_2d_stojeci.jpg} + \caption{2D prikaz ispune ispitnog uzorka u orijentaciji uspravnog ispisa.} + \label{fig:vlak_2d_stojeci} +\end{figure} + +\begin{figure}[H] + \centering + \includegraphics[width=0.5\textwidth]{media/imgs/analiza_podataka/vlak_2d_lezeci.jpg} + \caption{2D prikaz ispune ispitnog uzorka u orijentaciji ležećeg ispisa.} + \label{fig:vlak_2d_lezeci} +\end{figure} + +\begin{flushleft} + +Iako 2D ispune ne mijenjaju površinu poprečnog presjeka kroz Z-os, u ostale dvije dimenzije ona se svakako mijenja, kako bi se odredilo koliko se točno mijenja, +napravljen je graf promjene površine u odnosu na duljinu modela, te automatski proračun površine paralelne sa XZ i YZ ravninama za zadanu x i y dimenziju. +Na slikama \ref{fig:promjena_povrsine_10x10}, \ref{fig:promjena_povrsine_10x70} prikazane su promjene površina u odnosu na njihove referentne ravnine.\\ + +\end{flushleft} + +\begin{figure}[H] + \centering + \includegraphics[width=0.6\textwidth]{media/imgs/analiza_podataka/promjena_povrsine_10x10.jpg} + \caption{Promjena površine po X i Y osi za bazu 10x10mm.} + \label{fig:promjena_povrsine_10x10} +\end{figure} + +\begin{figure}[H] + \centering + \includegraphics[width=0.6\textwidth]{media/imgs/analiza_podataka/promjena_povrsine_10x70.jpg} + \caption{Promjena površine po X i Y osi za bazu 10x70mm.} + \label{fig:promjena_povrsine_10x70} +\end{figure} + +Za slučaj potrebe izračuna površine poprečnog presjeka u točnoj koordinati, moguć je upis zasebne visine na x i y osi, te je nakon izvršavanja programa ispisana i +površina u odnosu na te referentne osi u sljedećem formatu:\\ + + +\begin{verbatim} +==== Grid ispuna 30.0% ==== +XY ukupna povrsina = 301.7364 mm^2 + Povrsina ljuski = 132.4033 mm^2 + Povrsina ispune = 169.3331 mm^2 +-- Presjeci kroz Z (uzorak konstantan po Z) -- +Duzina po X @ y=1.000 mm: 4.0801 mm +Duzina po Y @ x=-2.000 mm: 19.0989 mm +Povrsina XZ @ y=1.000: 40.8010 mm^2 (Z=10.000 mm) +Povrsina YZ @ x=-2.000: 190.9887 mm^2 (Z=10.000 mm) + +A_xz(y=1mm) = 40.80100125156456 mm^2 +A_yz(x=-2mm) = 190.9887359198926 mm^2 +\end{verbatim} + + +Uzevši u obzir da je Bambu Lab Slicer program otvorenog koda, matematički model i način generiranja mrežaste (Grid) ispune preuzet je iz istog, te prepisan iz +programskog jezika C++ u programski jezik Python, te dorađen za 2D prikaz. \\ +Izračun površina i geometrijskih momenata presjeka proveden je pomoću vlastitog Python programa izvršavanog u JupyterLab okruženju (vidi Prilog A). %--------------------------------------------------------------------- %----------------------LITERATURA------------------------------------- @@ -1083,4 +1213,228 @@ Charpy unnotched [kJ/m$^2$] & 23 °C & 10.4 \\ \ \newpage \newpage \printbibliography[title={Literatura}] + + +\pagebreak + +\appendix +\section*{Prilog A – Python skripta za analizu poprečnih presjeka} +\addcontentsline{toc}{section}{Prilog A – Python skripta za analizu poprečnih presjeka} + +Sljedeći kod izvršavan je unutar okruženja \textbf{JupyterLab}, a koristi biblioteku \texttt{NumPy} i \texttt{Matplotlib}. Skripta služi za generiranje simuliranog rasporeda ispune FDM ispisa i izračun površina presjeka i geometrijskih momenata inercije. + +\begin{lstlisting}[style=python, caption={Python skripta za analizu poprečnih presjeka.}] +import numpy as np +import matplotlib.pyplot as plt + +def _udaljenost_mod(u, razmak): + r = np.mod(u, razmak) + return np.minimum(r, razmak - r) + +def _pravocrtna_maska(XX, YY, razmak, sirina_linije, kut_stupnjevi=0.0, faza=0.0): + + th = np.deg2rad(kut_stupnjevi) + u = XX * np.cos(th) + YY * np.sin(th) + dist = _udaljenost_mod(u + faza, razmak) + return dist <= (sirina_linije / 2.0) + +def _razmak_za_gustocu_mreze(sirina_linije, f): + + f = float(np.clip(f, 0.0, 1.0)) + if f <= 0.0: + return np.inf + if f >= 1.0: + return sirina_linije + r = 1.0 - np.sqrt(1.0 - f) + return sirina_linije / r + +def izracun_povrsine(XX, YY, maska): + if not np.any(maska): + return {"A": 0.0} + + dx = XX[0, 1] - XX[0, 0] + dy = YY[1, 0] - YY[0, 0] + dA = dx * dy + A = float(np.count_nonzero(maska) * dA) + return {"A": A} + +def prusa_mreza_ili_pravocrtna( + sirina, visina, + udio_ispune, + sirina_linije=0.42, + slojevi_ljuske=2, + osnovni_kut_ispune_stupnjevi=45.0, + mreza=True, + z_visina=0.0, + faza_po_mm=0.0, + z_visina_objekta=None, + y_ravnina=0.0, + x_ravnina=0.0, + N=800, + graficki_prikaz=True, + detaljno=True +): + xs = np.linspace(-sirina/2, sirina/2, N) + ys = np.linspace(-visina/2, visina/2, N) + XX, YY = np.meshgrid(xs, ys) + + shell_mask = np.zeros_like(XX, dtype=bool) + for i in range(slojevi_ljuske): + off = (i + 0.5) * sirina_linije + shell_mask |= np.abs(XX - (-sirina/2 + off)) <= (sirina_linije / 2) + shell_mask |= np.abs(XX - ( +sirina/2 - off)) <= (sirina_linije / 2) + shell_mask |= np.abs(YY - (-visina/2 + off)) <= (sirina_linije / 2) + shell_mask |= np.abs(YY - ( +visina/2 - off)) <= (sirina_linije / 2) + + unutarnji_pomak = slojevi_ljuske * sirina_linije + unutarnji_pravokutnik = ( + (np.abs(XX) <= (sirina/2 - unutarnji_pomak)) & + (np.abs(YY) <= (visina/2 - unutarnji_pomak)) + ) + + if udio_ispune <= 0.0: + infill_mask = np.zeros_like(XX, dtype=bool) + elif udio_ispune >= 1.0: + razmak = sirina_linije + maske = [] + kutevi = [osnovni_kut_ispune_stupnjevi] + ([osnovni_kut_ispune_stupnjevi + 90] if mreza else []) + faza = faza_po_mm * z_visina + for a in kutevi: + maske.append(_pravocrtna_maska(XX, YY, razmak, sirina_linije, kut_stupnjevi=a, faza=faza)) + infill_mask = np.logical_or.reduce(maske) & unutarnji_pravokutnik + else: + razmak = _razmak_za_gustocu_mreze(sirina_linije, udio_ispune) if mreza \ + else sirina_linije / udio_ispune + maske = [] + kutevi = [osnovni_kut_ispune_stupnjevi] + ([osnovni_kut_ispune_stupnjevi + 90] if mreza else []) + faza = faza_po_mm * z_visina + for a in kutevi: + maske.append(_pravocrtna_maska(XX, YY, razmak, sirina_linije, kut_stupnjevi=a, faza=faza)) + infill_mask = np.logical_or.reduce(maske) & unutarnji_pravokutnik + + konacna_maska = shell_mask | infill_mask + + if graficki_prikaz: + plt.figure(figsize=(6, 6)) + img = np.where(konacna_maska, 1.0, np.nan) + plt.imshow(img, origin='lower', + extent=[-sirina/2, sirina/2, -visina/2, visina/2], + interpolation='nearest') + naslov = "Grid" if mreza else "Pravocrtna" + plt.title(f"{naslov} @ {udio_ispune*100:.1f}% | ljuske={slojevi_ljuske}*{sirina_linije:.2f} kut={osnovni_kut_ispune_stupnjevi:.0f}deg") + plt.xlabel("X (mm)") + plt.ylabel("Y (mm)") + plt.gca().set_aspect('equal', 'box') + plt.grid(True) + plt.hlines(y_ravnina, -sirina/2, sirina/2, linestyles='--') + plt.vlines(x_ravnina, -visina/2, visina/2, linestyles='--') + plt.show() + + total = izracun_povrsine(XX, YY, konacna_maska) + ljuske = izracun_povrsine(XX, YY, shell_mask) + A_ispuna = total["A"] - ljuske["A"] + + dx = XX[0, 1] - XX[0, 0] + dy = YY[1, 0] - YY[0, 0] + ys_centered = YY[:, 0] + xs_centered = XX[0, :] + row = int(np.argmin(np.abs(ys_centered - y_ravnina))) + col = int(np.argmin(np.abs(xs_centered - x_ravnina))) + + duzina_x_na_y = float(np.count_nonzero(konacna_maska[row, :]) * dx) + duzina_y_na_x = float(np.count_nonzero(konacna_maska[:, col]) * dy) + + povrsina_xz_na_y = None + povrsina_yz_na_x = None + if z_visina_objekta is not None and z_visina_objekta > 0: + povrsina_xz_na_y = duzina_x_na_y * z_visina_objekta + povrsina_yz_na_x = duzina_y_na_x * z_visina_objekta + + duzina_x_vs_y = np.count_nonzero(konacna_maska, axis=1) * dx + duzina_y_vs_x = np.count_nonzero(konacna_maska, axis=0) * dy + + if z_visina_objekta is not None and z_visina_objekta > 0: + povrsina_xz_vs_y = duzina_x_vs_y * z_visina_objekta + povrsina_yz_vs_x = duzina_y_vs_x * z_visina_objekta + y_oznaka = "Povrsina XZ presjeka (mm^2)" + x_oznaka = "Povrsina YZ presjeka (mm^2)" + else: + povrsina_xz_vs_y = duzina_x_vs_y + povrsina_yz_vs_x = duzina_y_vs_x + y_oznaka = "Duzina po X (mm) [postavi z_visina_objekta za povrsinu]" + x_oznaka = "Duzina po Y (mm) [postavi z_visina_objekta za povrsinu]" + + y_os_0_do_H = ys_centered + visina/2.0 + x_os_0_do_W = xs_centered + sirina/2.0 + + if graficki_prikaz: + plt.figure(figsize=(7, 3.5)) + plt.plot(y_os_0_do_H, povrsina_xz_vs_y) + plt.xlabel("y od donjeg zida (mm)") + plt.ylabel(y_oznaka) + plt.title("Varijacija prema y") + plt.grid(True) + plt.xlim(0, visina) + plt.tight_layout() + plt.show() + + plt.figure(figsize=(7, 3.5)) + plt.plot(x_os_0_do_W, povrsina_yz_vs_x) + plt.xlabel("x od lijevog zida (mm)") + plt.ylabel(x_oznaka) + plt.title("Varijacija prema x") + plt.grid(True) + plt.xlim(0, sirina) + plt.tight_layout() + plt.show() + if detaljno: + print(f"==== {('Grid' if mreza else 'Pravocrtna')} ispuna {udio_ispune*100:.1f}% ====") + print(f"XY ukupna povrsina = {total['A']:.4f} mm^2") + print(f" Povrsina ljuski = {ljuske['A']:.4f} mm^2") + print(f" Povrsina ispune = {A_ispuna:.4f} mm^2") + print(f"-- Presjeci kroz Z (uzorak konstantan po Z) --") + print(f"Duzina po X @ y={y_ravnina:.3f} mm: {duzina_x_na_y:.4f} mm") + print(f"Duzina po Y @ x={x_ravnina:.3f} mm: {duzina_y_na_x:.4f} mm") + if povrsina_xz_na_y is not None: + print(f"Povrsina XZ @ y={y_ravnina:.3f}: {povrsina_xz_na_y:.4f} mm^2 (Z={z_visina_objekta:.3f} mm)") + if povrsina_yz_na_x is not None: + print(f"Povrsina YZ @ x={x_ravnina:.3f}: {povrsina_yz_na_x:.4f} mm^2 (Z={z_visina_objekta:.3f} mm)") + print() + return { + "maska": konacna_maska, + "XX": XX, "YY": YY, + "dx": dx, "dy": dy, + "povrsina_ukupno_xy": total["A"], + "povrsina_ljuske_xy": ljuske["A"], + "povrsina_ispune_xy": A_ispuna, + "duzina_x_na_y": duzina_x_na_y, + "duzina_y_na_x": duzina_y_na_x, + "povrsina_xz_na_y": povrsina_xz_na_y, + "povrsina_yz_na_x": povrsina_yz_na_x, + "y_os_mm": y_os_0_do_H, + "x_os_mm": x_os_0_do_W, + "povrsina_xz_vs_y": povrsina_xz_vs_y, + "povrsina_yz_vs_x": povrsina_yz_vs_x, + } +# Konfiguracija +if __name__ == "__main__": + W, H = 10.0, 70.0 + Z = 10.0 + res = prusa_mreza_ili_pravocrtna( + sirina=W, visina=H, + udio_ispune=0.2, + sirina_linije=0.42, + slojevi_ljuske=2, + osnovni_kut_ispune_stupnjevi=45.0, + mreza=True, + z_visina_objekta=Z, + y_ravnina=+1.0, + x_ravnina=-2.0, + N=800, + graficki_prikaz=True, detaljno=True + ) + print("A_xz(y=1mm) =", res["povrsina_xz_na_y"], "mm^2") + print("A_yz(x=-2mm) =", res["povrsina_yz_na_x"], "mm^2") +\end{lstlisting} + \end{document} diff --git a/radno/literatura.bib b/radno/literatura.bib index 6a8b1d0..8e2c96a 100644 --- a/radno/literatura.bib +++ b/radno/literatura.bib @@ -221,4 +221,15 @@ doi = {10.5937/fme2502326C}, note = {ISSN 1451-2092} } +@article{Stamopoulos2020, + author = {Antonios G. Stamopoulos and Luca Glauco Di Genova and Antoniomaria Di Ilio}, + title = {Assessment of the shear properties of thermoplastic composites using the ±45° tension and the V-notched rail shear methods}, + journal = {Manufacturing Rev.}, + volume = {7}, + pages = {10}, + year = {2020}, + publisher = {EDP Sciences}, + doi = {10.1051/mfreview/2020007}, + url = {https://doi.org/10.1051/mfreview/2020007} +} diff --git a/radno/media/imgs/analiza_podataka/promjena_povrsine_10x10.jpg b/radno/media/imgs/analiza_podataka/promjena_povrsine_10x10.jpg new file mode 100644 index 0000000..ed3bf63 Binary files /dev/null and b/radno/media/imgs/analiza_podataka/promjena_povrsine_10x10.jpg differ diff --git a/radno/media/imgs/analiza_podataka/promjena_povrsine_10x70.jpg b/radno/media/imgs/analiza_podataka/promjena_povrsine_10x70.jpg new file mode 100644 index 0000000..15b03c3 Binary files /dev/null and b/radno/media/imgs/analiza_podataka/promjena_povrsine_10x70.jpg differ diff --git a/radno/media/imgs/analiza_podataka/vlak_2d_lezeci.jpg b/radno/media/imgs/analiza_podataka/vlak_2d_lezeci.jpg new file mode 100644 index 0000000..db3f2b2 Binary files /dev/null and b/radno/media/imgs/analiza_podataka/vlak_2d_lezeci.jpg differ diff --git a/radno/media/imgs/analiza_podataka/vlak_2d_stojeci.jpg b/radno/media/imgs/analiza_podataka/vlak_2d_stojeci.jpg new file mode 100644 index 0000000..fa7b76e Binary files /dev/null and b/radno/media/imgs/analiza_podataka/vlak_2d_stojeci.jpg differ diff --git a/radno/media/imgs/planiranje_eksperimenta/naprava_smik.jpg b/radno/media/imgs/planiranje_eksperimenta/naprava_smik.jpg new file mode 100644 index 0000000..422e514 Binary files /dev/null and b/radno/media/imgs/planiranje_eksperimenta/naprava_smik.jpg differ diff --git a/software/.ipynb_checkpoints/Untitled-checkpoint.ipynb b/software/.ipynb_checkpoints/GRID_FINAL-checkpoint.ipynb similarity index 100% rename from software/.ipynb_checkpoints/Untitled-checkpoint.ipynb rename to software/.ipynb_checkpoints/GRID_FINAL-checkpoint.ipynb diff --git a/software/.ipynb_checkpoints/GRID_OSI-checkpoint.ipynb b/software/.ipynb_checkpoints/GRID_OSI-checkpoint.ipynb new file mode 100644 index 0000000..71525a4 --- /dev/null +++ b/software/.ipynb_checkpoints/GRID_OSI-checkpoint.ipynb @@ -0,0 +1,304 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 15, + "id": "206a681f-a3b4-430d-8e88-d4b11a9f32d0", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAIjCAYAAAC52ZmJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAY3NJREFUeJzt3XucTPX/B/DX3OzFXtxX7tdculC5FAplI3L7RoqvdlFRLvlSovq69K1vQlGSdFHIphJRP2FD94QiclfWNZfEWnbtzuX8/vDdsbM7152Zcz6fc17Px8ODmTkz85457/PxmnM+c8akKIoCIiIiolIya10AERERyY1hgoiIiMLCMEFERERhYZggIiKisDBMEBERUVgYJoiIiCgsDBNEREQUFoYJIiIiCgvDBBEREYWFYYJ8Sk9PR506dQIul5WVBZPJhPfeey/qNVFJderUweTJkyP2WHfffXdEHquQyWTyqO+9996DyWRCVlZWRJ+HxKW3dW632+FyubQuQygMEzp08OBBjBgxAldffTXi4+MRHx+Ppk2bYvjw4di+fbvW5Xl14cKFUm+cO3fuRN++fVGvXj3Ex8ejUqVKuO222/DZZ595XX737t3o0qULEhISUKFCBQwcOBCnT58O+vlWrlyJG2+8EbGxsahVqxYmTZoEh8PhscyuXbtw6623IjExES1atMCPP/5Y4nFefvllXHPNNSXuS5Fz5MgRTJkyBa1atUL58uVRqVIldOjQAV9++WVEn+fYsWO49957Ua5cOSQlJaFnz574448/Qn6cc+fOoUqVKjCZTFi6dKnHbZs3b8aIESNwzTXXoGzZsqhVqxbuvfde7Nu3L1IvQ9dSU1NhMpkwYsSIEreZTCavf6ZOneqxnKIoGD16NBITE1G+fHm8+uqrapUvPKvWBVBkff755+jXrx+sVisGDBiAZs2awWw2Y8+ePVi2bBnmzp2LgwcPonbt2gEf66233opa+lYUBUuXLsW7776Lb775BhcvXoTNZkOjRo1w3333YeTIkUhKSgrqsQ4dOoScnBykpaWhWrVqyM3NxSeffIIePXpg3rx5ePjhh93LHj16FLfddhuSk5Px3//+FxcuXMCMGTOwY8cObNq0CWXKlPH7XF988QV69eqFDh06YPbs2dixYweee+45nDp1CnPnzgUAOJ1O/OMf/0CFChUwffp0rFy5Ej179sSBAwfcr+nUqVN49tln8dFHH8Fq5WYYLStWrMCLL76IXr16IS0tDQ6HAwsXLkRqairmz5+PQYMGhf0cFy5cQMeOHZGdnY2nnnoKNpsNM2fORPv27bFt2zZUrFgx6MeaOHEicnNzvd724osv4vvvv0ffvn1x/fXX48SJE3jttddw4403YuPGjbj22mvDfi16tWzZMq+BvqjU1FQ88MADHtfdcMMNHpczMjKwbNkyvP3228jNzcX48ePRunVrtG7dOuI1S0ch3Thw4IBStmxZpUmTJsrx48dL3G6325VXXnlFOXz4sN/HuXDhQkjPe/DgQQWA8u677wa1/KlTp5Rbb71VsdlsSt++fZV58+Yp//d//6dkZGQoTzzxhFK9enWlevXqytdffx1SHUU5HA6lWbNmSqNGjTyuf+SRR5S4uDjl0KFD7usyMzMVAMq8efMCPm7Tpk2VZs2aKXa73X3d008/rZhMJmX37t2KoijK7t27FQDu57h48aISFxenrF692n2fIUOGKN27dy/16yuqdu3ayqRJkyL2WN26dYvIYxUC4FHfu+++qwBQDh48GNHn8ea3335TTp8+7XHdpUuXlMaNGys1atQosfzBgweVL7/80ufjzZ8/X3E4HB7XvfjiiwoAZdOmTe7rdu/erVgsFmXChAlB17pjxw7FarUqzz77rAJA+fjjjz1u//7775X8/HyP6/bt26fExMQoAwYMCPp5tKDmOi8uLy9PqVOnjvt9HT58eIllfF1f3PDhw5VZs2a5L48ePVqZMWNGROuVFQ9z6Mi0adNw8eJFvPvuu7jqqqtK3G61WjFq1CjUrFnTfV16ejoSEhLw+++/o2vXrkhMTMSAAQPctxWfM3Hu3Dmkp6cjOTkZ5cqVQ1paGs6dOxd0jTk5OWjfvj2ys7Oxc+dOfPTRR3j44YfRtWtX3H///Zg2bRr279+Pvn37olu3btiyZUup3guLxYKaNWuWqO2TTz7B3XffjVq1armv69SpE66++mp89NFHfh9z165d2LVrFx5++GGPvQmPPvqoe08LAOTl5QEAypcvDwCIj49HXFyc+xPnL7/8gsWLF+Pll18u1WsrrRMnTmDQoEGoUaMGYmJicNVVV6Fnz55ej2N/9913aNWqFWJjY1GvXj0sXLiwxDLnzp3D6NGjUbNmTcTExKBBgwZ48cUXS7U3a8uWLejcuTMqVaqEuLg41K1bF4MHDy7Ny/RwzTXXoFKlSh7XxcTEoGvXrjh69ChycnI8bnv++efRo0cPr59iJ06ciMGDB2P16tUe1y9duhQtW7ZEy5Yt3dc1btwYd9xxR8CeKuqxxx5D7969ceutt3q9vU2bNiX2nDVs2BDXXHMNdu/eHfDxt2/fjvT0dNSrVw+xsbGoWrUqBg8ejDNnzngsN3nyZJhMJhw4cADp6ekoV64ckpOTMWjQoBJ7TfLy8jBq1ChUqlQJiYmJ6NGjB44dO1ZinowvX3zxBW699VaULVsWiYmJ6NatG3bu3BnwfqGYNm0aXC4XHn/88YDL5uXl4dKlSz5vr1evHhYvXoxff/0VGzduxMqVK9GwYcNIlist7l/Vkc8//xwNGjQIeZebw+FA586d0a5dO8yYMQPx8fFel1MUBT179sR3332HYcOGoUmTJli+fDnS0tKCfq7Ro0fDarXiu+++Q2JiIoDLhwXy8/MRHx8Pu92OS5cuYebMmShTpgzS0tKwY8cOmM2Bc+/FixeRl5eH7OxsrFy5El988QX69evnvv3YsWM4deoUWrRoUeK+rVq1wqpVq/w+/tatWwGgxP2rVauGGjVquG+/+uqrkZycjMmTJ2PUqFH46KOPcP78edx4440AgFGjRmHEiBFo0KBBwNcUSffccw927tyJkSNHok6dOjh16hQyMzNx+PBhj9B44MAB9OnTB0OGDEFaWhrmz5+P9PR03HTTTbjmmmsAALm5uWjfvj2OHTuGoUOHolatWvjhhx8wYcIE/Pnnn5g1a1bQdZ06dQp33nknKleujPHjx6NcuXLIysrCsmXLPJY7e/YsnE5nwMcrnCfkz4kTJ7wuN3PmTGzfvh3dunXD119/jeuuuw4A8Morr+A///kPnn76aXTr1s29vMvlwvbt270Gn1atWmHt2rXIyclx97ovH3/8MX744Qfs3r07pEmKiqLg5MmT7vXiT2ZmJv744w8MGjQIVatWxc6dO/Hmm29i586d2LhxI0wmk8fy9957L+rWrYsXXngBv/zyC95++21UqVIFL774onuZ9PR0fPTRRxg4cCBuvvlmfP311x7vjz+LFi1CWloaOnfujBdffBG5ubmYO3cu2rVrh61bt7p7Mj8/v0To86V4cDx8+DCmTp2K+fPnIy4uzu9933vvPbz++utQFAVNmjTBM888g/79+3ssM2zYMCxduhTNmzcHAPTv3x/du3cPqjbd03bHCEVKdna2AkDp1atXidvOnj2rnD592v0nNzfXfVtaWpoCQBk/fnyJ+6WlpSm1a9d2X/70008VAMq0adPc1zkcDuXWW28N6jDHgQMHFKvVqmzdutV93ZQpU5SyZcsqAJQ2bdoo8+fPdz9nfn6+UrVqVWXt2rVBvQdDhw5VACgAFLPZrPTp00f5+++/3bdv3rxZAaAsXLiwxH2feOIJBYBy6dIln48/ffp0BYDXw0QtW7ZUbr75ZvfljIwMJS4uTgGgWCwW967QxYsXKykpKUp2dnZQrykYwRzmOHv2rAJAmT59esDHAqB888037utOnTqlxMTEKGPHjnVf95///EcpW7assm/fPo/7jx8/XrFYLB7vEQIc5li+fLkCQNm8eXNQtQX6E+i92L9/vxIbG6sMHDjQ6+1//fWX0rRpU6Vq1arKgQMHlIULFyomk0kZNmxYiWVPnz6tAFCeffbZErfNmTNHAaDs2bPHbz25ublKrVq13IdENmzY4PUwhzeLFi1SACjvvPNOwGWLbveFPvjggxLre9KkSQoAZfDgwR7L9u7dW6lYsaL78s8//6wAUEaPHu2xXHp6esB1npOTo5QrV0556KGHPO574sQJJTk52eP6wvsG86e4Pn36KG3atHFfho/DGW3atFFmzZqlrFixQpk7d65y7bXXKgCU119/vcSyTqdT2bZtW8D1ajTcM6ET58+fBwAkJCSUuK1Dhw749ddf3ZenT59eYpffI488EvA5Vq1aBavV6rGsxWLByJEj8e233wa8//Lly9GmTRt3ql++fDmmTJmCsWPHom3btvj2228xatQo94S1MmXK4K677sJXX32F1NTUgI8/evRo9OnTB8ePH8dHH30Ep9OJgoIC9+2Fhx9iYmJK3Dc2Nta9jLfbg7l/4ToAgPvvvx9dunTB3r17UbduXaSkpCA3NxdPPvkknn/+eSQkJGDKlClYsGCB+9+9e/cO+BpLKy4uDmXKlMFXX32FIUOGuA/BeNO0aVOPXe2VK1dGo0aNPL6d8PHHH+PWW29F+fLl8ddff7mv79SpE6ZOnYpvvvnGfbgskHLlygG4vGetWbNmsNlsXpdbvHixex34U69ePZ+35ebmom/fvoiLiysxU79QxYoVsXbtWrRt2xa33XYbTp06hXvvvRdz5swpsWywPeXP1KlTYbfb8dRTT/ldrrg9e/Zg+PDhuOWWW4LaO1j0k/mlS5dw4cIF3HzzzQAuH3orfnhl2LBhHpdvvfVWLF++HOfPn0dSUpL7cM+jjz7qsdzIkSMDfk08MzMT586dw/333+/RPxaLBa1bt8aGDRvc13Xu3BmZmZkBX19xGzZswCeffIKffvop4LLff/+9x+XBgwfjpptuwlNPPYX09HSP985sNqNZs2Yh16N3DBM6Ubgb9cKFCyVumzdvHnJycnDy5En885//LHG71WpFjRo1Aj7HoUOHcNVVV5UILI0aNQqqxp9//hkdO3Z0X37rrbeQlpaGadOmAQB69uyJv/76C1999ZV7mZSUlKC/ttm4cWM0btwYAPDAAw/gzjvvRPfu3fHTTz/BZDK5B4T8/PwS9y08TupvV2ig+xe/b/ny5d2DNQC88MILqFKlCgYNGoT58+fjjTfewOLFi5GVlYV+/fph165dUTv0ERMTgxdffBFjx45FSkoKbr75Ztx999144IEHULVqVY9li84nKfpazp496768f/9+bN++HZUrV/b6fKdOnQq6tvbt2+Oee+7BlClTMHPmTHTo0AG9evVC//79Pf6Tbtu2bdCP6Y3T6cR9992HXbt24YsvvkC1atV8Llu9enVMmjQJgwcPRmxsLGbOnOn1UFu4PZWVlYXp06djzpw5Xj8I+HLixAl069YNycnJWLp0KSwWS8D7/P3335gyZQqWLFlSYv1kZ2eXWL54HxQG0LNnzyIpKQmHDh2C2WxG3bp1PZYLpof3798PALj99tu93l70m1xXXXWV1zlg/jgcDowaNQoDBw70mMsSrDJlymDEiBEYNmwYfv75Z7Rr1y7kxzAahgmdSE5OxlVXXYXffvutxG2Fcyh8HYuNiYkJak5CuM6cOeMxgGdlZZU43tiqVSuPMHHkyBGPCaOh6NOnD4YOHYp9+/ahUaNG7gHpzz//LLHsn3/+iQoVKvjcKwHA4/7Fa/rzzz/RqlUrn/fNysrCSy+9hLVr18JsNuODDz7A0KFD3YPpggULsGTJEjzzzDMhv85gjR49Gt27d8enn36KNWvW4N///jdeeOEFrF+/3uMrcL7+Y1IUxf1vl8uF1NRUjBs3zuuyV199ddB1FZ5TYePGjfjss8+wZs0aDB48GC+99BI2btzo/k/29OnTQc2ZSEhI8Pof80MPPYTPP/8cixcv9vmfWKHNmzdj1KhRaNWqFfbt24eePXti/fr1JR63sGd89RQAv6Fl4sSJqF69Ojp06ODePk+cOAHg8uvNyspCrVq1PLbP7Oxs3HXXXTh37hy+/fZbv49f1L333osffvgBTzzxBJo3b46EhAS4XC506dLF66TZYPqgtAqfb9GiRSXCLACPCc6F86CCUfhYCxcuxN69ezFv3rwS415OTg6ysrJQpUoVv3NrCrfxv//+O6jnNjqGCR3p1q0b3n77bWzatMnvf2ylVbt2baxbtw4XLlzwGFT37t0b1P2TkpI8BoWqVavi999/91im6K70U6dOYcWKFfj0009LVW/h7uXC56xevToqV67s9RsimzZtch9+8aXw9i1btni8v8ePH8fRo0c9zmdR3OOPP44ePXq4P+EcP37c4z+BatWq4dixY0G9rnDUr18fY8eOxdixY7F//340b94cL730Et5///2QH+fChQvo1KlTxGq7+eabcfPNN+P5559HRkYGBgwYgCVLluDBBx8EALRs2RKHDh0K+DiTJk0q8U2CJ554Au+++y5mzZqF+++/3+/9d+3ahbvuugsNGzbE2rVrsXPnTqSmpqJnz55YtWqVR+A0m8247rrrvPbUTz/9hHr16vmdfHn48GEcOHDA66GZwsMHZ8+edR8KunTpErp37459+/bhyy+/RNOmTf2+lkJnz57FunXrMGXKFEycONF9feEegtKoXbs2XC4XDh486PGNhgMHDgS8b/369QEAVapUCdhDH374YdDnAykMOocPH4bdbve6N2vhwoVYuHAhli9fjl69evl8rMKxyNfeN/LEMKEj48aNQ0ZGBgYPHox169YhJSXF4/ZwP1F07doVb775JubOnYsnnngCwOVdx7Nnzw7q/k2aNPE4ftm7d29MmDABN954I9q2bYsffvgBb775JpKTk7FmzRqMGTMG7dq1wx133OH3cU+dOoUqVap4XGe327Fw4ULExcV5DLj33HMPFixY4LHHY926ddi3bx/+9a9/edz/999/d+/xAS5/zbBx48Z48803MXToUPcnt7lz58JkMqFPnz5e69uwYQNWrVqFPXv2uK9LSUnxuLx79+6ozpnIzc2F2Wx2H8cHLg/oiYmJXnfRB3Lvvfdi8uTJWLNmDTp37uxx27lz55CQkBD0ybgK/7Ms+m2CwuBWtLbSzpmYPn06ZsyYgaeeegqPPfaY3/tmZWXhzjvvRKVKlbBmzRokJyejTZs2WLZsGXr06IF+/frhk08+8fjU3qdPH4wfPx5btmxxf9Nn7969WL9+fYm5SXv27EF8fLz7EMJzzz3nMWcAAH777Tf8+9//xrhx43DLLbegbNmyAC5va/369cOPP/6IFStW4JZbbgn4XhQqrLf4GBDKt26K69y5M55++mm8/vrrmDlzpvv6YMaDzp07IykpCf/973/RsWPHEvNkTp8+7f5PvDRzJu677z6vHw569+6Nrl274qGHHnLvsS36XIVycnIwa9YsVKpUCTfddFNIz21UDBM60rBhQ2RkZOD+++9Ho0aN3GfAVBQFBw8eREZGBsxmc1DzI7zp3r072rZti/HjxyMrKwtNmzbFsmXLgt4Feffdd+Oll17Cn3/+iauuugrDhg3Dl19+6Z6oV7FiRTzxxBOYOHEievTogSFDhmDGjBkBH3fo0KE4f/48brvtNlSvXh0nTpzA4sWLsWfPHrz00ksee1GeeuopfPzxx+jYsSMee+wxXLhwAdOnT8d1113n8enn2LFjaNKkCdLS0jwmk02fPh09evTAnXfeifvuuw+//fYbXnvtNTz44INo0qRJidqcTidGjx6NJ554wuMYdJ8+fTBu3DhUrlwZhw4dwo4dO7B48eKg3sfS2LdvH+644w7ce++9aNq0KaxWK5YvX46TJ0/ivvvuC/nxnnjiCaxcuRJ33323+2ujFy9exI4dO7B06VJkZWWV+JqeLwsWLMDrr7+O3r17o379+sjJycFbb72FpKQkdO3a1b1caeZMLF++HOPGjUPDhg3RpEmTEntgUlNTPUL3888/D7PZjMzMTI//YDp37oxFixbh/vvvx5o1azzqevTRR/HWW2+hW7duePzxx2Gz2fDyyy8jJSUFY8eO9Xi+Jk2aoH379u5Ded6OxRfuhWjZsqXHJ+exY8di5cqV6N69O/7+++8Sr8XbfKhCSUlJuO222zBt2jTY7XZUr14da9euxcGDB33eJ5CbbroJ99xzD2bNmoUzZ864vxpaeHrv4l81LV7P3LlzMXDgQNx444247777ULlyZRw+fBj/93//h7Zt2+K1114DULo5E0XnTxVXt25dj/d1zpw5+PTTT9G9e3fUqlULf/75J+bPn4/Dhw9j0aJFAc+KS/+j5VdJKDoOHDigPPLII0qDBg2U2NhYJS4uTmncuLEybNgwZdu2bR7LpqWlKWXLlvX6OMW/GqooinLmzBll4MCBSlJSkpKcnKwMHDhQ2bp1a9BnwGzfvr3Su3dvxeVyua/btWuX8v333ysXL15Uzp49q2zatEm5ePFi0K/3gw8+UDp16qSkpKQoVqtVKV++vNKpUydlxYoVXpf/7bfflDvvvFOJj49XypUrpwwYMEA5ceKExzKFZ/VMS0srcf/ly5crzZs3V2JiYpQaNWoozzzzjFJQUOD1uebMmaPUqFGjxOux2+3KmDFjlEqVKim1a9dWFixYEPTrLS6Yr4b+9ddfyvDhw5XGjRsrZcuWVZKTk5XWrVsrH330UYnH8nYGzPbt2yvt27f3uC4nJ0eZMGGC0qBBA6VMmTJKpUqVlDZt2igzZszweD8Q4GuCv/zyi3L//fcrtWrVUmJiYpQqVaood999t7Jly5aQ3gdvCr/m6OvPhg0bSrymAwcO+Hy8ol9rLurIkSNKnz59lKSkJCUhIUG5++67lf3795dYDkCJ97E4X18Nbd++fUhfiyzu6NGjSu/evZVy5copycnJSt++fZXjx4+XWD+F71nxM4d6O4vlxYsXleHDhysVKlRQEhISlF69eil79+5VAChTp071e9/C19q5c2clOTlZiY2NVerXr6+kp6dHZN17Ay9fDV27dq2SmpqqVK1aVbHZbEq5cuWUO++8U1m3bl1UatArk6JEYDYNUZD279+Pli1b4p577sHcuXO9pv68vDxkZmaiR48eGlQonzp16iA9PT1ivxxKFI5t27bhhhtuwPvvvx/014NJfjzMQapq2LAh1qxZgx49emDDhg0YMWIE2rdvjypVquCvv/7C+vXr8eqrr8JiseD2228P6etyRKSuvLy8El99nTVrFsxmM2677TaNqiItMEyQ6lq3bo3ffvsNzz77LJ577jmP48qVKlXCgw8+iPHjxzNIEAlu2rRp7vPHWK1WfPHFF/jiiy/w8MMPl/or3SQnHuYgTTmdTuzduxd//fUXKlasiMaNGwd1Ah66goc5SCuZmZmYMmUKdu3ahQsXLqBWrVoYOHAgnn766aC/zUP6wDBBREREYeFPkBMREVFYGCaIiIgoLIY6qOVyuXD8+HEkJib6PaEKERERXT5rak5ODqpVq+b3N5wMFSaOHz/OGcZEREQhOnLkiN+zJxsqTBT+4E47dIUVtgBLi8MaZ8Pgd/6B+UOWwZFn17ocXVPMJly4oTFu+Wcz7HlmGRwXC7QuyRDY4+ri+60umd9vB+z4Dqv8/mAdYLAwUXhowwobrCZ5woTNZEN8fDxsJhvAozNR5bJa8VendvjsBNDYEgOY+GUnNbDH1cX3W11Sv9//GwIDTQ3gBEwiIiIKC8MEERERhYVhgoiIiMLCMEFERERhYZggIiKisDBMEBERUVgYJoiKMDmcqPnZBjzc2AmT06V1OUREUmCYICrCpChIzDqOa8orMPEHdYmIgsIwQURERGFhmCAqQjGbcK5xPfx0ygTFLNup6oiItMEwQVSEYrHgeOotyPjdAsXPL+QREdEVHC2JiIgoLAwTREREFBaGCSIiIgoLwwQRERGFhWGCiIiIwsIwQURERGFhmCAqwuRwosYX3yL9ap5Om4goWAwTREWYFAVJBw7jhoo8nTYRUbAYJoiIiCgsDBNERSgmE843qIWtZ0xQTDydNhFRMBgmiIpQrBYcvetWvLfPAsXCzYOIKBgcLYmIiCgsDBNEREQUFoYJIiIiCgvDBBEREYWFYYKIiIjCwjBBREREYWGYICrC5HSiWuaP6F/fCZOLp9MmIgoGwwRRESaXgnJ7/kDrKgpMLp5Om4goGAwTREREFBaGCaIiFJMJOXWqYedZnk6biChYDBNERShWC45074g39/B02kREweJoSURERGFhmCAiIqKwWLUugMKX6fo44o+Zau4b8cf0JRr1l1ZugQNNJ64BAHx4/E0kl43TuKLoUHP9AoHXsd1ux6pVq7Di3ALYbDa/y4pWu4xCeb+1IPv4o3aPioB7JnQg0o0r+4ZMRHJTc1yQefwUCcOETkSqgRkkjCHT9bGUA7ba/cke1Q77Uy4MEzoSbiMzSBiP2gN2aXssnPuWBvtTDDIFCiMHCUDiMDF16lSYTCaMHj1a61KEUpqG5kB9hc1ixqS7G6NPXSdsBvlqqNrrI9Re4xwJY5Mh8Bo9SACShonNmzdj3rx5uP7667UuRUgiN7boA7XNYsY/W9fCrVUVw4QJQPz1oha+D2ISeb2IPN6qSbrR8sKFCxgwYADeeustlC9fXutyhBVsg3OPBBUScZcy+5MKGb0/RSfdV0OHDx+Obt26oVOnTnjuuef8Lpufn4/8/Hz35fPnzwMArHE22EzifR3KF1uc1ePvYHUt2x8rzi3weXvPcmmwxanzPqw4twB2u12V5wqH06Vg4++nsT/bhEv5BVqXo7pV+RnoWS5NlefqWrY/AM/eKPy7sAb2Z3QUf79loXZ/Rmr8LO0YLgQFQF7gxUyKokjz04hLlizB888/j82bNyM2NhYdOnRA8+bNMWvWLK/LT548GVOmTClxfUZGBuLj46NcLcko3wmM23R5g5/WyoEYi8YFERFpKDc3F/3790d2djaSkpJ8LidNTDpy5Agee+wxZGZmIjY2Nqj7TJgwAWPGjHFfPn/+PGrWrIn5Q5ZJt2di8Dv3YP6QT2DPc5TqMYombLWSffHnlUFugQPjNq0HANx+++1ILhtcr+mRmn2y9PTbyMzMRGpqKvpUflC155WtPyPFbre7328RT1oVDK3GsdI8byTGcK3YleD2XkkTJn7++WecOnUKN954o/s6p9OJb775Bq+99hry8/NhsXh+jIyJiUFMTEyJx3Lk2QEJfxDSnueAPa90uyW7xvRHputjHoMOwKZcaQybzSrtQBsJqy5mqNYvfSo/iKEZ/dCn8oOl7vFQydifkWaz2aTtcTX7M1LjZzhjuFYcQYYJaSZg3nHHHdixYwe2bdvm/tOiRQsMGDAA27ZtKxEkqCQGCQqVXtejXl+X0Yg4KdOopNkzkZiYiGuvvdbjurJly6JixYolridtcaAmIrWovceVvJNmzwTJgUFCf/R0Wmk9vRa6gutUe1KHia+++srnNzlkJPsGIXv95J/s61f2+sk/2dev7PVLHSb0SNaGkrXu4qxmM8Z1bogetZywmrl5FCfrepa1bgqNrOtZ1rqL4mgpINkaS7Z6/SljNeOhdnVxR3UFZazcPLyRbX3LVi+FR7b1LVu9vnC0FJQsDSZLnRRZsqx3WeqkyJJlvctSZzAYJgQmeqOJXl9pOF0Kth/NxqELl/9Nvom+/kWvj6JL9PUven2hYpgQnKgNJ2pd4cp3OHHPvJ/w8g4r8h1OrcsRnqh9IGpdpC5R+0DUusLBMCEB0U75q8cNgUpPtH4QrR7Slmj9IFo9kcIwQSHR64ZA4RGlL0Spg8QiSl+I9sEwkhgmJKJ1I4qyQZKYtO4PrZ+fxMb+iC6GCclotUFwQyQi2Wk1jmn9QVANDBMSUnuDYJCgYGlxumqeIptCwfEzOhgmJKT2j9rwR3QoWKnmvpr0J3uUgsXxMzoYJiTSs1yaZo1plA3CajZjZMd66FLDxdNph0jrHtH6+Ul8WvVIz3JpmjyvmjhaUtCMMFiXsZox6vYGuKumi6fTJtIRI4xfWuJoSSHhBkneiNIXotRBYhGlL/S8h4JhQgKiNaAoG2Y0uFwK9p+8gD9zL/+b/BNxvoKINZF2ROsF0eqJFIYJgYk8KIpaV7guOZzo+toPmPqrFZd4Om2/RO8B0euj6BO1B0Qe20uLYYJKTW8bAxHpB8cndTFMCEqWDUGWOimyZFnvstRJkSXLepelzmAwTAhItgaTrV4qPRl3z8pYM5WebOtatnp9YZgQjKyNJWvdRKQfso5DstZdFMOEQGRvKNnrJ/9kX7+y10/+yb5+Za+fYYIiSvYNgkrS02ECPb0WuoLrVHsMExRxMm/YVrMZQ9rWxu1X8XTagNzr0h+9vi4j4roUA0dLA1Hz1+tk3cDLWM0Y36URetbh6bSJRKfmOGOUX/8sLY6WBlG4ITBQULDUXH8rzi3w+FsN7E+5aREkGCh8Y5gwgOIbAAOFby6XgqNn83DmknFPp632vAKt+1O2HiVt90gwUHjHMKFzvhqfgcK7Sw4nOr78LZ7daszTaau9rkToT0CuHjU6EQ5tMFCUxDChY4EanoGCtCRSf5IcRAgSwd5uNAwTOhVsozNQUCGRBupQl4sE9qfYjN6fomOY0KFQG5wDtrFpPUci0suHg3MoxMT+FB/DhM6UtrEZKIxJlDkS0bpfabFHxSFykAj3fnrCMKEj4TY0AwVFk0z9SWKQIUhE6v6yY5jQiUg1MgOFMYh+aCPajxMMHvLQFvtTLgwTOhDpBjZyoLCYTRjQqibapbhg0enptGU5tKHW4wUiWo8agYxBIlqPJwt9jpYGEq3GNWqgiLFaMLl7E/St50IMT6dNpDqZg0S0H1dkHC0lFu2GNWqg0DO1B+poDtbsT/3RQ5BQ6/FFwzAhKbUa1WgDtqIoOHOxABfsl/+tF7LOkRDleQDOoYg29qfcGCYkpHaDGilQ5NmduHnqV3h6ixV5dn2cTlv2ORKiPZ/WPapHegwSWj2fVhgmJKNVYxopUFDpGaE/KbL0HCQKqflruFphmJCI1g3JQCEfIwzUWjw/+zMyjNSfescwQSHhgC0Hvc6RCIRzKORhxP7U+gNhNDFMSEC0BmSgEJve50gEwjkU4jNikCgkWj2RwjAhOFEbj4GCAPYnhc7IQaKQqHWFg2FCYKI3HAOFWIx6aMMXHvIQD/vzCtHrCxXDhKBkaTS9BQqL2YTeN1RDq8pynU7b6Ic2fOEhD3EwSJQkS53BkGe0NBDZGkxPgSLGasG0f1yLAQ14Om2iSGGQ8E22en3haCkYWRtLT4FCNno5RXa08NTb2mKQCEzWuotimBCI7A2lhwFbURTkFjiQ7xT/dNqcIxEazqFQH/szeLLXzzBBESV7oMizO9HsP+sxbpPYp9PmHInS4RwK9TBIGAvDBEWc7IGCPOltoNbb6xERg4TxMExQVDBQRA8H6vCxP6OH/WlMDBMUNRywI4tzJCKLcygij/1pXAwTFFUMFJHBORLRwTkUkcMgYWwMExR1DBRyMdpAbbTXGw0MEsQwQapgoCgdHtpQBw95lB77kwCGCVKRDIHCbDKhyzUpaF7BBYvJFOGqQsNDG+riIY/QMUhQIYYJUpXogSLWZsHs+5phUCMXYmyWKFRFpA8MElQUwwSpTvRAIQKeIlsbPPV2cBgkqDiGCdIEB2zvOEdCDJxD4Rv7k7xhmCDNiBgocgscaPjvtXjsRytyCxxRrsoT50iIhXMoSmKQIF8YJkhTIgYKI+BAHRy+T1cwSJA/DBOkOQYKDtQiY3+yPykwhgkSglEHbM6RkIOR51CwPykYDBMkDKMFCs6RkIsR51AwSFCwGCZIKEYLFGrhQB0ZRnofGSQoFAwTJBy9Bwoe2pCbEQ55sD8pVAwTJCStAoXZZEL7qyuhabnonE6bhzb0Qc+HPBgkqDQYJkhYWgSKWJsFbw+8EUOb8HTaZDwMElRaDBMkND0d8uApsvVFb6feZpCgcDBMkPBkH7A5R0Lf9DCHgv1J4WKYICmoNQC5bFZcPX4VnvjJEpHTaXOOhDHIPIeCQYIigWGCpKHWQKTYrChwRX7yZbRxoNaWjO9/z3Jpqj2XjO8PBY9hgqSi5oDUr9rDYd2fn/iMR/ZDctHC/tQ/hgmSjugDNudIGJsMcyi4R4IijWGCpCRqoOAcCQLEnkPBoEvRwDBB0hI1UKiFA7XYRFw/DBIULQwTJDVRAgUPbZA3Ih3yYH9SNDFMkPQiOnApCuKPnkSDJAVQSt7sbUDmoQ3yR4RDHgwSFG0ME6QLkRrAzA4n6iz/EiOvccLsdHpdRsRDHkS+MEiQGhgmSDe0OOTBU2RTMLQ69TaDBKmFYYJ0RZQ5FJHGgVof2J+kV9KEiRdeeAEtW7ZEYmIiqlSpgl69emHv3r1al0UCCmdgc9ms2PvgPXhqswUuqxi/GsqBWl/0tj719nqodKQJE19//TWGDx+OjRs3IjMzE3a7HXfeeScuXryodWkkoHAGOGdcLC46xDidNgdqfdLLetXL66DwWbUuIFirV6/2uPzee++hSpUq+Pnnn3HbbbdpVBWJLNP1sdSTJTlQ6xv7k/REmjBRXHZ2NgCgQoUKPpfJz89Hfn6++/L58+cBANY4G2wmW3QLLAW73e73el+3k2+r8jNCOnVw0UMb1jgrzA5t+mTFuQWGWt9G7fFQ+zNSbHFWj79DZbT+DFew/W2LE+//JSgA8gIvZlIUxcu36cXmcrnQo0cPnDt3Dt99953P5SZPnowpU6aUuD4jIwPx8fHRLJEkle8Exm26PMBOa+VAjBjTJoiINJGbm4v+/fsjOzsbSUlJPpeTMkw88sgj+OKLL/Ddd9+hRo0aPpfztmeiZs2a6BTXR8g9EyvOLfB6vd1uR2ZmJlJTU2GziVe3LIL5BOiyWrDnkfsAANe+txSunPwA94gsXz2gd+xxdX98yxZnxeB37sH8IZ/AnucI+n5G7c9wBdvfWuylCsSu2PFl3tKAYUK6wxwjRozA559/jm+++cZvkACAmJgYxMTElLjekWcHxJhf5yHQIGqz2Qw70EbCqosZAY9Ru2xXsrUjzwFnnnq7cnkM2tg9Hkx/Rpo9zwF7kD3O/gxfoP4Odl2oyaEEV5M03+ZQFAUjRozA8uXLsX79etStW1frkkhCAQdERUHsyTOoWdb76bSjhQM1AeL2gah1kTikCRPDhw/H+++/j4yMDCQmJuLEiRM4ceIE8vKCmBlCVIS/gdHscKLeR6vx+PW+T6dNZCQMEhQMacLE3LlzkZ2djQ4dOuCqq65y//nwww+1Lo0kJMoAyVNkU3Ei9YQodZD4pAkTiqJ4/ZOenq51aSQprQdKrZ+fxKZ1f2j9/CQXacIEUTQUHzBdVgv2p/XElF+iezptDtQUDK36hP1JoWKYIMPzGDhNJtiTEvB3fvS+7sOBmkKhdr+wP6k0GCbI8NT+Op7Mp1Am9bE/SQYME2RYqea+mg2cHLApGFr2J3uUQsEwQYYkwkApQg0kLhH6Q4QaSA4ME0Qa4mBN3rAvSDYME2QoIu6+Fa0e0pZo/SDiNkPiYZggwwhqQFQUxJw5h6px6v7+HQdrAsTuA5FrI+0xTBAVYXY4UT/j/zChuRNmh7qn0+ZgbWxc/yQzhgkyBFkGalnqpMiSZb3LUiepj2GCdE3G472y1UvhkW19y7hNUfQxTJBulWbAc1kt+L1/N7ywLbqn0w6Eg7UxyLyeZa6dIo9hgqgokwn5FcvhRF70TqcdLA7W+sb1S3rCMEG6pJeBWi+vgzzpZb3q5XVQ+BgmSFf0eDxXb6/H6PS2PvW4zVHoGCZIN9Qe0NT8dUUO1vqg5npU+9c/2aPGxjBBVAqFAzUDBQVLiyDBnxMntTBMkPTU3s1afIBmoKBAjNSf7FFjYpggqUV84FIU2M5fQIUY76fT9jUwM1CQLyIc2uAhD4o2hgmiIswOJxouWIFJN4Z+Om0GCipOhCBBpAaGCZKW2gN1MIM1AwUVEi1IBNvDkcL+NBaGCZKO1nMkIr18ODhgi4n9eRnnUBgHwwRJJdoDk8tqwR/3dsGM7Ra4LJZSD7wMFMYlcpAotOLcgghX4h97VP8YJoiKMplwKaUijlw04cM/3wzroRgojEeGIEEUDQwTJA0Z/8NkoDAOGYOEmnso2J/6xjBBwpP9uCsDhf7JGCSi9Xj+yL4tk28MEyQ0tQeez3IWReVxGSj0S+YgEe3H9YU9qj8ME0T/E+0BlYFCf/QQJNR6fNI3hgkSkuhf/xT9eQAGimhjf4aHhzz0hWGChKP1r3+Wj7ehrNX76bSj8XzRxME6OvQYJLR6PvaoPjBMEBURX8aKTRM64r8tnYgvY43a8zBQyEvPQYKotBgmSCginiI7ms+vFgaKyDBKkOCptylUDBMkBL3OkQiEA7Y82J/RxTkUcmOYIM1pPUeiqEt2Jwa8sxmzd1pwyR7ar4ZGo55I42BdOkYMEoU4h4KCwTBBhhJoYHQpCjZlncWB8ya4lOhNwiyOgUJcRg4ShUSti8TBMEGa4kB9BQOFeNifV7A/yR+GCdKEUedIBMIBWxzsz5I4h4J8YZgg1Yk0R0JEDBTaY5DwjXMoyJvofZFeYC6bFS6Tl5fuUmB2Oj2W80lRYHaUclmrBTCZSiyWW+CACSbElbG4r8srcKLA7kC+8/LtNuXK/Yove8nu9Hucv+h5E7RaNs52pV6XxQyYfedZk90BUymWVcxmKJbLy36Wswi5BQ6PZWOtFpjNl5cucLjgcLnctxVdNrfAiYQ4BRYfyxYXY7W4l7U7XbA7fS9bxmKG9X81elt2xaUP0D1x4OXX5nDC9L/3VDGZoFgt8MXkdMLkCm3ZVHNfrHZ8hHyH7wmnVrMZZayX63W6lKCXdbkUXAp2WaVkjxdlMZsQ87/XoygK8vxMkA1lWbPJhNgifXlHzP2Ar+05wmNEYX8WryGvwAkF3rcjb2NEsMsWbp92H2NKsNvyiksfoGfs/Vdem8UCmL2vNwAw2x1BL+ttuy++DReKs1lg+t9Ymu9wwunyPfb42+7DWbbodu9r2cL32+lSYCu8zst2X7RHPLZ7swmKxc+2HMUxAkHOQzcpioqzzDR2/vx5JCcno+boj2COiS9xe/zvR1D9k3XuywdGD4BSxlZiOQCIO3wCNZasdl/+Y8R9cMbHel025s+/UGvR5+7LB4f2gSM5weuyDaskIHNMe/fl1Je/xv5TF7wuW71cHL4ff7v7co/XvsP2o9lel61Qtgx++Xeq+3K/eT/ip4N/e102zmbB7v90cV8e9O4mbNh72uuyAJA1tZv7348u/hmrdpzwuWz9me+7B5YTd7VDznUNfC5bd/YHsOblAwBOdWqN7Bub+Fy2zhtLYTt/+X063aEFzrW61ueya/91G65OSQQAzMzch1fW7fe57IrhbdGsZjkAwLyvf8cLX+zxuewHD92MW+pXBAAs/DELE1fs9Lns/PQWuL1xCgDg4y1H8MTS7T6XrbpiAxL3HgIA5DSqjRM9O/pcNmXVd0j67QAA4GK9Gjjep5PPZStnbkS5rZdfT27Nqjh2fxefy064qzGGtq8PAPj1yDn0nPO9z2Ufu6Mh/pV6NQBg38kc3DnzG5/LPnxbPTzVtQnsdjsWLVuFZ7f6/s954M218Z9el9frmQv5uOm5L30ue8+NNfDSvc0uv7YCB5pOXONz2a7XVcXrA24CcPlT8P5x6T6XjdYYcX2NZKwc0c59ue3U9Th2Ls/rsiKNEYV7DY7dcwdy69f0uiwANJz2nvvff/bogAuN6/hcNpQx4udnOqFiQgwA4N+f/oZFGw/5XPbbcR1Rs8Llcf+/q3bjzW/+8LlstMaI9we3QLurL2/3gcaIaku/RNk/jgIAzl/bACe7tvO5bDTHiIRfduArrEB2djaSkpJ8LsvDHERE4O700pDtEA1FjyH3TNxmuwdWk5dPExof5vgsZ5GPwxwFWLNmLTp3vhM225W6ZTrM4d5lX8pDF6Ee5liZu9jnsoF2Ydrtdvf7nRAXq8lhjuLL3mXrd/m1ReEwR/Flvf0Me7QPc9jtdnz+f6twe6pnjxcVzcMc3WPuc1/2uy1HYIzw9v6qf5jD7nVMKc12n2ruG/XDHEUVff/kOcxx+f3u0e0uxMaUuXydl+2+cJwExDnM4XQWBLVnwpBzJsz2y8cog1kulMcMelkfg6u334KIK2OB1WRFjOXy7TY/g1fRwSgQNZdNNff1ugvM7HQBfv4TLc2yoX5SKmM1o0yx6uwmxf1+W4oMet6W9cVmMcNmidyyma6PkWruC5OiwBRkr5V22Z6x9/t9Hy1mU9C/W2IOZVlT4B5312sK/nEDLVt8j0TUtnu7I+j+LBoAIrls4fZZtMd9vd/BbveFrynYPTvmEI7De9vuffVnjJ//FIsLZVuOxLKF73fR8cTbdu+rn0wuBSZXdLf7cPEwB0UNv/4ZWfyWR+SxPyOHXxs1NoYJigpZv/55ye7Eg4t+wbzdZuSrdDrtUDBQRA6DROTxa6PGxTBB0ovkAOZSFHy97y/sOmeGU9DpRAwU4WOQiB6jvV66jGGCIo4DdfQxUJQe+zP62J/GwzBBEcM5EurigB069qd6OIfCWBgmBCLzBiHrHAnZMVAEj0FCfZxDERyZx/5CDBMkHQ7UnhgoAmOQ0A7fD2NgmBCQTAM2D22IgYHCN/an9njIwzeZavWHYUJQMjQYD22IhYGiJAYJcfCQR0ky1BgshgmB6anRZBFfxor9/7kTr9ziCPoMiyJhoLiCQYJEJvr2EyqGCcGJ2nBqD9QcrIPHQMEgISq1t2X2p3oYJiTQs1ya1iW4cY6EHIw8YLM/xWfkORQi1RJJDBMUNCPMkbhkd2Lkkl/x7l4xT6cdCiMGCgYJeRhxDoVIHwwjjWFCInpuxOK0GqhdioLVO09i29/ink47FEYKFAwS8uH7qB8ME5LRasDmQC0vIwQK9qe8jNCfRvggyDAhITU3CM6R0Ac9D9jsT/npeQ6F1nvs1MIwISk1NggjzJEwEj0GCgYJ/dDbHArRJn5GG8MECYEDtTr0FCgYJPSH77O8GCYkF60BlQO1fukhULA/9Yv9KSeGCR2IZONyjoQxyDxgsz/1T+Y5FEYMEgAQ8vmC8/Pz8dNPP+HQoUPIzc1F5cqVccMNN6Bu3brRqI+ClGruy4EvAuJsFvz679uxZs1axNksWpcTVZmuj1Wd2xCJ/mSQIJEZNUgAIYSJ77//Hq+88go+++wz2O12JCcnIy4uDn///Tfy8/NRr149PPzwwxg2bBgSExOjWTP5EO6AzYEaMJlMiC9jRYzl8r/1TqZAwf40lsJ1wP6UQ1CHOXr06IF+/fqhTp06WLt2LXJycnDmzBkcPXoUubm52L9/P5555hmsW7cOV199NTIzM6NdN/lQmobmoQ1jk+GQB/vTuGQ45GH0IAEEGSa6deuGgwcPYtq0abj11lsRFxfncXu9evWQlpaG1atXY926dTCbORVDS6E0Nr/+6Snf4cS4Zb9h8QEz8h0urctRjciBgkGCRP7aKIPEZUH9rz906FDYbLagHrBp06a44447wiqKwidig8swUDtdCpZvPY5Np81wuowTJgAxAwWDBBUScf2IOM5qJaxdCBcuXMD58+c9/pA4AjU6B2oqTqRAwf6k4ozanzIIOUwcPHgQ3bp1Q9myZZGcnIzy5cujfPnyKFeuHMqXLx+NGikM3hqecyTIHxEGbPYn+SLCHAoGiZJC/mroP//5TyiKgvnz5yMlJcUQM95lV9j4as7cL8SBWk5qf8tjVX6Gx2W1sD/lpPZYVvhND4YI30IOE7/++it+/vlnNGrUKBr1kI5woJabmoNnz3JpGJrRT9VfV2R/yo3/uYsl5MMcLVu2xJEjR6JRC0UZP/FRqPS6HvX6uoxGhENydFnIeybefvttDBs2DMeOHcO1115b4lse119/fcSKIzlxoNYXvX0CZH/qi976U1Yhh4nTp0/j999/x6BBg9zXmUwmKIoCk8kEp9MZ0QKJ1BRns2Dj+A5Y9+WXuj+ddij0MmAzSBBFR8hhYvDgwbjhhhvwwQcfcAImedDDQG0ymVCxbBkk2IxxOu1QyB4o9NCf5J3ap96mkkIOE4cOHcLKlSvRoEGDaNRjaDJvEByojUHWQMH+NAbZ+1PG2guFPAHz9ttvx6+//hqNWuh/ZBv4ZKvXn3yHE5M/242P/zDW6bRDIdv6lq1eCo9s61u2en0Jec9E9+7d8a9//Qs7duzAddddV2ICZo8ePSJWHIlPLxtCIadLweJNRwAY73TaoZDlE6De+pOCI0t/6knIYWLYsGEAgGeffbbEbZyAGTkybAwcqI1N9B5lfxqb6P0J6KtHQz7M4XK5fP5hkIisTNfHwjabqHWRukTtA1HrInWJ2gcij+2lxd8Kl8CKcwu0LsGD3jYCCo9o/SBaPaQt0fpBtHoiJeTDHACwefNmbNiwAadOnYKr2HHll19+OSKF+TJnzhxMnz4dJ06cQLNmzTB79my0atUqqs9JV+h1Q6DwiLJLmf1J3ojSn3oWcpj473//i2eeeQaNGjUqcZ6JaH8v/8MPP8SYMWPwxhtvoHXr1pg1axY6d+6MvXv3okqVKlF9buJATf5pPWCzP8kfrfsTEG8vcySFfJjjlVdewfz587F792589dVX2LBhg/vP+vXro1Gj28svv4yHHnoIgwYNQtOmTfHGG28gPj4e8+fPj+rzimLFuQWaDZgcqCkY7E8SmVZ9oucQUSjkPRNmsxlt27aNRi1+FRQU4Oeff8aECRM8aunUqRN+/PFHr/fJz89Hfn6++/L58+cBANY4G2wmm9f7aMlut/u9vvBvW5z6tfuqTW8sioLMUTfj22+/gwUuw7zuSFqVnxHyr3/a4qwef4dixbkFXE8hKj6mGImW42eg91uL2gJSAOQFXsykKIoSyuNOmzYNx48fx6xZs0pXWCkdP34c1atXxw8//IBbbrnFff24cePw9ddf46effipxn8mTJ2PKlCklrs/IyEB8fHxU6yUiIpJdbm4u+vfvj+zsbCQlJflcLuSPAY8//ji6deuG+vXro2nTpiVOWrVs2bLQq42SCRMmYMyYMe7L58+fR82aNTF/yDIh90z42hVmt9uRmZmJ+UM+gT3PoXJVVxhhVx1w5f1OTU0t0d/kX6h7JArZ4qwY/M49YfW4UfozEoza46Xtz3AV9neg91ur+vyxK8HtvQo5TIwaNQobNmxAx44dUbFiRdV+DKlSpUqwWCw4efKkx/UnT55E1apVvd4nJiYGMTExJa535NkBAX/DKdBGbc9zwJ6n3W7JrjH9dX9susDhwkvr9uJglhmdTBZDDbThisTktnB63Aj9GWk2m80wPa715EsA6FP5Qay6mOHzdi3Hd18c0QoTCxYswCeffIJu3bqFXFQ4ypQpg5tuugnr1q1Dr169AFw+gda6deswYsQIVWsxslRzX10P2A6XC+98fwiAGQ6eTjtoIgzUgP77k0pHlP7Us5C/zVGhQgXUr18/GrUENGbMGLz11ltYsGABdu/ejUceeQQXL17EoEGDNKlHLaLt+uKGSUWJ1g+i1UPaEq0fRKsnUkIOE5MnT8akSZOQm5sbjXr86tevH2bMmIGJEyeiefPm2LZtG1avXo2UlBTVa1FDqrmvsI0nal2kLlH7QNS6SF2i9oHIY3tphXyY49VXX8Xvv/+OlJQU1KlTp8Txtl9++SVixXkzYsQIQxzWkKHRuEvZ2ETvUfansYnen4C+ejTkMFE4X4EI0NfGQMGTYaAG2J9GJUt/6knIYWLSpEnRqIOKkG1D4IBtLOxPEhn7UxtBzZkI8bxWVEoyH0eTtW4KjazrWda6KTSyrmeZx/5CQYWJa665BkuWLEFBQYHf5fbv349HHnkEU6dOjUhxJBc9bBCxVgtWjWiD8c0ciLVatC5HKLKvW9nrJ9/0MPbILqjDHLNnz8aTTz6JRx99FKmpqWjRogWqVauG2NhYnD17Frt27cJ3332HnTt3YsSIEXjkkUeiXTdRVJjNJjRMScD++Mv/psv0MlDrZZcykWiCChN33HEHtmzZgu+++w4ffvghFi9ejEOHDiEvLw+VKlXCDTfcgAceeAADBgxA+fLlo10zCY4Dtr7oJUgUYn/qi976U1YhTcBs164d2rVrF61aKMoyXR+rtuHJOmAXOFyYvf4A9h8xo5PDBYOcadgnvQ7UsvYneVKzP9UcP2UU8kmriIIl44bncLkwe8MfWH2Up9NWc/0V/kiXmj/WJWN/0hVcf2JhmDCATNfH7k9han8a4wYvJ7U/8fm7HE3sTzmpvd6Kjp/co+Udw4TOeWt8tTcIDthy0TJIBLo+GtifclG7P32NoeQp6DBx/PjxaNZBURCo4TlgU3EiBIlgb48k9qccjNqfMgg6TFxzzTXIyPD9O+wkFhEbnQO22EQaqENdLhLYn2ITcf2IOM5qJegw8fzzz2Po0KHo27cv/v7772jWRGEKpcE5h4IAMYNEaZcPB/tTTFrNkYj0snoWdJh49NFHsX37dpw5cwZNmzbFZ599Fs26qJRK09icQ2FsIgeJcO9XGuxPsYgwRyKY+xldSOeZqFu3LtavX4/XXnsN//jHP9CkSRNYrZ4PEe2fICffwm1otc9DUficIomxWvDJ0Nb4/ofvEWOA02nLECSK3p/nSTEOkfdG+Lq/kYNoyL8aeujQISxbtgzly5dHz549S4QJ0gYHvsiwmE24vkYyjiZc/reeyRQkij4OAwWJysiBIqQk8NZbb2Hs2LHo1KkTdu7cicqVK0erLgpBJAe8wsfigK1vMgaJoo/H/tQ39qd8gp4z0aVLFzz55JN47bXXsGzZMgYJQURroDPqMeoChwtvfXcQ646ZUODQ5xkwZR6oo/243ojUn0bA/pRT0GHC6XRi+/bteOCBB6JZDxmUKAO2w+XCtDX7sfKwRZen09bDQK3W4xclSn/qHd9neQUdJjIzM1GjRo1o1kIhUOMbGPzaqL7oKUio/TwA+zPaZJtwGczjG2kPBU+nLSE1G5RfG9UHPQYJLZ6P/RkdMnz9M5znMwKGCclo1ZgcsOWl5yChxfOyPyPLCP2p5q/haoVhQiJGaMhCHLAjwwgDtRbPz/6MDL6P+sEwQUHjHAq5GClIFGKgkIfe5kgEQ88fCBkmJCBSA3IOhRyMGCQKsT/Fp+c5EoGIVEskMUwITtTGU3vAVmvwibFa8P7gFhjR1Cnt6bSNHCQKMVCISc1tGWB/qolhQmB6bDjRWcwmtK5bAQ2TFSlPp82B+goGChKZ6NtPqBgmBCVDo3EOhVgYJEpioBCHEedIBCJDjcFimBCQTA2mtzkUdqcL7/90GN+eMMHulOcMmAwSvumpP2Vl5DkSgchUqz8MEySdaA5MdqcLUz7fg6UHLdKECQaJwBgotMP3wxgYJgQiW6Iuioc8tMEgETwGCvXx0EZwZB77CzFMUMTo7ZCH6BgkQsf+VA8PbRgLwwRFHAfs6GOQKD32Z/SxP42HYYKkZ7QBmwN1+Bgoosdor5cuY5igqOAciuhgkIgcBorI4xwJ42KYoKjhHIrIYpCIPPZn5HCOhLExTFDUyXTq7TIWM9785w14uLETZSzibB4MEtHDQBEeniKbAIYJIg9WixkdG1XGNeUVWAUJExyoo4+Bgig8YoyWpHucQ1E6DBLqYaAIHedIUCGGCVKNDHMo7E4XPvnlGH46pf3ptBkk1Cd6f4qEcySoKIYJ0rVQBzy704Xxy3ci43dtT6fNIKEdBorAZK2boodhglTHQx7+MUhoj4HCNx7aIG8YJkgTMhzy0AKDhDjYnyXx0Ab5wjBBmuKAfQWDhHjYn1ewP8kfhgkyFFEHbA7U4mKgELcuEgfDBGnO6HMoGCTEZ+RAwTkSFAyGCRKCUedQMEjIg/0ZXZwjITeGCRKK1qfeLmMx49V+1yP96uifTptBQj5GCRQ8RTaFimGCqAirxYy7rq2KGypG93TaHKjlZZRAQRQKhgkSjt7nUDBIyE/PgYJzJKg0GCZISFrNoXA4XfjitxPYesYERxTOgMkgoR96DBScI0GlxTBB9D+p5r4ocLow6sPteG+fBQURDhMMEvqjp0DBQyoUDoYJEpra/yl2TxwYlcdlkNAvPQQKHtqgcDFMkPBk3x3KIKF/MgcKHtqgSGCYIGnIOAgxSBiHjIGiZ7m0iDxOMNif+sYwQeRDv2oPh3V/BgnjkTFQEEUCwwRJRZavjTJIGJcMgULNPRIAe9QIGCZIOqKfeptBgtifl3GOhHEwTJC0ojFImZxOVMv8Ef3rO2FyXflqaLCnF2aQoEKiBQqeIpuiiWGCqAiTS0G5PX+gdRUFJpcS0n05UFNxogUKomhhmCCpiTKHgkGCfBEhUPA8EhRtDBMkvUgel1VMJuTUqYadZ01QTCavyxQfmBkkKBAtAwXnSJAaGCaIilCsFhzp3hFv7rFA8fOroYUDNIMEBUuLQMFDH6QWhgnSDVEOeUQDg4Q+iHDII1rYo8bGMEG6osfdrHp7PUant/Wpx22OQscwQbqkl8FNL6+DPOllverldVD4GCaIBMWBWt+4fklPGCZIt2QerGWunYIn83qWuXaKPIYJ0jUZj+fKVi+FR7b1LeM2RdHHMEGGEOzgZ3I6UfWrzehT1/N02mrhIG1Msqx3Weok9TFMEBVhcimosGMfbq0a+um0w8WB2ti4/klmDBNkGCIP1iLXRuoRuQ9Ero20xzBBhhLoeK9iMuFi9SrYn+37dNrRqImokGj9wDkSFAyGCaIiFKsFh/6Ritd2+T+ddqRwkCZv2BckG4YJMiQRBmsRaiBxidAfItRAcmCYIMPScvctB2kKhpb9yR6lUDBMkOGpPWhykKZQsD9JBgwTZHhq/7oifxaaQsH+JBkwTJChaTVwcsCmYLA/SRYME2RYWg+YWj8/iU3r/tD6+UkuDBNkSL4GSpPThSrf/YIetZyqnAEz1dyXgzZ5EKknRKmDxCdFmMjKysKQIUNQt25dxMXFoX79+pg0aRIKCgq0Lo0k5G+ANLlcqLR1N+6ormjy2xxEomGgoGBIESb27NkDl8uFefPmYefOnZg5cybeeOMNPPXUU1qXRpIRdWAUtS5Sl6h9IGpdJA6r1gUEo0uXLujSpYv7cr169bB3717MnTsXM2bM0LAykkkwA6JiMiGvSgUcugDVTqddKNXcl1/LMzDR/8Nmf5I/UoQJb7Kzs1GhQgW/y+Tn5yM/P999+fz58wAAa5wNNpMtqvWVht1u93u9r9spsJ7l0mCLC7zOXVYLDvS7Cy/vAK5NKAOTou4vh3Yt2x8rzi1Q9TlFYPQeD7Y/I8UWZ/X4O1hG7c9wBdvfavZA0BQAeYEXMymKyqNlBBw4cAA33XQTZsyYgYceesjncpMnT8aUKVNKXJ+RkYH4+PholkiSyncC4zZdHmCntXIgxqJxQUREGsrNzUX//v2RnZ2NpKQkn8tpGibGjx+PF1980e8yu3fvRuPGjd2Xjx07hvbt26NDhw54++23/d7X256JmjVrolNcHyH3TPhK/Ha7HZmZmUhNTYXNJl7dIutZLi2k5V1WC/Y8ch8A4Nr3lsKVkx/gHtFjpE+ARu3xUPszUmxxVgx+5x7MH/IJ7HmOUj2GkfozXMH2t1b94I9dsePLvKUBw4SmhznGjh2L9PR0v8vUq1fP/e/jx4+jY8eOaNOmDd58882Ajx8TE4OYmJgS1zvy7IC6h8ODEmgQtdlshhpow1WaY9Au25Vs7chzwJmn3W73rjH9DXeM2kg9LsIcCXueA/ZS9rgR+zNcgfq7tOsimhxKcDVpGiYqV66MypUrB7XssWPH0LFjR9x000149913YTZL8UUU0ogIA3UkcNKbPrE/SW+k+B/52LFj6NChA2rVqoUZM2bg9OnTOHHiBE6cOKF1aSQgvQzUhfT2eoxOb+tTb6+HSkeKMJGZmYkDBw5g3bp1qFGjBq666ir3H6Ki1BzY1PxExgFbH9ifpFdShIn09HQoiuL1D1GhSAxoJqcLlX7aji41XH5Pp104UKs9YHPQlpPa606r/iTjkiJMEAUSqYHM5HKhyqYduKumy+fptHmMmGTCQEFqYJgg6Wm961jtcMEBWy5qry+te5T9aUwMEyS1SA9cCoBLFZLxZ+7lfxflb0DOdH3MAZtKUDvoBupRtbA/jYdhgqQVjQFLsVnxx4C7MfVXKxTrldNfinhogwO22ERcPwwUFC0MEyQlrQ9tRGLZSOCALSYRDm1EYtlwsT+Ng2GCpCNqkCh6Hw7YxiXSoQ1f1DwVNvvTGBgmSCpqDkwfHg98ynZ/GCiMR/SgqxX2p/4xTJA0OCD5x/dHWzK+/9xDQZHCMEFSkHUg4hwKYxB5joSajxUI+1O/GCZIeGoOQJ/lLIr4Y3IOhb7JMEcimMdVC/tTnxgmSGhqD9RWsxlD2tbG7Ve5YI3wL9Py1Nv6otUpsmV9/KLYm/rDMEHC0mKgLmM1Y3yXRuhZx4UyVm4eZCwMFFRaHC1JSHr6xKfVcwEcsKNF5jkSIj0X+1M/GCZIOFoGCZdLwdGzeThz6fK/o/WcHLDlpYc5EsE8r1rYn/rAMEFC0XqPxCWHEx1f/hbPbrXiksOpWi3RxgE7Moz0PjJQUCgYJkgYWgcJtfGQh1z0fGhDhBrYn3JjmCAhGC1IFOIhDzkY4dCGL+xPCgbDBGnOqEGiKA7Y4mJ/sj8pMIYJ0hQHam1wwA4O36crGCjIH4YJ0gyDhCfOoRCLEedIBMJAQb4wTJAmGCS84xwKMRh5jkQg7E/yhmGCVCdykLCYTRjQqibapbhgifDptEPBU29rQ2+nyI4WBgoqjmGCVCX6QB1jtWBy9yboW8+FGJ5Om8gnBgoqiqMlqUb0ICEazqFQF+dIhI6BggoxTJAqZAkSiqLgzMUCXLBf/rfWOIdCHZwjUXrsTwIYJkgFsgQJAMizO3Hz1K/w9BYr8uz6OZ12KIw2YBvt9UYDAwUxTFBUyRQkRMZDHtHBQxuRw0BhbAwTFDUMEpHFQx6RxUMbkcf+NC6GCYoKBono4YAdPvZn9LA/jYlhgiKOA7W+6G3A1tvrEREDhfEwTFBEMUiog3MoSodzJNTDQGEsDBMCkX2DYJBQF+dQhIZzJNTH/gye7PUzTAhG1obSS5CwmE3ofUM1tKqs7em0Q8FTb/vHU2Rri4EiMFnrLkqO0dJgZGssPQ3UMVYLpv3jWgxowNNpE0UKA4VvstXrC0dLQcnSYHoKEjLjHArvOEdCHAwUJclSZzAYJgQmeqPpMUgoioLcAgfynWKcTjsUnEPhiXMkxMP+vEL0+kLFMCE4URtOj0ECuHw67Wb/WY9xm4x7Ou1QsD8pVAwU4tYVDoYJCfQsl6Z1CR70GiT0wuiHPHhoQ3xGDhSi1RMpDBMUEgYJORj1kAcPbcjDiP0p2gfDSGKYkIjWjcggIR8jDdjsT/kYqT/1jmFCMlptEByoKRhG6E+KLCMECq0/CKqBYUJCam8QDBJy0/scCs6RkJ+eA4VRgi7DhKTUalAGCX3Q6xwKzpHQD/an3BgmJBbtRjVikDCbTOhyTQqaV3DBYjJpXU7E6eXU2zxFtj7pKVAYKUgADBPSi+ZgrRaRBupYmwWz72uGQY1ciLFZtC6HyHD0ECiMFiQAhgldiHTjGjVIGIXscyg4R0L/ZA4URgwSAMOEbkSqgRkkjEHWORScI2Ec7E+5MEzoSLiNzCAB5BY40PDfa/HYj1bkFji0LkdXZOpPEoNMgcLo/ckwoTOlbWgGCWOS5ZAHD20YlwyBwuhBAmCY0KVQG5tBwthEP+TBQxvE/hQfw4ROBdvgDBJUSMQBm/1JhYzen6JjmNCxQI3OgZq0JFJ/khxEChTsT08MEzrnq+EZJMgbUeZQcI4E+SJCoGCQKIlhwgCKNz6DBPmj9RwKzpGgQIzSnzJhmDCIwg2AQcI/s8mE9ldXQtNy+jyddijUXH+Fv6qo5q8rytifdIUWgYJBwjeGCQNhkAgs1mbB2wNvxNAmPJ02kehEOORBlzFMUMTJGiSoJL2uS72+LiPiuhQDwwRFFDds/dHTvAI9vRa6gutUewwTApF9g5C9fuDy6bSvf/ZLPPGThafTLkb29St7/eSf7OtX9voZJgQja0PJWrc3eXYXClzGnnxJJCNZxyFZ6y6KYUJAsjWWbPVS6cl4mEDGmqn0ZFvXstXrC8OEoGRpMFnqpMiSZb3LUidFlizrXZY6g8EwQaWmpw2BiPSF45O6GCYEJvLuWVHrIvWI3gOi10fRJ2oPiDy2lxbDhARWnFugdQke9LYRUOmJOCiKWBNpR7ReEK2eSGGYoJDodUMoZDaZ0KpOeTRIUmA2+Om0QyFKX4hSB4lFlL4Q7YNhJDFMUNBE2SCjKdZmweIhLTHyGidieTptIt0wwvilJYYJiaw4t0CzDYIbIgWidY9o/fwkPq16RM97JAoxTEhI7Q2CgzQFS4v5CpwjQaHg+BkdDBMSUvvX64z0a3m5BQ60emEDntrM02mXRqq5ryb9aaQepfBw/IwOhgnJaNWYRtkgAOBsrh0XHZx8SaQ3Wo1jPculafK8amKYkIjWDWmkQEGh07o/tH5+Ehv7I7oYJigk3CDJG1H6QpQ6SCyi9IXWHwijiWFCAqI1oCgbJolBtH4QrR7Slmj9IFo9kcIwIThRG0/UukhdovaBqHWRukTtA1HrCgfDhMBEbzjR66PoEn39i14fRZfo61/0+kLFMCEoWRpNljqDZTaZcF31JNQsy9Np+yPLepelToosWda7LHUGg2FCQLI1mGz1+hNrs2DZsJvx+PU8nbYvsq1v2eql8Mi2vmWr1xeGCcHI2liy1k2hkXU9y1o3hUbW9Sxr3UUxTAhE9oaSvX7yT/b1K3v95J/s61f2+q1aF0D6kmruK/W56PMKnOj08jfIy7OgYycnbDab1iVpTvZBrqjC1yJzj1JJeupRWXHPBEWczBu2AgXHzl3C3/kmKFC0LoeIApB5vNET6cJEfn4+mjdvDpPJhG3btmldjlTU/DTGDVwf9Loe9fq6jEbN9ci9Wf5JFybGjRuHatWqaV2GdAo3BAYKCpaa62/FuQUef6uB/Sk3LYIEA4VvUoWJL774AmvXrsWMGTO0LkUqWm4AHLDlZJT1ZpTXqTdarjcGCu+kmYB58uRJPPTQQ/j0008RHx8f1H3y8/ORn5/vvnz+/HkAgDXOBptJnol1tjirx9+hWHFuAex2u8d1q/IzAKj3mx9dy/ZX9RNnOOx2h8e/i793RtCzXBpsceptH0V71G63Y1V+hqq/RyNTf0ZK0fdbNmr2Z2FfeBtDQ+nRcMZwzSkA8gIvZlIURfhZZoqioGvXrmjbti2eeeYZZGVloW7duti6dSuaN2/u836TJ0/GlClTSlyfkZERdCAhY8l3AuM2Xd7gp7VyIIbnrSIiA8vNzUX//v2RnZ2NpKQkn8tpGpPGjx+PF1980e8yu3fvxtq1a5GTk4MJEyaE9PgTJkzAmDFj3JfPnz+PmjVrYv6QZdLtmRj8zj2YP+QT2PMcge+A0I49q/kpUPRPgHkFTsw7+CMuXriIO+64HUnxsVqXpBot+8ButyMzMxOpqaklvo7L/ow8f++3qETtg2DqKs0YLgq7EtzeK03DxNixY5Genu53mXr16mH9+vX48ccfERMT43FbixYtMGDAACxY4H3Fx8TElLgPADjy7ICEP7tgz3PAnhd4xYZ6TC+Yx4yUrjH9hT7maLPZsHpUO6xatQpJ8bHSDLThUvsYtK/31WazlbiN/Rk93t5vEYnSn96supgRdH3BjuEiccgQJipXrozKlSsHXO7VV1/Fc8895758/PhxdO7cGR9++CFat24dzRKlU5qBsPA+am2wsp/YSm/UHqhDXfeZro9VrZH9KRYZvv6pdo+KSIrZILVq1fK4nJCQAACoX78+atSooUVJQgp3AFRzg+CALQYZBuqi92V/Goss/Vl4fyMHCqm+Gkq+RWrgM/p5KPIKnLjr1e/xwjYL8gqcWpcTNanmvlIN1JF+nGCo/R6RJ/anXKQME3Xq1IGiKH6/yWEkkW5gIwcKBQoOnL6IE3k8nTaRVmQMEtF6PFlIcZiD/BPtP+RQiVS/y2YF/vVPAEC/ag/DmXNJ44r0IdA6tsXZMDSjH3qWSxNugppI/RkpIr/fatPj+tWClHsmiIiISBwME0RERBQWhgkiIiIKC8MEERERhYVhgqgoRYHt/AVUiOE3OYiIgsUwQVSE2eFEwwUrMOlGJ8wO/Z5ngogokhgmiIiIKCwME0RERBQWhgmiIlxWC/64twtmbLfAZbFoXQ4RkRQYJoiKMplwKaUijlw0Sfkz9UREWmCYICIiorAwTBAREVFYGCaIiIgoLAwTREREFBaGCSIiIgoLwwRRMZa8Syhr5em0iYiCxTBBVITZ7kCjtz/Bf1vydNpERMFimCAiIqKwMEwQERFRWBgmiIpwWS3I6t0Js3fydNpERMFimCAqymRCbo0UHDjP02kTEQWLYYKIiIjCwjBBREREYWGYICIiorAwTBAREVFYGCaIiIgoLAwTRMWY7A6UMfN02kREwWKYICrCbHegyRsfYnprnk6biChYDBNEREQUFoYJIiIiCgvDBFERLosFh7t3wLzdZrgs3DyIiILB0ZKoKLMJF+pUx65zZsDE82kTEQWDYYKIiIjCwjBBREREYWGYICIiorAwTBAREVFYGCaIiIgoLFatC1CTolw+RbIDdkCmsyUrQG5uLuyKHQ7FrnU1uuZSFLjycwEADqUATr7f6mCPq4vvt7okfr8duFxv4f+fvpiUQEvoyNGjR1GzZk2tyyAiIpLKkSNHUKNGDZ+3GypMuFwuHD9+HImJiTBJdA6B8+fPo2bNmjhy5AiSkpK0Lkf3+H6rj++5uvh+q0vm91tRFOTk5KBatWowm33PjDDUYQ6z2ew3WYkuKSlJukaUGd9v9fE9Vxffb3XJ+n4nJycHXIYTMImIiCgsDBNEREQUFoYJCcTExGDSpEmIiYnRuhRD4PutPr7n6uL7rS4jvN+GmoBJREREkcc9E0RERBQWhgkiIiIKC8MEERERhYVhgoiIiMLCMCGp/Px8NG/eHCaTCdu2bdO6HN3KysrCkCFDULduXcTFxaF+/fqYNGkSCgoKtC5NN+bMmYM6deogNjYWrVu3xqZNm7QuSbdeeOEFtGzZEomJiahSpQp69eqFvXv3al2WYUydOhUmkwmjR4/WupSIY5iQ1Lhx41CtWjWty9C9PXv2wOVyYd68edi5cydmzpyJN954A0899ZTWpenChx9+iDFjxmDSpEn45Zdf0KxZM3Tu3BmnTp3SujRd+vrrrzF8+HBs3LgRmZmZsNvtuPPOO3Hx4kWtS9O9zZs3Y968ebj++uu1LiU6FJLOqlWrlMaNGys7d+5UAChbt27VuiRDmTZtmlK3bl2ty9CFVq1aKcOHD3dfdjqdSrVq1ZQXXnhBw6qM49SpUwoA5euvv9a6FF3LyclRGjZsqGRmZirt27dXHnvsMa1LijjumZDMyZMn8dBDD2HRokWIj4/XuhxDys7ORoUKFbQuQ3oFBQX4+eef0alTJ/d1ZrMZnTp1wo8//qhhZcaRnZ0NAOznKBs+fDi6devm0et6Y6gf+pKdoihIT0/HsGHD0KJFC2RlZWldkuEcOHAAs2fPxowZM7QuRXp//fUXnE4nUlJSPK5PSUnBnj17NKrKOFwuF0aPHo22bdvi2muv1boc3VqyZAl++eUXbN68WetSoop7JgQwfvx4mEwmv3/27NmD2bNnIycnBxMmTNC6ZOkF+54XdezYMXTp0gV9+/bFQw89pFHlRJExfPhw/Pbbb1iyZInWpejWkSNH8Nhjj2Hx4sWIjY3Vupyo4um0BXD69GmcOXPG7zL16tXDvffei88++wwmk8l9vdPphMViwYABA7BgwYJol6obwb7nZcqUAQAcP34cHTp0wM0334z33nsPZjNzeLgKCgoQHx+PpUuXolevXu7r09LScO7cOaxYsUK74nRuxIgRWLFiBb755hvUrVtX63J069NPP0Xv3r1hsVjc1zmdTphMJpjNZuTn53vcJjOGCYkcPnwY58+fd18+fvw4OnfujKVLl6J169aoUaOGhtXp17Fjx9CxY0fcdNNNeP/993Wz8YugdevWaNWqFWbPng3g8q73WrVqYcSIERg/frzG1emPoigYOXIkli9fjq+++goNGzbUuiRdy8nJwaFDhzyuGzRoEBo3bownn3xSV4eXOGdCIrVq1fK4nJCQAACoX78+g0SUHDt2DB06dEDt2rUxY8YMnD592n1b1apVNaxMH8aMGYO0tDS0aNECrVq1wqxZs3Dx4kUMGjRI69J0afjw4cjIyMCKFSuQmJiIEydOAACSk5MRFxencXX6k5iYWCIwlC1bFhUrVtRVkAAYJoj8yszMxIEDB3DgwIESgY079cLXr18/nD59GhMnTsSJEyfQvHlzrF69usSkTIqMuXPnAgA6dOjgcf27776L9PR09Qsi3eBhDiIiIgoLZ5ERERFRWBgmiIiIKCwME0RERBQWhgkiIiIKC8MEERERhYVhgoiIiMLCMEFERERhYZggIiKisDBMEFFU7d27F1WrVkVOTo7qz7169Wo0b94cLpdL9ecmMhKGCSLyy+l0ok2bNvjHP/7hcX12djZq1qyJp59+2u/9J0yYgJEjRyIxMTGaZXrVpUsX2Gw2LF68WPXnJjISnk6biALat28fmjdvjrfeegsDBgwAADzwwAP49ddfsXnzZvdPtRd3+PBhNGjQAAcPHkT16tXVLNltzpw5eO+997B582ZNnp/ICLhngogCuvrqqzF16lSMHDkSf/75J1asWIElS5Zg4cKFPoMEAHz00Udo1qyZR5B47733UK5cOXz++edo1KgR4uPj0adPH+Tm5mLBggWoU6cOypcvj1GjRsHpdLrvV6dOHTz33HN44IEHkJCQgNq1a2PlypU4ffo0evbsiYSEBFx//fXYsmWLRw3du3fHli1b8Pvvv0f+jSEiAAwTRBSkkSNHolmzZhg4cCAefvhhTJw4Ec2aNfN7n2+//RYtWrQocX1ubi5effVVLFmyBKtXr8ZXX32F3r17Y9WqVVi1ahUWLVqEefPmYenSpR73mzlzJtq2bYutW7eiW7duGDhwIB544AH885//xC+//IL69evjgQce8PhF11q1aiElJQXffvttZN4IIiqBP0FOREExmUyYO3cumjRpguuuuw7jx48PeJ9Dhw55DRN2ux1z585F/fr1AQB9+vTBokWLcPLkSSQkJKBp06bo2LEjNmzYgH79+rnv17VrVwwdOhQAMHHiRMydOxctW7ZE3759AQBPPvkkbrnlFpw8eRJVq1Z1369atWo4dOhQWK+fiHzjngkiCtr8+fMRHx+PgwcP4ujRowGXz8vLQ2xsbInr4+Pj3UECAFJSUlCnTh0kJCR4XHfq1CmP+11//fUetwPAddddV+K64veLi4tDbm5uwHqJqHQYJogoKD/88ANmzpyJzz//HK1atcKQIUMQaP52pUqVcPbs2RLX22w2j8smk8nrdcW/0ll0GZPJ5PO64vf7+++/UblyZb+1ElHpMUwQUUC5ublIT0/HI488go4dO+Kdd97Bpk2b8MYbb/i93w033IBdu3apVKV3ly5dwu+//44bbrhB0zqI9IxhgogCmjBhAhRFwdSpUwFc/mbFjBkzMG7cOGRlZfm8X+fOnfHjjz96fCtDbRs3bkRMTAxuueUWzWog0juGCSLy6+uvv8acOXPw7rvvIj4+3n390KFD0aZNG7+HO+666y5YrVZ8+eWXapVbwgcffIABAwZ41E5EkcWTVhFRVM2ZMwcrV67EmjVrVH/uv/76C40aNcKWLVtQt25d1Z+fyCj41VAiiqqhQ4fi3LlzyMnJUf2U2llZWXj99dcZJIiijHsmiIiIKCycM0FERERhYZggIiKisDBMEBERUVgYJoiIiCgsDBNEREQUFoYJIiIiCgvDBBEREYWFYYKIiIjCwjBBREREYfl/K+N8NPonBgwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "==== Grid Infill 30.0% ====\n", + "XY Total Area = 52.1754 mm²\n", + " Shell Area = 31.1879 mm²\n", + " Infill Area = 20.9874 mm²\n", + "I_x = 567.1050\n", + "I_y = 567.1050\n", + "I_xy = 0.0000\n", + "Polar moment, J = 1134.2101\n", + "-- Cross-sections through Z (pattern constant over Z) --\n", + "Length along X @ y=1.000 mm: 4.0801 mm\n", + "Length along Y @ x=-2.000 mm: 3.6045 mm\n", + "Area of XZ plane @ y=1.000: 81.6020 mm² (Z=20.000 mm)\n", + "Area of YZ plane @ x=-2.000: 72.0901 mm² (Z=20.000 mm)\n", + "\n", + "A_xz(y=1mm) = 81.60200250312911 mm^2\n", + "A_yz(x=-2mm) = 72.09011264080118 mm^2\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# ------------------------------\n", + "# Geometry utilities\n", + "# ------------------------------\n", + "\n", + "def _dist_mod(u, spacing):\n", + " \"\"\"Distance to nearest line center in a periodic family with pitch=spacing.\"\"\"\n", + " r = np.mod(u, spacing)\n", + " return np.minimum(r, spacing - r)\n", + "\n", + "def _rectilinear_mask(XX, YY, spacing, line_width, angle_deg=0.0, phase=0.0):\n", + " \"\"\"\n", + " Rectilinear (parallel lines) mask at angle_deg, with true line width.\n", + " Lines are centered where (x cos + y sin + phase) is a multiple of spacing.\n", + " \"\"\"\n", + " th = np.deg2rad(angle_deg)\n", + " # Coordinate along the line-normal direction (u-axis)\n", + " u = XX * np.cos(th) + YY * np.sin(th)\n", + " dist = _dist_mod(u + phase, spacing)\n", + " # Render a line of width 'line_width' around the center => half width threshold\n", + " return dist <= (line_width / 2.0)\n", + "\n", + "def _spacing_for_grid_density(line_width, f):\n", + " \"\"\"\n", + " For a two-axis grid (two orthogonal families of rectilinear lines with true width 'w'),\n", + " the area fraction is f = 2r - r^2 where r = w/s.\n", + " Solve for s: r = 1 - sqrt(1 - f) => s = w / r.\n", + " \"\"\"\n", + " f = float(np.clip(f, 0.0, 1.0))\n", + " if f <= 0.0:\n", + " return np.inf\n", + " if f >= 1.0:\n", + " return line_width # centers are one line_width apart for a \"solid\" raster\n", + " r = 1.0 - np.sqrt(1.0 - f)\n", + " return line_width / r\n", + "\n", + "# ------------------------------\n", + "# Area & inertia on a raster mask\n", + "# ------------------------------\n", + "\n", + "def compute_area_moments(XX, YY, mask):\n", + " x_vals = XX[mask]\n", + " y_vals = YY[mask]\n", + "\n", + " if x_vals.size == 0:\n", + " return {\"A\": 0.0, \"x_c\": 0.0, \"y_c\": 0.0, \"I_x\": 0.0, \"I_y\": 0.0, \"I_xy\": 0.0, \"J\": 0.0}\n", + "\n", + " dx = XX[0, 1] - XX[0, 0]\n", + " dy = YY[1, 0] - YY[0, 0]\n", + " dA = dx * dy\n", + "\n", + " A = x_vals.size * dA\n", + " x_c = float(np.mean(x_vals))\n", + " y_c = float(np.mean(y_vals))\n", + "\n", + " x_shift = x_vals - x_c\n", + " y_shift = y_vals - y_c\n", + "\n", + " I_x = float(np.sum(y_shift**2) * dA)\n", + " I_y = float(np.sum(x_shift**2) * dA)\n", + " I_xy = float(np.sum(x_shift * y_shift) * dA)\n", + " J = I_x + I_y\n", + "\n", + " return {\"A\": A, \"x_c\": x_c, \"y_c\": y_c, \"I_x\": I_x, \"I_y\": I_y, \"I_xy\": I_xy, \"J\": J}\n", + "\n", + "# ------------------------------\n", + "# Main: Prusa-style rectilinear/grid with shells\n", + "# ------------------------------\n", + "\n", + "def prusa_style_grid_or_rectilinear(\n", + " width, height,\n", + " infill_fraction,\n", + " line_width=0.42,\n", + " shell_layers=2,\n", + " base_infill_angle_deg=45.0,\n", + " grid=True,\n", + " z_height=0.0, # keep for optional phase control\n", + " phase_per_mm=0.0,\n", + " # --- NEW: cross-sections extruded through Z ---\n", + " z_object_height=None, # mm (required to report XZ / YZ areas)\n", + " y_plane=0.0, # mm, plane parallel to XZ at y = y_plane\n", + " x_plane=0.0, # mm, plane parallel to YZ at x = x_plane\n", + " N=800,\n", + " plot=True,\n", + " verbose=True\n", + "):\n", + " # ----- Raster grid\n", + " xs = np.linspace(-width/2, width/2, N)\n", + " ys = np.linspace(-height/2, height/2, N)\n", + " XX, YY = np.meshgrid(xs, ys)\n", + "\n", + " # ----- Shells (perimeters)\n", + " shell_mask = np.zeros_like(XX, dtype=bool)\n", + " for i in range(shell_layers):\n", + " off = (i + 0.5) * line_width\n", + " shell_mask |= np.abs(XX - (-width/2 + off)) <= (line_width / 2)\n", + " shell_mask |= np.abs(XX - ( +width/2 - off)) <= (line_width / 2)\n", + " shell_mask |= np.abs(YY - (-height/2 + off)) <= (line_width / 2)\n", + " shell_mask |= np.abs(YY - ( +height/2 - off)) <= (line_width / 2)\n", + "\n", + " # ----- Infill region (inside shells)\n", + " inner_offset = shell_layers * line_width\n", + " inner_rect = (\n", + " (np.abs(XX) <= (width/2 - inner_offset)) &\n", + " (np.abs(YY) <= (height/2 - inner_offset))\n", + " )\n", + "\n", + " if infill_fraction <= 0.0:\n", + " infill_mask = np.zeros_like(XX, dtype=bool)\n", + " elif infill_fraction >= 1.0:\n", + " spacing = line_width\n", + " masks = []\n", + " angles = [base_infill_angle_deg] + ([base_infill_angle_deg + 90] if grid else [])\n", + " phase = phase_per_mm * z_height\n", + " for a in angles:\n", + " masks.append(_rectilinear_mask(XX, YY, spacing, line_width, angle_deg=a, phase=phase))\n", + " infill_mask = np.logical_or.reduce(masks) & inner_rect\n", + " else:\n", + " spacing = _spacing_for_grid_density(line_width, infill_fraction) if grid \\\n", + " else line_width / infill_fraction\n", + " masks = []\n", + " angles = [base_infill_angle_deg] + ([base_infill_angle_deg + 90] if grid else [])\n", + " phase = phase_per_mm * z_height\n", + " for a in angles:\n", + " masks.append(_rectilinear_mask(XX, YY, spacing, line_width, angle_deg=a, phase=phase))\n", + " infill_mask = np.logical_or.reduce(masks) & inner_rect\n", + "\n", + " # ----- Final mask (material present)\n", + " final_mask = shell_mask | infill_mask\n", + "\n", + " # ----- Plot\n", + " if plot:\n", + " plt.figure(figsize=(6, 6))\n", + " img = np.where(final_mask, 1.0, np.nan)\n", + " plt.imshow(img, origin='lower',\n", + " extent=[-width/2, width/2, -height/2, height/2],\n", + " interpolation='nearest')\n", + " title = \"Grid\" if grid else \"Rectilinear\"\n", + " plt.title(f\"{title} @ {infill_fraction*100:.1f}% | shells={shell_layers}×{line_width:.2f} angle={base_infill_angle_deg:.0f}°\")\n", + " plt.xlabel(\"X (mm)\")\n", + " plt.ylabel(\"Y (mm)\")\n", + " plt.gca().set_aspect('equal', 'box')\n", + " plt.grid(True)\n", + "\n", + " # guide lines\n", + " plt.hlines(y_plane, -width/2, width/2, linestyles='--')\n", + " plt.vlines(x_plane, -height/2, height/2, linestyles='--')\n", + "\n", + " plt.show()\n", + "\n", + " # ----- XY numbers\n", + " total = compute_area_moments(XX, YY, final_mask)\n", + " shells = compute_area_moments(XX, YY, shell_mask)\n", + " A_infill = total[\"A\"] - shells[\"A\"]\n", + "\n", + " # ----- NEW: cross-sections parallel to XZ and YZ\n", + " dx = XX[0, 1] - XX[0, 0]\n", + " dy = YY[1, 0] - YY[0, 0]\n", + "\n", + " ys = YY[:, 0]\n", + " xs = XX[0, :]\n", + " row = int(np.argmin(np.abs(ys - y_plane)))\n", + " col = int(np.argmin(np.abs(xs - x_plane)))\n", + "\n", + " length_x_at_y = float(np.count_nonzero(final_mask[row, :]) * dx)\n", + " length_y_at_x = float(np.count_nonzero(final_mask[:, col]) * dy)\n", + "\n", + " area_xz_at_y = None\n", + " area_yz_at_x = None\n", + " if z_object_height is not None and z_object_height > 0:\n", + " area_xz_at_y = length_x_at_y * z_object_height\n", + " area_yz_at_x = length_y_at_x * z_object_height\n", + "\n", + " if verbose:\n", + " print(f\"==== {('Grid' if grid else 'Rectilinear')} Infill {infill_fraction*100:.1f}% ====\")\n", + " print(f\"XY Total Area = {total['A']:.4f} mm²\")\n", + " print(f\" Shell Area = {shells['A']:.4f} mm²\")\n", + " print(f\" Infill Area = {A_infill:.4f} mm²\")\n", + " print(f\"I_x = {total['I_x']:.4f}\")\n", + " print(f\"I_y = {total['I_y']:.4f}\")\n", + " print(f\"I_xy = {total['I_xy']:.4f}\")\n", + " print(f\"Polar moment, J = {total['J']:.4f}\")\n", + " print(f\"-- Cross-sections through Z (pattern constant over Z) --\")\n", + " print(f\"Length along X @ y={y_plane:.3f} mm: {length_x_at_y:.4f} mm\")\n", + " print(f\"Length along Y @ x={x_plane:.3f} mm: {length_y_at_x:.4f} mm\")\n", + " if area_xz_at_y is not None:\n", + " print(f\"Area of XZ plane @ y={y_plane:.3f}: {area_xz_at_y:.4f} mm² (Z={z_object_height:.3f} mm)\")\n", + " if area_yz_at_x is not None:\n", + " print(f\"Area of YZ plane @ x={x_plane:.3f}: {area_yz_at_x:.4f} mm² (Z={z_object_height:.3f} mm)\")\n", + " print()\n", + "\n", + " return {\n", + " \"mask\": final_mask,\n", + " \"XX\": XX, \"YY\": YY,\n", + " \"dx\": dx, \"dy\": dy,\n", + " \"area_total_xy\": total[\"A\"],\n", + " \"area_shells_xy\": shells[\"A\"],\n", + " \"area_infill_xy\": A_infill,\n", + " \"moments_xy\": total,\n", + " \"length_x_at_y\": length_x_at_y,\n", + " \"length_y_at_x\": length_y_at_x,\n", + " \"area_xz_at_y\": area_xz_at_y,\n", + " \"area_yz_at_x\": area_yz_at_x,\n", + " }\n", + "\n", + "# ------------------------------\n", + "# Demo\n", + "# ------------------------------\n", + "if __name__ == \"__main__\":\n", + " W, H = 10.0, 10.0\n", + " Z = 20.0 # object height in Z\n", + " res = prusa_style_grid_or_rectilinear(\n", + " width=W, height=H,\n", + " infill_fraction=0.3,\n", + " line_width=0.42,\n", + " shell_layers=2,\n", + " base_infill_angle_deg=45.0,\n", + " grid=True,\n", + " z_object_height=Z, # << set Z height\n", + " y_plane=+1.0, # XZ cross-section at y = +1 mm\n", + " x_plane=-2.0, # YZ cross-section at x = -2 mm\n", + " plot=True, verbose=True\n", + " )\n", + "\n", + " print(\"A_xz(y=1mm) =\", res[\"area_xz_at_y\"], \"mm^2\")\n", + " print(\"A_yz(x=-2mm) =\", res[\"area_yz_at_x\"], \"mm^2\")\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c04da43a-0894-4100-9457-0160dd2b54d2", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/software/GRID_FINAL.ipynb b/software/GRID_FINAL.ipynb new file mode 100644 index 0000000..066fb7a --- /dev/null +++ b/software/GRID_FINAL.ipynb @@ -0,0 +1,304 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "id": "4ba3c61a-034e-4f09-85b5-33b3071fe265", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWEAAAIjCAYAAADSh6otAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWB9JREFUeJzt3Xl8TOf+B/DPTDKZLJIIIqmKWGqvXRGlRcVaohRXlFA/VC230lZpVROqtV2qlVp6a6mKraVKXZqqorVrVYtSaqt9S4Jsk5nn94ebuZl9PTNzks/79cqLOfOcM99hfDzznOc5RyGEECAiIq9QersAIqLSjCFMRORFDGEiIi9iCBMReRFDmIjIixjCRERexBAmIvIihjARkRcxhImIvMirITxkyBBUrVrVZrvz589DoVBg+fLlktdEpqpWrYqUlBSb7VJSUqBQKEz2HTJkiCR1FX0u5syZI8nxyTE//PADFAoFvvjiC2+X4hX5+flO7edUCJ87dw5jxoxBrVq1EBwcjODgYNSrVw+jR4/GsWPHnCpEavfv34dOp3Nq30OHDmHMmDGoX78+QkJCUKVKFfTr1w+nT5822/7kyZPo0qULypQpg3LlymHQoEG4efOm3a/39ddfo2nTpggMDESVKlXwzjvvoLCw0KDNiRMn0LZtW4SGhqJ58+bYt2+fyXHmzp2L+vXrm+xL7qPT6bB8+XL07NkTMTExCAkJweOPP453330XeXl5bn2dWbNmoVq1aggMDETDhg2xevVqp441fPhwKBQKPPvsswbbb9++jdmzZ+Opp55CZGQkypYti1atWmHt2rXueAsO27t3L1JSUpCZmSnJ8c+ePYvAwEAoFAocPnzY4Lnly5dDoVCY/bl27ZpB23PnzqFly5b6vxeHM1A4aPPmzSI4OFiEhYWJUaNGiUWLFoklS5aI5ORkUbVqVaFQKMT58+ftOlZBQYHIy8uz2e7cuXMCgFi2bJnddep0OrFu3TrRtWtXERISIgAIlUolHn/8cfHuu++KrKwsu4/Vp08fER0dLcaOHSs++eQTMW3aNBEVFSVCQkLEb7/9ZtD20qVLokKFCqJGjRpi/vz5Yvr06SIiIkI0atRI5Ofn23ytrVu3CoVCIdq3by+WLFkixo4dK5RKpXjppZf0bQoLC0Xt2rVFXFycWLhwoejatauIjIw0eE/Xr18X4eHhYvv27Xa/T0tiY2PFO++8Y7PdO++8I4w/Unl5eaKgoMDlGswp+lzMnj1bkuPb4969ewKAaNWqlXj33XfFkiVLxNChQ4VSqRTt2rUTOp3OLa8zceJEAUAMHz5cLFmyRHTv3l0AEKtXr3boOIcOHRL+/v4iMDBQdO/e3eC5zZs3C5VKJRISEsQHH3wgFixYINq3by8AiClTptg89s6dOwUAsX79eodqsmT27NkCgDh37pxbjmesR48e+mw4dOiQwXPLli0TAMTUqVPFypUrDX5yc3MN2nbs2FH07t1bbNq0SYwYMULUrVvXoTocCuEzZ86IkJAQUbduXXHlyhWT5zUajZg/f764ePGi1ePcv3/foSIdDeEbN26Itm3bCpVKJfr27SsWL14svvnmG5Geni5ef/118eijj4pHH31U7Nq1y67j/fTTTyYBevr0aaFWq8XAgQMNto8aNUoEBQWJCxcu6LdlZGQIAGLx4sU2X6tevXqiUaNGQqPR6Le99dZbQqFQiJMnTwohhDh58qQAoH+NBw8eiKCgILFt2zb9PsOGDRM9evSw6/3Z4koIS8kXQjg/P1/89NNPJttTU1MFAJGRkWGwXafTiaVLl1oM5927d+v/nov8/fffQqVSidGjRxscp23btqJy5cqisLDQrlp1Op2Ii4sTL774ooiNjTUJ4b/++sukA6XT6USHDh2EWq22+e9WTiG8bds2ERAQICZPnmw1hI23mxMSEiIyMzP1jyMiIsStW7fsrsWhfzEjRowQAMT+/fvt3icpKUmEhISIM2fOiK5du4oyZcqIhIQE/XOxsbEG7e/evSuSkpJEWFiYCA8PF4MHDxa//PKL3SGcnZ0t6tatKxo2bChOnz5ttk1OTo545ZVXRJkyZez6Q7akadOmomnTpgbbKlasKPr27WvStlatWuKZZ56xerzjx48LACItLc1g++XLlwUAMW3aNCGEED///LMAILKzs/VtypUrJzZs2CCEEOLIkSMiMDBQ/Pnnn069L2OuhHBsbKxISkqy2kaI/33oi/+DO3TokOjUqZMoX768CAwMFFWrVhVDhw7VP28uhHU6nRg+fLhQqVTiyy+/1G9fuXKlaNq0qQgMDBQRERGif//+NjsLrjh27JgAID788EOD7Xv27BEAxPjx4032+fnnn0VYWJjJ5yctLU0AEMePHzfYnp6eLgCIPXv22FXTihUrRGhoqLh69arZELbkww8/FADEsWPHrLYzF8J5eXmie/fuIiwsTPz0009WO1QA9J+zos+J8Y87ArmgoEDUrl1bvP766xbDtvj27Oxsq//RNWjQQLz11lvir7/+EmlpaaJ8+fIOfQPyd2ToYsuWLXjsscfQsmVLR3ZDYWEhOnfujDZt2mDOnDkIDg42204IgYSEBPz444946aWXULduXWzcuBFJSUl2v9Yrr7wCf39//PjjjwgNDQUAaLVa5OfnIzg4GBqNBnl5eZg3bx4CAgKQlJSE3377DUqlY8PjQghcv34d9evX12+7fPkybty4gebNm5u0b9GiBbZu3Wr1mL/88gsAmOxfqVIlVK5cWf98rVq1EB4ejpSUFIwbNw7r1q1DdnY2mjZtCgAYN24cxowZg8cee8yh9+RLbty4gU6dOiEyMhITJ05E2bJlcf78eWzYsMHiPlqtFi+++CLWrl2LjRs3onv37gCA6dOn4+2330a/fv3wf//3f7h58yY++ugjPPXUU/jll19QtmxZAEBOTg5ycnJs1ubn54eIiAirbYrGDStUqGCwvU2bNpg1axYmTJiAiIgIvP322wCAP//8E126dEGVKlWwePFig31++eUXhISEoG7dugbbW7RooX++TZs2Vuu5d+8e3njjDbz55puIjo62+R7teS+25ObmIiEhAYcPH8Z3332HJ554AufPn7dr3969e+P06dNYvXo15s2bp3/tyMhIAEBWVhY0Go3N4wQGBqJMmTIG2z744APcvXsXkydPtvp5AoD27dvj/v37CAgIQOfOnfGvf/0LNWvWNGgzf/58PPfcc5g+fTqCg4Px+eefm5ygtsretM7KyhIARK9evUyeu3v3rrh586b+JycnR/9cUlKSACAmTpxosp9xT/irr74SAMSsWbP02woLC0Xbtm3t6gmfOXNG+Pv7i19++UW/LTU1VT/u07p1a7F06VL9a+bn54vo6Gjx7bff2veHUMzKlSsFAPHpp5/qtx06dEgAEJ999plJ+9dff10AsDoGXvT1y1wP7YknnhCtWrXSP05PTxdBQUECgPDz8xNz5swRQgixatUqERUV5dCYty3e6Alv3LjR5tfB4j1hjUYj+vfvL4KCggzGwc+fPy/8/PzE9OnTDfb97bffhL+/v8F2S70v4x/jb2/mdOzYUYSFhYm7d++aff6NN94QAMSCBQvE33//LWJjY0W1atXMDvN1795dVK9e3WT7gwcPLP7bMvbaa6+JatWq6T9/9vaEb9++LSpWrCjatm1rs23xnvC9e/fE008/LSpUqGDw79HenrAQ1ocjnn76abv+rop/9oQQ4urVqyI0NFQ/NGipJ7x27VoxZMgQsWLFCrFx40YxefJkERwcLCpUqGD232dmZqbYv3+/uH37ts0/J2N294Szs7MBwOR/FQBo164dfv31V/3j2bNn47XXXjNoM2rUKJuvsXXrVvj7+xu09fPzw9ixY7Fnzx6b+2/cuBGtW7dG48aN9Y9TU1Px6quv4sknn8SePXswbtw4lC9fHgAQEBCArl274ocffkB8fLzN4xf5448/MHr0aMTFxRn00nNzcwEAarXaZJ/AwEB9G3PP27N/0d8BAAwYMABdunTBqVOnUK1aNURFRSEnJwdvvPEGpk+fjjJlyiA1NRUrVqzQ//65556z+z16W1HvdMuWLWjUqBFUKpXFtgUFBejbty8yMjKwdetWtGvXTv/chg0boNPp0K9fP9y6dUu/PTo6GjVr1sTOnTvx5ptvAgAGDx5ss0cJAEFBQVaff++99/Ddd9/h448/1r8PYzNmzMDt27cxduxYzJgxA4WFhfjxxx/xyCOPmLS19Jkp/pmy5vTp05g/fz5Wr15t8bNnjk6nw8CBA5GZmYmPPvrI7v2ysrLQqVMn/PXXX/jhhx8Mvi26y7/+9S/cvXvXZrtKlSoZPH7jjTdQvXp1/N///Z/V/fr164d+/frpH/fq1QudO3fGU089henTp2PRokUG7cPDwx0eIShidwgXfbW/f/++yXOLFy/GvXv3cP36dbzwwgumL+Lvj8qVK9t8jQsXLuCRRx4xCfratWvbVeORI0fQvn17/eNPPvkESUlJmDVrFgAgISEBt27dwg8//KBvExUV5dD0sWvXrqF79+4IDw/HF198AT8/P/1zRf84zc0XLJquZO0fsK39jfeNiIhAq1at9I/ff/99VKxYEUOHDsXSpUuxaNEirFq1CufPn0f//v1x4sQJ2QxRPP300+jTpw9SU1Mxb948tGvXDr169UJiYqJJkLz//vu4f/8+/vOf/xgEMPDwa74QwuQrZJHi4V69enVUr17dpbrXrl2LyZMnY9iwYTY7HrNnz8b69evx999/Y+7cuahRo4bZdkFBQU5/pgDgn//8J1q3bo0+ffrY+S4eGjt2LLZt24bPPvsMjRo1snu/V155BXl5efjll18kCWAAaNasmcP77N+/HytXrsSOHTscHn4EHg4ltWzZEt99953D+1pjdwiHh4fjkUcewe+//27yXNH/AJbGe9RqtVNv2lG3b982+J/v/Pnz6NGjh0GbFi1aGITwpUuXEBMTY9fxs7Ky0LVrV2RmZmLPnj0m/8sW9WKuXr1qsu/Vq1dRrlw5qz2R4vsb13T16lX9GKA558+fx7/+9S98++23UCqVWL16NUaOHIkOHToAAFasWIE1a9Zg8uTJdr1XqVgaK9NqtSbtvvjiC+zfvx+bN2/G9u3b8eKLL+Jf//oX9u/fb/AfdefOnbFt2zbMmjUL7dq10/cQgYe9OYVCgf/85z8G/2EWKX6c+/fvm+1kGPPz89OPTRaXkZGBwYMHo3v37iY9JWN5eXno1asXCgsL8eSTT+LNN99EkyZNTP4TAR5+Lnbu3AkhhMGfX9HnzPhzWNz333+Pbdu2YcOGDQb/PgsLC5Gbm4vz58+jXLlyCAsLM9gvNTUVH3/8MWbMmIFBgwZZfS/GEhISsGbNGsyYMQOfffaZwb99e//+bblz5w4KCgpstgsKCkJ4eDgAYMKECWjbti2qVaum/7Mo+nZ09epVXLx4EVWqVLF6vJiYGJw6dcqhWm1x6MRc9+7d8e9//xsHDx60GgjOio2NxY4dO3D//n2Dfxz2vumwsDBkZWXpH0dHR+Ps2bMGbf766y/972/cuIFNmzbhq6++snnsvLw89OjRA6dPn8Z3332HevXqmbR59NFHERkZaTLxGwAOHjyoHyaxpOj5w4cPG/z5XrlyBX///TdGjBhhcd/XXnsNPXv21H+dvnLlisE/zkqVKuHy5ctWX98Tik5oZWZmGnxVv3Dhgtn2rVq1QqtWrTB9+nSkp6dj4MCBWLNmjcHXyVatWuGll17Cs88+i759+2Ljxo3w93/40a5RowaEEKhWrRpq1apltbY5c+YgNTXV5nuIjY016XAcOHAAzz33HJo3b45169bpX9+cwsJC9OvXD/v378eWLVvQunVrdOrUCT179sTOnTtNenmNGzfGv//9b5w8edLgc3fgwAH985ZcvHgRwMMTXcYuX76MatWqYd68eXjllVf029PS0pCSkoJXXnkFb7zxhsVjW9KrVy906tQJQ4YMQWhoKBYuXKh/rvjff3Hm/v6tndzq3bs3du3aZbOWpKQk/Urbixcv4sKFC6hWrZpJu549eyI8PNzmwpC//vrL7H/ArnAohCdMmID09HS8+OKL2LFjB6KiogyeFy7eM7Rbt25YsmQJFi5ciNdffx3Aw/8h7R2Pqlu3rv6DCQDPPfccJk2ahKZNm+LJJ5/E3r17sWTJEoSHh2P79u1ITk5GmzZt8Mwzz1g9rlarRf/+/bFv3z5s2rQJcXFxFtv26dMHK1asMOhh79ixA6dPn8b48eP17TQaDc6ePav/hgEA9evXR506dbBkyRKMHDlS33NbuHAhFAoFnn/+ebOvuXPnTmzduhV//PGHfltUVJTB45MnT/rEmHDRV+7du3ejZ8+eAIAHDx5gxYoVBu3u3r2LsmXLGvxDLAobc1/NO3bsiDVr1qBv374YNGgQVq1aBaVSid69e2PSpElITU01OWsthMCdO3f05wicHRM+efIkunfvjqpVq2LLli1WhweEEBg6dCi2bt2KdevWoWPHjgAejn23a9cOXbp0wZ49e1CnTh39PgkJCRg/fjw+/vhjLFiwQH+cRYsW4dFHH0Xr1q31ba9evYqsrCzUqFEDKpUKHTp0wMaNG03qGDFiBGJjY/HWW2+hQYMG+u1r167FuHHjMHDgQMydO9fmn4UlgwcPRnZ2NsaOHYuwsDDMnDkTwMOOUoUKFbB7926D4P/4449NjhESEgLANLAB58aElyxZYjL75fvvv8dHH32EOXPmGPyZ37x50yRst27diiNHjmDcuHE2X9chjp7J++qrr0RQUJAIDw8XL7/8sli8eLFYtGiReOONN0RMTIxQKpUGq3iK5gmbYzw7QqvViieffFIolUrx8ssviwULFogOHTqIhg0b2jU7Yv/+/SIoKEh/hrmgoED07NlTf6a0fPnyYurUqQKACAgIEKNGjRIPHjyw+Z7/+c9/CgCiR48eJqtnVq5cadD24sWLonz58qJGjRriww8/FO+9956IiIgQDRo0MJgZUXSW2Pjs7ebNm4VCoRAdOnQQS5YsEePGjRNKpVIMHz7cbG2FhYWiYcOGJiuaPvroIxEUFCTee+89MXLkSKFUKsXvv/9u872a487ZEQUFBaJKlSqiQoUKYubMmWLOnDmiXr16olmzZgZnwufNmydq1qwpJkyYIBYvXizmzJkjateuLcLCwsRff/0lhDA/T3jlypVCoVCIESNG6Le9//77+tkxs2bNEgsXLhQTJkwQNWvWdHmhR3Z2tv5zP2PGDJPPxt69ew3a79mzRygUCrF06VKTY127dk089thjZueZF82uGTFihPjkk0/0K+ZWrVpl0K5oNpKt+bTmZkccOHBABAQEiMjISLF06VKT93L27FmrxzQ3T3j69OkCgMEslKLVf8OGDRMLFy4UAwYM0P/9F/+cHTx4UAAQ3bp1E5999plYvXq1wwu9bLE0O6Lo72HmzJli0aJFYsSIEcLf31/ExMSIa9euubUGp5Y3nTlzRowaNUo89thjIjAwUAQFBYk6deqIl156SRw9etSgrSMhLMTDKTGDBg3SL9YYNGiQQ4s1nn76afHcc88ZTJY+ceKE+Omnn8SDBw/E3bt3xcGDB+0K3+LHhIUpMOb+H/v9999Fp06dRHBwsChbtqwYOHCgyV+cpRAW4uH0rMaNGwu1Wi0qV64sJk+ebHHpb1pamqhcubLJ+9FoNCI5OVlUqFBBxMbGihUrVtj9fo25M4SFeLiYpGXLliIgIEBUqVJFzJ0712SK2s8//ywGDBggqlSpItRqtahYsaJ49tlnxeHDh/XHsbRi7uOPPxYAxGuvvabf9uWXX4o2bdqIkJAQERISIurUqSNGjx4tTp065dgfhpGiGiz9mPv7LT5ly9j58+fFnTt3TLZrtVrx3nvvidjYWBEQECDq168vPv/8c5N2roRw0d+BpR9b//4srZibMGGCfjqeEA8XSw0bNkyEh4eL0NBQ0a9fP3Hjxg2TEBZCiGnTpolHH31UKJVKSVbPWQrht956SzRu3FiEh4cLlUolqlSpIkaNGuX2ABZCCIUQLo4h+Jg///wTTzzxBPr06YOFCxciICDApE1ubi4yMjL0X4fJuqIrodlzJTVjMTEx6Ny5M/7973+7vzCiEsChMWE5qFmzJrZv364/yTFmzBg8/fTTqFixIm7duoXvv/8eH374Ifz8/NChQwez857JPTQaDW7fvu3wSiui0qREXtS9ZcuW+P3339G9e3e8++67aN68OapUqYKmTZtixowZSExMxC+//MIAltD27dsxYsQI5Obm2jzxSVSalbjhCGNarRanTp3CrVu3UL58edSpU8fsfFGyzJnhiPbt2+PMmTMYNWqUfkUaEZkq8SFMROTLSuRwBBGRXDCEiYi8qMTNjiDP0el0uHLlCkJDQx27fmoJI4TAvXv3UKlSJY9cI4VKFoYwOe3KlSt2X/yoNLh06ZJdVwskKo4hTE4rurxpu8AEwMUbCwulAtkNHl5uMuy3P6HQ2Xe+2D9IhRc/7Y2lwzagMNf2nRYkEQj8kLdJ/+dB5AiGMDmtaAjCX6ECXByN0Pn7406XpwEAEScvQakptGs/lUKF4OBgqNxQg9P++7qleUiGnMcBLCIiL2IIExF5EUOYiMiLOCZMksjQrXeofU5BIepN2Q4A2HxvJYIDLH8045V93frajrD12kSOYk+YZMdayEoZwERSYAiTLJkLWwYwyRGHI8gnBPgpsXRIc/3vbTE3LBCv7MsgJtlhT5h8gr+fEh3qRKFDnSj42whha+OyHLMluWEIk6wYh+ymzBU22xD5MoYw+QSNVof1hy9h/eFL0Gh1ZtsYh2vxoQfjMGYQk1wwhMknaLQ6vP7FMbz+xTGzIWwtgC1tYxCTHDCEyefZE8CWnmMQk69jCJNPcySALbVhEJMvYwiTz3ImgC21ZRCTr2IIkyRcDT1XAtjSPu6uicgdGMIkGWdDq0foIIPHrizAcFcQM4BJKgxhkpSr4eWOFXCuBjEDmKTEECbJ2RNiAX5KRG/aiehNO6Eo1AJw77UgnA1iBjBJjSFMknA09Lqq+iP01AWEnroAhRCSXAPC0ZrcMS5NZAtDmCRjb+h5Mux8sSYq3RjCJClboVf0WCgUuFc7Fq8c/RCFFpYte7omS+2J3IkhTJKzFHrFw074++FaQnuMTv8ZBRKHsL01mWtH5G4MYfIIW73PzfdWerIcALZrYgCTJzCEyWMshZo3w84Xa6LShSFMRORFDGHyGHtnIniSL9ZEpQtDuIRauHAhGjZsiLCwMISFhSEuLg7/+c9/9M/n5eVh9OjRKF++PMqUKYM+ffrg+vXrktVja7zVeKmyJ9iqiUFMnsAQLqEqV66MGTNm4MiRIzh8+DA6dOiAhIQEHD9+HAAwfvx4bN68GevXr8euXbtw5coV9O7dW5JaLIWdN8dd7a2JQUxSYwiXUD169EC3bt1Qs2ZN1KpVC9OnT0eZMmWwf/9+ZGVl4dNPP8XcuXPRoUMHNGvWDMuWLcPevXuxf/9+t9Zhq7dZ9Fih1SJq64+I2vojVHbcbdkTNVlqT+RODOFSQKvVYs2aNXjw4AHi4uJw5MgRaDQadOzYUd+mTp06qFKlCvbt22fxOPn5+cjOzjb4AQBVoB9UQSqDH41Gg24hiQbbtuanQ6PRmPxszU9HgNof5c9eQPmzF5AQ9oLZdpZ+ANjd1pGairfrFpIIjUZj8j5VQSqoAv2k/QukEk0hhBDeLoKk8dtvvyEuLg55eXkoU6YM0tPT0a1bN6Snp2Po0KHIz883aN+iRQu0b98eM2fONHu8lJQUpKammmxPT09HcHCwJO9BDnJycpCYmIisrCyEhYV5uxySGX9vF0DSqV27No4ePYqsrCx88cUXSEpKwq5du5w+3qRJk5CcnKx/nJ2djZiYGKwcvQnIt/ylytxt6Y0VanXYc+Y2pvWfizIXrkLx376BrX01Gg0yMjIQHx8PlUplsV1C2SSHa7K0rwm19Cv8qORiCJdgAQEBeOyxxwAAzZo1w6FDhzB//nz0798fBQUFyMzMRNmyZfXtr1+/jujoaIvHU6vVUKvVJts1eVogT2t2H3tPvmlEIUZ8/gvQoz1qzPscSk0hAKCbOtGuY6hUKosh7OpKuK0P0q2PC/O7JLmAY8KliE6nQ35+Ppo1awaVSoUdO3bonzt16hQuXryIuLg4t72es7MfjJcwu3JizF1LkbmCjqTCEC6hJk2ahN27d+P8+fP47bffMGnSJPzwww8YOHAgwsPDMWzYMCQnJ2Pnzp04cuQIhg4diri4OLRq1cotr+9qaLljhoK7rwXBICYpcDiihLpx4wYGDx6Mq1evIjw8HA0bNsT27dsRHx8PAJg3bx6USiX69OmD/Px8dO7cGR9//LGXqzaUoVtvEKTxyr52ByEvxkNywRAuoT799FOrzwcGBiItLQ1paWkeqsg5zgQxA5jkhMMR5PMcGZpgAJPcMIRJFuwJYgYwyRFDmHyCyk+JqQn1MTWhvsVly9aC2HguLwOY5IIhTD5B5afE4LiqGBxX1eq1I4zD1dxCCgYwyQlDmGTHWsgygEluGMLkE7Q6gX1nb2Pf2dvQ6mwvQTMXtgxgkiOGMPmE/EItBnyyHwM+2Y/8QvNLoIuz58QckRwwhEl2HJmiRuTrGMIkK8Yha+5qaAxikhOGMMmGtXnAxmHMICa5YAiTLNizEIO3JSI5YgiTz3NkJRyDmOSGIUw+zZmlyAxikhOGMPkEf6USk7rWwaSudeCvfPixdOVaEAxikguGMEnC0dAL8Fdi5NM1MPLpGgjwV7rlYjzuDmIGOUmBIUyScTa03Hk1NHcFMQOYpMIQJknZG15ancCvlzLRttJLEAqFfrs7liK7GsQMYJISQ5gkZ0+I5RdqkZD2Ey4N7gHh7wfAvdeCcDaIGcAkNYYwScLR0OsROsjq/t6oiReJJ09gCJNk7A094+3Gt7z3hZoYwCQVhjBJylboeePrvqM1MYBJSgxhkpyl0PPmeKu9NTGASWoMYfIIW71PKYcgLLFVEwOYPIEhTB5jKdS8GXa+WBOVLv7eLoAIeLhs+Z/P1NT/nqi04KedPMbaTIQAfyXGx9fC+PhaCPD33MfS3tkRRFJhCJNH2Bpv9Ubo+WJNVPowhElylsKueOgJAE9FDsfp6/egs+Nuy56oyVw7IndjCJOkbPU2ix4LlT8uDuuFTvN2I8+Ouy17oiZL7YnciSFMkrF3ypfxduMlzL5QE4OYpMIQJkk4OufWeJ6wFKHnaE0MYvIEhjBJztk5t+4MPWcXYnC+MEmNIUyScjXE3BHErq6EYxCTlBjCJBlnw8udQxPuWorMICapMIRJEq6GljvGY919LQgGMUmBIUw+wV+pxIinqmPEU9X1y5ZdCWJejIfkgiFMPiHAX4k3u9XFm93qGixbdiaIGcAkJwxh8nmOBDEDmOSGIUw+QacTuHQnB5fu5JhdtmxPEDOASY4YwuQT8gq1aDtrJ9rO2mlx2bK1IE4om2S1LZGvYgiTrBiHq3H4mmtD5MsYwiQ71kKWAUxywxAmWTIXtgxgkiOGMMmSPSfmiOSAIUyy48gUNSJfxxAmWTEO2U2ZK2y2IfJlDGHyCX5KBQa1isWgVrHwUyrMtrE2D9g4jBnEJBcMYfIJan8/TOv1OKb1ehxqfz+T5+1ZiMGLsJMcMYTJ5zmyEo5BTHLDECafIITA7fv5uH0/H0JYvtuyPdPQOFWN5MTf2wUQAUCuRotm734HADgxtTOCA/xduhZEhm69fv+iXxnO5IvYEyZJuDoM4I6L8bh7aIJDGyQFhjBJxtnQMr7lvSs9WHcFMQOYpMIQJp/mjiEEnqwjX8YQJknFK/s6HXruHMN1NohdqZ/IHgzhEur999/HE088gdDQUFSsWBG9evXCqVOnDNrk5eVh9OjRKF++PMqUKYM+ffrg+vXrbnl9R0PPnUMQ7qqJF4knT2AIl1C7du3C6NGjsX//fmRkZECj0aBTp0548OCBvs348eOxefNmrF+/Hrt27cKVK1fQu3dvt9Vgb+gZbze+5b07OVsTA5ikwhAuobZt24YhQ4agfv36aNSoEZYvX46LFy/iyJEjAICsrCx8+umnmDt3Ljp06IBmzZph2bJl2Lt3L/bv3++2OmyFnv6xTofQ386gT9PKFpcte7wmC+2J3InzhEuJrKwsAEC5cuUAAEeOHIFGo0HHjh31berUqYMqVapg3759aNWqlckx8vPzkZ+fr3+cnZ0NAFAF+gEKw//PNRqN/vdb89MN7oDRLSQRmzJXIKFsElRBKv32n796+eFvhA4ajc6u91X0OsVfzx721rQpc4XBsYs/p6fWAbkOvTyRnkJYW55EJYJOp0PPnj2RmZmJH3/8EQCQnp6OoUOHGoQqALRo0QLt27fHzJkzTY6TkpKC1NRUk+3p6ekIDg6WpngZyMnJQWJiIrKyshAWFubtckhm2BMuBUaPHo3ff/9dH8DOmjRpEpKTk/WPs7OzERMTg5WjNwH5hj1hc5eYBMzfE25T5goIIZCreXiDzyCVHxQK+4YkNBoNMjIyEB8fD5XKTC/VDpZqsrct1Pb12onMYQiXcGPGjMGWLVuwe/duVK5cWb89OjoaBQUFyMzMRNmyZfXbr1+/jujoaLPHUqvVUKvVJts1eVogz/AOyZYCUZNrOmygUqmQU1CIRtMyAPx32bLKsY+mSqVyOoQt1WRvW/C7JLmAJ+ZKKCEExowZg40bN+L7779HtWrVDJ5v1qwZVCoVduzYod926tQpXLx4EXFxcZLUZO9MBE/yxZqodGEIl1CjR4/G559/jvT0dISGhuLatWu4du0acnMfnkEKDw/HsGHDkJycjJ07d+LIkSMYOnQo4uLizJ6Uc5WtGQfG84Q9wVZNDGLyBIZwCbVw4UJkZWWhXbt2eOSRR/Q/a9eu1beZN28enn32WfTp0wdPPfUUoqOjsWHDBrfXYinsfGnql6WaGMQkNY4Jl1D2THoJDAxEWloa0tLSJKvDVm+z+CUnPcXRmuKVfX3qPwwqWdgTJsnYu+jBk0MTztbEHjFJhSFMknB01ZnxUmUpQs/RmhjE5AkMYZKcPV/llQoFujWIRpk/zgO6h0Mp7gw9Z5cicxiCpMYQJknZG2KBKj98PLAZfv9qNJTa/805dkcQu3otCAYxSYkhTJJxNrzcOQzgrovxMIhJKgxhkoSroeWOIHb31dAYxCQFhjD5hJyCQlSd+A2qTvwGOQWFAFwLYl6OkuSCIUw+zZkgZgCTnDCEyec5EsQMYJIbhjARkRdx2TLJQlGPtqinW/Tr1vx0AA+v81v8MpPsAZNcsCdMsmIcruYuss4AJjlhCJPsWAtZBjDJDUOYfIJSoUD72pFoXzsSSjtubWQubBnAJEccEyafEKjyw7KhLexub26GBC85SXLEnjDJjiNT1Ih8HUOYZMU4ZM3dFZlBTHLCECafkFNQiLpvb0Pdt7fply0bs7YQwziMGcQkFwxh8hm5Gi1yNVqzz9mzEo4XYSc5YgiTz3NkKTKDmOSGIUw+zZlrQTCISU4YwuSzXLkYD4OY5IIhTJJwNfTccTU0dwcxg5ykwBAmyTgbWsa3vHdlAYa7gpgBTFLhijnyCUqFAi2rlQMA3BLCy9UQeQ5DmCRl71LiQJUf7oyaC+B/X8/ctQTZ0mUw7T0+e8EkJQ5HkCSKB1y8sq/NIPPEHTEcHZowrpvXpSApMIRJMvaGnidvSeSLNVHpxuEI8qqisNOp/HF+5PMIjwxDTkEhggOk+2hm6NZziIF8BkOYJGVtPNY4CLXBgbjzoMBjddlTE3vAJDUOR5BH2BoG2HxvpSfLAWC7JgYweQJDmDzGUqh5M+x8sSYqXRjC5FW+EHa+UAOVXgxh8hhLtyTy5kkyS6/PE3fkKQxh8ghb463GS5U9wVZNDGLyBIYwSc5S2BmEnhBQX72FhpXD7brbskdqMtOOyN0YwiQpW73NosfKQi2qrNyCr8e0QaDKz2P1WaupCIOYpMQQJsnYO+XL0SXOrtZkz1JkBjF5CkOYJOHonFtPhJ4v1kTEECbJ2TMFLLdAi3Mjn8e5kc9D5+/Z4QhrOH2NpMZlyyQpe0NMQKAwvMzDB/89MefoJSctcXUlHK81QVJiT5gk42x4Gi9hdiUA3bUUmT1ikgpDmCThami5YzzW3deCYBCTFBjC5LPcGXoMUPJVDGHyac5MX+MdMUhOGMLk8xwZmuDlKEluGMLkExRQoGbFMqhZsQwUMF22bE8QM4BJjjhFjXxCUIAfMpKfttrGkaliDGCSC/aESVaMx4gTyiYBgP5X4zZEvo4hTLJjLWQZwCQ3DGHyCbkFWsTP3YX4ubuQW6D1djlEHsMQJp8gIPDnjfv488Z9CAib7c31eNkLJjniiTmSHUsn59x1rQkiT2JPmGTFOIA3Za6w2YbIlzGEiYi8iCFcQu3evRs9evRApUqVoFAo8NVXXxk8L4TAlClT8MgjjyAoKAgdO3bEn3/+6Z1i7WBuKXLxYYdNmSs8eocOIndhCJdQDx48QKNGjZCWlmb2+VmzZuHDDz/EokWLcODAAYSEhKBz587Iy8vzcKW2ObISjnfDILnhibkSqmvXrujatavZ54QQ+OCDDzB58mQkJCQAAD777DNERUXhq6++wj/+8Q9Plgrg4bLlR8sG6X9fxJmlyMYr6+KVfXmyjnwWQ7gUOnfuHK5du4aOHTvqt4WHh6Nly5bYt2+fxRDOz89Hfn6+/nF2djYAQBXoBygMv1RpNBqHavJXAD+82va/j3TQaHQPjx2k0rfZlLnC5LhFj423b81PN1hF52g9lhSvR0+tA3LdcngqhRRCCNuTMknWFAoFNm7ciF69egEA9u7diyeffBJXrlzBI488om/Xr18/KBQKrF271uxxUlJSkJqaarI9PT0dwcHBktQuBzk5OUhMTERWVhbCwsK8XQ7JDHvCZLdJkyYhOTlZ/zg7OxsxMTFYOXoTkG/+9IK5KWS2FO/B2jqGRqNBRkYG4uPjoVKZ6aU6eDx7azKg1jl8PKIiDOFSKDo6GgBw/fp1g57w9evX0bhxY4v7qdVqqNVqk+2aPC2QZ36pcTd1ol3jsXkaLfot3odTh86iskYHZeHD49k7lqtSqSyG8NYH6QZjxPbWVMTmyT1+lyQXcHZEKVStWjVER0djx44d+m3Z2dk4cOAA4uLivFKTTggc+zsL+Y9U0N9tmbc3otKAIVxC3b9/H0ePHsXRo0cBPDwZd/ToUVy8eBEKhQKvvPIK3n33XXz99df47bffMHjwYFSqVEk/buwqR+fs9ggdZHF/d3G0Jt4miTyBIVxCHT58GE2aNEGTJk0AAMnJyWjSpAmmTJkCAJgwYQLGjh2LESNG4IknnsD9+/exbds2BAYGuq0Ge+fsGm83vuW9OzlbEwOYpMIx4RKqXbt2sDbxRaFQYOrUqZg6daoHqyIiY+wJk6Rs9Ty9saLNeMmzrZrYCyYpsSdMkisKsaJwMxe8m++tRL0p2z1el7WaGL7kCewJk8dYCrWi7eVCAlAuJMCTJdmsiUhq7AmTVxWFXXCAP35+O97L1RB5HnvC5DHmvvL76lXOfLUuKnkYwuQR1k52eevav7bmATOIyRMYwiQ5SwFcPPR0/n6om/gp+i/ehzyN9Hdbtqcmc+2I3I0hTB5l8YSXQoHcKtE4cO4OdF6+sB9PypEn8cQcScae+bZF255RD9Bv6xE6CDvyV3utpqLtxtPXGM4kBfaESRKOLngwXqosxTCAozVxaII8gSFMknO2B+nO0HN2FRx7vyQ1hjBJqiSEWEl4D+S7GMIkGWfDq/jQhKvT18xNQ3OmLgYxSYUhTJJwJrSCVH4IUvmZ3d+ZIHb3hXgYxCQFzo4gnxAc4I+T07p4uwwij2NPmHyWrUtOWuOOIQgiT2AIk89zZIkzb0lEcsMQJp+Qp9Fi6LKDGLrsoNlly/aMEfNi7CRHHBMmn6ATAjtP3dT/nqi0YAiTbJi7Q4cqSIWR6f2RUDbJpB2RHHA4gmTHWsgygEluGMIkS9YuBkQkJwxhIiIv4pgwyY6lKWq85CTJEXvCJCvGAbwpc4XNNkS+jD1h8gnBAf44P6O7t8sg8jj2hEk2rC3GMO4RszdMcsGeMPk8R25JVLw9x4hJDtgTJp+Qp9Hi5VVH8PKqIwbLlp1ZiszbEpGcMITJJ+iEwNbfrmHrb9e4bJlKFYYw+SxXLkfpymUwiTyJY8IkCVfGY3uEDoJSU6h/7MqYrrtuXc8QJ6mwJ0yScjW83HFSzdUxYgYwSYkhTETkRQxhkoSj47E9QgeZ7O/OqWXmxojtqYt36SCpMYRJMvaGnvH24re8l7Imc69dfDsDmDyBISyx/Px87N69GytXrsTixYuxYcMGnDt3zttleYyt0Ct6rNAUosa8z3Fiamf9be+9XZOl9kTuxNkREvnpp58wf/58bN68GRqNBuHh4QgKCsKdO3eQn5+P6tWrY8SIEXjppZcQGhrq7XK9ToGHQRwcwI8klS78xEugZ8+e+Pnnn5GYmIhvv/0WzZs3R1BQkP75v/76C3v27MHq1asxd+5cfPbZZ4iPj/dixdKytJzYXJvSXBOVTgxhCXTv3h1ffvklVCqV2eerV6+O6tWrIykpCSdOnMDVq1c9XKF3FJ+za7w9v1CLNzf8DgB4r/fjUPtLOyRhT01EnsAQlsDIkSPtbluvXj3Uq1dPwmrkQasT+PLnvwEA03rV93I1RJ7DEPag+/fvQ6fTGWwLCwvzUjVE5As4O0Ji586dQ/fu3RESEoLw8HBEREQgIiICZcuWRUREhLfL8xhrU768uSLNWk1cKUeewJ6wxF544QUIIbB06VJERUVBoVB4uySPszTlq/h4bI/QQcD4F3yqpqJ2HB8mKTGEJfbrr7/iyJEjqF27trdLISIfxOEIiT3xxBO4dOmSt8vwGluXo/RGL9PWYgxeBpM8iT1hif373//GSy+9hMuXL+Pxxx83mbbWsGFDL1UmLUdWnWXo1iOnoBD1pmwH8L9LWbo7oB1dCWfuMphE7sYQltjNmzdx9uxZDB06VL9NoVBACAGFQgGtVmtl75LBnjANUvnhyOSOeD5qGBT/vZawO8djnV2KbGkeMZG7MIQl9uKLL6JJkyZYvXp1qT0xZw+FQoHyZdTwz833dilEHsUQltiFCxfw9ddf47HHHvN2KR7nTC/W3HJiV3vDrl4NzbgmIndiCEusQ4cO+PXXX0t0CAt/JYTK8Bzv5nsrkafRIrDYFdFyCgqNd9Ur1ArM3n4KADD52brYlLdaf43hZ9QD9McEAKVCYXDcAu3DY6uE4beMHqGDACH0Z58zdOuRW6CFgPkbiSqgQFDA/46bp9Ea3HS0eE0ADG7BROQshRC8ta2UlixZgnfffRcvvvgiGjRoYHJirmfPnl6qzHXZ2dkIDw9HzCvroFQHmzzfvnYklg1toX9c9+1tyNWYHwNvHhuBwxfuAgBOTO2MNjN34s6DArNtG1YOx9dj2gAANBoNWr67HXfyzQ/zBNy6i9ilm/7Xm527C3/euG+27aNlg/DTxA76xz0X/Ihjf2eZbeuXk4fqC9Y8fBAIfJf7BbKysrgCkhzGnrDEXnrpJQDA1KlTTZ4rLSfmiMgy9oTJaUU94WdC+0Hkmw5HGA8bWBuOyNNo0XTadwAe9oSNFR8G+Ob+5/rjajQafLV5Kzp17qT/llG87ZZ7nxsMMbgyHGF8bP1wBHvC5AL2hMllikIdFBrDCxOZuzi7IxdsN267I3/1/5Y4q/8B4H8nzAL8Hrbv9t+x4+JjwMaKh6wtgWbu8MFxYHI3hrAHHDp0CDt37sSNGzdMrqI2d+5cL1X1UFpaGmbPno1r166hUaNG+Oijj9CiRQvbOxKRWzCEJfbee+9h8uTJqF27tsk8YW/PGV67di2Sk5OxaNEitGzZEh988AE6d+6MU6dOoWLFil6tzRxzF9fZmp8OAEgom2TSlkgOGMISmz9/PpYuXYohQ4Z4uxQTc+fOxfDhw/Wr+RYtWoRvvvkGS5cuxcSJE71cnXnGc3YTyiZhZHp/k+eJ5IIhLDGlUoknn3zS22WYKCgowJEjRzBp0iT9NqVSiY4dO2Lfvn1m98nPz0d+/v9WtGVnZwMAVIF+gMLwxJxGo3GoHj8hsDO57X9/r7O5/9b8dCSUTYIq6OFHWBXkj02ZKxx+XUepgszcskqtA3IlfVkqwTg7QmKzZs3ClStX8MEHH3i7FANXrlzBo48+ir179yIuLk6/fcKECdi1axcOHDhgsk9KSgpSU1NNtqenpyM42HSecGmRk5ODxMREzo4gp7AnLLHXXnsN3bt3R40aNVCvXj2TxRobNmzwUmWOmzRpEpKTk/WPs7OzERMTg5WjNwFGU9Q2Za6QtJaiMWBVkD9e/LQPlg77EprcQo+9rgG1znQbkZ0YwhIbN24cdu7cifbt26N8+fJePxlXpEKFCvDz88P169cNtl+/fh3R0dFm91Gr1VCr1SbbNXlaIM9w0YmlO01bUlCow5xvHy5bfq1TbQT4m7/UtfH1GzZlrsDWrVuhyS2EJleDbupEANKNDWtyzQx38LskuYAhLLEVK1bgyy+/RPfu3b1dioGAgAA0a9YMO3bsQK9evQAAOp0OO3bswJgxYzxeT6FOhyW7/wIAvNKxJgLM3G/A3OUoi8aAN2Wu0AdwUVuepCM5YAhLrFy5cqhRo4a3yzArOTkZSUlJaN68OVq0aIEPPvgADx48MLj2MRFJiyEssZSUFLzzzjtYtmyZz5286t+/P27evIkpU6bg2rVraNy4MbZt24aoqChvl2bCnstRSnEZTCKpMYQl9uGHH+Ls2bOIiopC1apVTcZKf/75Zy9V9tCYMWO8MvxgL2fuiGHutkQMY/JVDGGJFY23EhGZwxCW2DvvvOPtEmTL2fvCFbU1XuLM3jD5It7yXgJc/+L6rYCMx4CdvS2RO29dz9sbkRQYwhKoX78+1qxZg4IC83eGKPLnn39i1KhRmDFjhocq86x4ZV+7gyvQ3w/fjn8KVT79Cj0DB+i3u6P3ahzEjoapM/sQ2YvDERL46KOP8MYbb+Dll19GfHw8mjdvjkqVKiEwMBB3797FiRMn8OOPP+L48eMYM2YMRo0a5e2SvU6pVKBWVCjUtzO9XQqRRzGEJfDMM8/g8OHD+PHHH7F27VqsWrUKFy5cQG5uLipUqIAmTZpg8ODBGDhwICIiIrxdruTsHY91ZQzYFmfHiNkDJqkxhCXUpk0btGnTxttleIUjc3bjlX0hlErcebIxAGD/zkkWly27u6bi283VZWlfInfhmDBJytZ4bNFj4fcwhO882RiFOmkviGMcuuZqsmdxCJE7MISJiLyIIUySs9TzLN7b3HxvpcdrMjd9TcpxaSJzGMISuXLlirdL8CnW5ux6M+is1cQAJk9gCEukfv36SE9P93YZROTjGMISmT59OkaOHIm+ffvizp073i6HiHwUQ1giL7/8Mo4dO4bbt2+jXr162Lx5s7dL8jpL07u8Oe3LF2ui0oXzhCVUrVo1fP/991iwYAF69+6NunXrwt/f8I/c25ey9ARrJ7uKnusZlIiYqHJYcGAG1P5+PlETL4NJnsAQltiFCxewYcMGREREICEhwSSE6SGFEAi8dhuNYsp6uxQij2IiSOiTTz7Bq6++io4dO+L48eOIjIz0dkkeZ2vKlzcuOemLNVHpxRCWSJcuXXDw4EEsWLAAgwcP9nY5XmHvNLQM3Xp09O+PzOZ1AQAd/fvju8K1ktdkrS7eKok8hSEsEa1Wi2PHjqFy5creLsUrHJ0H/HXOKtSbsh0AEP7LKbePxzq7CMPcrZKI3IkhLJGMjAxvl0BEMsApaiQpV3uy7uh9uroUmcMQJCX2hEkSrgTX5nsrERzg75bxWHctj+alLEkq7AmTz3LltkS8HCXJBUOYiMiLGMLk02xdgN0cXo6S5IRjwuQT1P5+WD28lf73xdl7WyKGL8kRe8LkE/yUCsTVKI+4GuXhp1SYbWMtdBPKJlltS+SrGMJERF7EECafoNHq8Nm+8/hs33lotJZv9GncwzXuAZtrQ+TLOCZMPkGj1WHKpuMAgOebVYbKz3L/wNKcXYYvyRF7wkREXsQQJlkyN1WNq9lIjhjCJDvWwpZBTHLDECbZMLcUeVPmCgDQ/2quHZEvYwgTEXkRQ5hkwZ6ZEM4scSbyNk5RI58Q4KfE0iHN9b8vzpGrofG2RCQ3DGHyCf5+SnSoE2WwzZV5wOZuS8QwJl/E4QgiIi9iCJMkHB2P1Wh1WH/4EtYfvgSNVueW1XDuHiPmGDNJgcMRJBlHxmM1Wh1e/+IYAGDRkxP0vQNXhxDsvQymLQxgkgp7wiSpkhBeJeE9kO9iCJPknA0xd55Ic3ZoggFMUmMIkyQcDb0eoYOs7u+NmniVNvIEjgmTZOyZs6sPOtX/Poqb7630aE3Ft5vUZeY5IndiT5g8Sg5f7+VQI5UcDGGSnKVepjfDzt6a2AsmqXE4gjyi+Ao2wPTrfqFWh+3HrwMwXbYsZU3Fa2EAkzewJ0weY+2iO/5+SnRv+Ai6N3wE/h4KYWsYwOQp3v+0U6nG8Vcq7RjC5DGWAjde2ReFWh2+OXYV3xy7ikIrd1v2ZE1EnsAxYZKctbHWouc6Bw/E2fEvAABOTO3skSEJS9PQePU18iT2hElStk52eSPgzN0mqTheHJ48iSFMRORFDGGSjL1Tvoy3Gy9h9oWa2BsmqTCES6Dp06ejdevWCA4ORtmyZc22uXjxIrp3747g4GBUrFgRr7/+OgoLC91Wg/HXfVvDDsZLlaUIPUdrMm7DICYpMIRLoIKCAvTt2xejRo0y+7xWq0X37t1RUFCAvXv3YsWKFVi+fDmmTJni4Uqtc2foMUDJVzGES6DU1FSMHz8eDRo0MPv8t99+ixMnTuDzzz9H48aN0bVrV0ybNg1paWkoKChway2unnhzR3i6uhKOsyNISgzhUmjfvn1o0KABoqL+d2PNzp07Izs7G8ePH7e4X35+PrKzsw1+AEAV6AdVkMrkZ2t+OjQajV0/0Gkx47n6mPFcfWzOWm5wnG4hidb3BSw+1y0k0emaiv9szU83+x5VQSqoAv2k/QujEk0hhBDeLoKksXz5crzyyivIzMw02D5ixAhcuHAB27dv12/LyclBSEgItm7diq5du5o9XkpKClJTU022p6enIzg42K21y0lOTg4SExORlZWFsLAwb5dDMsPFGjIxceJEzJw502qbkydPok6dOpLVMGnSJCQnJ+sfZ2dnIyYmBitHbwLyDb9Ubcpc4ZbXTCibZPW4Go0GGRkZiI+Ph0qlsns/d9UDAFB7boUflTwMYZl49dVXMWTIEKttqlevbtexoqOjcfDgQYNt169f1z9niVqthlqtNtmuydMCeVqDbcUD0R6FWh12/3kTAPBUzUj9irmtD9INxnS7qRPNjtGqVCr9a0p5NTRNrsZ0I79LkgsYwjIRGRmJyMhItxwrLi4O06dPx40bN1CxYkUAQEZGBsLCwlCvXj23vIajCrQ6vLj8MADTZcvmLoNpKVh5OUqSG4ZwCXTx4kXcuXMHFy9ehFarxdGjRwEAjz32GMqUKYNOnTqhXr16GDRoEGbNmoVr165h8uTJGD16tNmeri+wdO3frfnpAB4OExTvpTJ8SS4YwiXQlClTsGLF/8ZAmzRpAgDYuXMn2rVrBz8/P2zZsgWjRo1CXFwcQkJCkJSUhKlTp3qrZKJSi1PUSqDly5dDCGHy065dO32b2NhYbN26FTk5Obh58ybmzJkDf3/f/z/ZuIdr7kQZe8EkJ77/r47IiPHQhPF2IjlhT5hkydxKOi5NJjliCBMReRGHI8gnqPyUmJpQX/97a6z1eK1NXyPyRewJk09Q+SkxOK4qBsdVtRrCxpejLFoJV3xFHIclSE4YwiQbjoQrg5jkgiFMPkGrE9h39jb2nb0Nrc50HbA9MyF4NwySI4Yw+YT8Qi0GfLIfAz7Zj/xCw+tQODIVjUFMcsMQJp/m6C2JzLVjEJMvYwiTz+Ltjag0YAiTJFwNPXeshnP30ASDnKTAECbJOBtaxre8d2Xer7uCmAFMUmEIk6RcCS97x4AdPU68si+nu5HPYAiT5OQcYnKuneSBIUyScHQYoGfwQFT44RAq/HAICq1OkqXHjtbEq7SRJzCESTL2hl68si8UOh0iDh7H4f0p+K5wraQ12TN9jQFMnsIQJknZCmJf+LpvqyYGMEmJIUySsxTExcNOKBSYc+ET/Hop0+yyZW/UZK4dkbsxhMkjbPWIv85NR0LaT0hI+8lk2bK3amIAkycwhMljLF10x5thZ+n1GcDkKQxh8ipfHBMm8iSGMHmMvTMRPMkXa6LShSFMHmFrvNV4qbIn2KqJQUyewHvMkaSsBV2Gbr3Xgs74EpnGvzeeLcExYpIKe8LkVd4IN/ZwyZcwhEky9k75ytCth0KrQ7mfjqLcT0fRM3igT9RkbT8id+FwBEnC0td9S74rXGuwjxS3rnd0HrCloQkid2IIk6QcCVKpxmNdXYThzbFrKvkYwuQTdDqBMzfvAwAEAIV3yyHyGI4Jk2Qc6XHmFWrRad5udJq3G1/nrTZ4zpVeqLuWInN2BEmFIUyScDW03HFizN3XgmAQkxQYwuSzXAliXoyH5IIhTD7NmSBmAJOcMITJ5zkSxAxgkhuGMMmCPUHMACY5YgiTbFgL4oSySVbbEvkqhjD5BH+lEiOeqo4RT1WHv9Lyx9I4XI3D11wbIl/GxRrkEwL8lXizW1272lpbwcYAJrlhT5hkibckopKCIUw+QacTuHQnB5fu5EBnx92W7TkxRyQHDGHyCXmFWrSdtRNtZ+1Eno27LTsyRY3I1zGESVaMQ3ZT5gqbbYh8GUOYZMPaPGDjMGYQk1wwhEkW7FmIwbthkBwxhMnnObISjkFMcsMQJp/mzFJkBjHJCUOYfJYr14JgEJNcMIRJEo6Gnp9SgUGtYjGoVSz8lAq3XIzH3UHMICcpMIRJMo6EltrfD9N6PY5pvR7HswH/MHjOlZVw7gpiBjBJhSFMknI0vKS4HKWrQcwAJikxhEly9oSYEALtQ15AYZAaRYuW3XktCGeDmAFMUmMIkyQcDb2OgYk4N3YAzo0dAKHyl+RiPI7WxIvEkycwhEky9oae8fbN91b6XE0MYJIKQ5gkZSv0vPF1P0O33qAuWzUxgElKDGGSnKUg9qXxVks1MYBJagzhEub8+fMYNmwYqlWrhqCgINSoUQPvvPMOCgoKDNodO3YMbdu2RWBgIGJiYjBr1ixJ67LVI5ZyCMISWzUxgMkTGMIlzB9//AGdTofFixfj+PHjmDdvHhYtWoQ333xT3yY7OxudOnVCbGwsjhw5gtmzZyMlJQVLliyRtDZLoebNsPPFmqh04T3mSpguXbqgS5cu+sfVq1fHqVOnsHDhQsyZMwcAsGrVKhQUFGDp0qUICAhA/fr1cfToUcydOxcjRozwVulEpRJDuBTIyspCuXLl9I/37duHp556CgEBAfptnTt3xsyZM3H37l1ERESYPU5+fj7y8/P1j7OzswEAqkA/QGH4pUqj0Zjsn1A2Caoglcn2biGJWHdrGZ5rUgkAoNNqodHYvsVR8dcx93r2sFaTuQvGm2sLtQ7IderliaAQQtj3aSdZOnPmDJo1a4Y5c+Zg+PDhAIBOnTqhWrVqWLx4sb7diRMnUL9+fZw4cQJ165q/63FKSgpSU1NNtqenpyM4OFiaNyADOTk5SExMRFZWFsLCwrxdDskMe8IyMXHiRMycOdNqm5MnT6JOnTr6x5cvX0aXLl3Qt29ffQC7YtKkSUhOTtY/zs7ORkxMDFaO3gTkG/aEi/ciE8omOfWcPTQaDTIyMhAfHw+Vykwv1QJnazJ+DsDDnjCRkxjCMvHqq69iyJAhVttUr15d//srV66gffv2aN26tckJt+joaFy/ft1gW9Hj6Ohoi8dXq9VQq9Um2zV5WiDP8OacRYFoa8bB1gfpiFf2hQAgVP7oUmYwvstLh0KhsFiHOSqVyu4QtremIt3Uifo2mlwzwx78LkkuYAjLRGRkJCIjI+1qe/nyZbRv3x7NmjXDsmXLoFQa9lLj4uLw1ltvQaPR6IMrIyMDtWvXtjge7Ax7p3xl6NbjGfUAnB3/AoCHS5h35K92Wx3O1lS8bbyyL2dMkCQ4Ra2EuXz5Mtq1a4cqVapgzpw5uHnzJq5du4Zr167p2yQmJiIgIADDhg3D8ePHsXbtWsyfP99gqMFVjs65NZ4nLMVCDkdr4oXhyRPYEy5hMjIycObMGZw5cwaVK1c2eK7oHGx4eDi+/fZbjB49Gs2aNUOFChUwZcoUSaanudJ7dGfv09mFGEXtGMAkFYZwCTNkyBCbY8cA0LBhQ+zZs0f6glzkjiDmSjjyZRyOIMk4G3buHJpwVwAzuEkqDGGShKuh5Y7xWHf3gBnEJAWGMPksW5ectKZ4W+PjEPkShjD5BKVCgW4NotGtQTSUVuYI2xPEPIlGcsIQJp8QqPLDxwOb4eOBzRCo8jN4zpGhCZ6EI7lhCJMs2BPEDGCSI4YwyYa1IDa+pgMDmOSCIUw+IaegEFUnfoOqE79BTkGhxXbG4WrugjoMYJIThjDJjrWQZQCT3DCESZbMhS0DmOSIIUyyZM+JOSI5YAiT7DgyRY3I1zGESVaMQ9bcnTgYxCQnDGGSDWvzgI3DmEFMcsEQJp+gVCjQvnYk2teONLts2Z6FGLwIO8kRQ5h8QqDKD8uGtsCyoS1Mli07shKOQUxywxAmn+bMUmQGMckJQ5h8livXgmAQk1wwhEkSjoZeTkEh6r69DXXf3oacgkK3XIzH3UHMICcpMIRJMo6GVq5Gi1yNFj1CBxlsd2UlnLuCmAFMUmEIk6RcDS93LEV2NYgZwCQlhjBJztkQc+e1IJwNYgYwSY0hTJJwNPTcOQThrpp4kXjyBIYwScbe0DPebnzLe1+oiQFMUmEIk6RshZ43vu47WhMDmKTEECbJWQo9g7ATAi2rlUPLauWs3m3ZozWZaUfkbv7eLoBKhwzdeoOAMw67HQVrPF2SzZoYwOQJ7AmTx1gKNW+GnS/WRKULQ5iIyIsYwuQx1mYi5BQUoum0DDSdlmH1bsuerInIExjC5BG2xlt7hA7CnQcFuPOgwGdqYhCTJzCESXKWws6b46721sQgJqkxhElStnqb3ghiR2tiEJOUGMIkGXunfJkbmvC1mhjEJBWGMEnC0Tm3xkuVpQg9R2tiEJMnMIRJcs4OObgz9JxdiMH5wiQ1hjBJyt4QUyoUaFg5HA0rhwNC6Le7I4hdXQnHICYpMYRJMo6EV6DKD1+PaYOvx7QxWcLsShC7aykyg5ikwhAmSbgaWu4Yj3X3tSAYxCQFhjD5LFeCmBfjIblgCJNPyC3Q4skZ3+PJGd8jt0Cr3+5MEDOASU4YwuQTBAQuZ+bicmYuBITBc44EMQOY5IYhTLJgTxAzgEmOGMIkG9aCOKFsktW2RL6KIUyyYhyuxuFrrg2RL2MIk+xYC1kGMMkNQ5hkyVzYMoBJjhjC5BMUUKBmxTKoWbEMFLB9t2V7TswRyQHvtkw+ISjADxnJT9vV1tYUNfaISU7YEyZZMQ7gTZkrbLYh8mUMYZINa/OAjcOYQUxywRAmn5BboEX83F2In7vLYNlyEXsWYvAi7CRHDGHyCQICf964jz9v3DdZtuzISjgGMckNQ5h8mjNLkRnEJCcMYfJZrlwLgkFMcsEQLoF69uyJKlWqIDAwEI888ggGDRqEK1euGLQ5duwY2rZti8DAQMTExGDWrFlurcHV0HPHxXjcHcQMcpICQ7gEat++PdatW4dTp07hyy+/xNmzZ/H888/rn8/OzkanTp0QGxuLI0eOYPbs2UhJScGSJUvcWoezoWV8y3tX5v26K4gZwCQVhnAJNH78eLRq1QqxsbFo3bo1Jk6ciP3790Oj0QAAVq1ahYKCAixduhT169fHP/7xD4wbNw5z5851ey2uhpc7Fl64GsQMYJISV8yVcHfu3MGqVavQunVrqFQqAMC+ffvw1FNPISAgQN+uc+fOmDlzJu7evYuIiAizx8rPz0d+fr7+cXZ2NgBAFegHKCz/f94tJNHsooriCjVaqLLv//d4/lD6K7Apc4X+Pw5Lip631W5rfrrBFdfsqQl4eJU2VZDKeiO1Dsi1eSgisxRCCGG7GcnNG2+8gQULFiAnJwetWrXCli1bUL58eQBAp06dUK1aNSxevFjf/sSJE6hfvz5OnDiBunXrmj1mSkoKUlNTTbanp6cjODhYmjciAzk5OUhMTERWVhbCwsK8XQ7JDENYJiZOnIiZM2dabXPy5EnUqVMHAHDr1i3cuXMHFy5cQGpqKsLDw7FlyxYoFAqnQ9hcTzgmJgZdI/oD+YY94aJepvH1fs31Pu1pY4lGo0FGRgbi4+P1PX1bXKnJ3PWLodbhP3fXMoTJKRyOkIlXX30VQ4YMsdqmevXq+t9XqFABFSpUQK1atVC3bl3ExMRg//79iIuLQ3R0NK5fv26wb9Hj6Ohoi8dXq9VQq9Um2zV5WiDPcJVbUSBufZBuMKbaTZ1oMEbrrlsSqVQqu0PYlZo0uWaGPdiNIRfwxJxMREZGok6dOlZ/io/xFqfT6QBA34uNi4vD7t27DcZRMzIyULt2bYvjwa6wdGKseNjp/P0Q9OE/0XPBj8jTmC5b9kZN5toRuRtDuIQ5cOAAFixYgKNHj+LChQv4/vvvMWDAANSoUQNxcXEAgMTERAQEBGDYsGE4fvw41q5di/nz5yM5OVmyumzNUNh8/3Mc+zsLx/7Ogs5DI2S2amIAkycwhEuY4OBgbNiwAc888wxq166NYcOGoWHDhti1a5d+KCE8PBzffvstzp07h2bNmuHVV1/FlClTMGLECElrsxRq3gw7X6yJSheOCZcwDRo0wPfff2+zXcOGDbFnzx4PVERE1rAnTB5jadGDNxdD+GJNVLowhMkjbI23Gi9V9gRbNTGIyRMYwiQ5S2HnzXFXe2tiEJPUGMIkKVu9zeKP/XLy4JeT51M1mWtP5E4MYZKMvVO+MnTrodQUovqCNai+YA0SAgf4RE3W9iNyF4YwScLRObeeCD1frImIIUySs3fsV8rQc3YhBucLk9QYwiQpe0MsT6NF/8X7UG5hMnT+fvrt7ghiV1fCMYhJSgxhkowj4aUTAgfO3cGBc3ew+f7nBs+5EsTuWorMICapMIRJEq6GljuGJtx9LQgGMUmBIUw+y5Ug5sV4SC4YwuTTnAliBjDJCUOYfJ4jQcwAJrlhCJMs2BPEDGCSI4Yw+YwglR+CVH4Wn7cWxMb3fmMAk1wwhMknBAf44+S0Ljg5rQuCAyxf5to4XM3deJMBTHLCECbZsRayDGCSG4YwyZK5sGUAkxwxhMkn5Gm0GLrsIIYuO2jX3ZbtOTFHJAcMYfIJOiGw89RN7Dx10+bdlh2Zokbk63ijT5KEo2GoU/kD418A8PBWR0pNocdem8ib2BMmIvIihjARkRcxhImIvIghTETkRTwxR04T/53FUCg0gNGEhk1Znzl0rJyCQrSYvgMAsOpymtVVc8VpNBp8++23WHnxI6hUKode0xkJ4YNNN/73vQsbszqIzFEIfnLISX/99Rdq1Kjh7TJ8xtmzZ1G9enVvl0Eyw54wOa1cuXIAgIsXLyI8PNwrNWRnZyMmJgaXLl1CWFiYV2rIyspClSpV9H8eRI5gCJPTlMqHpxTCw8O9FoBFwsLCvF5D0Z8HkSP4qSEi8iKGMBGRFzGEyWlqtRrvvPMO1Go1a/ByDSRfnB1BRORF7AkTEXkRQ5iIyIsYwkREXsQQJiLyIoYwuUXVqlWhUCgMfmbMmCHpa6alpaFq1aoIDAxEy5YtcfDgQUlfz1hKSorJe65Tp45HayD544o5cpupU6di+PDh+sehoaGSvdbatWuRnJyMRYsWoWXLlvjggw/QuXNnnDp1ChUrVpTsdY3Vr18f3333nf6xvz//SZFj2BMmtwkNDUV0dLT+JyQkRLLXmjt3LoYPH46hQ4eiXr16WLRoEYKDg7F06VLJXtMcf39/g/dcoUIFj74+yR9DmNxmxowZKF++PJo0aYLZs2ejsND5+8RZU1BQgCNHjqBjx476bUqlEh07dsS+ffskeU1L/vzzT1SqVAnVq1fHwIEDcfHiRY++PskfvzuRW4wbNw5NmzZFuXLlsHfvXkyaNAlXr17F3Llz3f5at27dglarRVRUlMH2qKgo/PHHH25/PUtatmyJ5cuXo3bt2rh69SpSU1PRtm1b/P7775IOxVDJwhAmiyZOnIiZM2dabXPy5EnUqVMHycnJ+m0NGzZEQEAARo4ciffff7/ELuft2rWr/vcNGzZEy5YtERsbi3Xr1mHYsGFerIzkhCFMFr366qsYMmSI1TaWLmLesmVLFBYW4vz586hdu7Zb66pQoQL8/Pxw/fp1g+3Xr19HdHS0W1/LEWXLlkWtWrVw5swZr9VA8sMQJosiIyMRGRnp1L5Hjx6FUqmUZKZCQEAAmjVrhh07dqBXr14AAJ1Ohx07dmDMmDFufz173b9/H2fPnsWgQYO8VgPJD0OYXLZv3z4cOHAA7du3R2hoKPbt24fx48fjhRdeQEREhCSvmZycjKSkJDRv3hwtWrTABx98gAcPHmDo0KGSvJ45r732Gnr06IHY2FhcuXIF77zzDvz8/DBgwACP1UDyxxAml6nVaqxZswYpKSnIz89HtWrVMH78eINxYnfr378/bt68iSlTpuDatWto3Lgxtm3bZnKyTkp///03BgwYgNu3byMyMhJt2rTB/v37nf72QKUTL2VJRORFnCdMRORFDGEiIi9iCBMReRFDmIjIixjCRERexBAmIvIihjARkRcxhImIvIghTD7r1KlTiI6Oxr179zz+2tu2bUPjxo2h0+k8/tpUujCESTJarRatW7dG7969DbZnZWUhJiYGb731ltX9J02ahLFjx3rl2rxdunSBSqXCqlWrPP7aVLpw2TJJ6vTp02jcuDE++eQTDBw4EAAwePBg/Prrrzh06BACAgLM7nfx4kU89thjOHfuHB599FFPlqyXlpaG5cuX49ChQ155fSod2BMmSdWqVQszZszA2LFjcfXqVWzatAlr1qzBZ599ZjGAAWDdunVo1KiRQQAvX74cZcuWxZYtW1C7dm0EBwfj+eefR05ODlasWIGqVasiIiIC48aNg1ar1e9XtWpVvPvuuxg8eDDKlCmD2NhYfP3117h58yYSEhJQpkwZNGzYEIcPHzaooUePHjh8+DDOnj3r/j8YoiKCSGI6nU60a9dOPPPMM6JixYpi2rRpNvfp2bOneOmllwy2LVu2TKhUKhEfHy9+/vlnsWvXLlG+fHnRqVMn0a9fP3H8+HGxefNmERAQINasWaPfLzY2VpQrV04sWrRInD59WowaNUqEhYWJLl26iHXr1olTp06JXr16ibp16wqdTmfwmlFRUWLZsmVu+XMgMochTB5x8uRJAUA0aNBAaDQam+0bNWokpk6darBt2bJlAoA4c+aMftvIkSNFcHCwuHfvnn5b586dxciRI/WPY2NjxQsvvKB/fPXqVQFAvP322/pt+/btEwDE1atXDV6zSZMmIiUlxf43SuQgDkeQRyxduhTBwcE4d+4c/v77b5vtc3NzERgYaLI9ODgYNWrU0D+OiopC1apVUaZMGYNtN27cMNivYcOGBs8DQIMGDUy2Ge8XFBSEnJwcm/USOYshTJLbu3cv5s2bhy1btqBFixYYNmwYhI3zwRUqVMDdu3dNtqtUKoPHCoXC7DbjqWXF2ygUCovbjPe7c+cOL9JOkmIIk6RycnIwZMgQjBo1Cu3bt8enn36KgwcPYtGiRVb3a9KkCU6cOOGhKs3Ly8vD2bNn0aRJE6/WQSUbQ5gkNWnSJAghMGPGDAAPZyrMmTMHEyZMwPnz5y3u17lzZ+zbt89gloOn7d+/H2q1GnFxcV6rgUo+hjBJZteuXUhLS8OyZcsQHBys3z5y5Ei0bt3a6rBE165d4e/vj++++85T5ZpYvXo1Bg4caFA7kbtxsQb5rLS0NHz99dfYvn27x1/71q1bqF27Ng4fPoxq1ap5/PWp9ODdlslnjRw5EpmZmbh3757Hly6fP38eH3/8MQOYJMeeMBGRF3FMmIjIixjCRERexBAmIvIihjARkRcxhImIvIghTETkRQxhIiIvYggTEXkRQ5iIyIv+H1W9RDFkjEfLAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAFUCAYAAADYjN+CAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjppJREFUeJzt3Xd4FFXbB+Dftmx67xAgjV4FgQBSBEF6seELiKivDUVAUbF+YkF4LYBSrCBKURCxUaX3EnoLgQRCSe91s9md74/NTHaybTaZ2YLPfV1ektnZ3bNn2jNnnnOOjGEYBoQQQgghhLgZubMLQAghhBBCSENQIEsIIYQQQtwSBbKEEEIIIcQtUSBLCCGEEELcEgWyhBBCCCHELVEgSwghhBBC3BIFsoQQQgghxC1RIEsIIYQQQtwSBbKEEEIIIcQtUSBLCPnX2717N2QyGXbv3s0te/zxx9GiRQvJvrN///7o378/9/e1a9cgk8mwYsUKyb6TEELuNBTIEkJczqhRo+Dt7Y3S0lKL60yYMAEeHh7Iz893YMkIIYS4EhnDMIyzC0EIIcZ+/vlnjB8/Hj/88AMee+wxk9crKioQHh6Oe++9F3/88Uejv0+v16O6uhoeHh6Qyw3391qtFnq9Hmq1utGfb051dTUAwMPDAwDAMAw0Gg1UKhUUCoUk30kIIXcaapElhLicUaNGwc/PD6tXrzb7+u+//47y8nJMmDChUd9TVVUFvV4PuVwOT09PLogFAJVKJVkQCxgCWDaIBQCZTAZPT0+XCWIrKiqcXQRCCLGJAllCiMvx8vLCuHHjsGPHDuTk5Ji8vnr1avj5+WHUqFEoKCjAK6+8gg4dOsDX1xf+/v4YOnQoTp8+zXsPmwe7du1avPXWW2jSpAm8vb1RUlIiOEf2k08+Qa9evRASEgIvLy907doV69evN/sbfvrpJ3Tv3h3e3t4ICgpC3759sW3bNu51ITmyZ86cweOPP464uDh4enoiMjISTzzxhKB0CvY3/fzzz3jjjTcQGRkJHx8fjBo1Cjdu3OCt279/f7Rv3x7Jycno27cvvL298cYbbwAANBoN3n33XSQkJECtViMmJgavvvoqNBoN7zNkMhleeOEFrFu3Dm3btoWXlxeSkpJw9uxZAMBXX32FhIQEeHp6on///rh27Rrv/fv27cNDDz2EZs2acd8zY8YMVFZWWv2daWlpkMlk+Pzzz01eO3jwIGQyGdasWWOzvggh7knp7AIQQog5EyZMwA8//IBffvkFL7zwAre8oKAAW7duxaOPPgovLy+cP38eGzduxEMPPYTY2FhkZ2fjq6++Qr9+/XDhwgVER0fzPvf999+Hh4cHXnnlFWg0Gl6rqC0LFy7EqFGjMGHCBFRXV2Pt2rV46KGH8Ndff2H48OHceu+99x7+7//+D7169cKcOXPg4eGBI0eOYOfOnRg8eLDg79u+fTvS0tIwZcoUREZG4vz58/j6669x/vx5HD58GDKZzOZnfPjhh5DJZHjttdeQk5ODBQsWYNCgQTh16hS8vLy49fLz8zF06FCMHz8eEydOREREBPR6PUaNGoX9+/fj6aefRps2bXD27Fl8/vnnuHz5MjZu3Mj7rn379uGPP/7A1KlTAQBz587FiBEj8Oqrr2LJkiV4/vnnUVhYiPnz5+OJJ57Azp07ufeuW7cOFRUVeO655xASEoKjR4/iiy++wM2bN7Fu3TqLvy8uLg69e/fGqlWrMGPGDN5rq1atgp+fH0aPHi2kugkh7oghhBAXVFNTw0RFRTFJSUm85cuWLWMAMFu3bmUYhmGqqqoYnU7HWyc9PZ1Rq9XMnDlzuGW7du1iADBxcXFMRUUFb332tV27dnHLJk+ezDRv3py3Xv33VVdXM+3bt2fuvfdebllqaiojl8uZsWPHmpRLr9dz/+7Xrx/Tr18/XpkBMMuXL7f4fQzDMGvWrGEAMHv37jV5zdxvatKkCVNSUsIt/+WXXxgAzMKFC3llAcAsW7aM9xk//vgjI5fLmX379vGWs9vgwIED3DIAjFqtZtLT07llX331FQOAiYyM5JVh9uzZDADeuuZ+69y5cxmZTMZcv37d6m9lv+fixYvcsurqaiY0NJSZPHmy1fcSQtwbpRYQQlySQqHA+PHjcejQId5j6NWrVyMiIgIDBw4EAKjVai63VafTIT8/H76+vmjVqhVOnDhh8rmTJ0/mtUTaw/h9hYWFKC4uxj333MP7no0bN0Kv1+Odd97h5dwCENSCaun7qqqqkJeXh549ewKA2d9mzmOPPQY/Pz/u7wcffBBRUVHYtGkTbz21Wo0pU6bwlq1btw5t2rRB69atkZeXx/137733AgB27drFW3/gwIG8dIwePXoAAB544AFeGdjlaWlpZn9reXk58vLy0KtXLzAMg5MnT1r9jQ8//DA8PT2xatUqbtnWrVuRl5eHiRMnWn0vIcS9USBLCHFZbGcuttPXzZs3sW/fPowfP57rFKXX6/H5558jMTERarUaoaGhCAsLw5kzZ1BcXGzymbGxsQ0uz19//YWePXvC09MTwcHBCAsLw9KlS3nfc/XqVcjlcrRt27bB38MqKCjASy+9hIiICHh5eSEsLIwrv7nfZk5iYiLvb5lMhoSEBJMc1SZNmpikWaSmpuL8+fMICwvj/deyZUsAMMlfbtasGe/vgIAAAEBMTIzZ5YWFhdyyjIwMPP744wgODoavry/CwsLQr18/Qb81MDAQI0eO5HUOXLVqFZo0acIF3YSQOxPlyBJCXFbXrl3RunVrrFmzBm+88QbWrFkDhmF4oxV89NFHePvtt/HEE0/g/fffR3BwMORyOaZPnw69Xm/ymQ1tjd23bx9GjRqFvn37YsmSJYiKioJKpcLy5cstjq7QWA8//DAOHjyIWbNmoXPnzvD19YVer8f9999v9rc1hrl60ev16NChAz777DOz76kfoFoaccHScqZ29EedTof77rsPBQUFeO2119C6dWv4+Pjg1q1bePzxxwX91sceewzr1q3DwYMH0aFDB/zxxx94/vnnTVrFCSF3FgpkCSEubcKECXj77bdx5swZrF69GomJibj77ru519evX48BAwbgu+++472vqKgIoaGhopXj119/haenJ7Zu3coblmv58uW89eLj46HX63HhwgV07ty5wd9XWFiIHTt24L333sM777zDLU9NTbXrc+qvzzAMrly5go4dO9p8b3x8PE6fPo2BAwfanRZhj7Nnz+Ly5csm4wZv375d8Gfcf//9CAsLw6pVq9CjRw9UVFRg0qRJUhSXEOJC6FaVEOLS2NbXd955B6dOnTIZO1ahUHAte6x169bh1q1bopZDoVBAJpNBp9Nxy65du2bSc3/MmDGQy+WYM2eOSUti/XLa+j5z71mwYIFd5V65ciVvhrT169cjMzMTQ4cOtfnehx9+GLdu3cI333xj8lplZSXKy8vtKosl5n4rwzBYuHCh4M9QKpV49NFH8csvv2DFihXo0KGDoGCdEOLeqEWWEOLSYmNj0atXL/z+++8AYBLIjhgxAnPmzMGUKVPQq1cvnD17FqtWrUJcXJyo5Rg+fDg+++wz3H///fjPf/6DnJwcLF68GAkJCThz5gy3XkJCAt588028//77uOeeezBu3Dio1WocO3YM0dHRmDt3rqDv8/f3R9++fTF//nxotVo0adIE27ZtQ3p6ul3lDg4ORp8+fTBlyhRkZ2djwYIFSEhIwH//+1+b7500aRJ++eUXPPvss9i1axd69+4NnU6HS5cu4ZdffsHWrVvRrVs3u8pjTuvWrREfH49XXnkFt27dgr+/P3799VdeDq0Qjz32GBYtWoRdu3Zh3rx5jS4XIcT1USBLCHF5EyZMwMGDB9G9e3ckJCTwXnvjjTdQXl6O1atX4+eff8Zdd92Fv//+G6+//rqoZbj33nvx3Xff4eOPP8b06dMRGxuLefPm4dq1a7xAFgDmzJmD2NhYfPHFF3jzzTfh7e2Njh072v2oe/Xq1XjxxRexePFiMAyDwYMHY/PmzSZj41rzxhtv4MyZM5g7dy5KS0sxcOBALFmyBN7e3jbfK5fLsXHjRnz++edYuXIlfvvtN3h7eyMuLg4vvfQS1+mrsVQqFf78809MmzYNc+fOhaenJ8aOHYsXXngBnTp1Evw5Xbt2Rbt27XDx4sVGz/pGCHEPMsaeZ12EEPIvMWnSJBw6dAhXrlxxyPddvXoVCQkJ+PHHH0UZMmr37t0YMGAA1q1bhwcffFCEErqHLl26IDg4GDt27HB2UQghDkA5soQQYkZmZqaoncWEfB8Ah37nneb48eM4deoUr8MYIeTORqkFhBBi5MyZM9i4cSP27t2LWbNmOeQ7v//+e3z//ffw9vbmJjwgwp07dw7Jycn49NNPERUVhUceecTZRSKEOAi1yBJCiJENGzZg4cKFGD9+PGbPnu2Q73z66adRUFCAdevWITAw0CHfeSdZv349pkyZAq1WizVr1sDT09PZRSKEOAjlyBJCCCGEELdELbKEEEIIIcQtUSBLCCGEEELcEnX2gmE+8du3b8PPz0/SaRgJIYQQQv7NGIZBaWkpoqOjIZc3vj2VAlkAt2/fRkxMjLOLQQghhBDyr3Djxg00bdq00Z9DgSwAPz8/AEB6ejqCg4OdXJo7h1arxbZt2zB48GCoVCpnF+eOQnUrDapX6VDdSoPqVTpUt9IoKChAbGwsF3s1FgWyAJdO4OfnB39/fyeX5s6h1Wrh7e0Nf39/OgmIjOpWGlSv0qG6lQbVq3SobqWh1WoBQLRUTursRQghhBBC3BIFsoQQQgghxC1RIEsIIYQQQtwSBbKEEEIIIcQtUSBLCCGEEELcklMD2b1792LkyJGIjo6GTCbDxo0bea8zDIN33nkHUVFR8PLywqBBg5Camspbp6CgABMmTIC/vz8CAwPx5JNPoqyszIG/ghBCCCGEOINTA9ny8nJ06tQJixcvNvv6/PnzsWjRIixbtgxHjhyBj48PhgwZgqqqKm6dCRMm4Pz589i+fTv++usv7N27F08//bSjfgIhhBBCCHESp44jO3ToUAwdOtTsawzDYMGCBXjrrbcwevRoAMDKlSsRERGBjRs3Yvz48bh48SK2bNmCY8eOoVu3bgCAL774AsOGDcMnn3yC6Ohou8qTUVCOEsaTt8xHrUC4n6eFdxBCCCGEkPoyiytRpdWbLNeUaUT9HpedECE9PR1ZWVkYNGgQtywgIAA9evTAoUOHMH78eBw6dAiBgYFcEAsAgwYNglwux5EjRzB27Fizn63RaKDR1FVkSUkJAGD0kiOQq71N1l/0SEcMbR8p1k/712AHPWb/T8RDdSsNqlfpUN1Kg+pVOlS3DbfycAbe//uS2df0mgpRv8tlA9msrCwAQEREBG95REQE91pWVhbCw8N5ryuVSgQHB3PrmDN37ly89957JsuVMgZqBcP9Xa0HdIwMf+4/BSbD9K6CCLN9+3ZnF+GORXUrDapX6VDdSoPqVTpUt/bbekUOQA6ljIHKKIm1Wg+IHU25bCArpdmzZ2PmzJnc3yUlJYiJicHU/nGYNrQTt/yDTZfww6EMxMfHY9h9ic4oqlvTarXYvn077rvvPpreT2RUt9KgepUO1a00qF6lQ3XbcLs3nANyb2PGfS3x9D2x3PKPt6Tgm50XRf0ulw1kIyMNj/Kzs7MRFRXFLc/Ozkbnzp25dXJycnjvq6mpQUFBAfd+c9RqNdRqtclyhULB21kVcgUAQCaX007cCCqViupPIlS30qB6lQ7VrTSoXqVDdWs/mUwGAFDWi6vkcvHHGHDZcWRjY2MRGRmJHTt2cMtKSkpw5MgRJCUlAQCSkpJQVFSE5ORkbp2dO3dCr9ejR48edn9nbb2b/M0wpusSQgghhBAzauMm07hKZrpuIzm1RbasrAxXrlzh/k5PT8epU6cQHByMZs2aYfr06fjggw+QmJiI2NhYvP3224iOjsaYMWMAAG3atMH999+P//73v1i2bBm0Wi1eeOEFjB8/3u4RCwghhBBCiHTED2OdHMgeP34cAwYM4P5m81YnT56MFStW4NVXX0V5eTmefvppFBUVoU+fPtiyZQs8PeuGw1q1ahVeeOEFDBw4EHK5HA888AAWLVrUoPKY3DnU/p8BNckSQgghhAjBRk2y+qGrBJGsUwPZ/v37g7Hy3F4mk2HOnDmYM2eOxXWCg4OxevVqUcpTv35ldZEsIYQQQggRgI3tTBsIxY9kXTZH1hnq526wf1McSwghhBAijKW4SYIUWQpkreEaZKm3FyGEEEKIIAzX2UuKrFg+CmSNmFQ3jVpACCGEEGKXuhxZPinCWgpkjVjK5aA4lhBCCCFEGIs5spRaIC1Lnb2oRZYQQgghRBjLLbLU2Uta9Tt71f6fht8ihBBCCBHIQo4stchKjFpkCSGEEEIah20AtDQ+v5jsGkf24sWLWLt2Lfbt24fr16+joqICYWFh6NKlC4YMGYIHHngAarVagmI6hxRN4IQQQgghdzJu1AIHfJegFtkTJ05g0KBB6NKlC/bv348ePXpg+vTpeP/99zFx4kQwDIM333wT0dHRmDdvHjQajdTlloSlpGQafosQQgghRBgubHJAby9BLbIPPPAAZs2ahfXr1yMwMNDieocOHcLChQvx6aef4o033hCrjA5TvwWWJvYihBBCCLEPl1pQb7nTUgsuX74MlUplc72kpCQkJSVBq9U2umDOYHKjwM7sRZEsIYQQQoggdRMi8Jc7rbOXkCC2Meu7Khq1gBBCCCHEPnXDb9V/0u3k4bcqKyuxf/9+XLhwweS1qqoqrFy5UrSCOYPlHFnHl4UQQgghxB25XIssYEgvaNOmDfr27YsOHTqgX79+yMzM5F4vLi7GlClTxC+hE9HMXoQQQggh9jKfIysFwYHsa6+9hvbt2yMnJwcpKSnw8/ND7969kZGRIWX5HMz8wL3UIksIIYQQIozFFlkJvktwIHvw4EHMnTsXoaGhSEhIwJ9//okhQ4bgnnvuQVpamgRFczzLFU6RLCGEEEKIEBZzZJ2ZWlBZWQmlsm6QA5lMhqVLl2LkyJHo168fLl++LH7pHIxm9iKEEEIIaRzGwowI9aesFYPgmb1at26N48ePo02bNrzlX375JQBg1KhR4pbMCUwDWRp+ixBCCCHEHnUtstIT3CI7duxYrFmzxuxrX375JR599FG3nwHL0rAQNPwWIYQQQogwdTmyLpRaMHv2bGzatMni60uWLIFerxelUM5Cw28RQgghhDSOpRZZp48j+29Dw28RQgghhNiHfUIvRQtsfXYHsqmpqVKUwyVQZy9CCCGEEHG41IQIAJCcnIz+/fuLXwpXUT+Xo/b/lCNLCCGEECJM3aAF5uMqMQkOZHfu3IlBgwbh448/lqAYrsFSiyzFsYQQQgghwrANgC7TIrthwwaMGDECc+fOxaRJk8QvhYswnRCBcmQJIYQQQuxhKSXTaZ29HnnkEbz55pt49tlnRS+AK7GcI0uhLCGEEEKIEC43/FZ8fDy2bduGyspK8UvgBiiMJYQQQggRhkstcMB3CQpk9+/fj4qKCowdOxZarVbqMjmN6Z0DzexFCCGEEGKPuhZZ6b9LUCAbGhqKXbt2obq6Gg8//LDUZXIa04F7DSiOJYQQQggRpm5CBPMNhGISPGqBr68vNm/eDLn8zp1DwfLMXhTKEkIIIYQIYqFF1qnDbwGAWq3GunXrJCiGa6IWWUIIIYQQ+1jKkXX6hAgA7vAWWQtN4BTJEkIIIYQIYilHVooWWWVD35iTk4OcnBzo9Xre8o4dOza6UK6iLo6lSJYQQgghRIi6qEn63l52B7LJycmYPHkyLl68yOWOymQyMAwDmUwGnU4neiEdxWJnL4pjCSGEEEIEqYsP+cul6OxldyD7xBNPoGXLlvjuu+8QEREhSaGcxeSn0PBbhBBCCCF2qRu1gE+KkNHuQDYtLQ2//vorEhISxC+Nk5kME1H7f0otIIQQQggRxuLMXhJ8l909twYOHIjTp09LUBTnszz8luPLQgghhBDijiy1yErRJGt3i+y3336LyZMn49y5c2jfvj1UKhXv9VGjRolWOGdjW2gpjiWEEEIIEchSjqwEX2V3IHvo0CEcOHAAmzdvNnnN3Tt71UctsoQQQggh9uFaZF1lilpjL774IiZOnIjMzEzo9Xref24fxFq8c6BIlhBCCCFECC5H1mSKWvG/y+5ANj8/HzNmzEBERIT4pXEy0wkRDP+nFllCCCGEEGG4TvImDYTiR7J2B7Ljxo3Drl27RC+IK7hzBhIjhBBCCHEtLjH8VsuWLTF79mzs378fHTp0MOnsNW3aNNEK52imScnU2YsQQgghxB6M+QZZ1+js9e2338LX1xd79uzBnj17eK/JZDL3DmQtLGAot4AQQgghRBCL48i6Qo5senq6xf/S0tJELZxOp8Pbb7+N2NhYeHl5IT4+Hu+//z4vsGQYBu+88w6ioqLg5eWFQYMGITU1VZTvr5sQgRBCCCGECGFxHFkJ2B3IOtK8efOwdOlSfPnll7h48SLmzZuH+fPn44svvuDWmT9/PhYtWoRly5bhyJEj8PHxwZAhQ1BVVWX395neOdAUtYQQQggh9mAsjiPrAhMiMAyD9evXY9euXcjJyYFer+e9vmHDBtEKd/DgQYwePRrDhw8HALRo0QJr1qzB0aNHubIsWLAAb731FkaPHg0AWLlyJSIiIrBx40aMHz/eru+zlMtBcSwhhBBCiH1MAldXSC2YPn06Jk2ahPT0dPj6+iIgIID3n5h69eqFHTt24PLlywCA06dPY//+/Rg6dCgAQ5pDVlYWBg0axL0nICAAPXr0wKFDh+z/QotT1FIoSwghhBAiRF2OLH+5S3T2+vHHH7FhwwYMGzZMguLwvf766ygpKUHr1q2hUCig0+nw4YcfYsKECQCArKwsADAZ0zYiIoJ7zRyNRgONRsP9XVJSAgDQ1+ig1Wq55fraCR70eoa3nAjD1hnVnfiobqVB9SodqltpUL1Kh+q24fSM4Wm9TlfDj6v04k+cZXcgGxAQgLi4ONELYs4vv/yCVatWYfXq1WjXrh1OnTqF6dOnIzo6GpMnT27w586dOxfvvfeeyfLTp08DOZfr/s6VAVAgNy8XmzZtavD3/dtt377d2UW4Y1HdSoPqVTpUt9KgepUO1a39SksVAGQ4euQoCi/VPdU+k+sCObL/93//h/feew/ff/89vLy8RC+QsVmzZuH111/ncl07dOiA69evY+7cuZg8eTIiIyMBANnZ2YiKiuLel52djc6dO1v83NmzZ2PmzJnc3yUlJYiJiUHnzp0wtGsCt7zmdCZ+vHIWoSGhGDasm8i/7s6n1Wqxfft23HfffSbjDZPGobqVBtWrdKhupUH1Kh2q24ZbdOUAUFmOnj17oEdsMLe8+tRt/Hj+qKjfZXcg+/DDD2PNmjUIDw9HixYtTDbuiRMnRCtcRUUF5HJ+Gq9CoeA6mMXGxiIyMhI7duzgAteSkhIcOXIEzz33nMXPVavVUKvVJsuVSiXv9yiVCsM/ZDLaiRtBpVJR/UmE6lYaVK/SobqVBtWrdKhuG65+XKVQKMT/DnvfMHnyZCQnJ2PixImIiIgwGbJKTCNHjsSHH36IZs2aoV27djh58iQ+++wzPPHEEwAMw2NNnz4dH3zwARITExEbG4u3334b0dHRGDNmjN3fZ5KUTMNvEUIIIYTYxdI4si4xRe3ff/+NrVu3ok+fPuKXpp4vvvgCb7/9Np5//nnk5OQgOjoazzzzDN555x1unVdffRXl5eV4+umnUVRUhD59+mDLli3w9PS0+/vqDxNRN/wWRbKEEEIIIYJYmtnLFcaRjYmJgb+/v+gFMcfPzw8LFizAggULLK4jk8kwZ84czJkzp9HfZ9oia/g/tcgSQgghhAjDtchaiKvEZPc4sp9++ileffVVXLt2TfzSuBj2zoHiWEIIIYQQYbiZvRzwXXa3yE6cOBEVFRWIj4+Ht7e3SQJ0QUGBaIVzNIt3DhTJEkIIIYQIYrlF1gVSC6w95r/TUI4sIYQQQoh96lIypW+TbdCoBXcqk85elCNLCCGEEGIXtgHQEVPUCsqRLS8vt+tD7V3fVZhWMOXIEkIIIYTYg20AdMTwW4IC2YSEBHz88cfIzMy0uA7DMNi+fTuGDh2KRYsWiVZAR7JU4Qw1yRJCCCGECMK42vBbu3fvxhtvvIH/+7//Q6dOndCtWzdER0fD09MThYWFuHDhAg4dOgSlUonZs2fjmWeeEb2gjmBa4QYUxhJCCCGE2MdlJkRo1aoVfv31V2RkZGDdunXYt28fDh48iMrKSoSGhqJLly745ptvMHToUEmmH3MWmtmLEEIIIcQ+3PBbDsiRtauzV7NmzfDyyy/j5ZdflqAorodaZAkhhBBC7FM3Ra30oxbYPSHCHc3iOLIUyhJCCCGECFGXI8tf7hIze93JLHb2cnhJCCGEEELck+Xx98WPZCmQNWKpdx01yBJCCCGECEMtsk5iUr9ciyxFsoQQQgghQljKkXXahAj/FpZ611GLLCGEEEKIMJZbZJ00jqw5FRUVyMjIQHV1NW95x44dG10oV0HDbxFCCCGE2Mv88FtSsDuQzc3NxZQpU7B582azr+t0ukYXylksNYFTHEsIIYQQIkzdFLUumFowffp0FBUV4ciRI/Dy8sKWLVvwww8/IDExEX/88YcERXQcS0nJNEUtIYQQQogwXI6sAzp72d0iu3PnTvz+++/o1q0b5HI5mjdvjvvuuw/+/v6YO3cuhg8fLn4pncQRA/kSQgghhNxJuJm96i13iVELysvLER4eDgAICgpCbm4uAKBDhw44ceKEuKVzMMstso4vCyGEEEKIO7LYIusK48i2atUKKSkpAIBOnTrhq6++wq1bt7Bs2TJERUWJXkBHMrlzqP0/Db9FCCGEECJMXQOgheGgRGR3asFLL72EzMxMAMC7776L+++/H6tWrYKHhwdWrFghdvkcyqTJm1pkCSGEEELswqUWSB/H2h/ITpw4kft3165dcf36dVy6dAnNmjVDaGioqIVzNm5mLyeXgxBCCCHEXdRNiCA9u1ML1qxZw/vb29sbd911F0JDQzFr1izRCuYMlpKSadQCQgghhBCBuAkR6g2/JUFvL7sD2eeee87sGLIzZszATz/9JEqhnMXizF4OLwkhhBBCiHuy1CLrEuPIrlq1Co8++ij279/PLXvxxRfxyy+/YNeuXaIWztFMBu7lmmSdUBhCCCGEEDdkMUfWFYbfGj58OJYsWYJRo0YhOTkZzz//PDZs2IBdu3ahdevW4pfQkSwNv+X4khBCCCGEuKW6Ftn6M3uJH8na3dkLAP7zn/+gqKgIvXv3RlhYGPbs2YOEhASxy+ZwFoffohxZQgghhBBBuClqXWVmr5kzZ5pdHhYWhrvuugtLlizhln322WfilMwFUIssIYQQQoh9HDn+vqBA9uTJk2aXJyQkoKSkhHtdit5ojmRa/trhtyiSJYQQQggRxGKLrATfJSiQdfdOXEJZHH6L2mQJIYQQQgSpm6JW+kjW7s5erCtXrmDr1q2orKwEcGfkkbp5gzIhhBBCiMuSorOX3YFsfn4+Bg4ciJYtW2LYsGHcdLVPPvkkXn75ZdEL6EgWx5F1/xidEEIIIcQx2NSCeotdYvitGTNmQKVSISMjA97e3tzyRx55BFu2bBG1cI5nfhxZCmQJIYQQQoRhUzJdJkfW2LZt27B161Y0bdqUtzwxMRHXr18XrWCugDINCCGEEELsw3X2ckAkZXeLbHl5Oa8lllVQUAC1Wi1KoZzG0oQI1CRLCCGEECJIXWcv/nIpRreyO5C95557sHLlSu5vmUwGvV6P+fPnY8CAAaIWztFMB9+qTS1wfFEIIYQQQtwSN0VtveVOmxDB2Pz58zFw4EAcP34c1dXVePXVV3H+/HkUFBTgwIED4pfQgSzNQEENsoQQQgghwnBhkwNyZO1ukW3fvj0uX76MPn36YPTo0SgvL8e4ceNw8uRJxMfHS1BEx7GUy0HjyBJCCCGECGMpR9YlWmQBICAgAG+++abYZXE6apElhBBCCBGHaeAqfiQrKJA9c+YM2rdvD7lcjjNnzlhd19fXFzExMVCpVKIU0JkoR5YQQgghRDjjDvKOGP1JUCDbuXNnZGVlITw8HJ07d4ZMJrPakz8gIADLli3DI488IlpBHcHiFLUUyRJCCCGE2GQcM9UfpcBpqQXp6ekICwvj/m2NRqPBunXr8Nprr7lfIGuxwimSJYQQQgixxThiMh0NSnyCAtnmzZub/bclzz//PJKTkxteKhfBpRZQHEsIIYQQYhMvtcAVx5HdsmUL9u/fz/29ePFidO7cGf/5z39QWFgIAAgKCsKGDRvEK6WDWOzs5fiiEEIIIYS4HX6LbL0n3RJ8n92B7KxZs1BSUgIAOHv2LF5++WUMGzYM6enpmDlzpugFdCRLTeA0sxchhBBCiG2MldwCKXJk7Q5k09PT0bZtWwDAr7/+ihEjRuCjjz7C4sWLsXnzZtELeOvWLUycOBEhISHw8vJChw4dcPz4ce51hmHwzjvvICoqCl5eXhg0aBBSU1NF+W5qkSWEEEIIEc547H0pAtf67A5kPTw8UFFRAQD4559/MHjwYABAcHAw11IrlsLCQvTu3RsqlQqbN2/GhQsX8OmnnyIoKIhbZ/78+Vi0aBGWLVuGI0eOwMfHB0OGDEFVVZXd32c6IQLlyBJCCCGECMUbtaDea5YmnmoMuydE6NOnD2bOnInevXvj6NGj+PnnnwEAly9fRtOmTUUt3Lx58xATE4Ply5dzy2JjY7l/MwyDBQsW4K233sLo0aMBACtXrkRERAQ2btyI8ePH2/V9loffokiWEEIIIcQejhh+y+4W2S+//BJKpRLr16/H0qVL0aRJEwDA5s2bcf/994tauD/++APdunXDQw89hPDwcHTp0gXffPMN93p6ejqysrIwaNAgbllAQAB69OiBQ4cO2f19Jp29av9PYSwhhBBCiG3WWmSlYHeLbLNmzfDXX3+ZLP/8889FKZCxtLQ0LF26FDNnzsQbb7yBY8eOYdq0afDw8MDkyZORlZUFAIiIiOC9LyIignvNHI1GA41Gw/3NpkTU6Gqg1Wq55TpdDQDDRjFeToRh64zqTnxUt9KgepUO1a00qF6lQ3XbMNXaGu7fNTVaaOV1kS0bV4nJ7kAWAK5evYrly5fj6tWrWLhwIcLDw7F582Y0a9YM7dq1E61wer0e3bp1w0cffQQA6NKlC86dO4dly5Zh8uTJDf7cuXPn4r333jNZfmD/AaQGeHN/51YCgBLaGi02bdrU4O/7t9u+fbuzi3DHorqVBtWrdKhupUH1Kh2qW/todAAbXm7bug0eirrXbpWL/312B7J79uzB0KFD0bt3b+zduxcffvghwsPDcfr0aXz33XdYv369aIWLioriRkhgtWnTBr/++isAIDIyEgCQnZ2NqKgobp3s7Gx07tzZ4ufOnj2bN1RYSUkJYmJicM89vRHftO5zrhdU4INT+6FUKDFs2BAxftK/ilarxfbt23HfffdBpVI5uzh3FKpbaVC9SofqVhpUr9Khum2YMk0NcHQnAOD++4fAU1UXyV7KKsXHx3aI+n12B7Kvv/46PvjgA8ycORN+fn7c8nvvvRdffvmlqIXr3bs3UlJSeMsuX77MzS4WGxuLyMhI7NixgwtcS0pKcOTIETz33HMWP1etVkOtVpssVypUvJ3VQ2n4NwPQTtwIKpWK6k8iVLfSoHqVDtWtNKhepUN1ax+lru7fhrqrC2SVygYlAlj/PnvfcPbsWaxevdpkeXh4OPLy8kQpFGvGjBno1asXPvroIzz88MM4evQovv76a3z99dcADL3hpk+fjg8++ACJiYmIjY3F22+/jejoaIwZM8bu77M4sxf19iKEEEIIsYk3H4IDJkSwO5ANDAxEZmYmbxgsADh58iQ3goFY7r77bvz222+YPXs25syZg9jYWCxYsAATJkzg1nn11VdRXl6Op59+GkVFRejTpw+2bNkCT09Pu7/P0vhmDI1bQAghhBBiE3/UgvpT1LrAOLLjx4/Ha6+9hnXr1kEmk0Gv1+PAgQN45ZVX8Nhjj4lewBEjRmDEiBEWX5fJZJgzZw7mzJnT6O+iFllCCCGEkEYwDmRdcYrajz76CK1bt0ZMTAzKysrQtm1b9O3bF7169cJbb70lfgkdyHRChNqZvRxfFEIIIYQQt8Oborbea1KMK2tXiyzDMMjKysKiRYvwzjvv4OzZsygrK0OXLl2QmJgoQfEczMKECBTJEkIIIYTYxkstcMDMXnYHsgkJCTh//jwSExMRExMjfolcCJdaQJEsIYQQQohNvM5eDvg+u1IL5HI5EhMTkZ+fL1V5nMx8UjLlyBJCCCGE2MYYBU2mLbDih7Z258h+/PHHmDVrFs6dOyd6YZzNYmcvxxeFEEIIIcTt8IffcrHUAgB47LHHUFFRgU6dOsHDwwNeXl681wsKCkQrnKNZSkpmqEmWEEIIIcQmayGT0zt7AcCCBQskKIZrMLlToBZZQgghhBDB2H5F5lpf67fQisHuQHby5MmiF8JVWBq4lxpkCSGEEEIEqI2ZzIWsLtEiCwA6nQ6//fYbLl68CABo27YtRo8eLckcus4kRS4HIYQQQsidim37k6L11Ry7I8/z589j1KhRyMrKQqtWrQAA8+bNQ1hYGP7880+0b99e9EI6iklnL6N/MwzjsI1CCCGEEOKOGGstsq4ws9dTTz2Fdu3a4ebNmzhx4gROnDiBGzduoGPHjnj66afFL6EDWZrZC6D0AkIIIYQQW6zmyEqQXGB3i+ypU6dw/PhxBAUFccuCgoLw4Ycf4u677xa1cA5Xf5gIo39THEsIIYQQYl1di6xp0OoSLbItW7ZEdna2yfKcnBwkJCSIUihnMW2Rrfs3DcFFCCGEEGIdFy05KBvT7kB27ty5mDZtGtavX4+bN2/i5s2bWL9+PaZPn4558+ahpKSE+8/dmObIGqUWOLgshBBCCCHuhm34c1SOrN2pBSNGjAAAPPzww1wOKVvokSNHcn/LZDLodDqxyukcvBZZ5xWDEEIIIcQdcKkFDmqRtTuQ3bVrlxTlcAlWUwuoTZYQQgghRBDzObIu0NmrX79+ohfCVZjMCWz0b2qRJYQQQgixzlqLrBSNtHbnyN7JrA2/RQghhBBCrOOG3zLzmkuMWnAno7iVEEIIIUQaUowjS4GsEUotIIQQQghpuLrUAhcdR/bfhDp7EUIIIYQIx0ZLjnrILTiQ/fHHH1FQUGDx9fLycsyZM0eUQrkK3jiyFMcSQgghhFjF1E3tZcKpnb0mT56M7t2749y5c2ZfLysrw3vvvSdawVwBv0WWEEIIIYRYY7VF1tmpBXFxcejVqxc2bNggfklcHE1RSwghhBBindUcWWd29pLJZPjpp5/w2muv4eGHH8a7774remFcDbXIEkIIIYTYo3b4LXOpBc5skWVbJN98801s3LgRCxcuxNixY1FeXi5+qVwE5cgSQgghhAhnJUXWdSZEGDFiBA4fPoyLFy+iR48eSEtLE7tcLoF350CBLCGEEEKIVVyOrNnht5ycWmCsdevWOHr0KJo3b467774b27ZtE71wzsaPYymSJYQQQgixxlqLrBTsTi0w5u/vj7/++gvPPPMMHn/8cTHL5RKMg3dKLSCEEEIIsY6xliMrwffZNfyWl5eXyXKZTIaPPvoIa9asQb9+/UQtnLNRZgEhhBBCiHB1DX+OmdlLKXTF5cuXW3394YcfxtixYxtdIFfCG7WAmmQJIYQQQqyqG37L9DWnDr81adIklJSUWHz9+PHj6NKliyiFchW81AInloMQQgghxB1wqQXmXnTm8FsXLlxA27ZtsXXrVt5yrVaL2bNno1evXujdu7foBXQV1CBLCCGEEGKd1RZZZwayR44cwRNPPIGRI0fimWeeQVlZGY4fP47OnTtj9erV+Ouvv/DVV1+JX0InYyudRi0ghBBCCBFGijQCcwQHskqlEnPmzMHBgwdx4MABtGzZEr169ULPnj1x9uxZDB48WMpyOg23GSiOJYQQQgixynqOrPjsnhDB09MTKpUKxcXF8PDwwIABA+Dv7y9B0VwDmydLcSwhhBBCiHXWcmSdOiECwzCYO3cuunXrhs6dO+PWrVuYP38+nnvuOYwbNw65ubmiF84VsFVOObKEEEIIIdbVtciaGX5Lgu8THMj27NkTX3zxBdatW4fly5cjMDAQzz//PE6fPo28vDy0bdsWP//8swRFdC7KkSWEEEIIEcZatOTUzl6xsbE4d+4cRo4cyVseFxeHPXv24I033sCTTz4pegGdjU1WphZZQgghhBDr2HH3XW4c2bVr1yI4ONjsazKZDDNmzMDJkydFK5jL4FpkCSGEEEKINWy8JEXrqzl2d/ayJjExUcyPcwl1ObIUyhJCCCGEWMPlyDpoilpRA9k7EZcjS3EsIYQQQogNllMLpECBrA2OGtCXEEIIIcTd1bXImqIWWSegFllCCCGEEGHqcmTNDb/lxM5e/1Zcjix19yKEEEIIscrRLbLKhrypvLwce/bsQUZGBqqrq3mvTZs2TZSCmfPxxx9j9uzZeOmll7BgwQIAQFVVFV5++WWsXbsWGo0GQ4YMwZIlSxARESHKd3Ize4kQxzIMgzJNjUlI7KGQw1OlMFm/SqtDtU5vslwpl8Hbo0GbrtGqa/SoqtGZLJfLZPBV88vEMAwqa4DSKi2U9d7irVJAqXDOfVRpldbsbYmnUgEPpWmZyjU10NXbARQyGXzUztsGZVVak7o1tw0AoEanR4XWdJs5cxvo9QzKqmtMltuzDQDLx44jVFbroNWbHp8quRxeHvwyWdoGAOCnVkoy240tlrYBAPh6KCGX88tUUV2DGr1rbQNL50hz28Da+s7aBgCg1elRaWbf8PFQQlFvGzAMg1INf5vVaA3nAq1OD5VK0qJaVKapgb7e8WnpOqWp0UFTY7oNnHlOtbQNarSmx4el6zgAeKkUUDnpnGrpHKlWyqFWmh4L5s5flq4h9mKsRbISsLvEJ0+exLBhw1BRUYHy8nIEBwcjLy8P3t7eCA8PlyyQPXbsGL766it07NiRt3zGjBn4+++/sW7dOgQEBOCFF17AuHHjcODAAVG+t65FtvGmrT2FP0/fNlmuUsjw4r2JmDawbtSHPZdz8d8fjps96cpkwFvD2+LJPrEilEq4i5kleGDpQVRUm78gP9UnFm+NaMv9/fiKZBxMU+L1Y7tM1o0O8MTm6X0R4OXYM+9r68/g5+M3zL7m56nEpmn3ICbYm1s2d9NFfLU3zez6Lw1MxIz7WkpSTkuu5JRhzOIDKNPUADCt28eSmmPO6Pbc3wXl1RiyYC9ySzUmnxXhr8aSCV3RtXmQ1MXmKdfUYOSX+5GWW27ymo+HAhun9kZihB+3bMnuK5i/JcXsZ3ko5fhhSnckxYdIVl5zfk2+iVnrT8NMXAeFXIZPH+qEMV2aAABKqrQY/NleZJVUmf2sexJD8eOTPaQsrokanR4jvzyAi5klZl9PDPfFppfu4S7K3+5Lw4ebLpq9oVcpZPjmsW7o3ypcyiKb+PtMJl5ae9JscC2XAR8/0BEPd4vhlh1Jy8ek74+i2kwQ1aVZINY9k+TwG7tdl3Iw45dTKKrQmrwWG+qDzS/dw7tJeO6nE9hyPsvMJykx/8IebJ3eD2F+aglLbOqN385i9ZEMs6+9NbwNnronjvv7zM0iPPLVYbNBIwC8MCABrwxpJUk5LblVVInhi/aZ3QYA0DVUjmFGf0//+RR+P2V6HQeAQG8VNk27B9GBXhKU1LJ5Wy5h6e6rZl/z9lDgl2eS0L5JAADDDeycvy5g5aFrZs9fT/SOxTsj25q+YAcutcDMa06d2Ys1Y8YMjBw5EoWFhfDy8sLhw4dx/fp1dO3aFZ988okERQTKysowYcIEfPPNNwgKqrvoFhcX47vvvsNnn32Ge++9F127dsXy5ctx8OBBHD58WJwv53JkGxfK3iioMBvEAoBWx+Cz7Zdx9mYxt2zv5VyzQayhLMDvp241qjwNsfHULYtBLADsTMnh/l2l1eFgWoHFdW8XV2HPZcdOa8wwDDadzbT4emlVDQ6n5XN/X8kpxTf7zAexALB091XcKKgQtYy27EvNrQ1izfvz9G3evrovNddsEAsA2SUavLTW8WM/f7MvzWwQCwDl1Tr8dPg6b9nW89kWP6u6Ro9/Llp+XSrf7EszexEAAJ2ewb7UPO7v87dKLAaxALAvNQ85pZZfl8KlrFKLQSwApOaU8fbtPZdzLT6V0uoYfH/gmsgltG3bhSyzQSwA6Bngnwv8/WL5gWtmg1gAOJlRhHXJN0UvozVVWh2mrTlpMYBKzyvHqRtFvPW3XTAXxBoUlGtx7Jrlc64UztwsshjEAsBn2y/z9u19qXkWg1gA+OuM+WuklDafzbS4DQDgYiE/9Np5McfCmkBRhRZbzlneRlLZcMLyvltRrcPBq3Xno52XcrDioPkgFgBWHbmOkirL9SGE1SlqJXjyYXeL7KlTp/DVV19BLpdDoVBAo9EgLi4O8+fPx+TJkzFu3DjRCzl16lQMHz4cgwYNwgcffMAtT05OhlarxaBBg7hlrVu3RrNmzXDo0CH07NnT7OdpNBpoNHUX95ISwwldq9VCq+VvQLbKtdoak9fssfGEoRWwZ2wQvn2sK++1B786gktZpUjNLkbrCENr4O1Cw0Vk9v0tMaFHM27d20WVGLzwAC7cLkFpRZVDH+ntqw08541rh+Edorjl6XnlGLn4EPJKNVwd5RQbTl5yGYPk2f2gUnlw63+y7TJWHMrA3pQcDG0b5rDyZ5dUoVRTA7kMSH7zXt4joHf/vIBfT9zGjYJy7jf8ffo29AzQNzEES/7ThfdZT/yQjKPXCvHHqZt4+h7HtYynZhv21Sd7NUNbXRoGDhwIpUqF6hodun20C4UVWtwqKEOEvycA4MR1w4VtQvcYzB5a19JRWFGNe/63FzcLK5FdVI5gHw/TL5MIe9L95IH2uL99JLd8/5U8PLvqFP44fRuvD0nkWscy8g1B76/P9ECryLqW2o2nbuOt3y/gwu3iRh2bxtjPsfZ5KVmluJRVCpVChr2v9IWfZ91Thd9O3sbbf1xAflkV9xm3Cw3lv7tFEJZP5h/7Y5ceQmpOOZLT8zGojeNaNI9fM9yw9YoPxtcT7+K9NuLLg7iWX4HbheWICTS07uWXGc6Xy/7TGX0SQ7l1bxRUYOgXB7E/NRe3C8qstgYKqVt7XMkpBQAseqQj7m1dV3f7U/Pw7OpTuJ5fdyyXVmmx45IhsN3wbA+0NGrxX3n4OuZvTcWvyTfwYJcoOEpqVilKNTVQKWQ4NnsArzV45roz2HYhB8nX8tE1xh8AcOFWMfQMEOStwr5X+nLJhjVaLf779S4cy5PjclYJ7msdavb7pLAh2XBdG94hEvPG1T0JAsPg4W+O4kJmKf45n4WHuhqeTtwoMBwLz/WNxdQB8dzq7PnoekEFisoqHZpiwF7XZg1OxOSk5iZlqtDJUFGlgTcMN85saseBV/vxniiuOHgdn2xPxd7LOZjUo6nDyp9ZXIXsEg0UchmOvN6fFxN8/k8qvjtwHbcKK7hj4UqO4Rpicl1jGIxachhpeeX4+/QtPHhXkwaXqaamhvvM+se73lIE3Qh27y0qlQpyueGACw8PR0ZGBtq0aYOAgADcuGH+kW1jrF27FidOnMCxY8dMXsvKyoKHhwcCAwN5yyMiIpCVZfmuaO7cuXjvvfdMlu/atQve3t68ZTVaBQAZ9uzdg0uNeFqw5ZIcgBxNmDzs2LaF95qX1vDagWOnoLhpaCG7eN3wvdlpF7Gj+AK3LsMAfioFSrXAdxu2ItYPDlGuBS5kGnaX6uunsSPzNO81QImSqhr88dcmKOXAzXLDMl8lsHfXTt5neRbJACiw8/xNbFLzW9+klFJs+N4QNYO9O7bxXqvMNbx25Gwq4isNj7GT0w3bxaMi12SbhdQY1t97MgVNSy86pPwAcKx2P6rKSYcyDNizawf3WpinAtmVMvz05y60CTKcLHafNexH8oJr2LEtnfdZQR4KFFbLsPrPfxDn75jya/XAjQJDmSqvncIOowYYHQMoZAoUVmjx8x9bEKQGKmuAwgrDfnfl5AHcNLpvKyoDACXOZOTj7783idqJYPv27RZfO5ht2PZxvjoc3buD99r1AsNr6bdzsWnTJgDA3tuGZbrSfJP9KBRypEKOX/ecQHW6+dZCKWy6YtiP/DSm5yNl7Tlv274jyL9o2I9u5xuWpZ49Dg1/N0KUtwKZFTIs/30n2gfbvkhZq1uh9AyQmmUoU1bKCewwahTMrgQAJdJzS7n94lopoNUpEaBicOP0ARhfqZjac9XFW4XcNnOEk/mG/aKJlx576p2PvMoNr209Xnd+OZxjWBam0mDH9q289SO8DTv/vtOXEVtxyQGlNzh8oXY/Kr+FHdv4rYK+NYbXDp04A59sw/XidKphWeHNK9ixLZW3vr9KgRKtDD9s3IYWDrqu6Rjg0FXDfiTLuogd2+rO5XoGkEEBBjL8sWUH/D2A4moAUEIOBkf37oBxCrOsdj86eCUXf/29CXIpnqGbcap2P4ry0uPALv6xVZRpeO1UyjVsguHp4vHrhm0gKzO9rsWp5UiDHH8eOAvvrNNoqMu119qysjKTY0qKEaDsDmS7dOmCY8eOITExEf369cM777yDvLw8/Pjjj2jfvr3tD7DDjRs38NJLL2H79u3w9PQU7XNnz56NmTNncn+XlJQgJiYGAwYMQEgIP9fu3VO7UFGpxT339EVCuG+Dv/OzlP0AKjBmQA/0jONP9XtUdxEn828gqkUihg1MAAB8fGEvgCoM7Z+EzjGBvPX/KDyJnSm58GveHsN6NoMjHLtWCBw/hqaBnhg/pi/vNYZh8O7Jf6DVMejWZwCiA72w/0o+cCYZPirgvvvug8qoF0LvSi2WXdyFAo0MfQcOFiW5XIiCIxnAhUvo2CIcw4bxW1g1J29j041zUPiFYtiwbgCAf9adAbKycHeH1hjWuwVvfeZsFjb/cgZar2AMG9bdIeUHgA/P7QGgwch+3ZF94QivbreVnsHf57LgG9Maw/rGgmEYzDq2A4Aek4b3RWyoD++z1uUmY/+VfEQkdsSwro5pQbicXQrmyCH4eSrxyOj7TB4zzT23G7ll1ejcow/aRfvj/O0S4NhhBPuoMG7kYN66VVodPju3A+U1MnS9515E+jf+HKHVarF9+3aTfdbYqc0pQNp19GoXi2FD+fl8kRlF+DblKBgPbwwbdg8A4MyWFOD6dXRpHYth9/PXLz1+E4d+v4BKzzAMG8ZvrZXSl18cAFCOB/p3xYBW/Kci28vO4MrZLDSJb8Pt968d/weAHiPuG4CmQfw7+m1lZ/D32SwEtWiNYVby9oXUrVC3iipRfXgfVAoZJo25n9eaqanRY+7pf1Ctl6FHv4EI9VVjV0oucO4kmob5Y9iwJN5nVVTX4H9ndqK8Roak/oMQ5O2YpxNpu64Cl6/irsQmGDaMf+0MSS/A798fR4HeG8OGGc63yX9fAq5moHe9/U6r1eLMz/8AADQegRg2zPyTSCn876LhOjVqQE/c3YKfa39mSwqO5l5HeEwct98vumLY7+7v2x296+W1r89Nxr4r+QiK64Bhd8fAEdLzylF9+AC8VHI8+cBQkw6O753ehaJKLTrenYS2TYJwMbMUSD6EYF81Rgzvz1tXp2ew6MIOaGr06JDUH82D+Y1iUrmwLRW4nI4+bWMwbBg/t1V5IRu/XjsNeAdh2DBDHv6BjeeB27dwV9uWGNY/jre+9nQm/ll/FlrvEAwbdneDyxR4NR+LLyTD388Pw4b1Mnl92p6NDf5sc+yOID766COUlhoe6Xz44Yd47LHH8NxzzyExMRHff/+9qIVLTk5GTk4O7rqr7tGXTqfD3r178eWXX2Lr1q2orq5GUVERr1U2OzsbkZGRZj7RQK1WQ602fQSmUqlMTrDsdVapVDb45Kup0eFmUSUAoGVUgMnnhPgZLsDFVTqoVCro9AxyavMaY0L8TNZvHeWPnSm5uJZf2egLglDXCw2pAvHhpuUBgFBfNTKLq1BUpUdzlQolGkMelK+SManXUJUKob5q5JVpcKNIg45NHZMYn55v2AYJEaa/oVmo4SbldnEV91pRpeHxSKifl8n6LSMNifNXc8uhVDqmx3NplZbbL1pG+iP7An+fTYjwA85l4Vbtbyit0nI5gYb9iJ+GkhDuh/1X8nGtoMqB+5Gh/PFhvvDwMA0Ygn3UyC2rRlm1Yb+5XWIYFaV5iI9JGVUqFVqE+iAttxzp+VWICRGvGcfcuYCVnm9I+0mM8DdZJ8zfsC8XVmi513LLDI/WIgO8TdZvEx1o+My8codtgxqdHtdrj4W2TQJNvjcywPAb8soNv6GyWocqrWE/CgvwhkrFv2wkhPsByML1fGH7kbW6FepaQSEAoEWID7w8+edylQqIDvDCraJK3C6pRlSQL0o1hvIH+6hNvjtApUJ0gCduF1fhRpEG4QH8Gz6pXCswbANz+1HTYMP5qMBoP7pVZDgHmzt/RXgZmrnS8xx3Pqqs1uFWbQpZKwHXNYZhcLv2NzQPNf0NbaIDsO9KPtLyHHldM5yP4sJ8oVabOx95oKhSixKN4XxUUrsfhZjZj1QwdNC7lFWKjMIqJEQESF5+oO581MbMNmD3o+wSjel1zd/TZP1Wtde1xp6PFArDOUIulzlkW9rd2atbt24YMGAAAENqwZYtW1BSUoLk5GR06tRJ1MINHDgQZ8+exalTp7j/unXrhgkTJnD/VqlU2LGj7vFeSkoKMjIykJSUZOWTheOG32rEZ2TkV0CnZ+CrViLcTA5ZsLdhQxdUGC7aeWUa6PQMFHKZ2Zyz+DDDznk1t6wRpbLP1RzDd8WFmT/Jh/oayplXm0tXUG74LT4W9mH2cxz6G2q/KyHMtGW9SW0v09tFVVwOT2Ht9jCXPxob6gOZDCiu1HK/VWpsB6kwPzUvL5MV6msoJ1ueQkPOBzxV5ociiq99wsBuW0dgvyvezDYAgCAf/rFwszZXPCbIfOsGuy2vOPA3sNvB3LHAtuaVVtVAW9tZk+3sEu5v7lg2fMbt4iqUW+nEJ6abhZWo1unhqZIjOsD0JpItJ3vTxG4LD4UcPtb2I4cey4ZtYGk/YluNb9QGi9aOZcD4WDDfCVEKbH3Fm9uPastZUa1DVW3nKHY7hPiY7kchasNoGeXVOmSXmO/cKbb0vHIwjKGnvrl6Da49FgrZ81GFluvoFRVg+vQkwRnXtVz2umZ+PwquPR+x+09+uaFugyxc2Lhrs1P2I9PfwNZzTmkVamrPR9yxYObJQ2ztvphXVo1iKx3gbHH0uPsuPSGCn58f2rdvz/vPx8cHISEhaN++PQICAvDkk09i5syZ2LVrF5KTkzFlyhQkJSVZ7OhlL274rUZsF+MTlrk7ZfakxR7wmbV3ueF+apNxBAHnBIFpedYvHGwQxQay7G/xtdDmz36Opd7rUmCDnXgzKSKRtQd8tU7PHehsIBjobXrS8vJQcMHvVQf9BmsXPsB4PzKU29oJy/hznHHhiA83/xuC6x0L+WWG/1vqRJTg4CCqSqvDjdrg2tyx4O+l4nLj2PpnA8JwP9OLd6C3B0Jqf3N6nmP3o9hQX5NHqQC4joI5JfxjOchHZfb85Yz9iD2WLaV7sftLfm3Z2Zs7S2kDjm4cYBiGO/eZOx/5e9aNIcv2qGe3g7mgUSkHmgWx5yPH/AbjAMradY0NwLNrR+4I8fEw20mZva458pqQZuuc6s1vHGD/b+5mwvhz0vIcsw20Oj2u17bImruxDvFVQymXQc8AufUamYLM7Ee+aiWXonW1Eb/B2qgFhuUN/miz7A5ks7OzMWnSJERHR0OpVEKhUPD+c7TPP/8cI0aMwAMPPIC+ffsiMjISGzZsEO3zuSlqG3GHYav1oP7BwvYQtnTxZu8es0s0KG3kMBlCWbvrA+rKmlfG3rlab5F19MWvpErLtVSYu/ipFHL4exqi7sLaC0eBlQsH4PiLn61tEFzvwsH+39wJy/hzbhRWQmNmkgsp2Hss2GpJY7elo1pkr+UbWqH8PZXczZsxhVyGQG/+DUVu7X5nrkUWcOZ+ZP7izR7LbEuyrSAwrjYtp7DCcU8nrtoIZNn9pahC2H7k6PNRVkkVKqp1UMplaGYml1Imk1kMooItnFQd3cBhaz+qf1NqLRA3fI5hW94qqkSFhYk6xGbrfMSdU8sFXhMc3LKfUVCBGj0Dbw+F2T4CCrkMIbXnKbZRgL2+Wbypq21kaMyTOmvjyFpb3lB258g+/vjjyMjIwNtvv42oqCiHz4aye/du3t+enp5YvHgxFi9eLNE3Nn5mr6tWWgIBowO+QljrQYCXCmF+auSWapCWW45O9TqDia1Kq+PGlLTUkhZSm1rAjlnK/hZfpfmKc/QBz97lh/up4W/msTxg2A4lVTUorKhGZbWOewxmKRCMC/PBnsu53F291Ni6sn3SFXbhCPdTw1etRJmmBhn5FbxJCKRgaIUSePHjjgXrJ11Ht8hy2yDcfCsUYBgeqaC8GgXl1bzhekItteKE++DotQKHpXik2bh4s2lC7AXPVhDIPp24VVSJq7llCPYJNruemK7kWg9kLQWBlo9lxz4hYvejZiHeFmeCCvZRIa9Mg8KKatTo9CipMuxHlm8ofLADuQ7fjyw9ljfZBjZurIN8PBDs44GC8mqk5ZZzA/hLhWGYuqd0ls6p3vVTC1ysccMo5c/c0xXAsB2ySzQoKK+GTs9wN3fW0iMOXMlv1JNGdixzS+Gh2HGj3YHs/v37sW/fPnTu3FnUgrgqrkW2MYFs7SPDuFDbj4QZhrF54QAMgUBuqQZpeWWSB7LX8yugZwwzX4X5mr8Yh9RrAWFPXr4WWmTZfKj0vHIuH1hKtk5YgGE7XMuvQEF5NbcNlHIZ/CyMqlB30nLsI2FLecpsCkFRheGExW6DQAsXPplMhvgwH5y+WYyruWWSB7LZJRqUV+ugkMvQLFjYo7y6Y8F6TlpeWTWKKqot/lax2GoVBwzH7dXcchRVVHPHg0Iug5+njf3IwakFlm6sg+rtR4U2gkDAsE/eKqpEWm4Z7m4hbSDL3iSw32tO/RsitnXccpqNoS6uF1SgukZvdppkMQnZjwKNjoWiSkP5ZTJYnA2RHZXE8alO1m+sS2rzxbkbayvHaHyYDwrKq3E1t0zyQLagvBrFlVrIZDAZ0YUVVK9Flv0NIWaexgB1n5NfXo3C8mqrx4wYbKX8AfxjoaRSy02EIGWaDdciaymQbfAnm2f30RoTE9PoWa7cSd0UtQ37zQzDIM1Wi2ztDlWt06O8WmezFQpwbFK5cUK85VYo9rE2/xGMj4VbpehAL3go5ajW6bkOPVK6aqMFB+B3TjBuwbH0mx15911jlAtluaOUofx6Biip1BrlyFruNerIYJytp+bB3hYDBdMAxPrTCR+1kuvQ4IjtICQAqTsWqrlWqEAvlcUWk7pj2VGPhK3fWLM54ex+xB7T1gMQx+9HTQK94O1h/gQTVO/pRIGNVqgIfzV8PBTQ6RlkFDjuN1gNQLzrjgX2OAjwUlmcRpfLz3TAcaDXG+X4WriZCPBScYFMUYW27rpmtYHGcS3j7L4aHeBltjMsYHo+stUia3w+ckSerK3OswD/WGB/h5+n0uKTgLpt0IjyszmyFkJWp+fILliwAK+//jquXbsmbklcVGNbZHNLNdxsUs1DzPe89vJQwFNl2BSF5dVGj4QtByBxDgyibD0OBkzzodiTlq/KfMUp5DLuQuqIk1Zdi6zl32DcOcFWRymgLs3iRkGF5DmmbE9ztVLOdTKrT6WQc61++eXVgi4cXF6dA4IoWz2EgbogistJE/B0wpF5stZGLGAZHwu2Hmkbfxb7dEJKhQJaM433owKjICrI2g2RA0fAsNZpkxVcL0/Z1g2RTCbjPu+KQxsHBJyPjLaZtfNRbGjtrJAOGAEjs6QKlVodVAoZYiyMl6qQyxDoVfdo3tbTFcCxeb5pNp5MAEYjCpnkKbvWTZ3V85FRA42Qp73sZ13Pr+BGXrEX2/DnqMxTuwPZRx55BLt370Z8fDz8/PwQHBzM++9OY+mOQig2l6tZsDfUSsud4YKNHiPZyiUCHNs5wVZCPGAcgFTz0iMstcgaf55DfgPXOcTy43PjAIRLiLdy0g3zVcPPUwk9A661VCrGQaCllj2A34JgK0cWcOxj7bpccWFBYI1Oj+JKduQI279B6kCWYRhhLbJGjyNtPdIGgKZB3vBQyKGp0eN27XjTUmFbiay1ZgL1gnEXOx9xIxYIOR9VVEOvF5qu5cjGASGPhGuDQKMAxNo2CHLgCBhsENg8xMdiyx5bJqDeTZ2LtewLaaCp/6TR0qgFxp8n9X5kOB/Z3o+MG2iEPO2N9PeEt4cCNXoGGQUNu65xoxY06N32sztHdsGCBRIUw3U1tkVWyI4GGHa228VVvBYQIY/yruVVSJ5jKjQvEGDzcGq4liVLObKGz3PMAV9do8f12gPSWmpBXX6mVlAQKJPJEBfmi9M3inA1p4w3f7vYhJx0AUN5r+dXIL/MKACx2qpc+xgppwwMw0jaeZPL5wq1vQ0KKwx5gexxZ24INJajWmSNe5pberoC8B8J23qkDRharmJDfZCSXYoruWUWW7jEwKYiWWvBAQzb4TqbLy7gWGCDyozapxPWbtoby9bQWwA/EC+pqssLtLYfOeoJUZmmhhti0eoTIqN0rboAxPrg8vFhvsgvL5A8x5TrZGQhPYUV5OMB5JXXa5EVklpQBr2esXrT3liCgkCjzl46oTdEDurInC8gxxcw6rAm8Loml8sQF+aDc7dKcDWnzGbsYg5jM0nWyZ29Jk+eLGoBXF1jc2TTBDT9A+ZbQKy1QjUJ9IJaaWjFuVlYgeYh0sxGwzCMUWum7cdgFdU63C42tCr5qBVQyi0/4nLUAX89v5ybkCLCwhBIAH/wayGtB4DhQnT6RpHkwXhdAGL9pGIcRBUJOOk2D/GGXAaUamqQW6pBuAjTvFpiT4usceukv5V8LsBxrThCepoD9XLSBFw4AEOdpGSXIi23HANaWV21UYTclAL8G1Mhx0KYA0fAEHJTx5bVuFXJV620GmA7amKH9Nr9NNTXw+o5np+iUjsQv43zUVyYY0bA4IJAG9O2GzcOCEmzaRrkxT2duFVUKe1NnR0NNFodg5uFFYJurEXJMRWAveFqGuRldlxeFi9FRUDjBmD4DedulTT4nOro4bcEpRaUlJTw/m3tP8InuEWWC0DsuWuS/sSbU2q7pzkA+KmVUNbePbPlsXnSDXXMhcPWhBQs4x7zQu68DZ/pmCCKfSQspEUWYPPqbD9GUisV3DiWVyTcDuWaGtyubYWKs9Ii6+2h4DqCsSdqW9uAbZm7UVjBzYIkBaFBoHErjvAbIscfC9bwnk4IOBbYETCMv0MKldU63Kq9wbHWIuvloYBX7cWd3Y+stYoD/G0gZYdmIbniQP0c2doUFQu95VmOShUSfkNklCMr4EmjUiHnnnakSfgbNDVGQ0paORY8VQp4yA37Qmq24TcHeKms3siyjVYZBQ3PMRWiITelQvrfGH+mVMeyUzp7BQUFIScnBwAQGBiIoKAgk//Y5XcaborahqYWCOiYANTtbHllGi4v0NaJt66jjnQHPFv+ZlZ6mgO1A3jX/ga2PNZ6ywN15c8vr2s9lIKQziGA+VYoW8M5OS4AEXZDxP6G/DLhwXicA4JxNmcvxMfDaouMTCbjLnTcDZGN8of6eiDASwWGkfaxsNCnK+Z6CdveBo7pdCd8P2Jz3jVcnq+t7eCImzpDkGm4WQixMBQgi61zdj+yFkABRk8nqmq4WZCkIDhNyGgYNLZFNkRAyz7giP1I4A2RmdZAwY0DEv4GbkhJtdLixEMsNj0utbY8traBcY6plH0n6tI7hDaSCet8ChjPstawbWBzHNkGfaplglILdu7cyXXk2rVrl8hFcA8NiWONWw9sXTjYRxXX88ttjvPGckQQJfSEBRhOvLmlGsEBCDtUSWZxFa7mlqNrc+vrN5SQMWQBSwGIrTvXurw6qXJMhYybyWJ/Q0ZBXQ94a4/BAMNv2HlJ2kdhQnrXsoJ8PJBVUiU4AJHJZEgI90Xy9UJcyS1D22j/xhfYDMFBoJ0dXIw/U8ogsLpGzz1mt/lIuHY/YkfLAGxvB0eMXCBkGD1WkI+Km6TB8Lf18nuqFGga5I2MggpczSk3O6WwGIR09AL4M/UV2JiNicV+ppTjc5dparhZEoWmOt0uqkSV1rAf2bwhCvcBzkt8XWODQCsTm7B8lECBpu46YisQNzyd8MXZW4bxuYXsqw1ha7pvVl2KirZB56OGXNdspRaITVAg269fP7P//jeo6+xlfyjLtkIFeqts7vzB9VozrY3zxnLEozyhF2+grgWZO+BtBFDs5xoC2TJ0bS5Niz77G2ydUNiDu7Sqhptn3tYB3yzEGwq5DGWaGuSUarh56sXEBpi2epoDdfsRuw18PBRW86cAR7WkCd+P2JsH9lgQMqh4fJgPkq8XOiSIEnpDVF6t4+aXF9oqnlemQXGFFgECjh17sTc3Ph4KhNtoharfKu6pklsca5MVF+qA85HAm1Kg7tite0IkbD/KKKhAWl4ZkuJDGlFSy+zdj6q0etyqHWvb0kD8rPojYEiRY8qej0J91RYnZ2Cxv4EN3lUKGXxs7Eeu1kBjGEJShis5pQBsH8vs57KBrFTsTVs0jNleyVtmSWyoD2QyoLhSi/zyam62P6G4UQssBMBOH0d2y5Yt2L9/P/f34sWL0blzZ/znP/9BYWGhqIVzBVwg24D3Cj1hAUYn3Vxhd33Gnyv1ozxAWEta/Ud5tg4W48+V6oDX64UNmQTwB/Bmb0JsbQfjHFOpgii7toE32yJruPAJCgId2JIm1bHAjVwg0X4ktKc5YOicxraE1eVnWv8NvmolN1f6VYkGUr8iYHpdVv0ARMixzI2AUduKIwVbU9MaMzkf2XNOlShdS6dnBM3GBBhuQj1qGzPYR9TBVoZ9AgwjYLQIlTbn3d6ndMbvCfK2PMEMyxHTBdtzY+2r5L/H1s0EYJSuJdF+VKXV4UYhm+Nr/TcYj1Mv9JxqeDphGK+8YdeF2tQCC686fWavWbNmcZ26zp49i5kzZ2LYsGFIT0/HzJkzRS6e87HjyDbkvGzXAe9T18sWsC8INO4dLTahj8GAujJramofRdpx4ZDqpCV0yCSAP4C3PdtB6pZxe7YB2xlEaHoKUNeSdquoEpXV0nSWEjJiAcu4x7nx39YkSByMC+1pDtTmi5v8BgFPJ8KlHf6pITcT9myD+iNgSEFovjtg7jcI2QbStgbeKqzkpsBtEmR+YhOWTCbj0oLY3yCsVVnac+pVoxsiW9indFz5BVwT2OtaTqkGJVXahhbTKiGT/LDY7LKy2kkm7LquSXRTej3fMIKCv6cSoQIC6+B6x4KtlDmgcQ1ldS2yFlZwdotseno62rZtCwD49ddfMXLkSHz00UdYvHgxNm/eLG7pXEDdhrA/krXrsXy9E5SQk663hxLREk6HV1FdIzjHFzA9wAVdOCR+jMRe+FqEWh+4m1W/1cYVWsYb0gLCEtIKFezjwV0wpRhIXadnuM8VlqJSfxvY3o8SwgzDPaVJNDuW0J7mrPplFrIdpB7Fw74ba1W9v22XX+oRMGp0em4/sjYZAsvkfGTXsSzRNqg9T8eG+AjKX63/G2yNWgA44Dc04IbI0t/m+HuquNQXKYJxoRMJsHyU/POJrVZxgN/pToqnE0KmjTdWf98X1kDT8P2oLkfWQmqByJGs3YGsh4cHKioMTdr//PMPBg8eDAAIDg6+I4ff4saRbUiLrB35XA056QLSjsVqPPyRkPLUb6kSFATWHvAZjZgOzxohU9MaMw4EPZRyeNvI5wKkT4+wL0+53jYQcDPBdk4wfJf4v+F2USU0NXp4KORoGmQ7Z69+mW21gAJAkyDDuMrVNXpuWB0x2dOCA/AvFEq5DH5q290R4iUeuaAhT1e4v4WejyS8qTMMZ8TAU2V5mmZj9W+khbRmssfyraJKSYZys+fJBMDfDh5Kuc38UuPPlno/sifdzNLflkg5ckFOqQZlmhrDkJI2ntIBppP62Bq1AABahBhyTEuqapBXJv7TUntiC4Bf7zIZbOY2A40buYCx0dvL6TmyvXv3xsyZM/H+++/j6NGjGD58OADg8uXLaNq0qbilcwHc8Ft2vk9v1Aol5ICv37NcyEkXkPbu254WHMBMK5SAIErqoUrs6eUM8C/YwQLyuQBpH+VpanRcvquQ1kB/z7rxfAF7AhDpgnH2M1uEegtqhWpIqzg7O5bx94nJnpsJgF/mIB+B+5GEj7WNp9cVsh8Z54sDwm6IDJ/duGF7rGG3QVyo9WmaWSatUAL2oxCfuqHcpHg60Zj9SOj5qK5lX9qnK0Jaxf09VTDeVLaGlGRx+5EETxqNh5QUMgOdd717UCH7kadKgZjam3ZJr80NuCEK8FJBKeDpZKNSC2zkyIrN7kB28eLFUKlUWL9+PZYuXYomTZoAADZv3oz7779f9AI6W0NbZDNLqlCp1UGlkAnqOeqpUvDutl0jAKm7cAjRkMdIhmlepfsNQofeYhnfQNjbCnWrqBIV1ZZnMmuIjPwKrqe5tVnJWMbj+QLCb4ikHEu2MRdvQNh+BEg7Va09j1MB0xsiIdjPvi7B04ncMg1Kq2ogl8FmrjhgGJjeuNXGFVpkhUxNa6x+vQu5IZJ6Ygd7Om4C/MBPaGsm+9nGY5KL5WZhBap1eqiVckQLaBWXy2W849fuBhoJnjRy28DG9Los33qpBUJaZAFpn9Q19oZICPazGzLRjK0cWad29qqpqcHu3bvxzTff4PTp03jyySe51z7//HMsWrRI5OK5gAYOv8Xe9TUPEZabCdS7+Nl54ZCiNTDNzru+xj5GkuI3CB16i8XfBsJaD4J8PLjfKvZvMJ4KUuhYfo0JxqV4lGd3EFjvRBsmcOgXqQJZe3qas4yfRghthTJ+OiF2egQbEMQEe9scjo1lvB8JPpYl7HRnbyBbf6B7oTdEUgZRaXYeCw3ZBn6eKu6mV+yWcfZYjg0VluML8M9BQtKEAGmfTgidXpdV//B19nWNYRi796OgBlwTQn094O+pBMMA1/Lt+w22c2TFZVcgq1Qq8eyzz0KjkW7WE1fDtcja+T57H8sD/J1N+F1fbStOQQWqa8RtxbH3rs+4/HKZ4TG3EFKlRxRXaJFXO0OP0N/Q1KgnsdALn+Hz2UdhYgey9p2wgHp333a27KfnlUMvcmcpe/MCjcvsq1bC30vYfiTVEFz29DRnBTUgAJHz0iPE3Y/qpjgWvh81KAAxejoh9ggY9gy9BcCkxdDWxCAsqYIow/mIndikITfW9pyPpGkZT7MzCAT4wbjQcW3Z89G1/HLUiPx0wt5rs0+904/deb4i70fZJcbTxgurT+Mhw4Sk/AG1Tyca2AfH9sxeTu7s1b17d5w8eVLUQriyhk5R25AAxMuopaR9kwBB74nwV8PHQwGdnkFGgXgnLb3e/rs+4wNcz0BQHpvx54t9wF/JNQxgHRXgCR8BnW2MywLYF8hyeWkit0Q15IaIl58p8DfEBHtDpZChUqtDZu0g/mJhg/uGpKgYcjXt3I9E7inMtUIJ7GkO8LeBPYPSS3UssBcioY9TAfAukkIfRwb7eHAXSjHzGxmGQZqdaUL1j3mhT8bYOhI7P5MdsSDS3xO+As9HDbkpBSTcj9jzkR37kfHkHkLPY9EBXvBUyaHVMbhRO4i/WOzp9AiYBrJCn2hIlaLCfl5zG9PGG2tnNNuh0JtSoO6c3dCWfYuBrLM7ez3//PN4+eWX8eWXX+LQoUM4c+YM7787TV2LrH0XxrqencIDWXaoK8AQfAlhfNd0RcRHYbd4Pc2FtUL5qJXo1NQQgLezY5pQqYYqYS/e9kwRaHyi9VYLO2EBRr9B9JOW/ftRQy5+KoUczUPE7+1cXKnlxhQVmhdoPIOUrdmkjMWG+kBe21M4t0y8p0b2dqwA+DelIztGC36fVCkedb9B+H40omMU92+hrZmANAPaZ5doUFrb05wd8F8qxq1QYj6dsPfJBNCwln3AKD9T7P3IjjFkWRqjJ4VCb+oMTycaF0SZY++QkgCgkIMbq3VkJzuO5do6ulko7ggY9g4FCIA3bXdZlfB+HA29rnE5sg7q7iXsttDI+PHjAQDTpk3jlslkMm4+Xp1OmgHVnUXWwNyChrSk8b9X+A4QH+aLMzfFnQ6PbUVrHuItqIcj6+dnkvDDwWvo1iJY8HvqD1VSP7etoa40oFXc+LtLKu044CV4lFej0yM129CqnGjHhcP4caTQ/EzA0BJ1JacMV3LK0LdlmPCCWsFehCL81fDztH/aVSHDn7E8VQrEBHvjen4FruSUIdxPnOmC7U2xAYCOMYFQymWIDvRq2E2dVC1pdvyGvi3D4OOhgFwmbJgiFjddsIi/4WKWYWjHuFAfQT3NG6NZsDeUcsPTiaySKkGdmoRgz0dCn0wADW+RTQw3jKvM1ptYGrIfGU/WI7RV3PAdPriYWYKruWUY2CZCeCGtqJupTiU4VxQA5o9rj4zCKkzs2Vzwe0J8DDmmJVU1uJZfjtaRws8D1jTkhsj4mLGnI2lDr2vcqAUOGrbA7kA2PT1dinK4LG5mLzveU1qlRXYJ2wol/ICf/2BHvLLuNN4f3d6eItblZ4oYRNk7Th3LU6XAM/3iAQBarbAes+x0eDcKKpGWWyZeIGvHLEAs4xsIoS3RAP9RXkV1Dbw97D60TFzOLkNFtQ5+aqV9ObLGHY3seIzUOsof2y5k49ytYrvKaU1KliEQt+fibcxL4GM8VkKYL67nV+BqThl6xYc26Dvra8jFu0mgF3a90h/+dqRGGH/H1dppXu15ryVVWp1RK5Twi59KIcfeVwdAq2Pgb8dNCPsbxOx0dynTsB+1jrIvGPD2UKDCzlxdw9MJb1zNLcelrBLRAln2uGod5Sf4PcbBltB+EwDQMSYAMhlwo6ASeWUahArsMGlNZnEl8muD0lg7UgtaR/rhbAPOKVJ0urO30ybrnsRQqFT23YizT0tPZhThao54gWxDf8P8Bzpi4Y5UzLivpeD3GF/X7Dkf2XqwKnaAa/fVNiIiAp6e4rR0uAMZN2qB8PccTS8AYEgPEDLwMKt3QigOzR5oT/EA1AXLp28WYcu5LLPreHsokBQfwrsjPnerGDfN5h8xWJd8E4B9d32NER/mixsFlbiUVYoecSGifCY3hqydB/zPT/fElvNZmNK7heD3NA/xRvMQQ2vglzuvoGPTQJN1PFVy9IoP5eU16fUM9l/JM3uxPZyWDwDoFBMoON8YAIJrL1p+aqVdLSBdmhnKfPJGkeD32HLgquE33N0iyK73tY3yx4XMEjxyd4xd70sI98WOSznYczkPYWZaZL08FEiKC+FtA52ewZG0fJRU1UCnq8HpfBmUF7KhUChRpdXhZEYhAPsCEMC+3FhWbKjh6URxpRYF5dUIESEAScstB8MY8o3tadUD0KDvZ4PNPZdzselsJuS1J1Hjug0P8Ea35kG8C2NltQ6H0vJQXWN6st2Xmmv47Ej7tsFz/eLx6fbLuK+tfS163ZoH42puOQ5eyce9rRvfGqjTMzh9wxDMdYkRfizwR78Qvu38PVVICPNFak4Zfjx0HW3M3AAEeKnQMy6Ytw0qqmtwOC3f6jbo3iJYcJ8DAHh9aGt4eyjwsJ3HshSd7lJqW6jtDQIbKj7MEMj+ePiaxfz6+DAfJEbU7ddVWh0OXc3npWQYu1h7U2fv096H746xexs0D/GGWilHRbUO526VoENTYX136obfcszMXnYHsuHh4Rg7diwmTpyIgQMHQi63O83WLVXWy3E5mVGItUdvQGcmwj1zswgAMLR9lMlrUjAedujZn5ItrvfGsNZ4uq+htTQ1uxQjvthv9XNlMqBfy3DxCmrF3S2CsTslF0t3X7V49969RTDvQDx7sxirjlzn5o+ujx3CyN5gvEdciN3BtEwmw5jOTbBwRyqW7L5qcb3pgxIxfVDdHfHSPVfxv60pVj+7c0ygXWUJrb3ghQiYzpL3PbXBd3peOWb+cooLQIx1ahqASUkteMv+OnMbu1NyzX7m7ks5AIA+ifalKqz+bw+cu1WC3gn2bQf24vfPxWz8czHb7Drdmgfhp6d6cJ02Npy4iVnrjfP7Ffj+8mnee+5JDBWtRcUaT5UCTQK9cLOwEo99f9RsACIDMLZLE/RKqGtx3nIuy+LvPVEbiMeH+YjSwmtLn4RQtI70w6WsUjy/6kS9V+vqduUT3bkUlqKKajz81SFczrYetLSx82biuf7x6BQTiLua23cj1ScxFD8fv4HfT99GkZmxWGUAhneMQv9WdedHvZ7B0j1XzU6kUKnVoUxTA28PBVpG2NcB2EulQKVWx+VpCtWlWSBSc8qwcEeqxXXmP9gRD3erO6d+8PdFrD6SYfVzx3RpYlc5QnzVeM/Op4xAXae7C5kleGXdabPreCjleLJPLC8w/XZfGi7VPgmqjz1G7o4VnvrWGPe2Dsf65Js4nFaAw2kFZtfxUMix//UBXCrU/7am4Lv9tp98N/Qplz1UCjkGtY3A32cy8ebGs2gZYXr8qRRyPNG7BS8Yr6iNlyydbZzeIvvDDz9g9erVGD16NAICAvDII49g4sSJ6Natm7glcxFsC8aS3VcwqE04dyF4a+M5nL9tPf9o3F32HfANlRjui8d7tbD4SDivTINr+RU4mVHELWNb3QK9VWZbLD2UcjyW1ALdHXTAT+7VAssPpCOrpArra1uD6/v1xE0MaB3OpR58tOkiDtW2WloS5qcWPA5pY03u1QIXMkt4OWGs0qoapGSXYvuFbC6QLaqoxpJdVwAA7Zv4w9NM7p+/lwrju9t3F92tRTAeuKsp7km079F6kI8HWkX4ISW7FBtO3DK7zvrkm0gI90NSvCHALCyvxoyfT0Grs/zIIsBLxbX2ChXo7YE+dpYfAO5vH4ldl3K4DmbG9AyDExlFOH69ENsuZGNUbceNA1fyABhyI8N8PVBQWIjgoLrWQm+1Eu+Namd3WRrqmb5xePv38zh/u8TiOeZIegH2vjoAgCGAevmXUyi38ghdLgP+e0+cJOWtTyGXYd4DHTF/6yVotHWtSgzDoKCwEJUyT2SVaHDgSh4XyK5PvskFsV2bB5m9AMYEe6NPgn03REqFvEH53r0TQuGhkCO3VGPxfLT9YjaOvjGIa93/88xtmzelXZsH2dXnQCaT4bX7WyEtr9zuVsQn+sQis7jK7DBo7Pno020pGNO5CTyUcjAMg+0XDIFeu2h/s2k9UYFeGGtnINtQ8WG+8FQZWgMtbQMAKNfUYOH4LgCAi5kl+ODvi1Y/Ny7MB2M6C++01RjDOkRh/oMdsT75ptmOgylZpSjV1ODszWIMbGMIZNknQInhvhaf6PZJDLWrhb4xHuzaFH+fycSZm8U4c9N8jJFVXInlU7oDMOTgfrsvDYDlob7Evp22O5AdO3Ysxo4di9LSUqxfvx5r1qxBz549ERcXh4kTJ+Kdd94RuYjO9frQ1hj15QGczChCTqkGEf6eyC3VcBeYVwa3NHtiig/zFTyEVmPJZDL8n5UL7e6UHDy+/BjvEQ2bvzamcxOr73UUX7USPz3VA3tScs3mI/946DpuFVXi1I0i7jFhao7hrvupPrEItZBX2ych1CGtUIDhpuebx8zf0OWWanD3h//g/O0S5JdpEOKrxomMQpRX69AixBt/TO1jV/qANR5KOT59uFOD3rt4QhfsuJhjdhscTS/Azks5+GJnKhfI/nXmNrQ6BrGhPhbTAJLiQuxKcWgMf08Vlk7savH119afwc/Hb3Cd6IC6m7oPxrRHUmwgNm3ahGHDutudEyeWSUktEBfma/bJhE7P4H9bU5BRUIGSKi38PVW4WViJ8modPBRyzBxsPv+tR2wwujSzr1WyMTrFBGLVUz15y7RaLTZt2oTKyAS8/tt53o315drtMe3eBMwc3Mph5bQk2McDPzzRHadrn67V993+dOSWarArJQdD2kUCAL7YabgpHdkp2mwHP6VchvvbR9pdlsd7x9r9HgBoHemPH5/sYfY1TY0O3T/cgewSDS5nl6J9kwCkZJcit1QDL5UCG57vJXmnOlu8PBRY+UQP7olCfdfzy7Hm6A1eK37ydcO6LSN8Me6upibvkcuAIe0i7bqZaKyHu8XwWr2NTV97EhtP3calrFIMbBNRO5W0oUV/0aNdzD6RcbT+LcOwcHxnZBabDstYUqnFkt1XcTitAJoaHdRKBS5mluB6fgUUchleGmT+fCT2NbnBPVL8/PwwZcoUTJkyBRcuXMCECRPw3nvv3XGBbMemgYgN9UF6Xjmu5pQhwt8TB68aWnDaRvnjhXsTnVxC29g7+Wt5hulOFXIZdyG3Z2gqqbWO9Lf4+DY9txw/H7+BkxmFuK9tBIoqqrnBxWfc19KunC1nCPNTc49bj10rwP3to7hODO2aBIgWxDZWQrgfEsLNP74d0CocOy/l4OzNYi7xf/tFQ+rAf7o3w3/7OqbFrzESI/h5d/llGlzPN6SgdLIzhUNKvRNC0TvBfIv0T4evI7O4CilZpbi7RTA3XnJcmA+ere1o6crYIfrO3CqCVqeHSiHnLt6JZh5dOktSfAh3w1ZfQXk1vt6bhu0XsjGkXSTKNDVc48CcUe0c1lrWUGqlAq0i/HD0WgGu5pahfZMArm9H99hgpwexrO6xwRafCl7LMwSy6Xll0OsZyOUy7ubo/naRbnEstInyx8ZTt3Eh09AwVlBejeJKLWQy+zrUSUkmk2F0Z/Ot8AzD4JfjN5FXpkHy9UL0ig/lzq3dmgc57Dc0+LakqqoKv/zyC8aMGYO77roLBQUFmDVrlphlcxn1BzZmD5aeInVKklp0oBfUSjmqdXrcLDRctNmhYOwZ1smZuI5ItXXPXvii7ZjswNnYsfzYsjekN7wztQj1hlwGlGpquEf37OgWdzUPdGLJhGNzaNkRPtiOEy1CvO3qmOlMbCvNpdqLX2q2fTNeOVtcqA98PBSo0uq5fFJ7J19xtrtqz0dsg0B67f4U6uvh8kEsq26oN0PZ2UC8rR3DxTlT0yAveCjkqNLqcbvY0Gn51A1Di2xnO1OZnKV1vWOZ3RZNAr0ET7zgTDKZDD3jDDcabGdGIWMNO3WKWgDYunUrJk+ejIiICDz33HOIiIjAtm3bcP36dXz88cciF8811B9LjR3+wp6kfWdS8Ka+NAwPxY5W4EotINa0iza04rDpBA0ZFNrZ6g9239ixhh1NrVRwsz1dqd2P2GGdHNHxQAzx7CDreeXQ6Zm6kS0stEK7Irbn/sXaDi2pOexNqXv8BrlcZnRDUYaC8moUVhg6VLlKK5Qt7P5ypXYSF3c8H3GzEebWPx+5x29Q1g6TBhiuzZoaHXdjxF4vXB0bQ1zPr4BWp3e7bQDUnXfS7NmPnD2z19ixY1FZWYmVK1ciKysLX331Ffr27StuqVxMXL0W2asNGJ/U2Yxnq2GH4wn28bB7OB5nYbdBXlk1iiqqjaYZdI8LH2A6baS9UyW6AuObOrb8wT7u0wrVJMgLHko5qmv0uFVYWdcS6KBh5sSQYBQEAkaBrJvcWAP8/Yg9HpoEetk1k5szNQ8xTJpQXq1DZnGVWwYgxjMqGv7vxufUnDJcz6+AnjH0twgXaSxyqUX6e8LbQ4EaPcONfw246X5U77omdCZHMdj9TDY7Oxt+fu5x5y8WdqdKyy1HZbXO7inuXIFxEBXqZwg63OVRJGCY/jYqwLP2olF38XOnm4kEo0d5heXVDRpc3Nniwnyw45IhiPL3NJw+3OnCp5DLEBfqg0tZpbiaW9agWbucrf6kCVdz3CtNCOCna7ED/bvTsaxSyBEb6oPUnDKk5pS59Y11el45Sqq0yCoxdOZxp1bl+HAf4LxhP2KndXfUMHNikMlkiK/t2Gk4H7nfjbXx+UinZ7hWcWvjtzu9s5efnx90Oh02btyIixcNw1y0bdsWo0ePhkLhHnfT9mI31K2iSpy/bcgDCfK2f3BxZzKe/YsdX9SdLnyAYTtkFlchzfiAd6OTbrNgHyjkMpRparhhw9wpxxfgn7TYKWfdaRsAhvLWBbLutx+xLR25pRpczi5DmaYGCrkMzUPc8+LHBbJuFAQChhbw1JwypGaXuuV+1DTIGx4KOTQ1euxPNXRgDvVVu02uOMBvoGFnYHOnbQAY9ns2kGXTFt0lVQvgT+Jy6kYRqnV6qJVyqzPiOT1H9sqVK2jTpg0ee+wxbNiwARs2bMCkSZPQrl07XL1qeSB4dxZk9Ah+e+2Ayu53sNQd8GznEHcLZNkLeEpWKTJqe5q703bwUMq5HFN2vEZ3aoUCjFNU3DMIBOr2o7O3irkhZdwpiPLzVCHC3/DodOt5w0x+LUK8ebOVuTouRzanrlXcnVoCgbo82cvZpQ2eNtSZjPtOcOcjNzoOAP7TUndM+QPqfsPFzNIGT+LjTOwU8wCw7YLhfBQb6mNxJjNA/AkR7D7zTZs2DfHx8bhx4wZOnDiBEydOICMjA7GxsZg2bZq4pXMh7AHOHvCOzP8QA3vCyi+vxrFrhmFW3KWjF4s94Hem5KBGz8DHQ8Fd0N2FyX7kRmkFAP/pxIXasZTd6aQL1P2Gf2q3QYiPBwK93efpClD3G9gpqd2loxereUjdCBhHap9OuFsQxaZm7bmci+oaPTyUcjQJstwK5YrY69i22hsidwsC2fLnlGpwqnY8aHfbj9g633kxG3oG8PNUOmwSH7GwLcjOaqCxO5Dds2cP5s+fj+DgurHdQkJC8PHHH2PPnj2iFs6VsBvKHTvoAIYc0+jaHCK2h7A75cgC/LtvwNCC4y65UCz2N5Rpagx/u9k2CPbx4GZrSXfDx2BA3TZgZ8Jyt2MZqCszO/6kO3X0AgwjYMTUPp1gt4O1nDpXxD7Ryi4xDEUXZ6MVyhW5+7Hg56niOnZxj+Xd7DewwbjxNnDX6xoXH9looHF6aoFarUZpqek8xmVlZfDwcK9WDXvUb3VytwMe4AdNfp7u07OTVb8V3N3uvAFzv8H99iPjC4WHQs49VnIXJtvAzVqUAdPf4G43pQB/3/dTK7mpp91FbKgPjONWd3tKB5ju+275G4z2I7kM3JBc7qJFiA/vUbs7XhNM4iNb5yORA3W7A9kRI0bg6aefxpEjR8AwDBiGweHDh/Hss89i1KhRohbOldTfudytJQ3gP8ZODHe/uz52qBKWOx7w9ccrdcffYHwD0SLU26HTPYqBHQGD5Z7bgF9m9wxk6/ajODc8H3mqFLwOdnfCfuRu/SYAfhDVLNjbZWYlE8pTpUBMUF3w7e43E+b+rs/pLbKLFi1CfHw8kpKS4OnpCU9PT/Tu3RsJCQlYuHChyMVzHcYbxletRIybtUIB/OC7pZvlxwKGgdSND3J3e4QEwGQOdnfL8QX4x4IrzAXeEMaBbGcXmppWqPo30u4YRHVpFsT9291yxVnG9e6O24D3dEUpRxMrPc1dlXFqkztuA4B/I+qOv6FNvanlbQ0pKfY9q93j/gQGBuL333/HlStXuOG32rRpg4SEBHFL5mKMH5+6YysUAHRoYpjtRCmXYUrvWCeXpmHGdG6Cc7fcs5MRAJNpB92tFQrgn2hbR7pnIKvTM9y/uzYPsrKma4ry90SgtwpFFVq0jPB1i+ks67u3dTj3b5XC/Y4DwJCb/I+bjmQDGBplWP6eKrc8Hxk3bozu0sSJJWm4Z/rGYeelHMhlpo0d7iDAmz9km60hJWUit8kKDmT1ej3+97//4Y8//kB1dTUGDhyId999F15e7ncH1xDGgWvP2BAnlqThujQLwo9PdkdCuC+iAtxzu03s2Ry/n7qNKq3O7ToZsVpF+CEluxShvu6ZU27cGtgq0j23wav3t8bk74/i/THt3fLiLZfLsO6ZJCRfL0TvhFBnF6dBPFUKzBjUEkt2X3HbG2vjR/Hu+EjY2N0t3O+GDgDuah6ESH9PJEb4YkSHKGcXp0F6xIVg1yv9kVuq4TpBupv+rcKwOyXXKd8tOJD98MMP8X//938YNGgQvLy8sHDhQuTk5OD777+Xsnwu5atJXbH1fBZm3NfS2UVpsHsSw5xdhEbxVCmwcWpvyGXu2ZoJAN9O7oaPNl3Ei/cmOrsoDWKcVuOuLbK9E0Jx+YOhkLtZL3NjiRF+bjeEXn3TBiZg2sAEtz2W20UbnnI1D/F2q4lNjK35b0+sOnId749u7+yiNIi/pwoHX78XANz6eI4N9XGrWR7r++ShTvi/P85jYs/mNtd1WmrBypUrsWTJEjzzzDMAgH/++QfDhw/Ht99+C7nc/R6zN8SQdpEY0i7S2cX413O3IW7qiwn2xtKJXZ1djAZTKuRY92wSyjQ1VmdvcXXufNG7U7hrAMtqFemHJRPucrue8saS4kOQFO+eTxlZdCw7X6ivGl/+5y5B64q9tQQHshkZGRg2bBj396BBgyCTyXD79m00bdpU5GIRQlzZ3S2Cba9EyL/AMDd9nE2IszhtZq+amhp4enrylqlUKmi1WnFLRAghhBBC7lBO6uzFMAwef/xxqNV1wwVVVVXh2WefhY9PXV7Hhg0bRCvc3LlzsWHDBly6dAleXl7o1asX5s2bh1atWvHK8PLLL2Pt2rXQaDQYMmQIlixZgoiICNHKQQghhBBCGs9pLbKTJ09GeHg4AgICuP8mTpyI6Oho3jIx7dmzB1OnTsXhw4exfft2aLVaDB48GOXl5dw6M2bMwJ9//ol169Zhz549uH37NsaNGydqOQghhBBCiOsR3CK7fPlyKcth1pYtW3h/r1ixAuHh4UhOTkbfvn1RXFyM7777DqtXr8a9997LlbNNmzY4fPgwevbs6fAyE0IIIYQQ85w+s5czFRcXAwCCgw0dTZKTk6HVajFo0CBundatW6NZs2Y4dOiQU8pICCGEEELMc/rMXs6i1+sxffp09O7dG+3bG8a7y8rKgoeHBwIDA3nrRkREICsry+JnaTQaaDQa7u+SEsNMUVqtljqviYitS6pT8VHdSoPqVTpUt9KgepUO1a17cJtAdurUqTh37hz279/f6M+aO3cu3nvvPZPlu3btgre3+44H6Kq2b9/u7CLcsahupUH1Kh2qW2lQvUqH6lZcZWUa2yvZwS0C2RdeeAF//fUX9u7dyxuzNjIyEtXV1SgqKuK1ymZnZyMy0vLEBbNnz8bMmTO5v0tKShATE4MBAwYgJMS9B4Z2JVqtFtu3b8d9990HlUpl+w1EMKpbaVC9SofqVhpUr9KhupXGogvbRP08lw5kGYbBiy++iN9++w27d+9GbCx/Pu6uXbtCpVJhx44deOCBBwAAKSkpyMjIQFJSksXPVavVvGHEWCqVinZWCVC9SofqVhpUr9KhupUG1at0qG7FJXPWOLLOMHXqVKxevRq///47/Pz8uLzXgIAAeHl5ISAgAE8++SRmzpyJ4OBg+Pv748UXX0RSUhKNWEAIIYQQ4mpE7u3l0oHs0qVLAQD9+/fnLV++fDkef/xxAMDnn38OuVyOBx54gDchAiGEEEIIcS1iD7/l0oEswzA21/H09MTixYuxePFiB5SIEEIIIYQ0mLNm9iKEEEIIIaQxnDZFLSGEEEIIIY0hdmcvCmQJIYQQQohbokCWEEIIIYQ4xPuj2oj6eRTIEkIIIYQQh4gP8xX18yiQJYQQQgghbokCWUIIIYQQ4pYokCWEEEIIIW6JAllCCCGEEOKWKJAlhBBCCCFuiQJZQgghhBDiliiQJYQQQgghbokCWUIIIYQQ4paUzi6AK2AYBgBQWloKlUrl5NLcObRaLSoqKlBSUkL1KjKqW2lQvUqH6lYaVK/SobqVRmlpKYC62KuxKJAFkJ+fDwCIjY11ckkIIYQQQu58+fn5CAgIaPTnUCALIDg4GACQkZEhSqUSg5KSEsTExODGjRvw9/d3dnHuKFS30qB6lQ7VrTSoXqVDdSuN4uJiNGvWjIu9GosCWQByuSFVOCAggHZWCfj7+1O9SoTqVhpUr9KhupUG1at0qG6lwcZejf4cUT6FEEIIIYQQB6NAlhBCCCGEuCUKZAGo1Wq8++67UKvVzi7KHYXqVTpUt9KgepUO1a00qF6lQ3UrDbHrVcaINf4BIYQQQgghDkQtsoQQQgghxC1RIEsIIYQQQtwSBbKEEEIIIcQt/esD2cWLF6NFixbw9PREjx49cPToUWcXye3s3bsXI0eORHR0NGQyGTZu3Mh7nWEYvPPOO4iKioKXlxcGDRqE1NRU5xTWjcydOxd33303/Pz8EB4ejjFjxiAlJYW3TlVVFaZOnYqQkBD4+vrigQceQHZ2tpNK7D6WLl2Kjh07cuNDJiUlYfPmzdzrVK/i+PjjjyGTyTB9+nRuGdVtw/zf//0fZDIZ77/WrVtzr1O9NtytW7cwceJEhISEwMvLCx06dMDx48e51+ka1jAtWrQw2WdlMhmmTp0KQLx99l8dyP7888+YOXMm3n33XZw4cQKdOnXCkCFDkJOT4+yiuZXy8nJ06tQJixcvNvv6/PnzsWjRIixbtgxHjhyBj48PhgwZgqqqKgeX1L3s2bMHU6dOxeHDh7F9+3ZotVoMHjwY5eXl3DozZszAn3/+iXXr1mHPnj24ffs2xo0b58RSu4emTZvi448/RnJyMo4fP457770Xo0ePxvnz5wFQvYrh2LFj+Oqrr9CxY0fecqrbhmvXrh0yMzO5//bv38+9RvXaMIWFhejduzdUKhU2b96MCxcu4NNPP0VQUBC3Dl3DGubYsWO8/XX79u0AgIceegiAiPss8y/WvXt3ZurUqdzfOp2OiY6OZubOnevEUrk3AMxvv/3G/a3X65nIyEjmf//7H7esqKiIUavVzJo1a5xQQveVk5PDAGD27NnDMIyhHlUqFbNu3TpunYsXLzIAmEOHDjmrmG4rKCiI+fbbb6leRVBaWsokJiYy27dvZ/r168e89NJLDMPQPtsY7777LtOpUyezr1G9Ntxrr73G9OnTx+LrdA0Tz0svvcTEx8czer1e1H32X9siW11djeTkZAwaNIhbJpfLMWjQIBw6dMiJJbuzpKenIysri1fPAQEB6NGjB9WznYqLiwGAm586OTkZWq2WV7etW7dGs2bNqG7toNPpsHbtWpSXlyMpKYnqVQRTp07F8OHDeXUI0D7bWKmpqYiOjkZcXBwmTJiAjIwMAFSvjfHHH3+gW7dueOihhxAeHo4uXbrgm2++4V6na5g4qqur8dNPP+GJJ56ATCYTdZ/91wayeXl50Ol0iIiI4C2PiIhAVlaWk0p152Hrkuq5cfR6PaZPn47evXujffv2AAx16+HhgcDAQN66VLfCnD17Fr6+vlCr1Xj22Wfx22+/oW3btlSvjbR27VqcOHECc+fONXmN6rbhevTogRUrVmDLli1YunQp0tPTcc8996C0tJTqtRHS0tKwdOlSJCYmYuvWrXjuuecwbdo0/PDDDwDoGiaWjRs3oqioCI8//jgAcc8FSpHKSAiR0NSpU3Hu3DleThxpnFatWuHUqVMoLi7G+vXrMXnyZOzZs8fZxXJrN27cwEsvvYTt27fD09PT2cW5owwdOpT7d8eOHdGjRw80b94cv/zyC7y8vJxYMvem1+vRrVs3fPTRRwCALl264Ny5c1i2bBkmT57s5NLdOb777jsMHToU0dHRon/2v7ZFNjQ0FAqFwqSHXHZ2NiIjI51UqjsPW5dUzw33wgsv4K+//sKuXbvQtGlTbnlkZCSqq6tRVFTEW5/qVhgPDw8kJCSga9eumDt3Ljp16oSFCxdSvTZCcnIycnJycNddd0GpVEKpVGLPnj1YtGgRlEolIiIiqG5FEhgYiJYtW+LKlSu0zzZCVFQU2rZty1vWpk0bLm2DrmGNd/36dfzzzz946qmnuGVi7rP/2kDWw8MDXbt2xY4dO7hler0eO3bsQFJSkhNLdmeJjY1FZGQkr55LSkpw5MgRqmcbGIbBCy+8gN9++w07d+5EbGws7/WuXbtCpVLx6jYlJQUZGRlUtw2g1+uh0WioXhth4MCBOHv2LE6dOsX9161bN0yYMIH7N9WtOMrKynD16lVERUXRPtsIvXv3NhnW8PLly2jevDkAuoaJYfny5QgPD8fw4cO5ZaLusyJ3SnMra9euZdRqNbNixQrmwoULzNNPP80EBgYyWVlZzi6aWyktLWVOnjzJnDx5kgHAfPbZZ8zJkyeZ69evMwzDMB9//DETGBjI/P7778yZM2eY0aNHM7GxsUxlZaWTS+7annvuOSYgIIDZvXs3k5mZyf1XUVHBrfPss88yzZo1Y3bu3MkcP36cSUpKYpKSkpxYavfw+uuvM3v27GHS09OZM2fOMK+//jojk8mYbdu2MQxD9Som41ELGIbqtqFefvllZvfu3Ux6ejpz4MABZtCgQUxoaCiTk5PDMAzVa0MdPXqUUSqVzIcffsikpqYyq1atYry9vZmffvqJW4euYQ2n0+mYZs2aMa+99prJa2Lts//qQJZhGOaLL75gmjVrxnh4eDDdu3dnDh8+7OwiuZ1du3YxAEz+mzx5MsMwhuFL3n77bSYiIoJRq9XMwIEDmZSUFOcW2g2Yq1MAzPLly7l1Kisrmeeff54JCgpivL29mbFjxzKZmZnOK7SbeOKJJ5jmzZszHh4eTFhYGDNw4EAuiGUYqlcx1Q9kqW4b5pFHHmGioqIYDw8PpkmTJswjjzzCXLlyhXud6rXh/vzzT6Z9+/aMWq1mWrduzXz99de81+ka1nBbt25lAJitL7H2WRnDMEwjWowJIYQQQghxin9tjiwhhBBCCHFvFMgSQgghhBC3RIEsIYQQQghxSxTIEkIIIYQQt0SBLCGEEEIIcUsUyBJCCCGEELdEgSwhhBBCCHFLFMgSQgghhBC3RIEsIeRf5fHHH8eYMWPses+KFSsQGBgoajmuXbsGmUyGU6dOifq5Ypdh9+7dkMlkKCoqavT3TZo0CR999FGjP6chevbsiV9//dUp300IkQ4FsoQQ4gQxMTHIzMxE+/bt/xVlOH36NDZt2oRp06ZJ/l3mvPXWW3j99deh1+ud8v2EEGlQIEsIIU6gUCgQGRkJpVL5ryjDF198gYceegi+vr6Sf5c5Q4cORWlpKTZv3uyU7yeESIMCWUKI061cuRIhISHQaDS85WPGjMGkSZMsvu/s2bO499574eXlhZCQEDz99NMoKyvjXtfpdJg5cyYCAwMREhKCV199FQzD2CzPihUr0KxZM3h7e2Ps2LHIz883WWfp0qWIj4+Hh4cHWrVqhR9//JH3ukwmw7fffouxY8fC29sbiYmJ+OOPP7jXzT3WP3fuHIYOHQpfX19ERERg0qRJyMvL414vLS3FhAkT4OPjg6ioKHz++efo378/pk+fbvG3tGjRAjKZzOQ/S2XYtGkTWrZsCS8vLwwYMADXrl3jfV5+fj4effRRNGnSBN7e3ujQoQPWrFljtT51Oh3Wr1+PkSNHmpTtgw8+wGOPPQZfX180b94cf/zxB3JzczF69Gj4+vqiY8eOOH78OPceNs3jr7/+QqtWreDt7Y0HH3wQFRUV+OGHH9CiRQsEBQVh2rRp0Ol03PsUCgWGDRuGtWvXWi0rIcTNMIQQ4mQVFRVMQEAA88svv3DLsrOzGaVSyezcudPse8rKypioqChm3LhxzNmzZ5kdO3YwsbGxzOTJk7l15s2bxwQFBTG//vorc+HCBebJJ59k/Pz8mNGjR1ssy+HDhxm5XM7MmzePSUlJYRYuXMgEBgYyAQEB3DobNmxgVCoVs3jxYiYlJYX59NNPGYVCwSsrAKZp06bM6tWrmdTUVGbatGmMr68vk5+fzzAMw6SnpzMAmJMnTzIMwzCFhYVMWFgYM3v2bObixYvMiRMnmPvuu48ZMGAA95lPPfUU07x5c+aff/5hzp49y4wdO5bx8/NjXnrpJYu/Jycnh8nMzGQyMzOZmzdvMj179mTuueces2XIyMhg1Go1M3PmTObSpUvMTz/9xERERDAAmMLCQoZhGObmzZvM//73P+bkyZPM1atXmUWLFjEKhYI5cuSIxTKcOHGCAcBkZWXxljdv3pwJDg5mli1bxly+fJl57rnnGH9/f+b+++9nfvnlFyYlJYUZM2YM06ZNG0av1zMMwzDLly9nVCoVc9999zEnTpxg9uzZw4SEhDCDBw9mHn74Yeb8+fPMn3/+yXh4eDBr167lfd/SpUuZ5s2bWywnIcT9UCBLCHEJzz33HDN06FDu708//ZSJi4vjApj6vv76ayYoKIgpKyvjlv3999+MXC7nAqaoqChm/vz53OtarZZp2rSp1UD20UcfZYYNG8Zb9sgjj/AC2V69ejH//e9/ees89NBDvPcBYN566y3u77KyMgYAs3nzZoZhTIPI999/nxk8eDDvM2/cuMEAYFJSUpiSkhJGpVIx69at414vKipivL29rQayxqZNm8Y0b96cycnJMVuG2bNnM23btuW957XXXuMFsuYMHz6cefnlly2+/ttvvzEKhcJkWzZv3pyZOHEi93dmZiYDgHn77be5ZYcOHWIAMJmZmQzDGAJZAMyVK1e4dZ555hnG29ubKS0t5ZYNGTKEeeaZZ3jf9/vvvzNyuZzR6XQWy0oIcS+UWkAIcQn//e9/sW3bNty6dQuA4RHy448/zj0Gr+/ixYvo1KkTfHx8uGW9e/eGXq9HSkoKiouLkZmZiR49enCvK5VKdOvWzWo5Ll68yHsPACQlJZms07t3b96y3r174+LFi7xlHTt25P7t4+MDf39/5OTkmP3e06dPY9euXfD19eX+a926NQDg6tWrSEtLg1arRffu3bn3BAQEoFWrVlZ/D+vrr7/Gd999hz/++ANhYWFm1xHy23U6Hd5//3106NABwcHB8PX1xdatW5GRkWHxuysrK6FWq81uS+M6ioiIAAB06NDBZJlxvXl7eyM+Pp63TosWLXj5txERESZ17eXlBb1eb5LCQghxX87rZUAIIUa6dOmCTp06YeXKlRg8eDDOnz+Pv//+29nFahSVSsX7WyaTWew1X1ZWhpEjR2LevHkmr0VFReHKlSsNLseuXbvw4osvYs2aNbzAsSH+97//YeHChViwYAE6dOgAHx8fTJ8+HdXV1RbfExoaioqKClRXV8PDw4P3mnEdsYGuuWXG9WauXoXUdUFBAXx8fODl5SXkpxJC3AC1yBJCXMZTTz2FFStWYPny5Rg0aBBiYmIsrtumTRucPn0a5eXl3LIDBw5ALpejVatWCAgIQFRUFI4cOcK9XlNTg+TkZKtlaNOmDe89AHD48GGTdQ4cOMBbduDAAbRt29bmb7Tkrrvuwvnz59GiRQskJCTw/vPx8UFcXBxUKhWOHTvGvae4uBiXL1+2+rlXrlzBgw8+iDfeeAPjxo2zum6bNm1w9OhR3rL6v/3AgQMYPXo0Jk6ciE6dOiEuLs5mGTp37gwAuHDhgtX1pHbu3Dl06dLFqWUghIiLAllCiMv4z3/+g5s3b+Kbb77BE088YXXdCRMmwNPTE5MnT8a5c+e4VsdJkyZxj6NfeuklfPzxx9i4cSMuXbqE559/3ubA/tOmTcOWLVvwySefIDU1FV9++SW2bNnCW2fWrFlYsWIFli5ditTUVHz22WfYsGEDXnnllQb/9qlTp6KgoACPPvoojh07hqtXr2Lr1q2YMmUKdDod/Pz8MHnyZMyaNQu7du3C+fPn8eSTT0Iul1tMv6isrMTIkSPRpUsXPP3008jKyuL+M+fZZ59FamoqZs2ahZSUFKxevRorVqzgrZOYmIjt27fj4MGDuHjxIp555hlkZ2db/W1hYWG46667sH///gbVjVj27duHwYMHO7UMhBBxUSBLCHEZAQEBeOCBB+Dr62tz9i1vb29s3boVBQUFuPvuu/Hggw9i4MCB+PLLL7l1Xn75ZUyaNAmTJ09GUlIS/Pz8MHbsWKuf27NnT3zzzTdYuHAhOnXqhG3btuGtt97irTNmzBgsXLgQn3zyCdq1a4evvvoKy5cvR//+/Rv60xEdHY0DBw5Ap9Nh8ODB6NChA6ZPn47AwEDI5YZT9WeffYakpCSMGDECgwYNQu/evdGmTRt4enqa/czs7GxcunQJO3bsQHR0NKKiorj/zGnWrBl+/fVXbNy4EZ06dcKyZctMZuJ66623cNddd2HIkCHo378/IiMjBc2U9tRTT2HVqlX2VYqIbt26hYMHD2LKlClOKwMhRHwyhhEwqCIhhDjIwIED0a5dOyxatMjZRZFUSkoKWrdujdTUVCQkJDToM8rLy9GkSRN8+umnePLJJ0UuobgqKyvRqlUr/PzzzyYdyBzhtddeQ2FhIb7++muHfzchRDrU2YsQ4hIKCwuxe/du7N69G0uWLHF2cSRVUFCA9evXw9/f32oecH0nT57EpUuX0L17dxQXF2POnDkAgNGjR0tVVNF4eXlh5cqVvAkeHCk8PBwzZ850yncTQqRDgSwhxCV06dIFhYWFmDdvnuAhpdzVk08+ieTkZCxduhRqtdqu937yySdISUmBh4cHunbtin379iE0NFSikoqrMakXjfXyyy877bsJIdKh1AJCCCGEEOKWqLMXIYQQQghxSxTIEkIIIYQQt0SBLCGEEEIIcUsUyBJCCCGEELdEgSwhhBBCCHFLFMgSQgghhBC3RIEsIYQQQghxSxTIEkIIIYQQt0SBLCGEEEIIcUv/Dy64EsRwxn+lAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAFUCAYAAADYjN+CAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbQNJREFUeJzt3XtcTPn/B/DXzDTdb0pXKhGSa4SSu7CEtezFbshl13dt7GJdlnXZdd3128WyYVnCLovsssu6xeaeW9YtdyK3ikqpVFNzfn+kk1HRaMY0s6/n49GDOdf3mc808+4z7/P5SARBEEBEREREpGekug6AiIiIiOhVMJElIiIiIr3ERJaIiIiI9BITWSIiIiLSS0xkiYiIiEgvMZElIiIiIr3ERJaIiIiI9BITWSIiIiLSS0xkiYiIiEgvMZElov+8ffv2QSKRYN++feKyQYMGoUaNGlo7Z/v27dG+fXvx8c2bNyGRSLBq1SqtnZOIyNAwkSWiSqdXr14wNzfH48ePy9wmJCQExsbGSElJeY2RERFRZSIRBEHQdRBERM/asGED+vXrh9WrV2PgwIEl1mdnZ8PR0REdO3bEX3/9VeHzKZVK5OXlwdjYGFJp4d/3CoUCSqUSJiYmFT5+afLy8gAAxsbGAABBEJCbmwu5XA6ZTKaVcxIRGRr2yBJRpdOrVy9YWVlh3bp1pa7/888/kZWVhZCQkAqdJycnB0qlElKpFKampmISCwByuVxrSSxQmMAWJbEAIJFIYGpqWmmS2OzsbF2HQET0UkxkiajSMTMzQ58+fbB3714kJyeXWL9u3TpYWVmhV69eSE1NxdixY9GwYUNYWlrC2toa3bp1w5kzZ1T2KaqDXb9+PSZPnoxq1arB3NwcGRkZ5a6R/e6779CqVSvY29vDzMwMzZo1w6ZNm0q9hl9//RUtWrSAubk5qlSpgrZt22L37t3i+vLUyJ49exaDBg1CzZo1YWpqCmdnZwwZMqRc5RRF17RhwwZMmjQJzs7OsLCwQK9evXD79m2Vbdu3b48GDRogNjYWbdu2hbm5OSZNmgQAyM3NxbRp0+Dl5QUTExO4ublh/PjxyM3NVTmGRCLBiBEjEBkZCR8fH5iZmSEgIADnzp0DAPz000/w8vKCqakp2rdvj5s3b6rsf/DgQbzzzjtwd3cXzzN69Gg8efLkhdcpCAI6dOgABwcHlddKXl4eGjZsiFq1aiErK+ulzxcR6ScjXQdARFSakJAQrF69Ghs3bsSIESPE5ampqdi1axfef/99mJmZIS4uDlu2bME777wDT09PJCUl4aeffkK7du1w4cIFuLq6qhx3xowZMDY2xtixY5Gbm6vSK/oyP/zwA3r16oWQkBDk5eVh/fr1eOedd7Bt2zYEBweL23399df46quv0KpVK0yfPh3GxsY4duwY/vnnH3Tp0qXc54uKisKNGzcwePBgODs7Iy4uDsuWLUNcXByOHj0KiUTy0mPMmjULEokEEyZMQHJyMhYsWICgoCCcPn0aZmZm4nYpKSno1q0b+vXrh/79+8PJyQlKpRK9evXCoUOHMGzYMNSrVw/nzp3D/PnzceXKFWzZskXlXAcPHsRff/2FsLAwAMCcOXPQo0cPjB8/HosXL8Ynn3yCtLQ0zJ07F0OGDME///wj7hsZGYns7GwMHz4c9vb2OH78OBYtWoQ7d+4gMjKyzOuTSCRYuXIlGjVqhI8//hh//PEHAGDatGmIi4vDvn37YGFhUe7nnIj0jEBEVAnl5+cLLi4uQkBAgMrypUuXCgCEXbt2CYIgCDk5OUJBQYHKNvHx8YKJiYkwffp0cVl0dLQAQKhZs6aQnZ2tsn3RuujoaHFZaGio4OHhobLd8/vl5eUJDRo0EDp27Cguu3r1qiCVSoW33nqrRFxKpVL8f7t27YR27dqpxAxAiIiIKPN8giAIv/32mwBAOHDgQIl1pV1TtWrVhIyMDHH5xo0bBQDCDz/8oBILAGHp0qUqx/jll18EqVQqHDx4UGV5URscPnxYXAZAMDExEeLj48VlP/30kwBAcHZ2Volh4sSJAgCVbUu71jlz5ggSiUS4devWC6/12XP9+uuvwtGjRwWZTCaMGjXqpfsRkX5jaQERVUoymQz9+vVDTEyMytfQ69atg5OTEzp16gQAMDExEWtbCwoKkJKSAktLS9StWxenTp0qcdzQ0FCVnkh1PLtfWloa0tPT0aZNG5XzbNmyBUqlElOnTlWpuQVQrh7Uss6Xk5ODhw8fwt/fHwBKvbbSDBw4EFZWVuLjt99+Gy4uLti+fbvKdiYmJhg8eLDKssjISNSrVw/e3t54+PCh+NOxY0cAQHR0tMr2nTp1UinHaNmyJQCgb9++KjEULb9x40ap15qVlYWHDx+iVatWEAQB//7770uvc9iwYejatStGjhyJAQMGoFatWpg9e/ZL9yMi/cZElogqraKbuYpu+rpz5w4OHjyIfv36iTdFKZVKzJ8/H7Vr14aJiQmqVq0KBwcHnD17Funp6SWO6enp+crxbNu2Df7+/jA1NYWdnR0cHBywZMkSlfNcv34dUqkUPj4+r3yeIqmpqfjss8/g5OQEMzMzODg4iPGXdm2lqV27tspjiUQCLy+vEjWq1apVK1FmcfXqVcTFxcHBwUHlp06dOgBQon7Z3d1d5bGNjQ0AwM3NrdTlaWlp4rKEhAQMGjQIdnZ2sLS0hIODA9q1a6fWta5YsQLZ2dm4evUqVq1a9cp/sBCR/mCNLBFVWs2aNYO3tzd+++03TJo0Cb/99hsEQVAZrWD27NmYMmUKhgwZghkzZsDOzg5SqRSjRo2CUqksccxXTW4OHjyIXr16oW3btli8eDFcXFwgl8sRERFR5ugKFfXuu+/iyJEjGDduHJo0aQJLS0solUq88cYbpV5bRZT2vCiVSjRs2BDz5s0rdZ/nE9SyRlwoa7nwdPTHgoICdO7cGampqZgwYQK8vb1hYWGBu3fvYtCgQeW+1n379ok3oZ07dw4BAQHl2o+I9BcTWSKq1EJCQjBlyhScPXsW69atQ+3atdG8eXNx/aZNm9ChQwesWLFCZb9Hjx6hatWqGovj999/h6mpKXbt2qUyLFdERITKdrVq1YJSqcSFCxfQpEmTVz5fWloa9u7di6+//hpTp04Vl1+9elWt4zy/vSAIuHbtGho1avTSfWvVqoUzZ86gU6dOapdFqOPcuXO4cuVKiXGDo6Kiyn2M+/fvY+TIkejSpYt4M1/Xrl3h4eGhjZCJqJJgaQERVWpFva9Tp07F6dOnS4wdK5PJxJ69IpGRkbh7965G45DJZJBIJCgoKBCX3bx5s8Sd+71794ZUKsX06dNL9CQ+H+fLzlfaPgsWLFAr7jVr1qjMkLZp0ybcv38f3bp1e+m+7777Lu7evYvly5eXWPfkyRONDWtV2rUKgoAffvih3Mf46KOPoFQqsWLFCixbtgxGRkYYOnSoWs85Eekf9sgSUaXm6emJVq1a4c8//wSAEolsjx49MH36dAwePBitWrXCuXPnsHbtWtSsWVOjcQQHB2PevHl444038MEHHyA5ORnh4eHw8vLC2bNnxe28vLzw5ZdfYsaMGWjTpg369OkDExMTnDhxAq6urpgzZ065zmdtbY22bdti7ty5UCgUqFatGnbv3o34+Hi14razs0Pr1q0xePBgJCUlYcGCBfDy8sJHH3300n0HDBiAjRs34uOPP0Z0dDQCAwNRUFCAS5cuYePGjdi1axf8/PzUiqc03t7eqFWrFsaOHYu7d+/C2toav//+u0oN7YtERETg77//xqpVq1C9enUAwKJFi9C/f38sWbIEn3zySYVjJKLKiYksEVV6ISEhOHLkCFq0aAEvLy+VdZMmTUJWVhbWrVuHDRs2oGnTpvj777/xxRdfaDSGjh07YsWKFfjmm28watQoeHp64ttvv8XNmzdVElkAmD59Ojw9PbFo0SJ8+eWXMDc3R6NGjTBgwAC1zrlu3TqMHDkS4eHhEAQBXbp0wY4dO0qMjfsikyZNwtmzZzFnzhw8fvwYnTp1wuLFi2Fubv7SfaVSKbZs2YL58+djzZo12Lx5M8zNzVGzZk189tln4k1fFSWXy7F161Z8+umnmDNnDkxNTfHWW29hxIgRaNy48Qv3vXPnDkaPHo2ePXsiNDRUXB4SEoLff/8d48ePR7du3Sp0kx8RVV4Sgd+7EBGVMGDAAMTExODatWuv5XzXr1+Hl5cXfvnlF/Tv37/Cx9u3bx86dOiAyMhIvP322xqIkIio8mGNLBFRKe7fv6/Rm8XKcz4Ar/WcRET6jqUFRETPOHv2LLZs2YIDBw5g3Lhxr+WcK1euxMqVK2Fubi5OeEBERC/HHlkiomf88ccf+OGHH9CvXz9MnDjxtZxz2LBhSE1NRWRkJGxtbV/LOYmIDAFrZImIiIhIL7FHloiIiIj0EhNZIiIiItJLvNkLhfOJ37t3D1ZWVlqdhpGIiIjov0wQBDx+/Biurq6QSiven8pEFsC9e/fg5uam6zCIiIiI/hNu374tzsRXEUxkAVhZWQEA4uPjYWdnp+NoSBsUCgV2796NLl26QC6X6zoc0gK2seFjGxs+trHhS01Nhaenp5h7VRQTWUAsJ7CysoK1tbWOoyFtUCgUMDc3h7W1Nd8cDRTb2PCxjQ0f29jwKRQKANBYKSdv9iIiIiIivcREloiIiIj0EhNZIiIiItJLTGSJiIiISC8xkSUiIiIivaTTRLZGjRqQSCQlfsLCwgAAOTk5CAsLg729PSwtLdG3b18kJSWpHCMhIQHBwcEwNzeHo6Mjxo0bh/z8fF1cDhERERG9RjpNZE+cOIH79++LP1FRUQCAd955BwAwevRobN26FZGRkdi/fz/u3buHPn36iPsXFBQgODgYeXl5OHLkCFavXo1Vq1Zh6tSpOrkeIiIiInp9dDqOrIODg8rjb775BrVq1UK7du2Qnp6OFStWYN26dejYsSMAICIiAvXq1cPRo0fh7++P3bt348KFC9izZw+cnJzQpEkTzJgxAxMmTMBXX30FY2NjteJJSM1ChmCqsevTBUsTIzhYmeg6DCIiItKge4+eIDdfqeswKuxRWpZGj1dpJkTIy8vDr7/+ijFjxkAikSA2NhYKhQJBQUHiNt7e3nB3d0dMTAz8/f0RExODhg0bwsnJSdyma9euGD58OOLi4uDr61vquXJzc5Gbmys+zsjIAAC8ufgYpCbmWrrC10MiAX4K8UWHug4v3/g/pGgA5qJ/yfCwjQ0f29jwsY1LF3HkFmbvuKzrMDRCmZut0eNVmkR2y5YtePToEQYNGgQASExMhLGxMWxtbVW2c3JyQmJiorjNs0ls0fqidWWZM2cOvv766xLLTWUCZDKhAlehW3lKoECQ4M/9J/Hkuv5ehzYVla+Q4WIbGz62seFjG6vadVUKQAojiQC5nt+mX6DhPKvSJLIrVqxAt27d4OrqqvVzTZw4EWPGjBEfZ2RkwM3NDQfGtoW9vb3Wz68tk7bEITL2LurWrYvu7WrqOpxKRaFQICoqCp07d+a0hwaKbWz42MaGj21cur2R5xD78D7Gda2LIYE1dB1OhaSkpMDle80dr1Iksrdu3cKePXvwxx9/iMucnZ2Rl5eHR48eqfTKJiUlwdnZWdzm+PHjKscqGtWgaJvSmJiYwMSkZB2pXC7X618cmbTwzzSpVKrX16FN+t7G9HJsY8PHNjZ8bGNVEqkEACCTyfT+edF0/JWigzoiIgKOjo4IDg4WlzVr1gxyuRx79+4Vl12+fBkJCQkICAgAAAQEBODcuXNITk4Wt4mKioK1tTV8fHxe3wVUMgKrCoiIiAwGP9fLpvMeWaVSiYiICISGhsLIqDgcGxsbDB06FGPGjIGdnR2sra0xcuRIBAQEwN/fHwDQpUsX+Pj4YMCAAZg7dy4SExMxefJkhIWFldrjaugkhX+wga93IiIiw1H0uS4p+qAnkc4T2T179iAhIQFDhgwpsW7+/PmQSqXo27cvcnNz0bVrVyxevFhcL5PJsG3bNgwfPhwBAQGwsLBAaGgopk+f/jovoRIpfIHzLzciIiLDITz9YGcaW5LOE9kuXbqIDfQ8U1NThIeHIzw8vMz9PTw8sH37dm2Fp1eKe2SZyRIRERmK4h5ZnYZRKVWKGlnSjKLXN3tkiYiIDMjTz3XmsSUxkTUgrJElIiIyPEXftLJGtiQmsgZEUvS3GrtkiYiIDEbRxzrz2JKYyBoQ9sgSEREZHoGlBWViImtAWCNLRERkeMSbuNklWwITWQNSVDvDUQuIiIgMB3tky8ZE1gCxR5aIiMhwcPitsqk1juyjR4+wefNmHDx4ELdu3UJ2djYcHBzg6+uLrl27olWrVtqKk8qBNbJERESGp7hHlpns88rVI3vv3j18+OGHcHFxwcyZM/HkyRM0adIEnTp1QvXq1REdHY3OnTvDx8cHGzZs0HbMVAYJZ/YiIiIyQEXDb+k4jEqoXD2yvr6+CA0NRWxsLHx8fErd5smTJ9iyZQsWLFiA27dvY+zYsRoNlF6OM3sREREZHtbIlq1cieyFCxdgb2//wm3MzMzw/vvv4/3330dKSopGgiP1iC9w5rFEREQGgzWyZStXacHLktiKbk+awRpZIiIiwyM87ZJljWxJao9acOfOHWRmZpZYrlAocODAAY0ERa9GHH6LRbJEREQGQ/xUZx5bQrkT2fv376NFixbw8PCAra0tBg4cqJLQpqamokOHDloJksqHr28iIiLDxc/5ksqdyH7xxReQSqU4duwYdu7ciQsXLqBDhw5IS0sTt2FPYOXAZiAiIjIc/FwvW7kT2T179mDhwoXw8/NDUFAQDh8+DBcXF3Ts2BGpqakAir/aJh1hjSwREZHBKb7Zi3nW88qdyKanp6NKlSriYxMTE/zxxx+oUaMGOnTogOTkZK0ESOXHcWSJiIgMT/HNXvS8cieyNWvWxNmzZ1WWGRkZITIyEjVr1kSPHj00Hhyph+PIEhERGS52yJZU7kS2W7duWLZsWYnlRclskyZNNBkXvYKi1zd7ZImIiAyHOCECE9kSyjUhAgDMmjUL2dnZpR/EyAi///477t69q7HASH18gRMRERmeom9aOY5sSeXukTUyMoK1tfUL13t4eGgkKHo1xTWy7JIlIiIyFOyRLZvaEyI8fPhQG3GQBnBmLyIiIsPD/qmyqZXI3rx5E4GBgdqKhSqINbJERESGRywtYJdsCeVOZM+fP4/WrVsjNDRUm/FQRRRNUcs+WSIiIoMhlhboNoxKqVyJ7JEjR9C2bVsMHDgQkyZN0nZM9IrYI0tERGR4iidE0GkYlVK5EtkuXbpgwIABmD17trbjoQpgjSwREZEBEntkmck+r1yJrIWFBe7fv6+Vu+Hv3r2L/v37w97eHmZmZmjYsCFOnjwprhcEAVOnToWLiwvMzMwQFBSEq1evqhwjNTUVISEhsLa2hq2tLYYOHYrMzEyNx1rZcWYvIiIiw1NcI6vjQCqhciWyhw8fxsmTJzFkyBCNnjwtLQ2BgYGQy+XYsWMHLly4gO+//15lKty5c+di4cKFWLp0KY4dOwYLCwt07doVOTk54jYhISGIi4tDVFQUtm3bhgMHDmDYsGEajVUfFL/AmckSEREZCtbIlq1ciayXlxcOHTqE2NhYhIWFaezk3377Ldzc3BAREYEWLVrA09MTXbp0Qa1atQAU9sYuWLAAkydPxptvvolGjRphzZo1uHfvHrZs2QIAuHjxInbu3Imff/4ZLVu2ROvWrbFo0SKsX78e9+7d01is+oA1skRERIaHNbJlK/eoBa6urti/fz9Onz6tsZP/9ddf8PPzwzvvvANHR0f4+vpi+fLl4vr4+HgkJiYiKChIXGZjY4OWLVsiJiYGABATEwNbW1v4+fmJ2wQFBUEqleLYsWMai1UfiDWyTGSJiIgMRnFpJzPZ55V7iloAqFKlCvbs2aOxk9+4cQNLlizBmDFjMGnSJJw4cQKffvopjI2NERoaisTERACAk5OTyn5OTk7iusTERDg6OqqsNzIygp2dnbjN83Jzc5Gbmys+zsjIAAAoFAooFAqNXd/rplQqAQAFSqVeX4c2FD0ffF4MF9vY8LGNDR/buHTKp4mssqBA758bTcevViILAGZmZho7uVKphJ+fnzgagq+vL86fP4+lS5dqdbzaOXPm4Ouvvy6xPDo6Gubm5lo7r7ZduSsBIMPt27exffstXYdTKUVFRek6BNIytrHhYxsbPraxqrQ0GQAJTp2KheKmfn/tmp2drdHjqZ3IPiszM1PsBSxibW1d7v1dXFzg4+OjsqxevXr4/fffAQDOzs4AgKSkJLi4uIjbJCUloUmTJuI2ycnJKsfIz89HamqquP/zJk6ciDFjxoiPMzIy4Obmhg4dOsDe3r7c8Vc2tw/EY1vCVVR3q47u3RvoOpxKRaFQICoqCp07d4ZcLtd1OKQFbGPDxzY2fGzj0q28fQy3MtPh16wZOtVzfPkOlVhKSopGj6d2IhsfH48RI0Zg3759KiMHCIIAiUSCgoKCch8rMDAQly9fVll25coVeHh4AAA8PT3h7OyMvXv3iolrRkYGjh07huHDhwMAAgIC8OjRI8TGxqJZs2YAgH/++QdKpRItW7Ys9bwmJiYwMTEpsVwul+v1L45UVljyLJFI9fo6tEnf25hejm1s+NjGho9t/JynN8HIjIz0/nnRdPxqJ7L9+/eHIAhYuXIlnJycKjTv7+jRo9GqVSvMnj0b7777Lo4fP45ly5Zh2bJlAArnFB41ahRmzpyJ2rVrw9PTE1OmTIGrqyt69+4NoLAH94033sBHH32EpUuXQqFQYMSIEejXrx9cXV1fOTZ9xHFkiYiIDNDTD3be6lWS2onsmTNnEBsbi7p161b45M2bN8fmzZsxceJETJ8+HZ6enliwYAFCQkLEbcaPH4+srCwMGzYMjx49QuvWrbFz506YmpqK26xduxYjRoxAp06dIJVK0bdvXyxcuLDC8emb4pm9mMkSEREZCg6/VTa1E9nmzZvj9u3bGklkAaBHjx7o0aNHmeslEgmmT5+O6dOnl7mNnZ0d1q1bp5F49BnnQyAiIjI84oQITGRLUDuR/fnnn/Hxxx/j7t27aNCgQYlah0aNGmksOFJPcY8sERERGQpxiloWF5SgdiL74MEDXL9+HYMHDxaXSSSSV7rZizSruEaWqSwREZGh4HwIZVM7kR0yZAh8fX3x22+/VfhmL9Is9sgSEREZHrG0QLdhVEpqJ7K3bt3CX3/9BS8vL23EQxrADlkiIiLDUXyzF1PZ50nV3aFjx444c+aMNmKhCip6gTOPJSIiMhwCh98qk9o9sj179sTo0aNx7tw5NGzYsMTNXr169dJYcKSeohc4a2SJiIgMDztkS1I7kf34448BoNThsHizl26xRpaIiMjwFNfIMpN9ntqJrFKp1EYcpAEcR5aIiMjwiMNvMY8tQe0aWaq8imtkmckSEREZCo5aUDa1e2QB4MSJE4iOjkZycnKJHtp58+ZpJDBSn1hawDyWiIjIYIgf68xkS1A7kZ09ezYmT56MunXrlhhHlsNC6FbxzV46DYOIiIg0qHjUAuZZz1M7kf3hhx+wcuVKDBo0SAvhUIWwtICIiMjgFI8jq9MwKiW1a2SlUikCAwO1EQtVEHtkiYiIDBBrZMukdiI7evRohIeHayMWqiAOv0VERGR4OLNX2dQuLRg7diyCg4NRq1Yt+Pj4lJgQ4Y8//tBYcKQe1s4QEREZLuaxJamdyH766aeIjo5Ghw4dYG9vz78OKiGWFhARERkOzthZNrUT2dWrV+P3339HcHCwNuKhCpBwRgQiIiKDI5YW6DSKykntGlk7OzvUqlVLG7FQBfFmLyIiIsMjTojATLYEtRPZr776CtOmTUN2drY24qEK4M1eREREhkdgn2yZ1C4tWLhwIa5fvw4nJyfUqFGjxM1ep06d0lhwpJ6im71YS0NERGQ42CNbNrUT2d69e2shDNII9sgSEREZHIHjyJZJ7UR22rRp2oiDNIA1skRERIaLI0WVVK4aWX5VrR8k4hS1REREZCiK8jCmsSWVK5GtX78+1q9fj7y8vBdud/XqVQwfPhzffPONRoIj9RT3yDKVJSIiMhTFM3vpNIxKqVylBYsWLcKECRPwySefoHPnzvDz84OrqytMTU2RlpaGCxcu4NChQ4iLi8OIESMwfPhwbcdNpeALnIiIyPAU18jyg/555UpkO3XqhJMnT+LQoUPYsGED1q5di1u3buHJkyeoWrUqfH19MXDgQISEhKBKlSrajpnKIA6/xQ5ZIiIig1E0/BY7rEpS62av1q1bo3Xr1tqKhSpIHH6LVbJEREQGgx1UZVN7QgRN+uqrryCRSFR+vL29xfU5OTkICwuDvb09LC0t0bdvXyQlJakcIyEhAcHBwTA3N4ejoyPGjRuH/Pz8130plQJ7ZImIiAwPa2TLpvbwW5pWv3597NmzR3xsZFQc0ujRo/H3338jMjISNjY2GDFiBPr06YPDhw8DAAoKChAcHAxnZ2ccOXIE9+/fx8CBAyGXyzF79uzXfi2VBRNZIiIiw8Ea2bLpPJE1MjKCs7NzieXp6elYsWIF1q1bh44dOwIAIiIiUK9ePRw9ehT+/v7YvXs3Lly4gD179sDJyQlNmjTBjBkzMGHCBHz11VcwNjZ+3ZejU8XDbzGTJSIiMhyskS2LTksLgMIhu1xdXVGzZk2EhIQgISEBABAbGwuFQoGgoCBxW29vb7i7uyMmJgYAEBMTg4YNG8LJyUncpmvXrsjIyEBcXNzrvZBKgBMiEBERGR5OUVs2nfbItmzZEqtWrULdunVx//59fP3112jTpg3Onz+PxMREGBsbw9bWVmUfJycnJCYmAgASExNVktii9UXrypKbm4vc3FzxcUZGBgBAoVBAoVBo4tJ0QllQUPivIOj1dWhD0fPB58VwsY0NH9vY8LGNS6d8mskW5Ofr/XOj6fgrlMjm5OSUmCTB2tq63Pt369ZN/H+jRo3QsmVLeHh4YOPGjTAzM6tIaC80Z84cfP311yWWR0dHw9zcXGvn1bZ/UyQAZEhNScX27dt1HU6lFBUVpesQSMvYxoaPbWz42Maq8vJkACQ4ePAgrulvmgIAyM7O1ujx1E5ks7OzMX78eGzcuBEpKSkl1hc87RV8Fba2tqhTpw6uXbuGzp07Iy8vD48ePVLplU1KShJrap2dnXH8+HGVYxSNalBa3W2RiRMnYsyYMeLjjIwMuLm5oUOHDrC3t3/l+HVNcj4Rq66cRRW7KujevYWuw6lUFAoFoqKi0LlzZ8jlcl2HQ1rANjZ8bGPDxzYu3VdnopGVr0Dbtm1R29FS1+FUSGm5Y0WonciOGzcO0dHRWLJkCQYMGIDw8HDcvXsXP/30U4Wnps3MzMT169cxYMAANGvWDHK5HHv37kXfvn0BAJcvX0ZCQgICAgIAAAEBAZg1axaSk5Ph6OgIoPCvOGtra/j4+JR5HhMTE5iYmJRYLpfL9foXp2jEB4lEotfXoU363sb0cmxjw8c2NnxsY1VFt77IjYz0/nnRdPxqJ7Jbt27FmjVr0L59ewwePBht2rSBl5cXPDw8sHbtWoSEhJT7WGPHjkXPnj3h4eGBe/fuYdq0aZDJZHj//fdhY2ODoUOHYsyYMbCzs4O1tTVGjhyJgIAA+Pv7AwC6dOkCHx8fDBgwAHPnzkViYiImT56MsLCwUhNVQ8ebvYiIiAwPb/Yqm9qJbGpqKmrWrAmgsB42NTUVQOGsX8OHD1frWHfu3MH777+PlJQUODg4oHXr1jh69CgcHBwAAPPnz4dUKkXfvn2Rm5uLrl27YvHixeL+MpkM27Ztw/DhwxEQEAALCwuEhoZi+vTp6l6WQRAnRNBtGERERKRBgthDxUz2eWonsjVr1kR8fDzc3d3h7e2NjRs3okWLFti6dWuJEQZeZv369S9cb2pqivDwcISHh5e5jYeHB29sEj0dR5ZdskRERAaDM3uVTe1xZAcPHowzZ84AAL744guEh4fD1NQUo0ePxrhx4zQeIJUfe2SJiIgMkDizFz1P7R7Z0aNHi/8PCgrCpUuXEBsbCy8vLzRq1EijwZF6WCNLRERkeIp7ZJnKPk/tHtno6GiVxx4eHujTpw8aNWr0whIA0r7iKWqJiIjIUBSVDDKNLUntRLZPnz6IjY0tsfyHH37AxIkTNRIUvRrxBc4uWSIiIoPBGtmyqZ3I/t///R+6deuGS5cuicu+//57TJ06FX///bdGgyP1sEaWiIjI8IjDb7FPtgS1a2Q//PBDpKamIigoCIcOHcKGDRswe/ZsbN++HYGBgdqIkcpJTGSZyRIRERkM4WkXFXtkS1I7kQWA8ePHIyUlBX5+figoKMCuXbvESQpId4r+UhPYJ0tERGQw2EFVtnIlsgsXLiyxrFq1ajA3N0fbtm1x/PhxHD9+HADw6aefajZCKj/2yBIRERkc1siWrVyJ7Pz580tdLpPJcPjwYRw+fBhA4V3zTGR1h8NvERERGSBxilpmss8rVyIbHx+v7ThIAzj8FhERkeERa2R1HEdlpPaoBUXy8vJw+fJl5OfnazIeqoDiHlmmskRERIZCHLWAmWwJaiey2dnZGDp0KMzNzVG/fn0kJCQAAEaOHIlvvvlG4wFS+fEFTkREZHjEGln2yZagdiI7ceJEnDlzBvv27YOpqam4PCgoCBs2bNBocKQecdQCdsgSEREZDHFmL+axJag9/NaWLVuwYcMG+Pv7qxQd169fH9evX9docKSe4gkRmMkSEREZiuIeWXqe2j2yDx48gKOjY4nlWVlZvJtOx/jsExERGTB+0JegdiLr5+enMhVtUfL6888/IyAgQHOR0StjaQEREZHh4Od62dQuLZg9eza6deuGCxcuID8/Hz/88AMuXLiAI0eOYP/+/dqIkcpLLC0gIiIiQ8ObvUpSu0e2devWOH36NPLz89GwYUPs3r0bjo6OiImJQbNmzbQRI5VT8c1eTGWJiIgMwbOf6azgLEntHlkAqFWrFpYvX67pWKiCJOyRJSIiMijP9k0xjy2pXIlsRkYGrK2txf+/iLm5OYyMXik/pgoSX+DMZImIiAzCsx/pvKm+pHKVFlSpUgXJyckAAFtbW1SpUqXMH1NTU9SrVw/R0dFaDZxK4hS1REREhkWltECHcVRW5eo6/eeff2BnZwcAL01Qc3NzsWXLFgwfPhyXLl2qeIRUbmJpAWtkiYiIDIJqj6zOwqi0ypXItmvXrtT/l6VJkyY4fvz4q0dFr6To9c00loiIyDCo1sgyk32e2qMWnDp1CufOnRMf//nnn+jduzcmTZqEvLw8AICjoyNOnjypuSipXIp7ZHUbBxEREWmGymydzGNLUDuR/d///ocrV64AAG7cuIF+/frB3NwckZGRGD9+vMYDJHUU1cgykyUiIjIEKj2yTGRLUDuRvXLlCpo0aQIAiIyMRNu2bbFu3TqsWrUKv//+u6bjIzWwR5aIiMhwMY8tSe1EVhAEKJVKAMCePXvQvXt3AICbmxsePnyo2ehILWKNLBNZIiIig6DaI8tU9nlqJ7J+fn6YOXMmfvnlF+zfvx/BwcEAgPj4eDg5Ob1yIN988w0kEglGjRolLsvJyUFYWBjs7e1haWmJvn37IikpSWW/hIQEBAcHw9zcHI6Ojhg3bhzy8/NfOQ59xhc4ERGRYXm2XJCf8iWpncguWLAAp06dwogRI/Dll1/Cy8sLALBp0ya0atXqlYI4ceIEfvrpJzRq1Ehl+ejRo7F161ZERkZi//79uHfvHvr06SOuLygoQHBwMPLy8nDkyBGsXr0aq1atwtSpU18pDn1X3CPLLlkiIiJDwBrZF1N7Cq5GjRqpjFpQ5P/+7/8gk8nUDiAzMxMhISFYvnw5Zs6cKS5PT0/HihUrsG7dOnTs2BEAEBERgXr16uHo0aPw9/fH7t27ceHCBezZswdOTk5o0qQJZsyYgQkTJuCrr76CsbGx2vHoM05RS0REZFhUxpFln2wJrzSX7KNHj7Bp0yZcv34d48aNg52dHS5cuAAnJydUq1ZNrWOFhYUhODgYQUFBKolsbGwsFAoFgoKCxGXe3t5wd3dHTEwM/P39ERMTg4YNG6qUNHTt2hXDhw9HXFwcfH19Sz1nbm4ucnNzxcdF0+4qFAooFAq14q9MCvILAABKQdDr69CGoueDz4vhYhsbPrax4WMbl5SXV1wumZ+vgEKi1GE0FafptlU7kT179iw6deoEW1tb3Lx5Ex999BHs7Ozwxx9/ICEhAWvWrCn3sdavX49Tp07hxIkTJdYlJibC2NgYtra2KsudnJyQmJgobvN8XW7R46JtSjNnzhx8/fXXJZZHR0fD3Ny83PFXNrczAcAIOU9ysH37dl2HUylFRUXpOgTSMrax4WMbGz62cbEn+UBRurZr1y7I1S4KrVyys7M1ejy1E9kxY8Zg8ODBmDt3LqysrMTl3bt3xwcffFDu49y+fRufffYZoqKiYGpqqm4YFTJx4kSMGTNGfJyRkQE3Nzd06NAB9vb2rzUWTYq7l4Hvzh2Fiakpund/+Qxs/yUKhQJRUVHo3Lkz5HK5rsMhLWAbGz62seFjG5eU8USBL05EAwDeeOMNmBjpdyabkpKi0eOpncgW3Zj1vGrVqr2wF/R5sbGxSE5ORtOmTcVlBQUFOHDgAH788Ufs2rULeXl5ePTokUqvbFJSEpydnQEAzs7OJabCLRrVoGib0piYmMDExKTEcrlcrte/OHK50TP/19/r0CZ9b2N6Obax4WMbGz62cTGjZwZiMpbLIdfzRFbT7ar2s2FiYiLWlD7rypUrcHBwKPdxOnXqhHPnzuH06dPij5+fH0JCQsT/y+Vy7N27V9zn8uXLSEhIQEBAAAAgICAA586dQ3JysrhNVFQUrK2t4ePjo+6lGQze7EVERGQg+KH+Qmr3yPbq1QvTp0/Hxo0bARSOXZqQkIAJEyagb9++5T6OlZUVGjRooLLMwsIC9vb24vKhQ4dizJgxsLOzg7W1NUaOHImAgAD4+/sDALp06QIfHx8MGDAAc+fORWJiIiZPnoywsLBSe1wNXdHdjBx9i4iIyDCojCPLQQtKULtH9vvvv0dmZiYcHR3x5MkTtGvXDl5eXrCyssKsWbM0Gtz8+fPRo0cP9O3bF23btoWzszP++OMPcb1MJsO2bdsgk8kQEBCA/v37Y+DAgZg+fbpG49AXxS9wZrJERESGQGUcWd2FUWmp3SNrY2ODqKgoHD58GGfOnEFmZiaaNm2qMkzWq9q3b5/KY1NTU4SHhyM8PLzMfTw8PHiH/lPiOLLMY4mIiAyCyjiy7JItQa1EVqFQwMzMDKdPn0ZgYCACAwO1FRe9ArG0QMdxEBERkWY8O1sn09iS1CotkMvlcHd3R0FBgbbioQoo7pFlKktERGQIVHtkdRZGpaV2jeyXX36JSZMmITU1VRvxUAUUvb6ZxhIRERkGlRpZZrIlqF0j++OPP+LatWtwdXWFh4cHLCwsVNafOnVKY8GRelgjS0REZFgEdk+9kNqJbO/evbUQBmlG0fBbfNETEREZhKcf6eyMLZ3aiey0adO0EQdpgNgjq9swiIiISEOKPtOZx5ZO7US2yMmTJ3Hx4kUAgI+PD5o1a6axoOjVcBhZIiIiwyKIPbJMZUujdiJ7584dvP/++zh8+DBsbW0BAI8ePUKrVq2wfv16VK9eXdMxUjkVvciZxxIRERmGohpZprGlU3vUgg8//BAKhQIXL15EamoqUlNTcfHiRSiVSnz44YfaiJHKSRy1gDWyREREBkFgjewLqd0ju3//fhw5cgR169YVl9WtWxeLFi1CmzZtNBocqYc1skRERIaluEaWmWxp1O6RdXNzg0KhKLG8oKAArq6uGgmKXo04sxczWSIiIoMgfsvKPLZUaiey//d//4eRI0fi5MmT4rKTJ0/is88+w3fffafR4Eg9xT2yzGSJiIgMAfPYF1O7tGDQoEHIzs5Gy5YtYWRUuHt+fj6MjIwwZMgQDBkyRNyWs3/pBntkiYiIDAtrZEundiK7YMECLYRBmsAaWSIiIsNS3CPLTLY0aieyoaGh2oiDNIBjzBERERkmfsSXTu0aWdID7JIlIiIyCLzv5cWYyBoQcRxZvuiJiIgMAm/2ejEmsgZErJFlHktERGQQxHFkWVtQKiayBkQcR1bHcRAREZFmFI0jyzS2dOVOZA8ePIi8vLwy1+fk5GDNmjUaCYpeTXGPLFNZIiIiQyB+ojOTLVW5E9l27dqhbdu2uH//fqnr09PTMXjwYI0FRuorrpElIiIiQ8Aa2RdTq7QgOzsbfn5+OHbsmLbioYpgjSwREZGBeVpawBrZUpU7kZVIJPj777/RvXt3tG/fHhEREdqMi14BB0smIiIyLGKPLD/iS1XuCREEQYCJiQmWL18OX19ffPzxxzh9+jTmz58PqZT3jFUGz77IBUHgX29ERER6Thy1QKdRVF6vlIF+8skniIqKwvr169GlSxekpaVpOi56Bc++yFleQEREpP+Ke2SZypbmlbtS27ZtixMnTiAtLQ3NmzfH2bNnNRkXvYJnX+TMY4mIiPRf0SRHTGNLV6GaAHd3dxw+fBgtW7ZEjx49NBUTvSLVHlmmskRERPqONbIvptbwW8bGxiWWm5qaYu3atZg5cyY8PDzUOvmSJUvQqFEjWFtbw9raGgEBAdixY4e4PicnB2FhYbC3t4elpSX69u2LpKQklWMkJCQgODgY5ubmcHR0xLhx45Cfn69WHIZCpUZWd2EQERGRhggcSPaFyp3Izp8/H7a2tmWuHzduHG7cuKHWyatXr45vvvkGsbGxOHnyJDp27Ig333wTcXFxAIDRo0dj69atiIyMxP79+3Hv3j306dNH3L+goADBwcHIy8vDkSNHsHr1aqxatQpTp05VKw5D8eyoBeyQJSIi0n9iaQHz2FKVO5Ft2bIlZs+eDaVSqbGT9+zZE927d0ft2rVRp04dzJo1C5aWljh69CjS09OxYsUKzJs3Dx07dkSzZs0QERGBI0eO4OjRowCA3bt348KFC/j111/RpEkTdOvWDTNmzEB4ePgLZyEzWCo9ssxkiYiI9B0nRHixcg+/tXnzZgwbNgx//fUXfvnlF9SuXVujgRQUFCAyMhJZWVkICAhAbGwsFAoFgoKCxG28vb3h7u6OmJgY+Pv7IyYmBg0bNoSTk5O4TdeuXTF8+HDExcXB19e31HPl5uYiNzdXfJyRkQEAUCgUUCgUGr2u16kgvzh2RZ4CUkFzf3Tou6J21ef2pRdjGxs+trHhYxuXVFQuKYFhPC+avoZyJ7Ldu3dHXFwcPvvsM/j6+mLOnDkYOXJkhQM4d+4cAgICkJOTA0tLS2zevBk+Pj44ffo0jI2NS5QzODk5ITExEQCQmJioksQWrS9aV5Y5c+bg66+/LrE8Ojoa5ubmFbwi3cnJB4qadMfOXTCW6TScSikqKkrXIZCWsY0NH9vY8LGNi93OBAAj5OTmYPv27boOp8Kys7M1erxyJ7IAYGNjg1WrVqFHjx7o168fJk+eDJlMNVtKTU1VK4C6devi9OnTSE9Px6ZNmxAaGor9+/erdQx1TZw4EWPGjBEfZ2RkwM3NDR06dIC9vb1Wz61Nmbn5mHDiHwDAG290hamcmWwRhUKBqKgodO7cGXK5XNfhkBawjQ0f29jwsY1LOn83A9+dOwozU1N0795O1+FUWEpKikaPp1YiCwAnTpzAlClTULt2bYwdOxZGRmofQoWxsTG8vLwAAM2aNcOJEyfwww8/4L333kNeXh4ePXqk0iublJQEZ2dnAICzszOOHz+ucryiUQ2KtimNiYkJTExMSiyXy+V6/YtjrCyuoDEykkPORLYEfW9jejm2seFjGxs+tnExmVHhZ7lUIjGI50TT11DuLDQ/Px/Tpk3Dd999h7CwMMyePRumpqYaDQYAlEolcnNz0axZM8jlcuzduxd9+/YFAFy+fBkJCQkICAgAAAQEBGDWrFlITk6Go6MjgMKvI6ytreHj46Px2PQJb/YiIiLSfxyF6MXKncg2bdoUmZmZ2LVrF9q3b6+Rk0+cOBHdunWDu7s7Hj9+jHXr1mHfvn3YtWsXbGxsMHToUIwZMwZ2dnawtrbGyJEjERAQAH9/fwBAly5d4OPjgwEDBmDu3LlITEzE5MmTERYWVmqPq6FTGUeWL3wiIiK9V/RxzilqS1fuRLZFixaYP38+rKysNHby5ORkDBw4EPfv34eNjQ0aNWqEXbt2oXPnzgAKx66VSqXo27cvcnNz0bVrVyxevFjcXyaTYdu2bRg+fDgCAgJgYWGB0NBQTJ8+XWMx6hOVcWR1GAcRERFpBmfqfLFyJ7I///yzxk++YsWKF643NTVFeHg4wsPDy9zGw8PDIO7i0wTVHlm+8ImIiPRdcY+sTsOotMo9IQLpF6axRERE+k+cEIGJbKmYyBoQ1sgSEREZmqdT1HJur1IxkTUgEtU5aomIiEjPsUf2xZjIGhCVHllmskRERHpPrJHVaRSV1yvNZpCVlYX9+/cjISEBeXl5Kus+/fRTjQRG6nv2Rc7SAiIiIv1X3CPLVLY0aiey//77L7p3747s7GxkZWXBzs4ODx8+hLm5ORwdHZnI6tCzL3LmsURERPqvaBQiprGlU7u0YPTo0ejZsyfS0tJgZmaGo0eP4tatW2jWrBm+++47bcRI5aTaI8tUloiISN+Jn+bMZEuldiJ7+vRpfP7555BKpZDJZMjNzYWbmxvmzp2LSZMmaSNGKicJ7/UiIiIyKGJpgW7DqLTUTmTlcjmk0sLdHB0dkZCQAACwsbHB7du3NRsdqUWltICZLBERkd4runmbNbKlU7tG1tfXFydOnEDt2rXRrl07TJ06FQ8fPsQvv/yCBg0aaCNGegUctYCIiMgAsEf2hdTukZ09ezZcXFwAALNmzUKVKlUwfPhwPHjwAMuWLdN4gKQe8Q825rFERER6j1PUvpjaPbJ+fn7i/x0dHbFz506NBkQVI0Hhi555LBERkf4rrpFlJlsaTohgYIpqaFgjS0REpP+Ka2R1HEglpXYim5SUhAEDBsDV1RVGRkaQyWQqP6RbfJ0TERHRf4XapQWDBg1CQkICpkyZAhcXF95FV0nxZi8iIiL9x29YX0ztRPbQoUM4ePAgmjRpooVwqKKK/q7gC5+IiEj/Fd/sxY7D0qhdWuDm5sZZoyqxomJwthAREZH+4xS1L6Z2IrtgwQJ88cUXuHnzphbCoQoTe2SZyhIREek7Dr/1YmqXFrz33nvIzs5GrVq1YG5uDrlcrrI+NTVVY8GR+sRhZJnHEhER6b+i4beYyJZK7UR2wYIFWgiDNIUvdCIiIsMhDr/F4oJSqZ3IhoaGaiMO0hCxRpY9skRERHpPYI/sC5Urkc3IyIC1tbX4/xcp2o50Qxy1gLd7ERER6b3imb2oNOVKZKtUqYL79+/D0dERtra2pQ4BIQgCJBIJCgoKNB4klR9rZImIiAyH+HHOLtlSlSuR/eeff2BnZwcAiI6O1mpAVDHiFLU6joOIiIgqjsNvvVi5Etl27dqV+n+qfIp7ZJnKEhER6TsOv/Viao8ju3PnThw6dEh8HB4ejiZNmuCDDz5AWlqaRoOjVyDWyBIREZG+Y43si6mdyI4bN0684evcuXMYM2YMunfvjvj4eIwZM0atY82ZMwfNmzeHlZUVHB0d0bt3b1y+fFllm5ycHISFhcHe3h6Wlpbo27cvkpKSVLZJSEhAcHAwzM3N4ejoiHHjxiE/P1/dSzMIrJElIiIyJE9LC9glWyq1E9n4+Hj4+PgAAH7//Xf07NkTs2fPRnh4OHbs2KHWsfbv34+wsDAcPXoUUVFRUCgU6NKlC7KyssRtRo8eja1btyIyMhL79+/HvXv30KdPH3F9QUEBgoODkZeXhyNHjmD16tVYtWoVpk6dqu6lGYTiFzozWSIiIn3HHtkXU3scWWNjY2RnZwMA9uzZg4EDBwIA7OzsXjo01/N27typ8njVqlVwdHREbGws2rZti/T0dKxYsQLr1q1Dx44dAQARERGoV68ejh49Cn9/f+zevRsXLlzAnj174OTkhCZNmmDGjBmYMGECvvrqKxgbG6t7iXpNHH6LeSwREZHeY43si6ndIxsYGIgxY8ZgxowZOH78OIKDgwEAV65cQfXq1SsUTHp6OgCIIyTExsZCoVAgKChI3Mbb2xvu7u6IiYkBAMTExKBhw4ZwcnISt+natSsyMjIQFxdXoXj0EftjiYiIDEdxjywz2dKo3SMbHh6OsLAwbNq0CUuWLEG1atUAADt27MAbb7zxyoEolUqMGjUKgYGBaNCgAQAgMTERxsbGsLW1VdnWyckJiYmJ4jbPJrFF64vWlSY3Nxe5ubni46KeZIVCAYVC8crXUJkY0rVoQtFzwefEcLGNDR/b2PCxjUsquudHgGAQz4umr0GtRDY/Px/79u3D8uXL4ezsrLJu/vz5FQokLCwM58+fVxkRQVvmzJmDr7/+usTy6OhomJuba/382qTIkwGQ4MCBg7hmoetoKp+oqChdh0BaxjY2fGxjw8c2LnbqoQSADGmpqdi+fbuuw6mwovJUTVErkTUyMsLHH3+MixcvajSIESNGYNu2bThw4IBKeYKzszPy8vLw6NEjlV7ZpKQkMZF2dnbG8ePHVY5XNKrB88l2kYkTJ6qMsJCRkQE3Nzd06NAB9vb2mrosnZh+dh8y8/PQpk0b1HW20nU4lYZCoUBUVBQ6d+4MuVyu63BIC9jGho9tbPjYxiUJ5xKx+upZ2NvboXv35roOp8JSUlI0ejy1SwtatGiBf//9Fx4eHhU+uSAIGDlyJDZv3ox9+/bB09NTZX2zZs0gl8uxd+9e9O3bFwBw+fJlJCQkICAgAAAQEBCAWbNmITk5GY6OjgAK/5KztrYWR1d4nomJCUxMTEosl8vlev+LU1QMLjMy0vtr0QZDaGN6Mbax4WMbGz62cTGpTAagcFQiQ3hONH0Naieyn3zyCT7//HPcuXMHzZo1g4WF6vfXjRo1KvexwsLCsG7dOvz555+wsrISa1ptbGxgZmYGGxsbDB06FGPGjIGdnR2sra0xcuRIBAQEwN/fHwDQpUsX+Pj4YMCAAZg7dy4SExMxefJkhIWFlZqsGr6nU9Tybi8iIiK9VzxFLW/2Ko3aiWy/fv0AAJ9++qm4TCKRQBAESCQSFBQUlPtYS5YsAQC0b99eZXlERAQGDRoEoLD2ViqVom/fvsjNzUXXrl2xePFicVuZTIZt27Zh+PDhCAgIgIWFBUJDQzF9+nR1L80giMNvcdwCIiIig8Hht0qndiIbHx+vsZML5eg2NDU1RXh4OMLDw8vcxsPDwyAKoDWBM3sREREZDnH4LSaypVI7kXVycoKpqak2YiEN4AudiIjIcBR9w8rSgtKpPSGCo6MjQkNDERUVBaVSqY2YqAIkrJElIiIyGOyRfTG1E9nVq1cjOzsbb775JqpVq4ZRo0bh5MmT2oiNXgFrZImIiAwHO6ZeTO1E9q233kJkZCSSkpIwe/ZsXLhwAf7+/qhTp85/9garyoQ1skRERIaj6ONcwi7ZUqmdyBaxsrLC4MGDsXv3bpw9exYWFhalzpZFr1fRC515LFHldPNhFtKzK9c0k4npOUjKyNF1GERUiuLht6g0r5zI5uTkYOPGjejduzeaNm2K1NRUjBs3TpOxUQWUZ0QIItKe26nZ+HbnJVxJegwAiL2VhmFrTqL9d/vQ4ft9OHcnXccRFtodl4i2/xeNNt9GY1zkGdx4kAkAOHojBfN2X650STfRf01xj6xOw6i01B61YNeuXVi3bh22bNkCIyMjvP3229i9ezfatm2rjfhITcU1skSkDQkp2TCRS+FkbQpBEHD2TjpWHo7H+bvpGNSqBqpYGGPt0QTE3CichnHJvuswlUuRoyi+OTY1Kw+jNvyLnaPaQi575f6ECkvJzMXnkWeQl18YW2TsHUTG3oGJkRS5T5ct/OcaujVwxlu+1XA1ORMbTtxGR29HDAzwQE0HSwBA/MMsWJoYwcHqvzgJDZGWFd3spdsoKi21E9m33noLPXr0wJo1a9C9e3eDmC7NkIiJLDNZogpJTM9BxJF4dPFxRjOPKjh/Nx1L9l3HjvP3YSSTopO3Ix5m5uLEzTRxnyl/xpV6rKIktrVXVfT2rYbZ2y/i+oMs/Hr0FgYHepa6z+swL+oKHufkw9vZCoMDa2D1kVu4cD9DTGKL7DifiB3nE8XHq47cxOqYm2hXxwESAPuuPICxTIo+Tavhk/ZecLMzx+64RJy/m45h7WrB0kTtjxoiekocfotdsqVS+90lKSkJVlZW2oiFNKBo+K2Y6w+x/MANRF9OhkQCdPZxRvcGzjh7Nx2/HU9Adm4BvF2sMDCgBnIUBVh5OB53Up+gioUcAwNqwN3OHJti7yDmegqMZBIEN3RBp3pOOHojBb/H3kFuvhJN3GzxQUt3pGTlIeJwPJIzcuFobYLBgZ6wtzDGuuMJOJ3wCCZGUvRtVh3+Ne0RfSkZW8/eQ36BAP9a9ninWXXcTsvG6iM3kZalQHU7MwwO9ISZXIZfYm7i4v3HMDeRoV9zdzRxs8Hf5xIRdSERggB0qOuIXk1ccSnxMdYevYXHOfnwcrTEhv/5w8pUt39gCYKAnw7cwOLoa7A1N8aQwBqwMZfj16MJOHcnHaZyKd7xc0PzGnbYfSERO84lokAQ0NqrKvo2rY4bDzKx5ugtpGcr4GFvjsGBnjCSSbD6yE1cTcqEpakRPmjhjvqu1th69h72XkwGAATVc0KPRi44fy8d644lICu3AHWcLTEwoAby8pVYdeQmElKyYWsuR2irGvCwN8fvsXdw+HoKjKQSdG/ogqB6TjgWn4JNsXeQq1CisZsNQlp6IC07DysPxyMpPRcOViYYHFgDDlYm+O14Ak7dKmzn3r7VEOhVFfuvJOOv0/egKBDQsqYd3vVzw91HT7Dq8E2kZuWhWhUzDAmsAXNjI6w5egsX72XAzFiGfs3d4Otuix3nE7ErLhFKAWhXxwFv+VbD5cTHWHvsFjKe5KOmgwUGtaoBoDCpuvEgC1amRmheRQrJ+URsO5eEfVceQCoButZ3RrcGzvg34RE2nLyN7NwC1HO1xkB/D2Tn5SPi8E3cSXsCOwtjhLaqgepVzLDx5G0cvPoQAPDT/huQyyRQFBT/dZiXr1RJ7LydrVCgFGBuXDgnuoOVKf7Xrib8PKrgfnoOCpQCTIykcLQuHIM7R1GAyVvOY8Geq+jdpBqqWBi/jpeliov3M/Db8QQAwNe96qNlTXu86+eGe+k5UCoFmMilqGJujH8uJeOXmFt4nKMAJBI8zlFAqRRwMyUb+y4/EI+Xm6/Eb8dv47fjtyGVAMqnT9fCf66hV2NXdG/ojH9vP8KGE0/bwMUKAwJq4ImiABGH4sU2GNjKA25VzLHx5G0cu5EKuUyCHo1c0cHbEYeuJmPTSRnGHo9CU/cq+KClOx48zkXE4Zt48Ljw/WdIoCfsLIyx7lgCTt9+BBO5FH2bFr7/7L2YhL/P3Ud+gYBWXvZ4u1l13EopfP95lK2A29P3HxMjKX45eguX7j+GhYkM77dwR8NqNvj73H3suZgEQQA6ejuiZ2NXXLyfgbXHEpD59P1nUKsaKBAERByOx82H2bA2k2NggAdqOVhi8793cODqQ8gkEnRr4Iwu9Z1w8mYaNp68jRyFEg2qWaO/vwcynigQceQm7j/KQVVLYwwKrAFnGzNsOJGAE/FpMDaS4s0mrmhT2wEHrz7An6fvIS9fieaeVfBec3ckphf+rj3MzIOLrSmGBHrCytQIvx69hfN3M2Aql+JdPzf41aiC3XFJ2HG+8P2nbe2qeMu3Oq4/yMSamFuQSICpPXzQs7Hra399Pu/mwyyE/HwMDx6rvv+sO5aAf59+zvRpWg0Btaoi+lIytp0tfP8p9XOmihkGty75OfNeczf4utli+7lE7H76OdOujgN6+1bDpcTHWPfM+8/gwBpQCsCqwzcR/zAL1mZG6O/vgdqOVtj8710cuFr4/vNGfWe80cAZpxIKX/tP8grg42qNAf4eyHr6/nM37QnsLY0xqFUNuNiaIfKZ136vJtVgJC38XGcaWzqJ8ArFlAUFBdiyZQsuXrwIAPDx8cGbb74JmUym8QBfh4yMDNjY2ODhw4ewt7fXdTgV0vH7fbjxIEvXYejU/9rWxMTu9VSWKRQKbN++/bV9i7D53zsYveGM1s9Dr1cLTzsM8PeAokCJlMw8AEBTD1s087BT6zj5BUr0WHQIlxIfo19zN8zp0/C19rbkFygR8vMxHItPRfeGzlgc0kyt/QVBwN6LyYh/WPhe42prhsxcBVYciseVpExthEw6IpUAmz8JRGM329dyvrLeq4euOoG9l5JfSwyVVRcfJywb6KfrMCosJSUFVatWRXp6OqytrSt8PLV7ZK9du4bu3bvj7t27qFu3LgBgzpw5cHNzw99//41atWpVOCh6dWHtvfDb8QQIACxNjMQP3XXHE5CdVwCppLDXrlWtqlh28AbuPXoCAKjjZIlBrTzx5+m7OBafCgCwNZNjcKAnkjJysCn2DvIKlJBJJejZyAU+rtZYfiAeDzJzAQANq9ngg5bu+O14As4+vYmlqqUxhrWtiQv3H2PbmXvIVwowlknxdrPqcLYxxcpD8Xj0pPBGkhaedujdpBpWHSn+IHS1NcOwNjVx5PpD7LmYBKUAmBvL8EELd8hlhT0mmbn5kKDwr2aPqhb49Ld/sfJwPN5v4Y4aVS1e75P/VFZuPr7ZcQkA8H4Ld8hlEsTdywAAOFmb4KM2NXH69qPCXhClIPaO2JobY9XheGTk5AMAAmvZo3sjF6w8FI/rT/84catihg/b1MT+Kw+w73IylAJgYWKE/i3doRSAtcduie3cwdsRbWs7YPnBG7iTVtjOXg6WGNy6BraduS/WcNqYyTE4sAYeZuYi8mRhb7tMWtgL36CaDX4+eAPJjwvbuYGrNUL8PbDhxG2cvv0IAGBvYYyP2tbE1aRM/Hn6rtjOfZpWQ7UqZlh5KB5pT28Y8qtRBX18q2N1zE1cTiy8CcrFxhTD2tbE8fhU7I5LQoEgwExe2AtmZizFmpjC3nYJgDa1HdDZxwkrDsXjZkrhc+Jhb44PW9fEzvP3sPXENVSpUgVWpnKEtvLAkzwlfjuegCeKAsgkEnT2cUILTzssP3gD99ML79Kv62yF0IAa2PzvXZy4Wfjar2Iux5DWnvD3tEdqdh4UBUoYSaUaqwE1kkkxtYcPPvj5GNafuI1qtmYY2am2Ro5dHp9HnsGx+FQYG0kxsVu9l+/wHIlEgiAfpxLL3/VzQ1JGLgQIMJcbwcxYhj0Xkwq/BXr6uuzs4wT/mvZYdqC4Deo4WWFQq1LaINAT99Jz8HvR+48E8JA8RJ9O/lgVk4CHT/+YaFzdFv1auGHdsQScu1v4/uNgaYKP2nriwr0MbD17X+wVf8evOhwsTRFxuPj9x7+mHXo1roaIw/G4mlz4/lPN1gzD2tbEoWsPsfeZ95+Qlu6QSQvff7Kevv+0r+uADt6O+PlgPBJSswEANataYEhrT+w4n4jD1wp7961NjRDaqgbSnyjEXliZRII3GjjD190WPx+MR+LT0SN8XKwxIMADkSdv41TCIwCAnYUxhrb2xK2ULGz+9y4UBQLkMgne8q0GD3sLrDgUj9SswuekmUcVvN2sOn6JKSwXAQBna1N81LYmTt1Kw86nvbCmcinea+4Oa1MjrD5yExlPf9f8a9rjwv0M/HMpGdO3XcCmjwN09tX2gSsPsPdSMoykEvz6YUvsjkvCmTuFz0lVS2N81KYmLiU+xtZnPmf6NqsOF5vCdi56/yn+nLkp3oTpamuGj9p44uiNFERdKG7n91u4w8So8P2n6HOmbR0HdKrniBUH43HraTvXsLfAh208sfNpOwsArEyNEBpQA1l5+Vh//Lb4/tOlvhOa17DDsoM3kPj0te/tbIXQVjXw+6k7OPm0TKmKeWE7307LxuZTd5FXoIRcJhG/hSJVavfIdu/eHYIgYO3atbCzK+yFSElJQf/+/SGVSvH3339rJVBtMqQe2f8yQRAQGnECB648QGcfJyx/5i/X19kj+/3uy1j0zzW42ZkhanQ7mMr185sKffO6e901YdmB65i9/RKMZVL8/Wlr1HbSftnW3otJGLr6JGRSCZaENEWX+s5aP6em6GMb67PE9Bx0+G4fnigK8EO/JnizSTWtn/P5Ns4vUKLbDwdxNTkTQ1t7YkoPH63HQNql6R5ZtW+X3b9/P+bOnSsmsQBgb2+Pb775Bvv3769wQESvSiKRYEpwPcikEkRdSBJ7QV6nO2nZWHbgBgDgy+71mMTSC33Upiba1K6KvAIl+i07qvWxXM/cfoTha08BAAb4e+hVEkuvn7ONKT5pX/gt67c7LuFJXsFrj2HtsQRcTc6EnYUxPn2N31qQ/lA7kTUxMcHjx49LLM/MzISx8eu/YYHoWbWdrDDA3wMA8NVfca/9jfebHZeQm6+Ef007dGWSQC8hkUgw790mqONkiZSsPMzdeVlr51IqBUz9Kw55+Uq0qV0VE97w1tq5yHB81LYmqtma4V56jvhH+uuSmJ6D+XuuAADGdK4DGzP2wlNJaieyPXr0wLBhw3Ds2DEIggBBEHD06FF8/PHH6NWrlzZiJFLLqKDasDWX42pyJoasOgGl8vWMRbbl37vYdvY+JBJgSg8fDpVC5eJgZYK5bzcGAPx+6g7OPK091rQtp+/izO1HsDCW4ft3G8PMmN8W0MuZymX4olvhHz1L9l8Ta5i1LSs3H+8ti8GjbAW8na3Qr7nbazkv6R+1E9mFCxeiVq1aCAgIgKmpKUxNTREYGAgvLy/88MMP2oiRSC225sZYEeoHM7kMMTdSsP7Eba2fc8WheIzacBoAEBpQA/VdbbR+TjIcTdxs0ce3sP5w+rYLGp+ZLys3H9/uLLwBMayjFxytTDV6fDJsPRq5oLVXVeQoCke72HMhSevnXLD3Gm6lZMPFxhQ/DWgGIx1OHEKVm9qvDFtbW/z555+4cuUKNm3ahE2bNuHy5cvYvHkzbGz44U2VQzMPO4zs5AUA+HLLOey78uAle7y6a8mZmLO9cCi6D1t7YipvRqBXMP4Nb5jJZYi9lYa/ztzT6LGX7r+OpIxcuNmZYYgOJ2Ag/SSRSLB8oB86+zghL1+JCb+fRUaO9qYu3ndfglUxxWMce9jrZgQa0g/lTmSVSiW+/fZbBAYGonnz5vj5558RFBSEnj17wsvLS5sxEr2SYW1q4i3fahAEYMbfl/DcZEUaM+vvC8hXCujk7YjJPXwglbKkgNT37I013+y4JA6jVFHXkh/zBkSqMDNjGRaHNEVNBwukZOXhx3+uaeU8yY9z8XdCYWoypnMd3pBIL1XuRHbWrFmYNGkSLC0tUa1aNfzwww8ICwvTZmxEFWIkk2Jm7wZwsDJBQuoT7L+v+QRz3+VkRF9+ALlMgi+D1R+Pk+hZH7WtiepVzHA/PQcfLD+KvAr+9ZX8OAfv/XQUuflKBNS05w2IVCFymRRTggu/cYo4HC9OiKFJ30ddRZ5SgiZuNhjZkZ1k9HLlTmTXrFmDxYsXY9euXdiyZQu2bt2KtWvXQqnUUjcXkQZYmBhhfNfCiTt23ZXi4dMJHDRBUaDEjG0XABTWxdZ0sNTYsem/yVQuQ8Sg5rCzMMalxMdYsu/6Kx9LqRQwY9tFpGTlobajJRa+78sbEKnCOng7ol0dBygKBMz6+6JGj332ziP88W9hWc2X3ery9UrlUu5ENiEhAd27dxcfBwUFQSKR4N49zdZyEWla36bV0bCaNXILJJi/R3Nfh/169BauP8iCnYXxa52ViQxbbScrfPF0aKz5e65gU+ydVzrO3F2XsfVpre03fRtqbFYyoik9Csfr3nMxCYeuama8bkEQMH1rYceAX1UlmrymKXFJ/5U7kc3Pz4epqeqdrnK5HAqF9gq+iTRBKpXgy26FvbKRp+7ieHzFh49Jy8rDgj1XAQCfd+H4hqRZ7/hVx0dtCm/KmrP9oto31lxLzsTPBwvrYr/p0xDNPOxesgdR+Xk5Fo/XPWPbBeQXVPyb2Y0nb+PkrTSYyaXo6c5veqn8jMq7oSAIGDRoEExMiv+qz8nJwccffwwLi+I7Cv/44w/NRkikAc08qqCpvRKnUqQIXXkc2z5tjVqvWAqQoyjAuE1nkf6kaHxDdw1HS/91EokE49/wxj+XknH9QRYW7b2KL4PLPxrGzKc3IAbVc0S/Fnx9kuaNCqqNLafv4nLSY8zefgmTg+u98o2u+688wBd/nAMA/K9tTdhmX9JkqGTgyt0jGxoaCkdHR9jY2Ig//fv3h6urq8oyosrqvVpKNHO3xRNFAaZsOf9KN9LkKAoKx1G8mARjmRTT32wAGUcpIC2Qy6SY/HQot1VHbpb7xproy8nYJ96AyKHgSDtszY3xZffCG1xXHo7HmI2nX2n84/RsBab9eR6CALzlWw3/a1NDw5GSoSt3j2xERIQ24yDSOlMZMOet+ujxYwyOXE/BhN/PYv57TdQ6xs8HbyD2VhqsTY2wbKAfWnjyK1vSng51C2+s2X/lAWb9fRE/h/q9cHtFgRIzn7kB0bMqx98k7XnHzw0yqQTjN53FltP38EYDZ7zRwKXc+xcoBQxceQw3U7JR1dIE09+sDyOODkdq4lQZ9J/iWdUCSwc0hUQCbP73rlrTLSZl5GDx07vIZ/RuAP+a9toKk0ikzo01vAGRXrc+Tavj43aF4x/P2n4RufkF5d5348nbOHMnHVYmRvhlaAtYmfJeA1IfE1n6z+no7STO2z196wUoleX7OuzbnZeQnVcAX3db9Grsqs0QiUTP3lgzfVtcmTfW8AZE0pXh7WvB0coEt1OfYOWhm+XaJyNHge92XQYAjOpcB/VcrLUYIRkynSayBw4cQM+ePeHq6gqJRIItW7aorBcEAVOnToWLiwvMzMwQFBSEq1evqmyTmpqKkJAQWFtbw9bWFkOHDkVmZuZrvArSR593qQsrEyOcu5uOTadePrzRmduP8MepuwCAaT3rc3xDeq1GBdWGrbkcV5Iy8dvxhFK3mb/nCm9AJJ2wMDHC+KdDxv34z1UkP8556T4//nMNKVl5qOlggYEBHtoOkQyYThPZrKwsNG7cGOHh4aWunzt3LhYuXIilS5fi2LFjsLCwQNeuXZGTU/xLEhISgri4OERFRWHbtm04cOAAhg0b9rougfRUVUsTjOxUOGvM/+26jMzc/DK3FQQB05/WHfbxrcbxDem1szU3xpjOdQAAc3dexqmENJX1f5+9j1+P3gIATO3pwxsQ6bXr41sNjavbICuvQOxpLcvNh1mIOBwPAJgS7AO5jF8O06vT6aunW7dumDlzJt56660S6wRBwIIFCzB58mS8+eabaNSoEdasWYN79+6JPbcXL17Ezp078fPPP6Nly5Zo3bo1Fi1ahPXr13OiBnqp0FY14GFvjgePczFn+8Uy77j968w9xN5Kg5lcJvY6EL1uH7RwRzOPKnicm4/hv8Yi6+kfXwkp2Ri94TSUQuHkH61qVdVxpPRfJJVKMLVn4SgZkbF3cP5ueqnb5eYXYPKW81AUCGhbxwHt6zq8zjDJAJV71ILXLT4+HomJiQgKChKX2djYoGXLloiJiUG/fv0QExMDW1tb+PkV38kbFBQEqVSKY8eOlZogA0Bubi5yc4unKs3IyAAAKBQKTvBgoIra9dn2lQKY+EYdfLz2NNYeS4CrjQmGPR2EvkjcvQxxtpn/tfWEvbmMr5FKqrQ2NjQrBviiR3gM7qQ9Qfg/VzE6yAsz/45DXoES/p5VMOvNegZ9/f+FNtZnjVyt0KOhM7adS8So9f9iZWgzuNioTqQ08Y/zOHTtIeQyCb7oWhv5+arfhrGNDZ+m27bSJrKJiYkAACcnJ5XlTk5O4rrExEQ4OjqqrDcyMoKdnZ24TWnmzJmDr7/+usTy6OhomJubVzR0qsSioqJKLOvtIcGWWzL8sOcKpEkX4fr0JXDzMRB+QYY8pQTVzAVUe3wJ27dzoO7KrrQ2NiRdHCRYmSbD8gPXkX7nKnZfl0ECAe2sH2DXzh26Du+1MPQ21mfN5cABuQzXHmSh5w/7MaphAeyezqMUlybBH5cKX6+Daxfg6skDuFrGcdjGhis7O1ujx6u0iaw2TZw4EWPGjBEfZ2RkwM3NDR06dIC9PYdUMkQKhQJRUVHo3Lkz5HLVu7m7CQJu/3wCsQmPsOyqGXZ9FghrUzl6L45BnjITATXtEP5+Yw4NU8m9qI0NSTdBQFzESRyLT8Pa64WDbn7Qwh0f9qyn48i077/SxvquXYcnGLrmFK4/yMLx3GpY+FZjXEp8jLFLjwIQ8Haz6hjXu36p+7KNDV9KSopGj1dpE1lnZ2cAQFJSElxcigdYTkpKQpMmTcRtkpOTVfbLz89HamqquH9pTExMVKbaLSKXy/mLY+DKauPloc3xztIjuP4gCz/ui0ddZytcSsqEtakRFoc0QxULYx1ES6/iv/B7PK1nAwQvOghBAKxNjfB5V2+Dv+Zn/RfaWJ/VcJDjxw+aInjhQeyIS8Kp2xlYsOcqFAUC2tSuihm9G0Iuf/HMB2xjw6Xpdq20twp6enrC2dkZe/fuFZdlZGTg2LFjCAgIAAAEBATg0aNHiI2NFbf5559/oFQq0bJly9ceM+kvOwtjzHizAQBgTcwtfLn5PABgVFAdJrFU6fi4WmNJSFMMbe2Jn0Obw46vUapk6rlYo1+LwmHg3lt2FDE3UmBsJMXstxrC9CVJLJE6dNojm5mZiWvXromP4+Pjcfr0adjZ2cHd3R2jRo3CzJkzUbt2bXh6emLKlClwdXVF7969AQD16tXDG2+8gY8++ghLly6FQqHAiBEj0K9fP7i6csB6Uk8rr6ro4uOE3ReSAAC1HCwwgOMbUiX1RgMXtaYDJXrdPu9cB3/+exdZeYWzfX3UxhNudrwPhTRLpz2yJ0+ehK+vL3x9fQEAY8aMga+vL6ZOnQoAGD9+PEaOHIlhw4ahefPmyMzMxM6dO2FqWnwX5Nq1a+Ht7Y1OnTqhe/fuaN26NZYtW6aT6yH9N/OtBvBxsYaxTIqvetXn+IZERK/I3tIEE7sX1m53qOuAkR05bTJpnk57ZNu3b1/m2J0AIJFIMH36dEyfPr3Mbezs7LBu3TpthEf/QY5Wptg2sjXSsvNgb1myjpqIiMqvv78HutZ3RlVLY86ISFpRaW/2ItIVqVTCJJaISEMcrPh+StrD702JiIiISC8xkSUiIiIivcREloiIiIj0EhNZIiIiItJLTGSJiIiISC8xkSUiIiIivcREloiIiIj0EhNZIiIiItJLnBABEGcXe/z4MeRyuY6jIW1QKBTIzs5GRkYG29hAsY0NH9vY8LGNDd/jx48B4IUzu6qDiSyAlJQUAICnp6eOIyEiIiIyfCkpKbCxsanwcZjIArCzswMAJCQkaORJpconIyMDbm5uuH37NqytrXUdDmkB29jwsY0NH9vY8KWnp8Pd3V3MvSqKiSwAqbSwVNjGxoa/OAbO2tqabWzg2MaGj21s+NjGhq8o96rwcTRyFCIiIiKi14yJLBERERHpJSayAExMTDBt2jSYmJjoOhTSErax4WMbGz62seFjGxs+TbexRNDU+AdERERERK8Re2SJiIiISC8xkSUiIiIivcREloiIiIj00n8+kQ0PD0eNGjVgamqKli1b4vjx47oOiTRkzpw5aN68OaysrODo6IjevXvj8uXLug6LtOibb76BRCLBqFGjdB0Kadjdu3fRv39/2Nvbw8zMDA0bNsTJkyd1HRZpSEFBAaZMmQJPT0+YmZmhVq1amDFjhsamMaXX78CBA+jZsydcXV0hkUiwZcsWlfWCIGDq1KlwcXGBmZkZgoKCcPXqVbXP859OZDds2IAxY8Zg2rRpOHXqFBo3boyuXbsiOTlZ16GRBuzfvx9hYWE4evQooqKioFAo0KVLF2RlZek6NNKCEydO4KeffkKjRo10HQppWFpaGgIDAyGXy7Fjxw5cuHAB33//PapUqaLr0EhDvv32WyxZsgQ//vgjLl68iG+//RZz587FokWLdB0avaKsrCw0btwY4eHhpa6fO3cuFi5ciKVLl+LYsWOwsLBA165dkZOTo9Z5/tOjFrRs2RLNmzfHjz/+CABQKpVwc3PDyJEj8cUXX+g4OtK0Bw8ewNHREfv370fbtm11HQ5pUGZmJpo2bYrFixdj5syZaNKkCRYsWKDrsEhDvvjiCxw+fBgHDx7UdSikJT169ICTkxNWrFghLuvbty/MzMzw66+/6jAy0gSJRILNmzejd+/eAAp7Y11dXfH5559j7NixAAqnrnVycsKqVavQr1+/ch/7P9sjm5eXh9jYWAQFBYnLpFIpgoKCEBMTo8PISFvS09MBQGPzO1PlERYWhuDgYJXfZzIcf/31F/z8/PDOO+/A0dERvr6+WL58ua7DIg1q1aoV9u7diytXrgAAzpw5g0OHDqFbt246joy0IT4+HomJiSrv2TY2NmjZsqXaOZiRpoPTFw8fPkRBQQGcnJxUljs5OeHSpUs6ioq0RalUYtSoUQgMDESDBg10HQ5p0Pr163Hq1CmcOHFC16GQlty4cQNLlizBmDFjMGnSJJw4cQKffvopjI2NERoaquvwSAO++OILZGRkwNvbGzKZDAUFBZg1axZCQkJ0HRppQWJiIgCUmoMVrSuv/2wiS/8tYWFhOH/+PA4dOqTrUEiDbt++jc8++wxRUVEwNTXVdTikJUqlEn5+fpg9ezYAwNfXF+fPn8fSpUuZyBqIjRs3Yu3atVi3bh3q16+P06dPY9SoUXB1dWUb0wv9Z0sLqlatCplMhqSkJJXlSUlJcHZ21lFUpA0jRozAtm3bEB0djerVq+s6HNKg2NhYJCcno2nTpjAyMoKRkRH279+PhQsXwsjICAUFBboOkTTAxcUFPj4+Ksvq1auHhIQEHUVEmjZu3Dh88cUX6NevHxo2bIgBAwZg9OjRmDNnjq5DIy0oyrM0kYP9ZxNZY2NjNGvWDHv37hWXKZVK7N27FwEBATqMjDRFEASMGDECmzdvxj///ANPT09dh0Qa1qlTJ5w7dw6nT58Wf/z8/BASEoLTp09DJpPpOkTSgMDAwBJD5125cgUeHh46iog0LTs7G1Kpakoik8mgVCp1FBFpk6enJ5ydnVVysIyMDBw7dkztHOw/XVowZswYhIaGws/PDy1atMCCBQuQlZWFwYMH6zo00oCwsDCsW7cOf/75J6ysrMS6GxsbG5iZmek4OtIEKyurEjXPFhYWsLe3Zy20ARk9ejRatWqF2bNn491338Xx48exbNkyLFu2TNehkYb07NkTs2bNgru7O+rXr49///0X8+bNw5AhQ3QdGr2izMxMXLt2TXwcHx+P06dPw87ODu7u7hg1ahRmzpyJ2rVrw9PTE1OmTIGrq6s4skG5Cf9xixYtEtzd3QVjY2OhRYsWwtGjR3UdEmkIgFJ/IiIidB0aaVG7du2Ezz77TNdhkIZt3bpVaNCggWBiYiJ4e3sLy5Yt03VIpEEZGRnCZ599Jri7uwumpqZCzZo1hS+//FLIzc3VdWj0iqKjo0v9DA4NDRUEQRCUSqUwZcoUwcnJSTAxMRE6deokXL58We3z/KfHkSUiIiIi/fWfrZElIiIiIv3GRJaIiIiI9BITWSIiIiLSS0xkiYiIiEgvMZElIiIiIr3ERJaIiIiI9BITWSIiIiLSS0xkiYiIiEgvMZElov+cQYMGvXAaxFWrVsHW1lZ8/NVXX6FJkyZlPtZX7du3x6hRo164TY0aNbBgwYIKn2vv3r2oV68eCgoKKnwsdS1duhQ9e/Z87eclIu1jIktE9BJjx47F3r17y3ysr/744w/MmDHjtZxr/PjxmDx5MmQy2Ws537OGDBmCU6dO4eDBg6/93ESkXUxkiYhewtLSEvb29mU+1ld2dnawsrLS+nkOHTqE69evo2/fvlo/V2mMjY3xwQcfYOHChTo5PxFpDxNZIqoUHjx4AGdnZ8yePVtcduTIERgbG7+w9/PcuXPo2LEjzMzMYG9vj2HDhiEzM1NcX1BQgDFjxsDW1hb29vYYP348BEFQK7bylBb8/PPPqFevHkxNTeHt7Y3FixeL61q1aoUJEyaUuF65XI4DBw4AANLS0jBw4EBUqVIF5ubm6NatG65evaqyz/Lly+Hm5gZzc3O89dZbmDdvnkoJRGlxSySSEj+rVq0CULK0IDk5GT179oSZmRk8PT2xdu3aEsecN28eGjZsCAsLC7i5ueGTTz5Reb5Ls379enTu3BmmpqYqsTVp0gQrV66Eu7s7LC0t8cknn6CgoABz586Fs7MzHB0dMWvWLJVjSSQS/PTTT+jRowfMzc1Rr149xMTE4Nq1a2jfvj0sLCzQqlUrXL9+XWW/nj174q+//sKTJ09eGCsR6RcmskRUKTg4OGDlypX46quvcPLkSTx+/BgDBgzAiBEj0KlTp1L3ycrKQteuXVGlShWcOHECkZGR2LNnD0aMGCFu8/3332PVqlVYuXIlDh06hNTUVGzevFmjsa9duxZTp07FrFmzcPHiRcyePRtTpkzB6tWrAQAhISFYv369SgK9YcMGuLq6ok2bNgAK63ZPnjyJv/76CzExMRAEAd27d4dCoQAAHD58GB9//DE+++wznD59Gp07dy6R5D1v7NixuH//vvjz3XffwdzcHH5+fqVuP2jQINy+fRvR0dHYtGkTFi9ejOTkZJVtpFIpFi5ciLi4OKxevRr//PMPxo8f/8I4Dh48WOo5r1+/jh07dmDnzp347bffsGLFCgQHB+POnTvYv38/vv32W0yePBnHjh1T2W/GjBkYOHAgTp8+DW9vb3zwwQf43//+h4kTJ+LkyZMQBEHlNQAAfn5+yM/PL3EsItJzAhFRJfLJJ58IderUET744AOhYcOGQk5OTpnbLlu2TKhSpYqQmZkpLvv7778FqVQqJCYmCoIgCC4uLsLcuXPF9QqFQqhevbrw5ptvlnnciIgIwcbGRnw8bdo0oXHjxmU+rlWrlrBu3TqVY8yYMUMICAgQBEEQkpOTBSMjI+HAgQPi+oCAAGHChAmCIAjClStXBADC4cOHxfUPHz4UzMzMhI0bNwqCIAjvvfeeEBwcrHKOkJAQlThfJCYmRjA1NRU2bNggLmvXrp3w2WefCYIgCJcvXxYACMePHxfXX7x4UQAgzJ8/v8zjRkZGCvb29i88t42NjbBmzRqVZdOmTRPMzc2FjIwMcVnXrl2FGjVqCAUFBeKyunXrCnPmzBEfAxAmT56scl0AhBUrVojLfvvtN8HU1LREHFWqVBFWrVr1wliJSL+wR5aIKpXvvvsO+fn5iIyMxNq1a2FiYlLmthcvXkTjxo1hYWEhLgsMDIRSqcTly5eRnp6O+/fvo2XLluJ6IyOjMnskX0VWVhauX7+OoUOHwtLSUvyZOXOm+PW2g4MDunTpIn5VHx8fj5iYGISEhIjXYWRkpBKnvb096tati4sXLwIALl++jBYtWqic+/nHZUlISEDv3r0xduxYvPvuu6VuUxRDs2bNxGXe3t4lShf27NmDTp06oVq1arCyssKAAQOQkpKC7OzsMs//5MkTlbKCIjVq1FCp0XVycoKPjw+kUqnKsud7hRs1aqSyHgAaNmyosiwnJwcZGRkq+5mZmb0wTiLSP0xkiahSuX79Ou7duwelUombN2/qOpyXKqoPXb58OU6fPi3+nD9/HkePHhW3CwkJwaZNm6BQKLBu3To0bNhQJfnSlqysLPTq1QsBAQGYPn16hY518+ZN9OjRA40aNcLvv/+O2NhYhIeHAwDy8vLK3K9q1apIS0srsVwul6s8lkgkpS5TKpVl7ieRSMpc9vx+qampcHBwKDNOItI/TGSJqNLIy8tD//798d5772HGjBn48MMPS/TGPatevXo4c+YMsrKyxGWHDx+GVCpF3bp1YWNjAxcXF5W6yPz8fMTGxmosZicnJ7i6uuLGjRvw8vJS+fH09BS3e/PNN5GTk4OdO3di3bp1Ym9s0XU8X7+ZkpKCy5cvw8fHBwBQt25dnDhxQuXczz9+niAI6N+/P5RKJX755RcxwSuNt7d3iefm8uXLePTokfg4NjYWSqUS33//Pfz9/VGnTh3cu3fvxU8QAF9fX1y4cOGl22nT9evXkZOTA19fX53GQUSaxUSWiCqNL7/8Eunp6Vi4cCEmTJiAOnXqYMiQIWVuHxISAlNTU4SGhuL8+fOIjo7GyJEjMWDAAPEr588++wzffPMNtmzZgkuXLuGTTz5RSc404euvv8acOXOwcOFCXLlyBefOnUNERATmzZsnbmNhYYHevXtjypQpuHjxIt5//31xXe3atfHmm2/io48+wqFDh3DmzBn0798f1apVw5tvvgkAGDlyJLZv34558+bh6tWr+Omnn7Bjx44XJqdfffUV9uzZg59++gmZmZlITExEYmJiqXfu161bF2+88Qb+97//4dixY4iNjcWHH34IMzMzcRsvLy8oFAosWrQIN27cwC+//IKlS5e+9Pnp2rUrDh06VK7nUlsOHjyImjVrolatWjqNg4g0i4ksEVUK+/btw4IFC/DLL7/A2toaUqkUv/zyCw4ePIglS5aUuo+5uTl27dqF1NRUNG/eHG+//TY6deqEH3/8Udzm888/x4ABAxAaGoqAgABYWVnhrbfe0mjsH374IX7++WdERESgYcOGaNeuHVatWqXSIwsUJt5nzpxBmzZt4O7urrIuIiICzZo1Q48ePRAQEABBELB9+3bxK/PAwEAsXboU8+bNQ+PGjbFz506MHj261NrTIvv370dmZiZatWoFFxcX8WfDhg2lbh8REQFXV1e0a9cOffr0wbBhw+Do6Ciub9y4MebNm4dvv/0WDRo0wNq1azFnzpyXPj8hISGIi4vD5cuXX7qttvz222/46KOPdHZ+ItIOiSCoOaAiEdF/3MSJE3Hw4EGd9zJ+9NFHuHTpkl7MWDVu3DhkZGTgp59+eu3njouLQ8eOHXHlyhXY2Ni89vMTkfawR5aIqJwEQcD169exd+9e1K9f/7Wf/7vvvsOZM2dw7do1LFq0CKtXr0ZoaOhrj+NVfPnll/Dw8ChxA9brcP/+faxZs4ZJLJEBYo8sEVE5PXr0CE5OTmjevDnWrl0LDw+P13r+d999F/v27cPjx49Rs2ZNjBw5Eh9//PFrjYGIqDJhIktEREREeomlBURERESkl5jIEhEREZFeYiJLRERERHqJiSwRERER6SUmskRERESkl5jIEhEREZFeYiJLRERERHqJiSwRERER6SUmskRERESkl/4fo4WZz0HOKCIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "==== Grid ispuna 20.0% ====\n", + "XY ukupna povrsina = 245.4207 mm^2\n", + " Povrsina ljuski = 132.4033 mm^2\n", + " Povrsina ispune = 113.0174 mm^2\n", + "-- Presjeci kroz Z (uzorak konstantan po Z) --\n", + "Duzina po X @ y=1.000 mm: 2.8786 mm\n", + "Duzina po Y @ x=-2.000 mm: 15.9449 mm\n", + "Povrsina XZ @ y=1.000: 28.7860 mm^2 (Z=10.000 mm)\n", + "Povrsina YZ @ x=-2.000: 159.4493 mm^2 (Z=10.000 mm)\n", + "\n", + "A_xz(y=1mm) = 28.785982478097694 mm^2\n", + "A_yz(x=-2mm) = 159.44931163954337 mm^2\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "def _udaljenost_mod(u, razmak):\n", + " r = np.mod(u, razmak)\n", + " return np.minimum(r, razmak - r)\n", + "\n", + "def _pravocrtna_maska(XX, YY, razmak, sirina_linije, kut_stupnjevi=0.0, faza=0.0):\n", + "\n", + " th = np.deg2rad(kut_stupnjevi)\n", + " u = XX * np.cos(th) + YY * np.sin(th)\n", + " dist = _udaljenost_mod(u + faza, razmak)\n", + " return dist <= (sirina_linije / 2.0)\n", + "\n", + "def _razmak_za_gustocu_mreze(sirina_linije, f):\n", + "\n", + " f = float(np.clip(f, 0.0, 1.0))\n", + " if f <= 0.0:\n", + " return np.inf\n", + " if f >= 1.0:\n", + " return sirina_linije\n", + " r = 1.0 - np.sqrt(1.0 - f)\n", + " return sirina_linije / r\n", + "\n", + "def izracun_povrsine(XX, YY, maska):\n", + " if not np.any(maska):\n", + " return {\"A\": 0.0}\n", + "\n", + " dx = XX[0, 1] - XX[0, 0]\n", + " dy = YY[1, 0] - YY[0, 0]\n", + " dA = dx * dy\n", + " A = float(np.count_nonzero(maska) * dA)\n", + " return {\"A\": A}\n", + "\n", + "def prusa_mreza_ili_pravocrtna(\n", + " sirina, visina,\n", + " udio_ispune,\n", + " sirina_linije=0.42,\n", + " slojevi_ljuske=2,\n", + " osnovni_kut_ispune_stupnjevi=45.0,\n", + " mreza=True,\n", + " z_visina=0.0, \n", + " faza_po_mm=0.0,\n", + " # Poprecni presjeci kroz Z\n", + " z_visina_objekta=None, \n", + " y_ravnina=0.0, \n", + " x_ravnina=0.0, \n", + " N=800,\n", + " graficki_prikaz=True,\n", + " detaljno=True\n", + "):\n", + " xs = np.linspace(-sirina/2, sirina/2, N)\n", + " ys = np.linspace(-visina/2, visina/2, N)\n", + " XX, YY = np.meshgrid(xs, ys)\n", + "\n", + " shell_mask = np.zeros_like(XX, dtype=bool)\n", + " for i in range(slojevi_ljuske):\n", + " off = (i + 0.5) * sirina_linije\n", + " shell_mask |= np.abs(XX - (-sirina/2 + off)) <= (sirina_linije / 2)\n", + " shell_mask |= np.abs(XX - ( +sirina/2 - off)) <= (sirina_linije / 2)\n", + " shell_mask |= np.abs(YY - (-visina/2 + off)) <= (sirina_linije / 2)\n", + " shell_mask |= np.abs(YY - ( +visina/2 - off)) <= (sirina_linije / 2)\n", + "\n", + " unutarnji_pomak = slojevi_ljuske * sirina_linije\n", + " unutarnji_pravokutnik = (\n", + " (np.abs(XX) <= (sirina/2 - unutarnji_pomak)) &\n", + " (np.abs(YY) <= (visina/2 - unutarnji_pomak))\n", + " )\n", + "\n", + " if udio_ispune <= 0.0:\n", + " infill_mask = np.zeros_like(XX, dtype=bool)\n", + " elif udio_ispune >= 1.0:\n", + " razmak = sirina_linije\n", + " maske = []\n", + " kutevi = [osnovni_kut_ispune_stupnjevi] + ([osnovni_kut_ispune_stupnjevi + 90] if mreza else [])\n", + " faza = faza_po_mm * z_visina\n", + " for a in kutevi:\n", + " maske.append(_pravocrtna_maska(XX, YY, razmak, sirina_linije, kut_stupnjevi=a, faza=faza))\n", + " infill_mask = np.logical_or.reduce(maske) & unutarnji_pravokutnik\n", + " else:\n", + " razmak = _razmak_za_gustocu_mreze(sirina_linije, udio_ispune) if mreza \\\n", + " else sirina_linije / udio_ispune\n", + " maske = []\n", + " kutevi = [osnovni_kut_ispune_stupnjevi] + ([osnovni_kut_ispune_stupnjevi + 90] if mreza else [])\n", + " faza = faza_po_mm * z_visina\n", + " for a in kutevi:\n", + " maske.append(_pravocrtna_maska(XX, YY, razmak, sirina_linije, kut_stupnjevi=a, faza=faza))\n", + " infill_mask = np.logical_or.reduce(maske) & unutarnji_pravokutnik\n", + "\n", + " konacna_maska = shell_mask | infill_mask\n", + "\n", + " if graficki_prikaz:\n", + " plt.figure(figsize=(6, 6))\n", + " img = np.where(konacna_maska, 1.0, np.nan)\n", + " plt.imshow(img, origin='lower',\n", + " extent=[-sirina/2, sirina/2, -visina/2, visina/2],\n", + " interpolation='nearest')\n", + " naslov = \"Grid\" if mreza else \"Pravocrtna\"\n", + " plt.title(f\"{naslov} @ {udio_ispune*100:.1f}% | ljuske={slojevi_ljuske}×{sirina_linije:.2f} kut={osnovni_kut_ispune_stupnjevi:.0f}°\")\n", + " plt.xlabel(\"X (mm)\")\n", + " plt.ylabel(\"Y (mm)\")\n", + " plt.gca().set_aspect('equal', 'box')\n", + " plt.grid(True)\n", + " # vodilice\n", + " plt.hlines(y_ravnina, -sirina/2, sirina/2, linestyles='--')\n", + " plt.vlines(x_ravnina, -visina/2, visina/2, linestyles='--')\n", + " plt.show()\n", + "\n", + " total = izracun_povrsine(XX, YY, konacna_maska)\n", + " ljuske = izracun_povrsine(XX, YY, shell_mask)\n", + " A_ispuna = total[\"A\"] - ljuske[\"A\"]\n", + "\n", + " dx = XX[0, 1] - XX[0, 0]\n", + " dy = YY[1, 0] - YY[0, 0]\n", + " ys_centered = YY[:, 0]\n", + " xs_centered = XX[0, :]\n", + " row = int(np.argmin(np.abs(ys_centered - y_ravnina)))\n", + " col = int(np.argmin(np.abs(xs_centered - x_ravnina)))\n", + "\n", + " duzina_x_na_y = float(np.count_nonzero(konacna_maska[row, :]) * dx)\n", + " duzina_y_na_x = float(np.count_nonzero(konacna_maska[:, col]) * dy)\n", + "\n", + " povrsina_xz_na_y = None\n", + " povrsina_yz_na_x = None\n", + " if z_visina_objekta is not None and z_visina_objekta > 0:\n", + " povrsina_xz_na_y = duzina_x_na_y * z_visina_objekta\n", + " povrsina_yz_na_x = duzina_y_na_x * z_visina_objekta\n", + "\n", + " duzina_x_vs_y = np.count_nonzero(konacna_maska, axis=1) * dx\n", + " duzina_y_vs_x = np.count_nonzero(konacna_maska, axis=0) * dy\n", + "\n", + " if z_visina_objekta is not None and z_visina_objekta > 0:\n", + " povrsina_xz_vs_y = duzina_x_vs_y * z_visina_objekta\n", + " povrsina_yz_vs_x = duzina_y_vs_x * z_visina_objekta\n", + " y_oznaka = \"Povrsina XZ presjeka (mm^2)\"\n", + " x_oznaka = \"Povrsina YZ presjeka (mm^2)\"\n", + " else:\n", + " povrsina_xz_vs_y = duzina_x_vs_y\n", + " povrsina_yz_vs_x = duzina_y_vs_x\n", + " y_oznaka = \"Duzina po X (mm) [postavi z_visina_objekta za povrsinu]\"\n", + " x_oznaka = \"Duzina po Y (mm) [postavi z_visina_objekta za povrsinu]\"\n", + "\n", + " y_os_0_do_H = ys_centered + visina/2.0\n", + " x_os_0_do_W = xs_centered + sirina/2.0\n", + "\n", + " if graficki_prikaz:\n", + " plt.figure(figsize=(7, 3.5))\n", + " plt.plot(y_os_0_do_H, povrsina_xz_vs_y)\n", + " plt.xlabel(\"y od donjeg zida (mm)\")\n", + " plt.ylabel(y_oznaka)\n", + " plt.title(\"Varijacija prema y\")\n", + " plt.grid(True)\n", + " plt.xlim(0, visina)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + " plt.figure(figsize=(7, 3.5))\n", + " plt.plot(x_os_0_do_W, povrsina_yz_vs_x)\n", + " plt.xlabel(\"x od lijevog zida (mm)\")\n", + " plt.ylabel(x_oznaka)\n", + " plt.title(\"Varijacija prema x\")\n", + " plt.grid(True)\n", + " plt.xlim(0, sirina)\n", + " plt.tight_layout()\n", + " plt.show()\n", + " if detaljno:\n", + " print(f\"==== {('Grid' if mreza else 'Pravocrtna')} ispuna {udio_ispune*100:.1f}% ====\")\n", + " print(f\"XY ukupna povrsina = {total['A']:.4f} mm^2\")\n", + " print(f\" Povrsina ljuski = {ljuske['A']:.4f} mm^2\")\n", + " print(f\" Povrsina ispune = {A_ispuna:.4f} mm^2\")\n", + " print(f\"-- Presjeci kroz Z (uzorak konstantan po Z) --\")\n", + " print(f\"Duzina po X @ y={y_ravnina:.3f} mm: {duzina_x_na_y:.4f} mm\")\n", + " print(f\"Duzina po Y @ x={x_ravnina:.3f} mm: {duzina_y_na_x:.4f} mm\")\n", + " if povrsina_xz_na_y is not None:\n", + " print(f\"Povrsina XZ @ y={y_ravnina:.3f}: {povrsina_xz_na_y:.4f} mm^2 (Z={z_visina_objekta:.3f} mm)\")\n", + " if povrsina_yz_na_x is not None:\n", + " print(f\"Povrsina YZ @ x={x_ravnina:.3f}: {povrsina_yz_na_x:.4f} mm^2 (Z={z_visina_objekta:.3f} mm)\")\n", + " print()\n", + " return {\n", + " \"maska\": konacna_maska,\n", + " \"XX\": XX, \"YY\": YY,\n", + " \"dx\": dx, \"dy\": dy,\n", + " \"povrsina_ukupno_xy\": total[\"A\"],\n", + " \"povrsina_ljuske_xy\": ljuske[\"A\"],\n", + " \"povrsina_ispune_xy\": A_ispuna,\n", + " \"duzina_x_na_y\": duzina_x_na_y,\n", + " \"duzina_y_na_x\": duzina_y_na_x,\n", + " \"povrsina_xz_na_y\": povrsina_xz_na_y,\n", + " \"povrsina_yz_na_x\": povrsina_yz_na_x,\n", + " \"y_os_mm\": y_os_0_do_H,\n", + " \"x_os_mm\": x_os_0_do_W,\n", + " \"povrsina_xz_vs_y\": povrsina_xz_vs_y,\n", + " \"povrsina_yz_vs_x\": povrsina_yz_vs_x,\n", + " }\n", + "# Konfiguracija\n", + "if __name__ == \"__main__\":\n", + " W, H = 10.0, 70.0\n", + " Z = 10.0 \n", + " res = prusa_mreza_ili_pravocrtna(\n", + " sirina=W, visina=H,\n", + " udio_ispune=0.2,\n", + " sirina_linije=0.42,\n", + " slojevi_ljuske=2,\n", + " osnovni_kut_ispune_stupnjevi=45.0,\n", + " mreza=True,\n", + " z_visina_objekta=Z, \n", + " y_ravnina=+1.0, \n", + " x_ravnina=-2.0, \n", + " N=800,\n", + " graficki_prikaz=True, detaljno=True\n", + " )\n", + " print(\"A_xz(y=1mm) =\", res[\"povrsina_xz_na_y\"], \"mm^2\")\n", + " print(\"A_yz(x=-2mm) =\", res[\"povrsina_yz_na_x\"], \"mm^2\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "24ab101c-b571-4630-81c0-b6a8ff29ed87", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/software/GRID_OSI.ipynb b/software/GRID_OSI.ipynb new file mode 100644 index 0000000..ae8a904 --- /dev/null +++ b/software/GRID_OSI.ipynb @@ -0,0 +1,973 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "206a681f-a3b4-430d-8e88-d4b11a9f32d0", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAIjCAYAAAC52ZmJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcBVJREFUeJzt3Xd4VFX+BvB3SkiBEIpIkY5UAVEUVFBBQBQUUAwoSFFsSNFFpbiuCGtbxfKTdRFQhEUjKCAoKhoRRWyAgmJBAelIkRJKQkhmzu8PNuNMMuXO3Dtzzznzfp6HBzK5c+957yl8p91xCCEEiIiIiGLktLsBREREpDYWE0RERGQKiwkiIiIyhcUEERERmcJigoiIiExhMUFERESmsJggIiIiU1hMEBERkSksJoiIiMgUFhMU0tChQ1G/fv2I223btg0OhwOzZ8+Oe5uoLCvPvcPhwMiRIy3ZFxB8bDzyyCNwOByWHYPkp1ufnzp1yu4mSIfFhIa2bt2KkSNHokmTJsjIyEBGRgZatGiBESNG4IcffrC7eUEdP34cXq835vtv2rQJN954I2rXro2MjAw0a9YMkydPRn5+fpltv/zyS3Ts2BEZGRmoUaMGRo8ejePHjxs+1iuvvILmzZsjLS0NjRs3xtSpU8ts88UXX+D8889HZmYmOnXqhI0bN5bZZvTo0ejevXt0QSkqGzduxNixY9GmTRtkZmaiZs2a6NmzJ9auXWvpcX755RdcddVVqFChAqpUqYJBgwbhwIEDUe9ny5YtSEtLg8PhKNPG5cuX49Zbb/XN64YNG+K2227DH3/8YVUMbRUVFaFFixZwOByYMmVKwO9KCt5gf+bNmxew7cmTJzFgwACUL18e1atXx5tvvpnIGFJz290AstbSpUvRv39/uN1uDBw4EOeeey6cTic2btyIRYsWYdq0adi6dSvq1asXcV8zZ8409R98OEIILFiwAK+++ipWrlyJEydOICUlBU2bNsWNN96IUaNGoWLFiob2tXPnTrRr1w5ZWVkYOXIkqlSpgq+++goTJ07Et99+iyVLlvi2Xb9+Pbp06YLmzZvj2Wefxa5duzBlyhRs2rQJH3zwQcRjTZ8+HXfddRf69u2LMWPG4PPPP8fo0aORn5+PcePGAQDy8vLQu3dvXHTRRbjjjjswe/Zs9O3bFz/88ANcLhcA4KeffsLMmTPx7bffxnD2yKiXX34Zr7zyCvr27Yu7774beXl5mD59Oi666CIsW7YMXbt2NX2MXbt24bLLLkNWVhYef/xxHD9+HFOmTMGGDRuwevVqlCtXzvC+/va3v8HtdqOwsLDM78aNG4dDhw4hOzsbjRs3xu+//45///vfWLp0KdavX48aNWqYzqKrqVOnYseOHWG3uemmm9CjR4+A2y6++OKAn5955hls2LABb7zxBrZv347bbrsNF110EerWrWt5m5UjSBubN28W5cuXF82bNxd79uwp8/uioiLxf//3f2LHjh1h93P8+PGojrt161YBQLz66quGtt+/f7+49NJLRUpKisjOzhbTp08X7733nsjJyREPPPCAOOuss8RZZ50lPvvsM0P7e+yxxwQA8eOPPwbcPnjwYAFAHDp0yHfb1VdfLWrWrCny8vJ8t82cOVMAEB9++GHY4+Tn54uqVauKnj17Btw+cOBAUb58ed9xPvjgA5GRkSEKCgqEEH+dn40bN/ru07VrVzFq1ChD+SKJ5twb2deIESMs2ZcQwcfGxIkTRaKWnrVr14pjx44F3Pbnn3+KatWqiQ4dOpTZfs2aNWLdunVB91VUVBT0PA8fPlykp6eL7du3+27Lzc0VAMT06dMNt3XZsmWiXLly4qGHHhIAxJo1awJ+/9lnnwmPx1PmNgDi73//u+Hj2CGRfV7avn37RFZWlpg8ebIAIJ5++umA35eM0dK3B9OzZ0+xePFi3899+vQRCxYssLzNKuLLHBp56qmncOLECbz66quoWbNmmd+73W6MHj0aderU8d02dOhQVKhQAVu2bEGPHj2QmZmJgQMH+n5X+j0TR44cwdChQ5GVlYVKlSphyJAhOHLkiOE2Hjt2DJdffjny8vLw008/4c0338Qdd9yBHj164KabbsJTTz2FTZs2ITs72/DT0UePHgUAVK9ePeD2mjVrwul0+h4ZHj16FLm5ubj55psDnvUYPHgwKlSoEPEpyxUrVuDgwYO4++67A24fMWIETpw4gffeew8AUFBQgLS0NKSlpQEAqlSpAgC+l1wWL16MdevWYdKkSRGzWWnTpk3o27cvatSogbS0NNSuXRs33ngj8vLyymy7ePFitGzZEqmpqTjnnHOwbNmyMtvs3r0bt956K6pXr+7bbtasWTG1LTc3Fx07dkSlSpVQoUIFNG3aFA8++GBM+/LXtm1bVKhQIeC2qlWr4tJLL8Uvv/xSZvsJEyage/fu2LRpU8DtQggMGzYMw4YNw4YNGwJ+t3DhQlxzzTUBj067du2KJk2aGH4avKioCPfccw/uueceNGrUKOg2l112GZxOZ5nbqlSpEjRLaZ9//jmys7NRt25dpKamok6dOvjb3/6GgoKCgO1K1oTdu3ejT58+qFChAqpVq4b7778fHo8nYNuDBw9i0KBBqFixom89+P777w2/j+e1115D27ZtkZ6ejipVquDGG2/Ezp07I94vGuPHj0fTpk1x8803R9z2xIkTYd8P0bBhQ8yYMQO//vorcnNzsXLlSpx99tlWNldZfJlDI0uXLsXZZ5+N9u3bR3W/4uJidO/eHR07dsSUKVOQkZERdDshBHr37o1Vq1bhrrvuQvPmzfH2229jyJAhho917733wu12Y9WqVcjMzAQAeDweFBYWIiMjA0VFRTh58iSee+45lCtXDkOGDMGGDRvKLKL+OnXqhH/9618YNmwYJk2ahKpVq+LLL7/EtGnTMHr0aJQvXx4AsGHDBhQXF+OCCy4IuH+5cuXQpk0brFu3LmzbS35f+v5t27aF0+nEunXrcPPNN+O8885DXl4ennnmGdxwww14/vnnkZWVhaZNm6KwsBD33XcfJk2ahMqVKxs+b2adOnUK3bt3R2FhIUaNGoUaNWpg9+7dWLp0KY4cOYKsrCzftqtWrcKiRYtw9913IzMzEy+88AL69u2LHTt2oGrVqgCAffv24aKLLvK9YbNatWr44IMPMGzYMBw9ehT33nuv4bb99NNPuOaaa9C6dWtMnjwZqamp2Lx5M7744ouA7f78809D+8vMzERqamrYbfbu3YszzjijzO1z585Fx44d0a1bN6xatQq1a9cGAIwZMwb//e9/MWPGDLRq1cq3/e7du7F///4yYwIA2rVrh/fff99Qm59//nkcPnwYDz30EBYtWmToPsDp9xodP348aJbS3nrrLeTn52P48OGoWrUqVq9ejalTp2LXrl146623Arb1eDzo3r072rdvjylTpuDjjz/GM888g0aNGmH48OEAAK/Xi2uvvRarV6/G8OHD0axZMyxZssTwevDYY4/hH//4B/r164fbbrsNBw4cwNSpU3HZZZdh3bp1qFSpEoDTRXiw9z6V5nK5ysyp1atXY86cOVi1alXEN4BOmjQJDzzwABwOB9q2bYvHHnsMV155ZcA2EyZMQOfOndGsWTMApwuVc88911Be7dn91AhZIy8vTwAQffr0KfO7w4cPiwMHDvj+5Ofn+343ZMgQAUCMHz++zP2GDBki6tWr5/t58eLFAoB46qmnfLcVFxeLSy+91NBT7Zs3bxZutzvgaeRJkyaJ8uXLCwDikksuEbNmzfIds7CwUNSoUUN89NFHEfP/85//FOnp6QKA70/pp37feustAUCsXLmyzP2zs7NFjRo1wh5jxIgRwuVyBf1dtWrVxI033uj7+emnnxYul0sAEOnp6SInJ0cIcfolmZYtW4ri4uKImYwycu7XrVsnAIi33nor4r7KlSsnNm/e7Lvt+++/FwDE1KlTfbcNGzZM1KxZU/z5558B97/xxhtFVlaWb4wZeZnjueeeEwDEgQMHIrbNyJ9I52LlypXC4XCIf/zjH0F/v2XLFlGzZk3RvHlzceDAAfHPf/5TABBPPvlkmW3XrFkjAIj//ve/ZX73wAMPCADi5MmTYdvzxx9/iMzMTN9LIq+++mrQlzmCKWnb8uXLI27rP+9LPPHEE8LhcAS8RFOyJkyePDlg2/POO0+0bdvW9/PChQsFAPH888/7bvN4POKKK66I2Ofbtm0TLpdLPPbYYwHH2LBhg3C73QG3l9w30h//tUoIIbxer2jXrp246aabhBChX87Yvn27uPLKK8W0adPEO++8I55//nlRt25d4XQ6xdKlS8ucs8LCQrF27Vqxbdu2Mr9LZnxmQhMlT/WXfkoXOP3I/fvvv/f9/PTTT+P+++8P2Kbk0UY477//Ptxud8C2LpcLo0aNwueffx7x/m+//TYuueQStGnTxvfzpEmTcN9996FDhw6+NzOWPPotV64crr76anz66afo1q1b2H3Xr18fl112Gfr27YuqVavivffew+OPP44aNWr4PupY8nRusEetaWlpZZ7uLa2goCDkm+lK3//+++/HoEGDsHXrVjRt2hSVK1fGnj178MQTT2Dx4sUoLi7GvffeiyVLlqBGjRp47rnn0KFDh7DHN6PkmYcPP/wQPXr0CPnsE3D6KXr/p9pbt26NihUr4vfffwdw+hmqhQsXol+/fhBCBDxj0L17d8ybNw/fffed4Twlj0CXLFmCW265JeSzULm5uYb2d84554T83f79+zFgwAA0aNAAY8eODbpNw4YN8eGHH+Lyyy9H27ZtsWPHDjzwwAO+N9j6izSmSrYJ90zJuHHjfJ/MiMbKlSsxadIk9OvXD1dccUXE7dPT033/PnHiBAoKCnDJJZdACIF169aVeRPhXXfdFfDzpZdeirlz5/p+XrZsGVJSUnD77bf7bnM6nRgxYgQ++eSTsG1ZtGgRvF4v+vXrFzB+atSogcaNG2PFihW+l7kGDx6Mjh07RpUPAGbPno0NGzZgwYIFYe9Xt25dfPjhhwG3DRo0CC1atMB9992Hnj17BvyuXLlyaNu2bcT2JBsWE5ooeckg2Eccp0+fjmPHjmHfvn1BXzd0u92+p3PD2b59O2rWrFmmYGnatKmhNn777bfo3Lmz7+eZM2diyJAheOqppwAAvXv3xp9//olPP/3Ut0316tUjfsRu3rx5uOOOO/Dbb7/5clx//fXwer0YN24cbrrpJlStWtW32AR7p/zJkyfLLEalpaenh3w9Ndj9q1evHvA+jnHjxqFLly7o0qULHnroISxfvhzz58/HihUr0LNnT2zbts33H6vVGjRogDFjxuDZZ5/F66+/jksvvRS9evXCzTffHPASB4Cg70yvXLkyDh8+DAA4cOAAjhw5ghkzZmDGjBlBj7d//37Dbevfvz9efvll3HbbbRg/fjy6dOmC66+/HjfccENAYWH2kxcnTpzANddcg2PHjmHVqlVBC+8SrVq1wqhRozB58mTUqFEj5PtbIo0p/22C+frrrzF37lwsX7487Et5pW3cuBHXXXcdWrZsiZdfftnQfXbs2IGHH34Y77zzjq8vS5R+30xaWhqqVasWcJv/GAD+Wg9KF6ZG3kOwadMmCCHQuHHjoL9PSUnx/bthw4Zo2LBhxH36O3r0KCZMmIAHHngg4D1iRlWpUgW33HILnnzySezatcvQ+pjsWExoIisrCzVr1sSPP/5Y5ncl76HYtm1b0PumpqZGtZDF6uDBg6hVq5bv523btuHaa68N2KZdu3YBxcTOnTsjLgb/+c9/cN5555WZ8L169cLs2bOxbt06dO3a1fem1GCfy//jjz8C2hZMzZo14fF4sH//fpx55pm+20+dOlUmW2lff/01FixY4OufN954A//4xz9w8cUX4+KLL8b06dOxdOlSQ28Si9UzzzyDoUOHYsmSJfjoo48wevRoPPHEE/j6668Dzl3Jx1dLE0IAgO/jwjfffHPI18dbt25tuF3p6elYuXIlVqxYgffeew/Lli3D/PnzccUVV+Cjjz7ytWfv3r2G9peVlVXmP/BTp07h+uuvxw8//IAPP/wQLVu2DLuPd999F48//jg6deqEr776Cv369cPbb78NtztwyYw0pqpUqRL2WYmxY8fi0ksvRYMGDXzzs+SR+h9//IEdO3aUKe527tyJK6+8EllZWXj//fd9DyTC8Xg86NatGw4dOoRx48ahWbNmKF++PHbv3o2hQ4eW+Qh4qDFgFa/XC4fDgQ8++CDosfwLvZL3hUTicrl8BdCUKVNw6tQp9O/f33ded+3aBQA4fPgwtm3bhlq1aoX92G7JunPo0CEWEwawmNBIz5498fLLL2P16tVo166d5fuvV68eli9fjuPHjwdM9l9//dXQ/StWrBjwCKhGjRrYsmVLwDYlT6UDpx/dLlmyBIsXLw6733379gV9M2NRURGA028wBYCWLVvC7XZj7dq16Nevn2+7U6dOYf369QG3BVPy8szatWsDPo++du1aeL1e3+9LE0Jg9OjRAe/U37NnT0DxUatWLezevTvs8a3QqlUrtGrVCg899BC+/PJLdOjQAS+99BIeffRRw/uoVq0aMjMz4fF4LLlOA3D66fGSZ22effZZPP744/j73/+OFStW+I4R7BNKwbz66qsYOnSo72ev14vBgwdj+fLlePPNN3H55ZeHvf9nn32Gfv36oWvXrnjnnXfw7rvvol+/fhg6dCjmzp0b8Ea+s846C9WqVQv6qaPVq1eHHBMlduzYge3bt6NBgwZlfterVy9kZWUFfFrq4MGDuPLKK1FYWIjly5cbPicbNmzAb7/9hjlz5mDw4MG+242+dBRMvXr1sGLFCuTn5wc8O7F58+aI923UqBGEEGjQoAGaNGkSdtspU6YY+uRTvXr1fIXDjh07cPjw4aAveT3++ON4/PHHsW7durD9U7IWlX6GhoJjMaGRsWPHIicnB7feeiuWL19e5qOSJY8sY9WjRw/MmDED06ZNwwMPPADg9COeYFeADKZ58+b45ptvfD9fd911mDBhAs4//3x06NABX375JWbMmIGsrCx8+OGHGDNmDDp27IguXbqE3W+TJk3w0Ucf4bfffgtYmN544w04nU7fo+SsrCx07doVr732Gv7xj3/4HtHNnTsXx48fR3Z2tu+++fn52LFjB8444wzfO+WvuOIKVKlSBdOmTQsoJqZNm4aMjIwyr62WmD17Nnbu3Im///3vvtuqV6+OjRs34sorr0RRURE2b94c14sOHT16FBkZGQGPrFu1agWn0xn0KfpwXC4X+vbti5ycHPz4449lHuUfOHAgqgX40KFDvo/PlihZ5P3bFut7JkaNGoX58+dj+vTpuP7668Pe97vvvkOvXr3Qtm1bLFy4ECkpKbj++usxY8YMDBs2DJUrVy4z3vv27Ys5c+YEPIu2fPly/Pbbb/jb3/7m266oqAhbtmzxPYsIADNmzCjzSYVPPvkEU6dOxZQpU3yfGgBOv0zTo0cP7N69GytWrAj5EkEwJY/+/dcAIQT+7//+z/A+SuvevTtmzpyJmTNn4p577gFwunB78cUXI973+uuvx4QJEzBp0iS89tprAQWaEAKHDh3yvXcqlvdMjB49Gn369An4/f79+3HnnXdi6NCh6N27t6+ACzZed+/ejVmzZqF169aGC7Zkx2JCI40bN0ZOTg5uuukmNG3a1HcFTCEEtm7dipycHDidzpifsrv22mvRoUMHjB8/Htu2bUOLFi2waNGioNcpCOaaa67BM888gz/++AM1a9bEXXfdhY8//th3XYuqVavigQcewMMPP4xevXph2LBhZS59G8wDDzyADz74AJdeeilGjhyJqlWrYunSpfjggw9w2223BTwD8Nhjj+GSSy7B5ZdfjjvuuAO7du3CM888gyuvvBJXXXWVb7vVq1ejc+fOmDhxIh555BEApxerf/7znxgxYgSys7PRvXt3fP7553jttdfw2GOPlfkPETh9XY0HH3wQjz/+eMDT0TfccAMmT54Mr9eLL774AidPnixz9T0rffLJJxg5ciSys7PRpEkTFBcXY+7cub7CIFpPPvkkVqxYgfbt2+P2229HixYtcOjQIXz33Xf4+OOPcejQIcP7mjx5MlauXImePXuiXr162L9/P/7zn/+gdu3aAf+JxPIsyPPPP4///Oc/uPjii5GRkYHXXnst4PfXXXed76PDwF9vhnzvvfcCHm3feuutOHz4MMaNG4c77rgj4OOhDz74IN566y107twZ99xzD44fP46nn34arVq1wi233OLbbvfu3WjevDmGDBniuwZD6Y8eAvA9E3H55ZcHfOR04MCBWL16NW699Vb88ssvAdeWqFChQpn/PP01a9YMjRo1wv3334/du3ejYsWKWLhwYZn3TkSjT58+aNeuHe677z5s3rwZzZo1wzvvvOPr+3AfxWzUqBEeffRRTJgwAdu2bUOfPn2QmZmJrVu34u2338Ydd9zhe5N4LO+ZOP/883H++ecH3FbyrMU555wTcK7Gjh2LLVu2oEuXLqhVqxa2bduG6dOn48SJE6aKraRjz4dIKJ42b94shg8fLs4++2yRlpYm0tPTRbNmzcRdd90l1q9fH7DtkCFDRPny5YPup/RHQ4UQ4uDBg2LQoEGiYsWKIisrSwwaNMj3sUMjV2G8/PLLxXXXXSe8Xq/vtp9//ll88cUX4sSJE+Lw4cNi9erV4sSJE1Fl/uabb8TVV18tatSoIVJSUkSTJk3EY489JoqKisps+/nnn4tLLrlEpKWliWrVqokRI0aIo0ePBmyzYsUKAUBMnDixzP1nzJghmjZtKsqVKycaNWoknnvuuYA8/h544AFxwQUXlPn98ePHxeDBg0WlSpVEs2bNxLJly6LK68/Iuf/999/FrbfeKho1aiTS0tJElSpVROfOncXHH39cZl/BroBZr149MWTIkIDb9u3bJ0aMGCHq1KkjUlJSRI0aNUSXLl3EjBkzfNsY+Wjo8uXLRe/evUWtWrVEuXLlRK1atcRNN90kfvvtN+MnIYSSjzmG+rN169aA7ffs2SP27dsXcn+hro75448/iiuvvFJkZGSISpUqiYEDB4q9e/cGbFNyLkqfx9JCfTS0Xr16hj8WGczPP/8sunbtKipUqCDOOOMMcfvtt/s+9uvfP6HWhGBXsTxw4IAYMGCAyMzMFFlZWWLo0KHiiy++EADEvHnzwt5XiNMfL+3YsaMoX768KF++vGjWrJkYMWKE+PXXXyPmiVaoj4bm5OSIyy67TFSrVk243W5xxhlniOuuu058++23lrdBZw4hTD73TRSFTZs24cILL0Tfvn0xbdq0oG+AKigoQG5uLnr16mVDC9XjcDjKvE+AyC6LFy/Gddddh1WrVsX1484kF77MQQnVuHFjfPjhh+jVqxdWrFiBkSNH4vLLL8eZZ56JP//8E5988gleeOEFuFwuXHHFFWE/vkdE9iooKAh4r0LJe6gqVqxY5mUG0huLCUq49u3b48cff8TkyZPx6KOP4r777vP97owzzvBdb4CFBJHcRo0ahYKCAlx88cUoLCzEokWL8OWXX+Lxxx+PeN0W0gtf5iBbeTwe/Prrr/jzzz9RtWpVNGvWLO6fcdcNX+Ygu+Tk5OCZZ57B5s2bcfLkSZx99tkYPny476qzlDxYTBAREZEp/ApyIiIiMoXFBBEREZmSVG/A9Hq92LNnDzIzMyN+tz0REVGyE0Lg2LFjqFWrVtjvcEqqYmLPnj0xfYMcERFRMtu5c2fYqycnVTFRcjnjjugBN1IibC0Pd3oKbn3leswatgjFBUV2N0drwunA8fOa4eKbz8XGhxah+ETwrxwna3GMJxbPd2KpfL6LUYRViPzttElVTJS8tOFGCtwOdYqJFEcKMjIykOJIAfjqTFx53W782bUj3t0LNHOlAg5+2CkROMYTi+c7sZQ+3/9bAiO9NYBvwCQiIiJTWEwQERGRKSwmiIiIyBQWE0RERGQKiwkiIiIyhcUEERERmcJigsiPo9iDOu+uwB3NPHB4vHY3h4hICSwmiPw4hEDmtj04p7KAg1+oS0RkCIsJIiIiMoXFBJEf4XTgSLOG+Ga/A8Kp2qXqiIjswWKCyI9wubCn28XI2eKCCPMNeURE9BeulkRERGQKiwkiIiIyhcUEERERmcJigoiIiExhMUFERESmsJggIiIiU1hMEPlxFHtQ+4PPMbQJL6dNRGQUiwkiPw4hUHHzDpxXlZfTJiIyisUEERERmcJigsiPcDhw9Oy6WHfQAeHg5bSJiIxgMUHkR7hd2HX1pZj9mwvCxelBRGQEV0siIiIyhcUEERERmcJigoiIiExhMUFERESmsJggIiIiU1hMEBERkSksJoj8ODwe1Mr9CgMaeeDw8nLaRERGsJgg8uPwClTa+Dvanyng8PJy2kRERrCYICIiIlNYTBD5EQ4HjtWvhZ8O83LaRERGsZgg8iPcLuy8tjNmbOTltImIjOJqSURERKawmCAiIiJT3HY3gMzL9b4VcZtuzuwEtMScZMmhQgZAjxw6ZAD0yJEs8xtQI4fV+MyEBiINXFUGti45koEqfaFKO5OBLvNblxxWYzGhiVADWLWBrUOObs5sbXJEc7usdMgRLoMuOVSiSw4rsZjQSOmBrOrAZg556JAB0COHDhkA5tCVssXEk08+CYfDgXvvvdfupkilZECrPrDtyuHweFDj0zW4oYE1l9MueeSocn/okAHQI4cOGQCuUzpSsphYs2YNpk+fjtatW9vdFCnpMrDtyOHwClTZ8BsurcHLaRPFE9cpvShXTBw/fhwDBw7EzJkzUblyZbubQ0RElPSU+2joiBEj0LNnT3Tt2hWPPvpo2G0LCwtRWFjo+/no0aMAAHd6ClIcKXFtp5VS0t0Bf8tgyZE56F1piN3NsJxwOFDYoAY25TngzlBnjKhOxjGus2Q537KsU0qfbwGgIPJmDiGEMs/lzps3D4899hjWrFmDtLQ0dOrUCW3atMHzzz8fdPtHHnkEkyZNKnN7Tk4OMjIy4txaUlGhBxi7+vSEf6pdMVJdNjeIiMhG+fn5GDBgAPLy8lCxYsWQ2ylTJu3cuRP33HMPcnNzkZaWZug+EyZMwJgxY3w/Hz16FHXq1MGsYYuUe2bi1lf6YtawhSgqKLa1LUuOzAn4WYaqPxahcnjdLmD4jQCA/969GN5jhWXuKxP/HKr2BQAsOPAycnNz0a1bN9xQ7Ta7mxMzVfoj3Jqi+xy3g0xreLSKRJGh7ZQpJr799lvs378f559/vu82j8eDlStX4t///jcKCwvhcgU+jExNTUVqamqZfRUXFAEKfiFkUUExigqMdWw8BLvy2/sncgCo9SakUDm6ObPhTfnribrigmJ4bDzfkZTOoWJfAKdzFBWdPs8pKSm+vlBJuDEls9Jriqo5/IW6QqUMOexew2NRbLCYUOYNmF26dMGGDRuwfv16358LLrgAAwcOxPr168sUEmStSJeQNXKJWRmEa6cqGQA9cuR63wrZ1nC/k40OfQHokUOXdUpFyhQTmZmZaNmyZcCf8uXLo2rVqmjZsqXdzSMFGFlI3j02NwEtMYcLolpU6C8jbVQhB9lHmWKC7BHNI0SZH03K2q5o6dAXQHQ5ZBXt3JBVNG2TNYcu65TKlC4mPv3005Cf5FCRbAM81vbokkM2seSQMXu0bdIhQ6z3ibfSb1I0QrYcXKfkoHQxoSNZBpTZdqiaw+10Ymz3xuhV14OFe1+OU6uiZ+Z8ytQXZhZ+mXLYcV+ZyJIjWdcpGbGYkJAOA0sGsZzHcm4nbu/YAF3OEijndkrRFzK0gawjQ3/G8oxEaTLk0IEu55HFhKTsGmBWPgK089Gklce1c7Lr0Bclx5dpP7EeW5ccMu4r2uPqMDd0KSQAFhNSS/RAi9fxVMrh8Qr8sCsP24+f/rcV+4xVPI6pQw4dMsRrn3YcU6X5bcd+ZTlevLGYkFiiL7ASr+OplKOw2IO+07/BsxvcKCz2WLLPWMXjmDrk0CFDvPZpxzFVmt927FeW48UbiwlJ2TXQdFj47TyuzHhOzOH5K0uX+a1LDjuxmJCQ3QPMquMzhzXHtuL47AtrWNUXdo8pmfZj9/F1yWE3FhOSkWVgmW2HDjn617pDixwyZYi1LXb/B+xPh74w+6VXsuTgOiUPFhMSkW1AmVn4ZSJbexIpmbPHUzKfV9myc52SA4sJCivaAS7rhJC1XdGI9tG5rJmTcUzJ9MyKv2ifoZAxA6DPmFIZiwmKyOjEk32Cyt4+o4zkkD1rMo0pHTJEs51ddMmhKhYTZEikCajKBA3Xzm7ObPTKGIgzvvkBV9X2wuF3nQnZRMqhgnCP1mV9JB+M7n1R8nsV6LJOqYjFBBkWbuFXSbj2OrxenLl6A66u44XD601gq6yhWl/oQufzrlo2XdYp1bCYoKiUnpCqTlAdcpR+NKliBkCPvgBQpi9UzKFjXwT7mazHYoKiVjIxVZ+gwXIIACerZOGP/NP/VoGq/3H5K3kjoNmPLNpNh77QeX5T/LCYoJjoMkFL5xApbvw+8Bo8+b0bwu2yqVVE9tJ1flP8sJggIiIiU1hMaEiXb6PTJQcRlaXL/NYlh1ksJjRTMrBVH+A65dAlA3PIQZcM/n+rSpccVmAxoTFVB7iq7S7NP4cumcheOo4pVXOo2u54YTGhiVCPVlQb8KEy6JJDNaXbrGpfBMuhGh3GFNcpfbGY0ECkAazKAE+GHKpkAPTIoUMGQI8cyTC/jfxeVywmFGd04Mo+wGXJ4fB4UfW7n3FFzdgup22kfSr0hS45jGyjSw6ZyTK/zdIlRzywmEgisg5wmdrl8HpR/Yt16F0/+stpR5NDpswkr2QcU7LmkLVdsmAxoahYH1HJNiFizaBLDtlE2yZZ+yKWHLLRYUxxnZIrRzyxmFCQ2QEqywCXMYcAcCqzPA6eNH45bTPtkKUvAD1y6JAB0COHjPM7FrrkiDcWE4qxamDaPcBlzSFS3Ng8tA8mrzN2OW0rji9DX+iSw4p96JLDTrLOb7uOv+TIHEv2IzMWEwqxekDaNVHtXiCsYmUOXc4JmcMxVRbXKTWwmEhyiZ4w8TieHY8m45Uj0aw+pl19EY8ciabDmIpX/+swvwG9n6FgMZHkEv2tevE4nh1f+xyvHIlm9THt6ot45Eg0HcZUvPpfh/kNAL0rDYnLfmXAYkIhvSsNsXSQ2/X1vDpksPrYOuSw++uedcjBMRXffdl1XJ2LiBIsJpKULgu/3azIIcO5kKENMpDhPOgypqxgdw67j68SFhMKMjvAZZkgzCFPBkCPHDpkAPTIwfltzf1VwWJCUbG+NinbwI41Q9xyeL2o/MNv6FjdC0RxOW0d+gKIvk12vEcikljaJFsGQI8xxXVKrhzxxGIiicg6sGVql9PjRc3P1iC7oRfOKC+nHU0OmTKTvJJxTMmaQ9Z2yYLFhOKMDnDZJ0Iy5VAhgy45jGyjSw6ZJdP8jmY7nbCY0ECkgavKwJYhhwBQnJaK40XGL6ddWrh2qtIXgB45dMgA6JFDhvltBV1yWI3FhCZCPcJSbWCHypCoHCLFjd9uvwF/X2vsctqh6NAXQNk2q/BIvrRgbVYtA6DHmOI6pS8WExpTdWCr2u7S/HPokonspeOYUjWHqu2OF7fdDSBrdXNmI9f7lvIDXaccqtMhA8AcMtFpfuuQwwp8ZkJDugxsXXIQUVm6zG9dcpjFYoKIiIhMYTFBMdHl63l1yUFkJV3mhS45VMBigqJWMkFVn6g65VA9Q8lXM6v+Fc069IVO88L/b4ovFhMUldITU9WJGjKH14usX7agXbXoLqdth9L/cWnXF4op3Rcq5tCxL4L9TNZjMUGGhZqQqk3UcO11erw46+OvMfDs6C+nLQPV+kIXOp931bLpsk6phsUEGRJpIqoyUcO1U6VHk5FyqCDc+WZfJFak861SDjO/p9ixmKCIjE5A2SeqkfYJIfDG/ldQ6In9ctrxZiSHDn0RzXZ2YV/IQ5ccqmIxQWFFO/FknahG21VQ5MG5//wEY1ebu5x2PET7aF31voh1+0SJti9kzBHtG15lzADoM6ZUxmJCIrIN8Fjbo0sOHSRz9nhK5vMqW3auU3JgMSEZWQaU2XbokGP+nhla5JApg5mFX6YcdtzXSmY/gitLDq5T8mAxISG7B5ZVx2cOa45txfHZF9awqi/sHlMy7cfu4+uSw24sJiRl1wCz+rjMIc8x2RdyHZdjSp7j6pLDTiwmJJbogRav4+mSQwc8N7HheQtNl/mtSw67sJiQWKK/jS5ex9Mhhx3fDMgcidmfXcdkDrmOp0sOu7CYkJRdA62bM9uyY1u5r1iOHQunw4GrzqmONlW8cDkcpvZlBR36ouT4Mu0n1mPrkkPGfUV7XB3mhk4FBYsJCek0wOwUy3lMS3Fh6o3n4pamXqSmuKToCxnaQNaRoT97Vxpieh8y5NCBLueRxYRkZBlYZtuhQw4rFlyrmMkhU1/E2ha7n1nxp0NfmCVLDq5T8mAxIRHZBpSZhV8msrUnVrHkkDF7tG3SIUOs94m3WApm2XJwnZIDiwkKK5pHhDI9eizNaLvyTxWj8T8+wj1fueGV7HLagPEcMvcFEF0OWUU7N2QVTdtkzaHLOqUyFhOUNIwsINdmDkpAS8zhQqgWFfrLSBtVyEH2YTFBhkRaSFRZaMK1U5UMgB45wj1CVOnRow59AeiRQ5d1SkUsJsiwYBNRpUW/RKgcqindZhX7AgieQzXBzr2qOYzcJrNQ80C1HKphMUFR8Z+oKk9O/7brkEPlDMBfbwSU6RM0sdChP3ScGyrnUIXb7gYQ2UWXBUaXHLrQoT90yECJxWcmKCZcbIhIdlynEofFBJE/r0CFbbvRopIXEMLu1hARKYHFhIZ0+TY6O3I4PR7UffdT3NncC6fHm/DjEyULrlN6YTGhmZKBrfoA1ylHyR9V6ZAB0COHDhkAvea3/9/JjMWERkoPaFUHOHPIQ4cMgB45dMgAMIeuWExoItRAVm2A253Dm+LGL3f1xwPfuGK+nHa4R44q9YcOGQA9coTLoEsOleiSw0osJjQQaQCrMsBlySFS3DjldSTkWKrSZUxR4sgyv83SJYfVWEwozujAlX2AJ1MO2R9NGm2fzBkA9oVMkml+R7OdTlhMKCzaASvrANchRyz/KcmaI57bJ4oOOWLJoEsOGemSI15YTCgq1oEq2wDXIYeZtuiQQ6YMgB45OKbkyQDokyOeWEwoyOwAlWWA65LDLB1yyJJBlnaYoUMGQJ/5rUuOeGMxoRirBqbdA5w54rOfWI9txfF16Au7XyrQYTxZeXxdciw5MseS/ciMxYRCrB6Qdk1Uq49r6f6EQMaufTi7ogDCXE07Hv/p2NEfOmSIx3F16QtdctjB7kJGNSwmklyiJ4zsE9RZ7EH9tz/GqHM8cHo8djdHSRxTZDWOKfmxmFBI70pDLN9nor9VLx7Hs+ObAZkj9P7sGFPxyJFoHFOJ3adMx9MBiwnFWDnI7ZowOmSw+tg65LB7AdYhB8dUfPdl13Hj8UBQNsoUE0888QQuvPBCZGZm4swzz0SfPn3w66+/2t0sW5gd5HY8eoxHG+KRwZvixq+39cWDa4xdTluHvihph533t4oOOWSdG4lugwxzQ5e+SARlionPPvsMI0aMwNdff43c3FwUFRXhyiuvxIkTJ+xumi2SZYCGEs/8nvQ0nCg2fjltXfpClxyx0iW/TDlkaosdkim/MsXEsmXLMHToUJxzzjk499xzMXv2bOzYsQPffvut3U2zTSwDVbbBrUMGIHlzyPDosbRY2iRbBiB5x1Ss94knHTLEm9vuBsQqLy8PAFClSpWQ2xQWFqKwsND389GjRwEA7vQUpDhS4ttAC6WkuwP+9tej/ADDHxntXWkIUtLlyy1TBv+XNtzpbjiLjR/LaI6S109l7AsguhxWZQg3xmNlRw6r9Sg/AICxj4VHkyMe5zscmeZ4rMxkSPT5tpQAUBB5M4cQIsyn6eXk9XrRq1cvHDlyBKtWrQq53SOPPIJJkyaVuT0nJwcZGRnxbCIpqtADjF19esI/1a4YqbF9CzkRkRby8/MxYMAA5OXloWLFiiG3U7KYGD58OD744AOsWrUKtWvXDrldsGcm6tSpg67pNyj3zMStr/TFrGELUVRQHHK7UFWzSu8ktjuD1+3CxuE3AgBazl4A77HCCPcIzu4cVklUDqNjPBbsi7Lieb4j0aE/os1g5/k2q0gU4eOCBRGLCeWecxk5ciSWLl2KlStXhi0kACA1NRWpqallbi8uKAKMv79OGkUFxSgqKAr5+x6pA8pcbEW11+3szuBN+au2Li4ohifM+Q7H7hxWKZ0j3hkijfFY9Eg9/VJBInPEQzzGVDzOdyQ6zI1YM9hxvs0qFsbaq8wbMIUQGDlyJN5++2188sknaNCggd1NklLJgJbxjXFG+bc74RmEQNq+g6hTPvzltI3QoS+AwBwq0yGH/1hSPUewf6tEl76wijLPTIwYMQI5OTlYsmQJMjMzsXfvXgBAVlYW0tPTbW6dXHQY2HZlcBZ70PDNZbgzpz+mezwwe0FtHfoCYA7Z6JBDhwyAPjnMUuaZiWnTpiEvLw+dOnVCzZo1fX/mz59vd9OIiIiSmjLPTCj4PlEiIqKkoMwzEyQXHb5VL9hXNHvdLmwa0huTvjN2OW0Z2PVV01SWLn2hUw5KDBYTFLWSCarLRA3I4XCgqGIFHCpU8OM+Civ5qJ3RiwJR/Og2r3XJIzsWExSV0hNT1YmqQ47Sjx5VfTTJvpCHDn0B6JNDJSwmyLBQE1KliRpukVctRyy/kw37Qh7h+kKXHBQ/LCbIkEgTUYWJaqSN7x6bm4CWmGMkhw79oUMGo9vYLVlyqJBBVSwmKCKjE5ATVS4y94cOY0rmtkUj2XLoklc2LCYorGgnnqwTVdZ2RSOWp5tlzJ2sGWTMEe0bXmXMAOgxplTHYkIisi04sbZFtgzRtMcBB86uVh410gXe3DMzji2LjplzKlt/JPJ+8aBLX8SK65T1ZDunsWAxQUGZHdiqToz0ci58MLoDJrTxIL2cS9kcMkrWMSUjXT6CyzElDxYTErJ7gFt1fOaw5thWHN/uRz7sC+v3Y+b4Mu3H7uPrksNuLCYkZdcAs/q4zCHXMXXIoUOGeO0z0cfk/FbzuPHAYoLIT8EpD65+4Qs8sd6FglN/fWeoLt8MqEuORNPlvOmSg+TDYoICWL3YqLZ4CQhsPnACewscELD3y+VUO3ehJPuYCkWXHHbgmJIPiwlJ2Tm4rTq2Dhms3pddx+7mzNYmh12sPId255BxX3YdW4cMMmAxISEZBpjZNuiQoX+tO7TIIUMGgDmsur8VelcaYnofMuTQoS9kaIMVWExIxO5Hj6XF2hbZMsjUnljp0BcAc8iWI5aiQrY5pUNfyHZOY8FigsKKdoCrPiFkpsu5TdYxpUsOGSXrmJIJiwmKyOjEk3mCyty2aETTFzJn1mVM6ZIjHtsmmg59oTIWE2RIpAmowgQ1kuHaCjcj5ehxVEm195Mc4ejQFwBzyMRIYaRKDjO/p9ixmCDDQk1ElSZopLY6iz1oPGcJJp7vgbPYE3ZbO6l0zsPRYUyFwxyJp/uYkhWLCYpK6Qmp4gQN1mYdcsj+0kYouowpXXIYuU12OvSFalhMUNRKJqbKE9S/7TrkUDkD8NenCqz4yKKddOgPzg2KhdvuBpCadJigwTJ43S783u8qTPnBhfIuF4CixDcsSjr0hU506A8dMgD65FABn5kg8udw4GT1qth5wgE47G4MEZEaWEwQERGRKSwmNKTD19rmet9iDonokEOHDABzyEaHDFZgMaGZkoGt8kT1b7eqGQDmkIkOGQDmkIn/GqtqBiuxmNCIrgNal1wq5gjWZtVy6JABULPNweiSozRdcxnFYkIToQayagNchxzhnhVSLUcsv5OJDhmA8PNClxwq0SWHlVhMaCDSAFZhwTHSxkRlcBWcRHl3bJfTNtJG2fsC0COHDhmA5MnBdUptLCYUl2wDN955nUXFaPryQjx+YXwvpy1zv8nctniQOa/MbYuGLjmMSra8AIsJpUU7YGUd4DrkiOVRlaw5ot1ethzsC7no0BeAPjnihcWEomIdqLINcB1ymGkLc1hLhwwAc8iUAdAnRzyxmFCQ2QEqwyMYK9oQjwxetwvbruuKqT+54HW5EtIGu/vCqjbYnUOHDFa1QYccXKfUwmJCMckyMI2y/Hw4HMivXR2bjyb2ctp29ivHVCD2hXm65LDKkiNz7G5C3LGYUIjVA9KuCW/1ce3IEY9HTXblsHp/ic7Bvgi9P11y2IEFUXRYTJDydPlmQOZQ43jxwhykMhYTCuldaYilE9WuSa9LBl1yyLw/u46rQw6rx2i0x5ZxX3Ydt3elIZbtS1ZuuxtgB2+KG15HkOheAafHE7BdSEIEXIcgqm3dLsAR4gX5INt63S4Uev737xSB/FPFAAAHHEgv99ebBE8WeeAVoS+2lFHurzZ2KXcjEKbNzqLiv9rgcgHO0G8giGZbR1ExHDg9UZeemgePN3R701NccPzvPBUWe4JuW3LeS/YLAMLphHCFrpPDbet1uwL+LRwOOP53ToPtt6QvACDV7YLrf9mLPF4Uebwh21DO5YT7f/sq8njDjh9HseevNjgcEO7Qbwx1eDxweKPbtpszG8uK30RhmOtquJ1OlHOfbq/HK4Jue23mICDFDYfHC4f3dHYBQITL5retV/w1xoPyeuH0hN5vl9Sb8O6xuQAAl9OB1P9lF0KgoCh0NqfDgbSUv85Tl9SbQs+NBK0RBac8EAh+HkrP+1DbelPcIdee0mtKiYC5HG6dKr1tkHnvPzf8155I65T/vO+S0j/sOuU/l70uJ+CMbd6H2rabMxvvnZqPYm/ouew/708Ve4NuW3K+hd/5FE4HRJg3eQfM+2i2tXiNgMHL7TiECNOrmjl69CiysrJQ59434UzNKPP7jC07cdbC5b6fN987EKJcStB9pe/Yi9rzlvl+/n3kjfBkpAXdNvWPP1F37lLfz1vvvAHFWRWCblvuz8OoN2uJ7+ftt/bGqTMqB932rErp+GL8Fb6fe/17FX7YlRd02yrly+G7f3QDcHqC7LrxKhTUrRF0W8epIpz9/Ou+n3f37YL8RnWCbgsAjZ+a7fv3H7064Xiz+iG3bfTca75FaO/VHXGs1dkht/32oa6oWiEVAPCPxT9i7tfbQ25b/6UFSDl6HABwoNMFONKuZcht676yGKkHjwAADnZog0Md2oTcts5/30Xa3oMAgMPtzsGfnS4Mue0bt1+EixtVBQD896tteHjJTyG3nTX0AlzRrDq6ObNxtOXZ2NejY8htayxZgcxfT2c/1rQe9vbuHHLb6u+vQsUfNwMATjSsjT03dA25bbXcr1Fp3UYAQH6dGth901Uht51wdTPceXkjAMD3O4+g94tfhNy2yhfrUfWL9QCAwqqVsGNYn5DbVlr9I6p9uhYp6Sm4YVZ/TF4X+j+OrO9+wZkffwMAKE5PxdZRN4Xctu/5tfFMv3MBnP5PrcXDH4bctkerGvjPwLYATs+NTWOHhtxWhjWi8ZkVkDvmct/P3Z79DJv2Hw+6rTvvOBpMX+D7ecega1BY84yg27ryT6Lhv+f5frZyjdj2ZE/fv+9+/Vu8v2FvyG1/ntwdGeXc6ObMjrhGNJj6BtwFhQCA/V3bI+/85iG3jdcasWREB5xbpxIAYPpnW/DEBxtDbltvUS7Kbd4NADhyXjMc6HZRyG1rLfgY5X/fBQC2rhEVvtuAT7EEeXl5qFixYsht+TKHwvZtPxD1ffh6pjzYF3Jhf8iDfaGepHxm4rKUvnA7gjyakPRljpT0FNz66g2YdcsCFJ0sDth2+am/HklEevqwd9pfj+TMPoUZ67ahnpYseXraX6iXOa7NHBR2v2Ze5gCAlDS373wXHy8M+zKHv48KcqJ6mePqlP7/2699T2EG2zZYX4R6mSNoX8TwMkdKegpuf70/pg8pNcb9RXiZo/S2y4vmn97WwMsc16be+Nddw+43sWtEsL4I9zJHmf4IsV//Me5/vq18mcPf8sI3fP+OtE71Srspppcu4vEyR+ltg/VHqJc5/Pui5Hy/OvhNFOef+t9+1XiZw+M5ZeiZiaR8z4SzqBjOMJPEf7to9ml42yi+88FZ7IGz2IlU1//+Xeo43ZzZvo8w+b/uW1rpSj+qNkTxull023qB//3n0DvtprAfxSp5/bubMzvi02kO71//mUUSbFun2+E73w6/RS/Sfq9y9/NlSHE5kRJisSrdFw6vgMNrbPw4hIDD4FiLddtIfeFyOnxPQ0fsC8BwG5yO4GM81v2WzA2HwxHwmn2w7QLaEa95H8MaUfIAIFx/lBQWRvqjZL/+YzxUu6xcI6JZp/xXZv81InIbjG8b6xoRaW6UcztRDs4yfVFyvgPXkyjmvQRrRCR8mUMDkZ4SVOUpQx1y6JABYA7Z6JBDhwyAPjmsxmJCE6E+BqbawA6VIVE5vC4XdlzbCdN/cZ5+2jQGOvdFuNtlpXMOOz/+GQud54ZqfWE1FhMaU3Vg29pupwPH65+Fn484w75enCxK94UuY0rVHDpStS9UbXe8sJjQTMkAV32g65DDP4MuOVSmQw7/saR6Dv+/VaVLDiuwmNCQLgNbhxw6ZACYQzY65NAhA6BPDrNYTBAREZEpLCaIiIjIFBYTFBMdvp7Xrq9otpoOOZYcmRPwt6p06AtArxyUGCwmKCr+i4zKE9W/7cxhr9Lt1iGHqhkA/XLoUhjJjsUEmaLLJC3J4SwqRoupr+P/Li6O6gqAdgh27nXpD9Xo0hcqtjkYXXKohMUEGRZqgqo0ccM9SlEtRyy/k0mkvlApRyy/k40OfQHosU6piMUEGRJpIqowUY20kTkSw2j7dMghewYgeXKokEFVLCYorGgelcj8CMZou04WeVD3pTF49dfYL6cdT9GcX9X7ItbtE0WHvgD0yKHLOqUy+VZLIht5hcCyn/Zh/SH5LqcdywLIRTM+dOkL1T89Q/JgMSER2SrmWNsiW4ZY2zN/zwyLWxM7M+dUlv4w0xcyzQ0d+sIMmfoC4DolCxYTEpJhUJltgw4ZrNqHDG2wO4dVx9chh90ZAGuekZAhB9cpebCYkJRdA8zKCtnOatvK49o52XXIYfVxdcjBMWX+uFyn5MJigsgAOyZ9PI6p0+KVSLr0Bfuf4oXFBJEBunwzoC45Ek2X86ZLDpIPiwlJ2TXpuzmzLTu2lfuK5dgy7svO4zKHXMfVIQfXKfPH1kXUxURhYSFWrlyJuXPnYvr06Vi0aBG2bt0aj7YlLZ0GmJ1iOY/pKS58/48r8FS7YqSnuOLQquhYuWDaiTnisx876ZBBBrqcR8PFxBdffIF+/fqhUqVKuOKKK3Dvvffin//8J26++WacffbZaNy4MZ5++mkcO3Ysnu3VniwDy2w7VM3hcDiQUc6NVBfQp/JQKXIka19YfX+r6JCjd6Uhpu4vQwZAj74A5GmHGYaKiV69eqF///6oX78+PvroIxw7dgwHDx7Erl27kJ+fj02bNuGhhx7C8uXL0aRJE+Tm5sa73VqSbUDF2h5dcsgk2fuCOeIjlqJCtgy69IVs7YmW28hGPXv2xMKFC5GSkhL09w0bNkTDhg0xZMgQ/Pzzz/jjjz8sbSTZp2SAG3kXuMyToZsz21CGwmIP2t0wDU0vawCvU663FEXTF/7by8ZoX/hvL6NocsiaAdAjhy7rlMoMrZZ33nlnyEKitBYtWqBLly6mGkUUD0YWEY9XIK95I6w+4ASccl1OOxqyL5hG26dLDh0kU1aKnqmHXsePH8fRo0cD/pCeIi0kqiw04drZzZmNazMHJbA1sUmGvjDye1nokCPSJxpUyADo0ReqirqY2Lp1K3r27Iny5csjKysLlStXRuXKlVGpUiVUrlw5Hm0kSQSbiHZ+rCpWoXKoJFR7mcMeOudQMYMOOVRj6D0T/m6++WYIITBr1ixUr14dDsm+WZHiy/+1SZUnp//rxKrmKP06sco53i/MCfhZRTqMKUC/HCpnUEnUxcT333+Pb7/9Fk2bNo1He4gSJto3AspM9QWzd6UhuDOnv+mPLNqNY4qSVdQvc1x44YXYuXNnPNpCCtFlodEhhw4ZdKJDf+iQAdAnhwqifmbi5Zdfxl133YXdu3ejZcuWZT7l0bp1a8saR0RERPKLupg4cOAAtmzZgltuucV3m8PhgBACDocDHo/H0gYSJZKjqBhNZi7AkOl98FoxxzIRkRFRFxO33norzjvvPLzxxht8A6akdHjTkV1vAHMAcJ8sRIWU0/82S4c3svm/B4A57KfDmAL0yqF6BitE/Z6J7du341//+hfat2+P+vXro169egF/yF4lEzTX+5aybwTzb7eqGQA9cpRuN3PYS4cxBeiRw3+NVTWDlaIuJq644gp8//338WgLmRCqeFBtkIfKkKgcXpcTf1x+Id763Wnqctq69kW422Wlcw4VM+iSI9htquWwUtQvc1x77bX429/+hg0bNqBVq1Zl3oDZq1cvyxpHlHBOJw63boJV+4BmMV5OO9yCostToqrk0GVxT4YxRWqLupi46667AACTJ08u8zu+AdMekRZMFV6bNLLoq7Bo6pDD6H/AOuTg3EgcrlN6i/p5XK/XG/IPC4nEi+aRl6yP0nTIAOiRI9p2MUd86TCmAD1y6JAhnuT6jmUyLNbX52Qb5LFm0CWHTGJtD3PEhy5jSpccsdxHthzxFPXLHACwZs0arFixAvv374fX6w343bPPPmtJw0J58cUX8fTTT2Pv3r0499xzMXXqVLRr1y6uxyQKx8yCoctTorLk0GXx5pgi1URdTDz++ON46KGH0LRp0zLXmYj3NSfmz5+PMWPG4KWXXkL79u3x/PPPo3v37vj1119x5plnxvXYMjG7YMrw2qQVi74Mi6YOOaz6D1iHHJwb1uE69dc+epQfYEFr5Bb1yxz/93//h1mzZuGXX37Bp59+ihUrVvj+fPLJJ/Foo8+zzz6L22+/HbfccgtatGiBl156CRkZGZg1a1ZcjyuLJUfmWPrIy65HcTpksPrYOvRFPPZn13F1yMG5Ic9xlxyZY9m+ZBX1MxNOpxMdOnSIR1vCOnXqFL799ltMmDAhoC1du3bFV199FfQ+hYWFKCws9P189OhRAIA7PQUpjpSg95FRSvrpbioqKorDvhN/HqzO8X5hjmXfNikANJ/3LrL/dTUWpzhQHOL8LDkyR+ocRsVjTMWSo2SMl/wdjXj0xem2JHZuJHJMmTnfkcQjh+rrVMm+4nG+404AKIi8mUMIIaLZ71NPPYU9e/bg+eefj61hMdqzZw/OOussfPnll7j44ot9t48dOxafffYZvvnmmzL3eeSRRzBp0qQyt+fk5CAjIyOu7SUiIlJdfn4+BgwYgLy8PFSsWDHkdlGXSffffz969uyJRo0aoUWLFmUuWrVo0aLoWxsnEyZMwJgxY3w/Hz16FHXq1MGsYYuUe2bi1lf6YtawhSgqKLbsKbNEPwr2J3OG0uc7HJlzGGXlU7Cx5ojmnIciQw4rJGJMWXG+I+Hc+MsNNYfF/XzHS5Ew9gxN1MXE6NGjsWLFCnTu3BlVq1ZN2Bd9nXHGGXC5XNi3b1/A7fv27UONGjWC3ic1NRWpqallbi8uKLLmW5wSrKigGEUFReiROsDU63l2vzELAHqknn5Dkmw5hNOJfR3Ow5JtTpwq9J4eK2GY7QvA/v6woi8Aa3KUjPFY6NAXQGJzmDnfkXCdOq2bM9v3Mk08z3e8FMermJgzZw4WLlyInj17Rt0oM8qVK4e2bdti+fLl6NOnD4DTF9Bavnw5Ro4cmdC2kL6Ey4mD57fAJ38Yv5x2N2d2zIuNDAumFWTJYaYvZMIxRaqJ+tMcVapUQaNGjeLRlojGjBmDmTNnYs6cOfjll18wfPhwnDhxArfccost7bFTN2d2TIuGbAtNrBl0ySGTWNvDHPGhy5jSJUcs95EtRzxFXUw88sgjmDhxIvLz8+PRnrD69++PKVOm4OGHH0abNm2wfv16LFu2DNWrV094W2QRzWCVdWDrkAHQI0e07WKO+NJhTAF65NAhQzxF/TLHCy+8gC1btqB69eqoX79+mTdgfvfdd5Y1LpiRI0fyZY1SIj0lqsLALmmjDjkiPT0tew4jfeG/nax06AsgeXKokgFQf52Kh6iLiZL3KxBRcOEWTV0WGlVyJMN7KFTpC9Jb1MXExIkT49EOMilUxazaQhNs0VQtA6BHjlD/gTGHPXQZUwDXKR0Zes9ElNe1IhuVDGiV3/zj325VMwB65Cjdbuawlw5jCtAjh/8aq2oGKxl6ZuKcc87Bww8/jOuvvx7lypULud2mTZvw7LPPol69ehg/frxljaTo6DCw7crgKCpGw9eXot9TV2FJscf0/tgX8mAOuTCHXgwVE1OnTsW4ceNw9913o1u3brjgggtQq1YtpKWl4fDhw/j555+xatUq/PTTTxg5ciSGDx8e73YTxYUDQNqhPNTMUPK6ZkREtjBUTHTp0gVr167FqlWrMH/+fLz++uvYvn07CgoKcMYZZ+C8887D4MGDMXDgQFSuXDnebSYiIiKJRPUGzI4dO6Jjx47xagspJNf7lhZP75XOIZxO7G/XCh/sdEI4o74Miy106Qtd6NAfOmQA9MmhAjVWS6I4CPYOf+Fy4s/2rbFslxPC4OW0ZaD6xx9LvlDJyi/rsoPq/eBPpywUfywmKCq53rd8i4zKi41/21XN4d8XJT+rqHS7dchRum9UosOYAhCwTqmcQxUsJsiwYBNSxYkaKodKQrWXOeyhcw4VM+iQQzWGi4k9e/bEsx0kuUgTUZWJGq6dud638O6xuQlsTWySoS+M/F4WOuSI9KBAhQyAHn2hKsPFxDnnnIOcnJx4toUorpJpIZE9q9H26ZJDB8mUlaJnuJh47LHHcOeddyI7OxuHDh2KZ5tIItG8jCHzSx6ytisa0Z5fWTNH2y4dcugyN2TOoMM6pTLDxcTdd9+NH374AQcPHkSLFi3w7rvvxrNdSUm2AR5re3TJIZNk7wvmiI9YPj0jWwZd+kK29kQrqjdgNmjQAJ988gkeeughXH/99WjdujXOP//8gD9kjiwDymw7VM2R6nZh4Z3tMaZVMRbvf0WKHMnaF1bf3yo65DD7EVwZMgB69AUgTzvMiPpbQ7dv345FixahcuXK6N27N9zuqHdBEfBCK9aIZYK6nA60rp2FXRVO/9tuVi0ydo8p5ii7H9XnuA4ZZKBDIQFEWUzMnDkT9913H7p27YqffvoJ1apVi1e7kp5dE9XKgV2yLx1yqJ6hZH/MYe64Vu/PrhxFRUWW7Uv1vtBlnbKb4Zc5rrrqKowbNw7//ve/sWjRIhYSpKVTxV7MXLUVy3c7cKrY67tdl0mvS45E0+W86ZKD5GO4mPB4PPjhhx8wePDgeLaHyFbFXi+e+nAT3tnhQrH3r2LCjkct8Tgmn5aOjS59wf6neDFcTOTm5qJ27drxbAv5sWvSd3NmW3ZsK/cVy7Fl3Jedx9ahL+KxPzuOyzFl/rhcp+TCy2lLSIYBZrYNOmSwah8ytMHuHFYu/HbSoS8AoHelIab3IUMOrlPyYDEhETsr5GBibYtsGWJtT/9ad1jcmtiZOaey9IeZvpBpbujQF2bI1BcA1ylZsJggUkQsi43qC5SsdOkLK56hIAJYTFAE0VTMMlfXsrYrWtHkkDVztO3SIYesGQA9cuiyTqmMxQQZEmnyqTA5jbTx2sxBCWiJOUZyyN4f0Sz8MtOhL4DkyaFCBlWxmCDDQk1ElSZouEcl3ZzZcBR7UG9RLka28MDh8QbdTgbhzrkq/RGpL1TKEcvvZKNDXwB6rFMqYjFBpugyQUtyOIRA+d370ThLwCGEza0KL9i516U/VKNLX6jY5mB0yaESFhMUFf9HKSpPWP+2M4e9SrdbhxyqZgD0y6HaMyuq4rd0UUx0mJzBMginA4daNcHnex0QEnzRlxE69EXvSkNwZ05/5T9doENfAMxB0eMzE0R+hMuFvZ0uxIKtLggnpwcRkRFcLYmIiMgUFhMa0uWbAXXIoUMGgDlko0MOHTIA+uQwi8WEZkoGtuoDXIcc/hl0yaEyHXL4jyXVc/j/rSpdcliBxYTGVB3gqrZbR6X7QtW+0SWHjlTtC1XbHS8sJjQR6tGvagM+VAaVcujcF+Ful5XOOTg37KFDX1iNxYQGIg1gVQa4Djl0yAAwh2x0yKFDBkCfHFZjMaE4owNX9gEuSw5HsQd13l2BO5pFfzntaDLI3B+y9IVZOuSIZqzInsPK7eyiS454YDGRRGQd4DK1yyEEMrftwTmVo7uctkwZzIg2h6y5dckRLR1yyJpB1nbJgsWEomJ9dCvbhIg1g0w5Ym2LTBkA5mAO63GdkitHPLGYUJDZASrLAJcxh3A6cKRZQ3yz39jltK3IIEN/yNgXsdAhhxVjQpYcdt7fKrrkiDcWE0nK7gFu9/FDES4X9nS7GDlbkudy2lb1hd19qksO+ovdfWH38VWSHKulJpYcmWPp4LZrouiSQZccMu/PruPqkMPOZ704NwItOTLHsn3JisUEKU+XRw/Mocbx4oU5SGUsJhRi9dcz2/X1vFYf144c3ZzZ2uSwen+JzsG+CL0/XXLYgV9fHh0WE4rhAA+ky/mwM4cu59Aq7AvzdMlhFasfCMqIxYSCzE5Uux6xWN0GuzNY1QbmsIYOGaxqgw45uE6phcWEomIdoLINbB1ymGkLc1hLhwwAc8iUAdAnRzyxmFBYtANV1oEtUw5HsQe1P/gcQ5tEdzntWB7ByNgfsWSQLQf7Qi469AWgT454YTGhuGQbsPHO6xACFTfvwHlVo7ucdrRk7jeZ2xYPMueVuW3R0CWHUcmWF2AxoYVIA1fWRyz+jLRR9gyAsTYyR2LokAFInhxcp9TGYkIToQawagPb7hzC4cDRs+ti3UEHhCPy5bSDCbfgqNQf4dqqSg4dMgDh54UuOVSiSw4rsZjQiK4DOZG5hNuFXVdfitm/uSBc1k4PFfsnWJtVy6FDBkDNNgejS47SdM1lFIsJzZQMaNUesfjzb7eqGQDmkIkOGQDmkIn/GqtqBiu57W4AWU+Hga1DBoA5ZKJDBoA5ZKNLDrP4zAQRERGZwmKCiIiITGExQTHR4ZsB7fyKZivpkEEnOvQH5wZFi8UERa1kgqo8Uf3brkMOlTMAwJIjcwL+VpUO/cG5QbFgMUFRKT0xVZyowdpccpvD40Gt3K8woJEHDq/xy2nbIVhf6NAfqmbQJYeR22SnQ1+ohsUEGRZqQqo0USO11eEVqLTxd7Q/U8Dhjd/ltM1S6ZyHo8OYCoc5Ek/3MSUrFhNkSKSJqMJENZJBlxwqYA55GBn7quQw83uKHYsJisjoBJR5ohptW7HHi3u/mYKfDsd+Oe14iqYvdOgP2TPokiMe2yaaDn2hMhYTFFa0E0/1iXrK48Udr63DjI3WX07bLNXPbYlkG1MldMkho2QdUzKRa7VMcrI9moy1LbJlkKk9sdKhLwDmkC1HLJ+ekW1O6dAXsp3TWLCYkJAMg8psG3TIMH/PDC1yyJABYA6r7m8FKz6CK0MOHfpChjZYgcWEpOwcYFYdW4cMVu/LrmPb/chHlzGlSw4Z92XXsXXIIAMWExTA6sGt02RJNF3OHcdUcLrksAPHlHxYTBAZoMtio0uORNPlvOmSg+TDYkJSdn2trdXHZQ65jqlDDh0yxGufiT4m57eax40HFhMSsnuAWXV8FXOkuJyYeE0z3NDAg5T/fTTUzhzdnNmWHN+q/Zg5vkz7ifXY7Avr92P38XXJYTcWExSU2QGu6gRJcTlxc/u6uLSGQIrLqWwOGSXrmJJR70pD7G6CJTim5MFiQiJ2P2IpLda2yJYh1vbItOCaOaey9Uci7xcPuvRFrLhOWU+2cxoLFhMUVrQDXNYJYbRdHq/AN1sPYVOefJfTjmXBkbE/kjWDjDmiLZhlzADoMaZUx2KCIjI68XSYoIXFHtw8ay3+/bN8l9OOlsz9ocOYkrlt0Ui2HLrklY3aqyUlTKQJqMIENdLGazMHJaAl5hjJoUN/6JDB6DZ2S5YcKmRQFYsJMizURFRpgoZ7ulm1HLH8TjbsC3mE6wtdclD8sJigqJSekKpOUB1ylF7kVVv0S7Av5KFDXwD65FAJiwmKWsnE1GWC6pJDZSVvBJTpEzTJSpf5oNs6JTu33Q0gNekwQXXIAOiTQwe69AVzULT4zAQRERGZwmKCyI/D48WZq75Dr7oeOLzC7uYQESlBiWJi27ZtGDZsGBo0aID09HQ0atQIEydOxKlTp+xumpR0+GbAXO9btuRweL04Y90v6HKWgMPrNb0/HfoCYA7Z6JDDrjluNR0yWEGJYmLjxo3wer2YPn06fvrpJzz33HN46aWX8OCDD9rdNOmUDGyVJ6p/u1XNAOjRF0BgDpXpkMN/LKmeI9i/VaJLX1hFiWLiqquuwquvvoorr7wSDRs2RK9evXD//fdj0aJFdjdNKsEGtGqD3O4MwuFAwZlVsP04TF1O2+4cVindZhULo2BtVi0DoO+YCnWbzHTIYDVlP82Rl5eHKlWqhN2msLAQhYWFvp+PHj0KAHCnpyDFkRLX9lkpJd0d8HcwS47MQVFRUYj7q5M1VIb3C3MS8rFBr9uFzf2vxrMbgJYVysEhon/fhC59kcgcRsZ4rOweU1axMkc8z3c4usyNaPvCrvNtCQGgIPJmDiFiWC1ttnnzZrRt2xZTpkzB7bffHnK7Rx55BJMmTSpze05ODjIyMuLZRFJUoQcYu/r0hH+qXTFSXTY3iIjIRvn5+RgwYADy8vJQsWLFkNvZWkyMHz8e//rXv8Ju88svv6BZs2a+n3fv3o3LL78cnTp1wssvvxz2vsGemahTpw66pt+g3DMTt77SF7OGLURRQXHA75YcmRPVvmR8JCZTBq/bhY3DbwQAtJy9AN5jhRHu8ReZcpgRTQ6rMoQb47GyI4fV4jWm4nG+w9FhbpjJkOjzbaUiUYSPCxZELCZsfc7lvvvuw9ChQ8Nu07BhQ9+/9+zZg86dO+OSSy7BjBkzIu4/NTUVqampZW4vLigC5Pp2aUOKCopRVPDX02uxvEb3/okcqS7kIlsGb8pftXVxQTE8BcGfzixNthyxijbH+ydyAFh3caDSYzwWydoXQPQ5rDjfkejQH1ZlSMT5tlqxMNZeW4uJatWqoVq1aoa23b17Nzp37oy2bdvi1VdfhdOpxHtH4ybZ3+yT631LmsVGl77QJUesZBpTZsiUg2NKnr6INyX+R969ezc6deqEunXrYsqUKThw4AD27t2LvXv32t00W5idoDK8I9+KNtidwYo2yNAXJe2w8/5W0SEH58Zf97c7hy59kQhKFBO5ubnYvHkzli9fjtq1a6NmzZq+P8nGyoFp1yDXIYPVx9Yhh92Lpg45OKbiuy+7jhvt+y1UpEQxMXToUAghgv5JJvEYkImeqPE4npX7dHi8OOObH3BVbW/Yy2nLnsOuY9rxaDIex9ShL+K1TzuOqcM6pTsligmKn0S/nif764cOrxdnrt6Aq+t4LbmcdjLimCKrcUzJj8WEQqz+uJRdE8bq49qRo5szW5scMu/PruPq0he65LADC4rosJhQjFUD3O6JImsOAeBklSz8kX/634k6vp39YdV/OjqMKbv+A/Y/vkz7sfv4uuSQ8boZVmMxoSCzA9zuCVpCxhwixY3fB16DJ793Q7gTc/lLWfrDDFkyyNIOM3TIAMg5v2OhS454YzGhqFgHqGwDW4ccZtqiQw6ZMgB65OCYkicDoE+OeGIxobBoB6qsA1uHHLE8PS5rjnhunyg65Iglgy45ZKRLjnhhMaE4owNW9oGdTDlkXfRLGG2fzBkA9oVMkml+R7OdTlhMaCDSwFVlYOuSIxmo0heqtDMZ6DK/dclhNRYTmgg1gFUb2DrkCPdoUrUc0dwuKx1yhMugSw6V6JLDSiwmNFJ6IKs6sJlDHjpkAPTIoUMGgDl0Zeu3hpL1ujmztfimOrtyODxeVP3uZ5zbsxn+CHM5baNU7wdAjwyAHjl0yABwndIRn5nQkC4D244cDq8X1b9Yh971eTltonjiOqUXFhNERERkCosJiomu36onAJzKLI+DJ41dTpuI5KXrOiUjFhOUtIJ9dbVIcWPz0D6YvC5xl9M2iwumXHToDzu+Sp7UxmKCouK/yKi82Pi3XYccKmcAgCVH5gT8rSod+kPHuaFyDlWwmCDDgk1IFSdqqByqKd1mFfsCCJ5DNcHOvao5jNwms1DzQLUcqmExQYZEmoiqTNRw7VQlA6BHjnDFj0qFkQ59AeiRQ5d1SkUsJihpGFlI3j02NwEtMYcLolpU6C8jbVQhB9mHxQSFFc0jRJkfTcrarmjp0BdAdDlkFe3ckFU0bZM1hy7rlMpYTEhEtgEea3t0ySGbWHLImD3aNumQIdb7xFssb3iVLQfXKTmwmJCMLAPKbDtUzeFyOjCwXR10rO7Fgr0vx6lV0TNzPmXqCzMLv0w57LivTGTJkazrlIxYTEhIh4Elg1jOY6rbhUeubY7shl6kup1S9IUMbSDryNCfVnwEV4YcOtDlPLKYkJRdA8zKR4B2Ppq08rh2TnYd+qLk+DLtJ9Zj65JDxn1Fe1wd5oYuhQTAYkJqiR5o8TqeSjmEEDh44hSOF53+txX7jFU8jqlDDh0yxGufdhxTpfltx35lOV68sZiQWKK/jS5ex1MpR0GRBxc9+Sn+vtaNgiKPha2SA7/hMDY8b6GpNL/t2K8sx4s3FhOSsmugWX1c5pDnmOwLuY7LMSXPcXXJYScWExKye4BZdXzmsObYVhyffWENq/rC7jEl037sPr4uOezGYkIysgwss+3QIUf/WndokUOmDLG2xe7/gP3p0Be9Kw0xdX9ZcnCdkgeLCYnINqDMLPwyka09iZTM2eMpmc+rbNm5TsmBxQSFFe0Al3VCyNquaET76FzWzMk4pmR6ZsVftM9QyJgB0GdMqYzFBEVkdOLJPkFlb59RRnLInjWZxpQOGaLZzi665FAViwkyJNIEVGWChmtnN2c2ri0/EFm/bEG7al7AK0Jua7dIOVQQ7tG6rI/kg9G9L0p+rwJd1ikVsZggw8It/CoJ116nx4uzPv4aA8/2wun1JrBV1lCtL3Sh83lXLZsu65RqWExQVEpPSFUnqA45Sj+aVDEDoEdfACjTFyrm0LEvgv1M1mMxQVErmZiqT9BgOQQAr9uFQs/pf6tA1f+4/JW8EdDsRxbtpkNf6Dy/KX5YTFBMdJmgpXOIFDc2Dr8RY1e7Idwum1pFZC9d5zfFD4sJIiIiMoXFhIZ0+TY6XXIQUVm6zG9dcpjFYkIzJQNb9QGuUw5dMjCHHHTJ4P+3qnTJYQUWExpTdYCr2u7S/HPokonspeOYUjWHqu2OFxYTmgj1aEW1AR8qgy45VFO6zar2RbAcqtFhTHGd0heLCQ1EGsCqDPBkyKFKBkCPHDpkAPTIkQzz28jvdcViQnFGB67sA1yaHF6BzE3b0aaKFxDRX2nCSPtU6AtdchjZRpccMpNmfpukS454YDGRRGQd4DK1y+nxoM6yVbilqRdOT3SX044mh0yZSV7JOKZkzSFru2TBYkJRsT6ikm1CxJpBlxyyibZNsvZFLDlko8OY4jolV454YjGhILMDVJYBzhzyZAD0yKFDBkCPHJzf1txfFSwmkpTdA9zu44fiTXHj51EDcc9XbngNXE7bihwynAsZ2iADGc6DLmPKCnbnsPv4KmExoZAlR+ZYOrjtmig6ZLD62DrksHvh1SEHx1R892XXcZccmWPZvmTFYiLJJXqixuN4drw2Ga8ciWb1Me3qi3jkSDQdxlS8+l+H+Q3oXVSwmEhyif5WvXgcz46vfY5XjkSz+ph29UU8ciSaDmMqXv2vw/wGgN6VhsRlvzJgMaEQqweiXV/Pq8vXAluZQ5dzQuZwTJXFdUoNLCYUY9UAt3uiMIe1+zB7fF1yWLEPXXLYifM7kM7PSJRgMaEgswPc7glagjnkyQDokUOHDIAeOTi/rbm/KlhMKCrWR1CyDexYM8Qth1egwrbdaFEpustp69AXQPRtkuGRfGmxtEm2DIAeY4rrlFw54onFRBKRdWDL1C6nx4O6736KO5tHfzntaHLIlJnklYxjStYcsrZLFiwmFGd0gMs+EZIphwoZdMlhZBtdcsgsmeZ3NNvphMWEBiINXFUGdjLkUCUDoEcOHTIAeuRIhvlt5Pe6YjGhiVCPsFQb2KEyJCqHN8WNX+7qjwe+cRm6nHYoOvQFULbNKjySLy1Ym1XLAOgxprhO6YvFhMZUHdh2t1ukuHHK6zC9H/8cdmciPeg4plTNoWq748VtdwPIWt2c2cj1vqX8QNcph+p0yAAwh0x0mt865LACn5nQkC4DW5ccRFSWLvNblxxmsZggIiIiU1hMUEzs/rppq+iSg8hKuswLXXKogMUERa1kgqo+UXXKoXqGkq9mVv0rmnXoC53mhf/fFF8sJigqpSemqhM1ZA4hkLFrH86uKADjV9O2Ren/uLTrC8WU7gsVc+jYF8F+JuuxmCDDQk1I1SZquPY6iz2o//bHGHWOB06PJ4GtsoZqfaELnc+7atl0WadUw2KCDIk0EVWZqOHaqdKjyUg5VBDufLMvEivS+VYph5nfU+xYTFBERieg7BPVaPtkf93eSA5d+kKHHDpkiGY7u+iSQ1UsJiisaCeerBPVaLvyTxWj3RMr8OAac5fTjodoH62r3hexbp8o0faFjDmiLZxlzADoM6ZUxmJCIrIN8Fjbo3qOw/lFOFFs/nLaMpCtL3SRzOdVtuzJuk7JhsWEZGQZUGbboUOO+XtmaJFDpgxmFn6ZcthxXyuZfSlPlhxcp+TBYkJCdg8sq47PHNYc24rjsy+sYVVf2D2mZNqP3cfXJYfdWExIyq4BZvVxdcmhA54Tc3j+ytJlfuuSw04sJiSW6IEWr+PpkMOOSc8cidmfXcdkDrmOp0sOu7CYkFiiv40uXsfTIYcd3wzIHInZn13HZA65jqdLDruwmJCUXQOtmzPbsmNbua9Yjh0Lp8OBVmdVRJ3yAk6Hw9S+rKBDX5QcX6b9xHpsXXLIuK9oj6vD3NCpoGAxISGdBpidYjmPaSkuLLrrItzf2oO0FJcUfSFDG8g6MvRn70pDTO9Dhhw60OU8spiQjCwDy2w7dMhhxYJrFTM5ZOqLWNti9zMr/nToC7NkycF1Sh4sJiQi24Ays/DLRLb2xCqWHDJmj7ZNOmSI9T7xFkvBLFsOrlNyYDFBYUXziFCmR4+lGW1XwSkPWtyzCJO+k+9y2oDxHDL3BRBdDllFOzdkFU3bZM2hyzqlMhYTlDSMLCDXZN6MoooVcKhQ3stpcyFUiwr9ZaSNKuQg+yhXTBQWFqJNmzZwOBxYv3693c1JGpEWElUWmnDtVCUDoEeOcI8QVXr0qENfAHrk0GWdUpFyxcTYsWNRq1Ytu5uRlIJNRJUW/RKhcqimdJtV7AsgeA7VBDv3quYwcpvMQs0D1XKoRqli4oMPPsBHH32EKVOm2N2UpKXLhPTPoXImlduuM5X7RZe54U+XHDJz290Ao/bt24fbb78dixcvRkZGhqH7FBYWorCw0Pfz0aNHAQDu9BSkOFLi0s54SEl3B/xttx7lB2DJkTnoXWkIUtLVOY+l9Sg/AAACMvi/6dKd7oazWP58wXKo5oaaw3DrK31xQ81hSudQpS8irSmq5AhHpnVKtjU8KgJAQeTNHEIIEffGmCSEQI8ePdChQwc89NBD2LZtGxo0aIB169ahTZs2Ie/3yCOPYNKkSWVuz8nJMVyQUHIp9ABjV5+e8E+1K0aqfB/oICJKmPz8fAwYMAB5eXmoWLFiyO1sLSbGjx+Pf/3rX2G3+eWXX/DRRx/hzTffxGeffQaXy2W4mAj2zESdOnXQNf0G5Z6ZuPWVvpg1bCGKCortbo7WvG4Xtt54NSrXqohq/1kIz/HCyHci0zjGE4vnO7FUPt9FoggfFyyIWEzY+pzLfffdh6FDh4bdpmHDhvjkk0/w1VdfITU1NeB3F1xwAQYOHIg5c+YEvW9qamqZ+wBAcUERIO8n/0IqKihGUUFRxO1yvW9p8RqhPTmK0Oi1pbgzpz+mHy80dL7JOkbHOFnDzvOdjOuUiuO7WBhrr63FRLVq1VCtWrWI273wwgt49NFHfT/v2bMH3bt3x/z589G+fft4NlE5JV9rq/pE1S0HoO6bwHTIAOiRQ4cMgH7zW/UcVlDi0xx169ZFy5YtfX+aNGkCAGjUqBFq165tc+vk4b/QBPtZFcwhDx0yAHrk0CEDwBy6UqKYoMhCDWTVBrjdObxuF7YM6Ikn1sd+Oe1c71u257CCDhkAPXKEy6BLDpXoksNKShYT9evXhxAi7Jsvk0mkAazKAJcih8OBwqqVsLdAwTfVJJAuY4oSR4r5bQFdclhNwQ+9Umm6vFbHHHLRIYcOGQA9cuiQAdAnh9WUfGaCiIiI5MFigoiIiExhMUFERESmsJggIiIiU1hMEPkTAilHj6NKqvRfWUNEJA0WE0R+nMUeNJ6zBBPP98BZ7LG7OURESmAxQURERKawmCAiIiJTWEwQ+fG6Xfi931WY8oMLXldsl9MmIko2LCaI/DkcOFm9KnaecCj5NfVERHZgMUFERESmsJggIiIiU1hMEBERkSksJoiIiMgUFhNERERkCosJolJcBSdR3s3LaRMRGcVigsiPs6gYTV9eiMcv5OW0iYiMYjFBREREprCYICIiIlNYTBD58bpd2HZdV0z9iZfTJiIyisUEkT+HA/m1q2PzUV5Om4jIKBYTREREZAqLCSIiIjKFxQQRERGZwmKCiIiITGExQURERKawmCAqxVFUjHJOXk6biMgoFhNEfpxFxWj+0nw83Z6X0yYiMorFBBEREZnCYoKIiIhMYTFB5MfrcmHHtZ0w/RcnvC5ODyIiI7haEvlzOnC8/ln4+YgTcPB62kRERrCYICIiIlNYTBAREZEpLCaIiIjIFBYTREREZAqLCSIiIjLFbXcDEkmI05dILkYRoNLVkgWQn5+PIlGEYlFkd2u05hUC3sJ8AECxOAUPz3dicIwnFs93Yil8votxur0l/3+G4hCRttDIrl27UKdOHbubQUREpJSdO3eidu3aIX+fVMWE1+vFnj17kJmZCYdC1xA4evQo6tSpg507d6JixYp2N0d7PN+Jx3OeWDzfiaXy+RZC4NixY6hVqxacztDvjEiqlzmcTmfYykp2FStWVG4gqoznO/F4zhOL5zuxVD3fWVlZEbfhGzCJiIjIFBYTREREZAqLCQWkpqZi4sSJSE1NtbspSYHnO/F4zhOL5zuxkuF8J9UbMImIiMh6fGaCiIiITGExQURERKawmCAiIiJTWEwQERGRKSwmFFVYWIg2bdrA4XBg/fr1djdHW9u2bcOwYcPQoEEDpKeno1GjRpg4cSJOnTpld9O08eKLL6J+/fpIS0tD+/btsXr1arubpK0nnngCF154ITIzM3HmmWeiT58++PXXX+1uVtJ48skn4XA4cO+999rdFMuxmFDU2LFjUatWLbubob2NGzfC6/Vi+vTp+Omnn/Dcc8/hpZdewoMPPmh307Qwf/58jBkzBhMnTsR3332Hc889F927d8f+/fvtbpqWPvvsM4wYMQJff/01cnNzUVRUhCuvvBInTpywu2naW7NmDaZPn47WrVvb3ZT4EKSc999/XzRr1kz89NNPAoBYt26d3U1KKk899ZRo0KCB3c3QQrt27cSIESN8P3s8HlGrVi3xxBNP2Niq5LF//34BQHz22Wd2N0Vrx44dE40bNxa5ubni8ssvF/fcc4/dTbIcn5lQzL59+3D77bdj7ty5yMjIsLs5SSkvLw9VqlSxuxnKO3XqFL799lt07drVd5vT6UTXrl3x1Vdf2diy5JGXlwcAHM9xNmLECPTs2TNgrOsmqb7oS3VCCAwdOhR33XUXLrjgAmzbts3uJiWdzZs3Y+rUqZgyZYrdTVHen3/+CY/Hg+rVqwfcXr16dWzcuNGmViUPr9eLe++9Fx06dEDLli3tbo625s2bh++++w5r1qyxuylxxWcmJDB+/Hg4HI6wfzZu3IipU6fi2LFjmDBhgt1NVp7Rc+5v9+7duOqqq5CdnY3bb7/dppYTWWPEiBH48ccfMW/ePLuboq2dO3finnvuweuvv460tDS7mxNXvJy2BA4cOICDBw+G3aZhw4bo168f3n33XTgcDt/tHo8HLpcLAwcOxJw5c+LdVG0YPeflypUDAOzZswedOnXCRRddhNmzZ8PpZB1u1qlTp5CRkYEFCxagT58+vtuHDBmCI0eOYMmSJfY1TnMjR47EkiVLsHLlSjRo0MDu5mhr8eLFuO666+ByuXy3eTweOBwOOJ1OFBYWBvxOZSwmFLJjxw4cPXrU9/OePXvQvXt3LFiwAO3bt0ft2rVtbJ2+du/ejc6dO6Nt27Z47bXXtJn8Mmjfvj3atWuHqVOnAjj91HvdunUxcuRIjB8/3ubW6UcIgVGjRuHtt9/Gp59+isaNG9vdJK0dO3YM27dvD7jtlltuQbNmzTBu3DitXl7ieyYUUrdu3YCfK1SoAABo1KgRC4k42b17Nzp16oR69ephypQpOHDggO93NWrUsLFlehgzZgyGDBmCCy64AO3atcPzzz+PEydO4JZbbrG7aVoaMWIEcnJysGTJEmRmZmLv3r0AgKysLKSnp9vcOv1kZmaWKRjKly+PqlWralVIACwmiMLKzc3F5s2bsXnz5jIFG5/UM69///44cOAAHn74Yezduxdt2rTBsmXLyrwpk6wxbdo0AECnTp0Cbn/11VcxdOjQxDeItMGXOYiIiMgUvouMiIiITGExQURERKawmCAiIiJTWEwQERGRKSwmiIiIyBQWE0RERGQKiwkiIiIyhcUEERERmcJigoji6tdff0WNGjVw7NixhB972bJlaNOmDbxeb8KPTZRMWEwQUVgejweXXHIJrr/++oDb8/LyUKdOHfz9738Pe/8JEyZg1KhRyMzMjGczg7rqqquQkpKC119/PeHHJkomvJw2EUX022+/oU2bNpg5cyYGDhwIABg8eDC+//57rFmzxvdV7aXt2LEDZ599NrZu3YqzzjorkU32efHFFzF79mysWbPGluMTJQM+M0FEETVp0gRPPvkkRo0ahT/++ANLlizBvHnz8N///jdkIQEAb775Js4999yAQmL27NmoVKkSli5diqZNmyIjIwM33HAD8vPzMWfOHNSvXx+VK1fG6NGj4fF4fPerX78+Hn30UQwePBgVKlRAvXr18M477+DAgQPo3bs3KlSogNatW2Pt2rUBbbj22muxdu1abNmyxfoTQ0QAWEwQkUGjRo3Cueeei0GDBuGOO+7Aww8/jHPPPTfsfT7//HNccMEFZW7Pz8/HCy+8gHnz5mHZsmX49NNPcd111+H999/H+++/j7lz52L69OlYsGBBwP2ee+45dOjQAevWrUPPnj0xaNAgDB48GDfffDO+++47NGrUCIMHDw74Rte6deuievXq+Pzzz605EURUBr+CnIgMcTgcmDZtGpo3b45WrVph/PjxEe+zffv2oMVEUVERpk2bhkaNGgEAbrjhBsydOxf79u1DhQoV0KJFC3Tu3BkrVqxA//79fffr0aMH7rzzTgDAww8/jGnTpuHCCy9EdnY2AGDcuHG4+OKLsW/fPtSoUcN3v1q1amH79u2m8hNRaHxmgogMmzVrFjIyMrB161bs2rUr4vYFBQVIS0src3tGRoavkACA6tWro379+qhQoULAbfv37w+4X+vWrQN+DwCtWrUqc1vp+6WnpyM/Pz9ie4koNiwmiMiQL7/8Es899xyWLl2Kdu3aYdiwYYj0/u0zzjgDhw8fLnN7SkpKwM8OhyPobaU/0um/jcPhCHlb6fsdOnQI1apVC9tWIoodiwkiiig/Px9Dhw7F8OHD0blzZ7zyyitYvXo1XnrppbD3O++88/Dzzz8nqJXBnTx5Elu2bMF5551nazuIdMZigogimjBhAoQQePLJJwGc/mTFlClTMHbsWGzbti3k/bp3746vvvoq4FMZifb1118jNTUVF198sW1tINIdiwkiCuuzzz7Diy++iFdffRUZGRm+2++8805ccsklYV/uuPrqq+F2u/Hxxx8nqrllvPHGGxg4cGBA24nIWrxoFRHF1Ysvvoh33nkHH374YcKP/eeff6Jp06ZYu3YtGjRokPDjEyULfjSUiOLqzjvvxJEjR3Ds2LGEX1J727Zt+M9//sNCgijO+MwEERERmcL3TBAREZEpLCaIiIjIFBYTREREZAqLCSIiIjKFxQQRERGZwmKCiIiITGExQURERKawmCAiIiJTWEwQERGRKf8PGS1ua0aGH2MAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "==== Grid Infill 80.0% ====\n", + "XY Total Area = 87.0324 mm²\n", + " Shell Area = 31.1879 mm²\n", + " Infill Area = 55.8445 mm²\n", + "I_x = 764.6175\n", + "I_y = 764.6175\n", + "I_xy = 0.0000\n", + "Polar moment, J = 1529.2350\n", + "-- Cross-sections through Z (pattern constant over Z) --\n", + "Length along X @ y=1.000 mm: 7.4593 mm\n", + "Length along Y @ x=-2.000 mm: 8.6108 mm\n", + "Area of XZ plane @ y=1.000: 149.1865 mm² (Z=20.000 mm)\n", + "Area of YZ plane @ x=-2.000: 172.2153 mm² (Z=20.000 mm)\n", + "\n", + "A_xz(y=1mm) = 149.18648310388022 mm^2\n", + "A_yz(x=-2mm) = 172.21526908635838 mm^2\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# ------------------------------\n", + "# Geometry utilities\n", + "# ------------------------------\n", + "\n", + "def _dist_mod(u, spacing):\n", + " \"\"\"Distance to nearest line center in a periodic family with pitch=spacing.\"\"\"\n", + " r = np.mod(u, spacing)\n", + " return np.minimum(r, spacing - r)\n", + "\n", + "def _rectilinear_mask(XX, YY, spacing, line_width, angle_deg=0.0, phase=0.0):\n", + " \"\"\"\n", + " Rectilinear (parallel lines) mask at angle_deg, with true line width.\n", + " Lines are centered where (x cos + y sin + phase) is a multiple of spacing.\n", + " \"\"\"\n", + " th = np.deg2rad(angle_deg)\n", + " # Coordinate along the line-normal direction (u-axis)\n", + " u = XX * np.cos(th) + YY * np.sin(th)\n", + " dist = _dist_mod(u + phase, spacing)\n", + " # Render a line of width 'line_width' around the center => half width threshold\n", + " return dist <= (line_width / 2.0)\n", + "\n", + "def _spacing_for_grid_density(line_width, f):\n", + " \"\"\"\n", + " For a two-axis grid (two orthogonal families of rectilinear lines with true width 'w'),\n", + " the area fraction is f = 2r - r^2 where r = w/s.\n", + " Solve for s: r = 1 - sqrt(1 - f) => s = w / r.\n", + " \"\"\"\n", + " f = float(np.clip(f, 0.0, 1.0))\n", + " if f <= 0.0:\n", + " return np.inf\n", + " if f >= 1.0:\n", + " return line_width # centers are one line_width apart for a \"solid\" raster\n", + " r = 1.0 - np.sqrt(1.0 - f)\n", + " return line_width / r\n", + "\n", + "# ------------------------------\n", + "# Area & inertia on a raster mask\n", + "# ------------------------------\n", + "\n", + "def compute_area_moments(XX, YY, mask):\n", + " x_vals = XX[mask]\n", + " y_vals = YY[mask]\n", + "\n", + " if x_vals.size == 0:\n", + " return {\"A\": 0.0, \"x_c\": 0.0, \"y_c\": 0.0, \"I_x\": 0.0, \"I_y\": 0.0, \"I_xy\": 0.0, \"J\": 0.0}\n", + "\n", + " dx = XX[0, 1] - XX[0, 0]\n", + " dy = YY[1, 0] - YY[0, 0]\n", + " dA = dx * dy\n", + "\n", + " A = x_vals.size * dA\n", + " x_c = float(np.mean(x_vals))\n", + " y_c = float(np.mean(y_vals))\n", + "\n", + " x_shift = x_vals - x_c\n", + " y_shift = y_vals - y_c\n", + "\n", + " I_x = float(np.sum(y_shift**2) * dA)\n", + " I_y = float(np.sum(x_shift**2) * dA)\n", + " I_xy = float(np.sum(x_shift * y_shift) * dA)\n", + " J = I_x + I_y\n", + "\n", + " return {\"A\": A, \"x_c\": x_c, \"y_c\": y_c, \"I_x\": I_x, \"I_y\": I_y, \"I_xy\": I_xy, \"J\": J}\n", + "\n", + "# ------------------------------\n", + "# Main: Prusa-style rectilinear/grid with shells\n", + "# ------------------------------\n", + "\n", + "def prusa_style_grid_or_rectilinear(\n", + " width, height,\n", + " infill_fraction,\n", + " line_width=0.42,\n", + " shell_layers=2,\n", + " base_infill_angle_deg=45.0,\n", + " grid=True,\n", + " z_height=0.0, # keep for optional phase control\n", + " phase_per_mm=0.0,\n", + " # --- NEW: cross-sections extruded through Z ---\n", + " z_object_height=None, # mm (required to report XZ / YZ areas)\n", + " y_plane=0.0, # mm, plane parallel to XZ at y = y_plane\n", + " x_plane=0.0, # mm, plane parallel to YZ at x = x_plane\n", + " N=800,\n", + " plot=True,\n", + " verbose=True\n", + "):\n", + " # ----- Raster grid\n", + " xs = np.linspace(-width/2, width/2, N)\n", + " ys = np.linspace(-height/2, height/2, N)\n", + " XX, YY = np.meshgrid(xs, ys)\n", + "\n", + " # ----- Shells (perimeters)\n", + " shell_mask = np.zeros_like(XX, dtype=bool)\n", + " for i in range(shell_layers):\n", + " off = (i + 0.5) * line_width\n", + " shell_mask |= np.abs(XX - (-width/2 + off)) <= (line_width / 2)\n", + " shell_mask |= np.abs(XX - ( +width/2 - off)) <= (line_width / 2)\n", + " shell_mask |= np.abs(YY - (-height/2 + off)) <= (line_width / 2)\n", + " shell_mask |= np.abs(YY - ( +height/2 - off)) <= (line_width / 2)\n", + "\n", + " # ----- Infill region (inside shells)\n", + " inner_offset = shell_layers * line_width\n", + " inner_rect = (\n", + " (np.abs(XX) <= (width/2 - inner_offset)) &\n", + " (np.abs(YY) <= (height/2 - inner_offset))\n", + " )\n", + "\n", + " if infill_fraction <= 0.0:\n", + " infill_mask = np.zeros_like(XX, dtype=bool)\n", + " elif infill_fraction >= 1.0:\n", + " spacing = line_width\n", + " masks = []\n", + " angles = [base_infill_angle_deg] + ([base_infill_angle_deg + 90] if grid else [])\n", + " phase = phase_per_mm * z_height\n", + " for a in angles:\n", + " masks.append(_rectilinear_mask(XX, YY, spacing, line_width, angle_deg=a, phase=phase))\n", + " infill_mask = np.logical_or.reduce(masks) & inner_rect\n", + " else:\n", + " spacing = _spacing_for_grid_density(line_width, infill_fraction) if grid \\\n", + " else line_width / infill_fraction\n", + " masks = []\n", + " angles = [base_infill_angle_deg] + ([base_infill_angle_deg + 90] if grid else [])\n", + " phase = phase_per_mm * z_height\n", + " for a in angles:\n", + " masks.append(_rectilinear_mask(XX, YY, spacing, line_width, angle_deg=a, phase=phase))\n", + " infill_mask = np.logical_or.reduce(masks) & inner_rect\n", + "\n", + " # ----- Final mask (material present)\n", + " final_mask = shell_mask | infill_mask\n", + "\n", + " # ----- Plot\n", + " if plot:\n", + " plt.figure(figsize=(6, 6))\n", + " img = np.where(final_mask, 1.0, np.nan)\n", + " plt.imshow(img, origin='lower',\n", + " extent=[-width/2, width/2, -height/2, height/2],\n", + " interpolation='nearest')\n", + " title = \"Grid\" if grid else \"Rectilinear\"\n", + " plt.title(f\"{title} @ {infill_fraction*100:.1f}% | shells={shell_layers}×{line_width:.2f} angle={base_infill_angle_deg:.0f}°\")\n", + " plt.xlabel(\"X (mm)\")\n", + " plt.ylabel(\"Y (mm)\")\n", + " plt.gca().set_aspect('equal', 'box')\n", + " plt.grid(True)\n", + "\n", + " # guide lines\n", + " plt.hlines(y_plane, -width/2, width/2, linestyles='--')\n", + " plt.vlines(x_plane, -height/2, height/2, linestyles='--')\n", + "\n", + " plt.show()\n", + "\n", + " # ----- XY numbers\n", + " total = compute_area_moments(XX, YY, final_mask)\n", + " shells = compute_area_moments(XX, YY, shell_mask)\n", + " A_infill = total[\"A\"] - shells[\"A\"]\n", + "\n", + " # ----- NEW: cross-sections parallel to XZ and YZ\n", + " dx = XX[0, 1] - XX[0, 0]\n", + " dy = YY[1, 0] - YY[0, 0]\n", + "\n", + " ys = YY[:, 0]\n", + " xs = XX[0, :]\n", + " row = int(np.argmin(np.abs(ys - y_plane)))\n", + " col = int(np.argmin(np.abs(xs - x_plane)))\n", + "\n", + " length_x_at_y = float(np.count_nonzero(final_mask[row, :]) * dx)\n", + " length_y_at_x = float(np.count_nonzero(final_mask[:, col]) * dy)\n", + "\n", + " area_xz_at_y = None\n", + " area_yz_at_x = None\n", + " if z_object_height is not None and z_object_height > 0:\n", + " area_xz_at_y = length_x_at_y * z_object_height\n", + " area_yz_at_x = length_y_at_x * z_object_height\n", + "\n", + " if verbose:\n", + " print(f\"==== {('Grid' if grid else 'Rectilinear')} Infill {infill_fraction*100:.1f}% ====\")\n", + " print(f\"XY Total Area = {total['A']:.4f} mm²\")\n", + " print(f\" Shell Area = {shells['A']:.4f} mm²\")\n", + " print(f\" Infill Area = {A_infill:.4f} mm²\")\n", + " print(f\"I_x = {total['I_x']:.4f}\")\n", + " print(f\"I_y = {total['I_y']:.4f}\")\n", + " print(f\"I_xy = {total['I_xy']:.4f}\")\n", + " print(f\"Polar moment, J = {total['J']:.4f}\")\n", + " print(f\"-- Cross-sections through Z (pattern constant over Z) --\")\n", + " print(f\"Length along X @ y={y_plane:.3f} mm: {length_x_at_y:.4f} mm\")\n", + " print(f\"Length along Y @ x={x_plane:.3f} mm: {length_y_at_x:.4f} mm\")\n", + " if area_xz_at_y is not None:\n", + " print(f\"Area of XZ plane @ y={y_plane:.3f}: {area_xz_at_y:.4f} mm² (Z={z_object_height:.3f} mm)\")\n", + " if area_yz_at_x is not None:\n", + " print(f\"Area of YZ plane @ x={x_plane:.3f}: {area_yz_at_x:.4f} mm² (Z={z_object_height:.3f} mm)\")\n", + " print()\n", + "\n", + " return {\n", + " \"mask\": final_mask,\n", + " \"XX\": XX, \"YY\": YY,\n", + " \"dx\": dx, \"dy\": dy,\n", + " \"area_total_xy\": total[\"A\"],\n", + " \"area_shells_xy\": shells[\"A\"],\n", + " \"area_infill_xy\": A_infill,\n", + " \"moments_xy\": total,\n", + " \"length_x_at_y\": length_x_at_y,\n", + " \"length_y_at_x\": length_y_at_x,\n", + " \"area_xz_at_y\": area_xz_at_y,\n", + " \"area_yz_at_x\": area_yz_at_x,\n", + " }\n", + "\n", + "# ------------------------------\n", + "# Demo\n", + "# ------------------------------\n", + "if __name__ == \"__main__\":\n", + " W, H = 10.0, 10.0\n", + " Z = 20.0 # object height in Z\n", + " res = prusa_style_grid_or_rectilinear(\n", + " width=W, height=H,\n", + " infill_fraction=0.8,\n", + " line_width=0.42,\n", + " shell_layers=2,\n", + " base_infill_angle_deg=45.0,\n", + " grid=True,\n", + " z_object_height=Z, # << set Z height\n", + " y_plane=+1.0, # XZ cross-section at y = +1 mm\n", + " x_plane=-2.0, # YZ cross-section at x = -2 mm\n", + " plot=True, verbose=True\n", + " )\n", + "\n", + " print(\"A_xz(y=1mm) =\", res[\"area_xz_at_y\"], \"mm^2\")\n", + " print(\"A_yz(x=-2mm) =\", res[\"area_yz_at_x\"], \"mm^2\")\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "c04da43a-0894-4100-9457-0160dd2b54d2", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAIjCAYAAAC52ZmJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAY3NJREFUeJzt3XucTPX/B/DX3OzFXtxX7tdculC5FAplI3L7RoqvdlFRLvlSovq69K1vQlGSdFHIphJRP2FD94QiclfWNZfEWnbtzuX8/vDdsbM7152Zcz6fc17Px8ODmTkz85457/PxmnM+c8akKIoCIiIiolIya10AERERyY1hgoiIiMLCMEFERERhYZggIiKisDBMEBERUVgYJoiIiCgsDBNEREQUFoYJIiIiCgvDBBEREYWFYYJ8Sk9PR506dQIul5WVBZPJhPfeey/qNVFJderUweTJkyP2WHfffXdEHquQyWTyqO+9996DyWRCVlZWRJ+HxKW3dW632+FyubQuQygMEzp08OBBjBgxAldffTXi4+MRHx+Ppk2bYvjw4di+fbvW5Xl14cKFUm+cO3fuRN++fVGvXj3Ex8ejUqVKuO222/DZZ595XX737t3o0qULEhISUKFCBQwcOBCnT58O+vlWrlyJG2+8EbGxsahVqxYmTZoEh8PhscyuXbtw6623IjExES1atMCPP/5Y4nFefvllXHPNNSXuS5Fz5MgRTJkyBa1atUL58uVRqVIldOjQAV9++WVEn+fYsWO49957Ua5cOSQlJaFnz574448/Qn6cc+fOoUqVKjCZTFi6dKnHbZs3b8aIESNwzTXXoGzZsqhVqxbuvfde7Nu3L1IvQ9dSU1NhMpkwYsSIEreZTCavf6ZOneqxnKIoGD16NBITE1G+fHm8+uqrapUvPKvWBVBkff755+jXrx+sVisGDBiAZs2awWw2Y8+ePVi2bBnmzp2LgwcPonbt2gEf66233opa+lYUBUuXLsW7776Lb775BhcvXoTNZkOjRo1w3333YeTIkUhKSgrqsQ4dOoScnBykpaWhWrVqyM3NxSeffIIePXpg3rx5ePjhh93LHj16FLfddhuSk5Px3//+FxcuXMCMGTOwY8cObNq0CWXKlPH7XF988QV69eqFDh06YPbs2dixYweee+45nDp1CnPnzgUAOJ1O/OMf/0CFChUwffp0rFy5Ej179sSBAwfcr+nUqVN49tln8dFHH8Fq5WYYLStWrMCLL76IXr16IS0tDQ6HAwsXLkRqairmz5+PQYMGhf0cFy5cQMeOHZGdnY2nnnoKNpsNM2fORPv27bFt2zZUrFgx6MeaOHEicnNzvd724osv4vvvv0ffvn1x/fXX48SJE3jttddw4403YuPGjbj22mvDfi16tWzZMq+BvqjU1FQ88MADHtfdcMMNHpczMjKwbNkyvP3228jNzcX48ePRunVrtG7dOuI1S0ch3Thw4IBStmxZpUmTJsrx48dL3G6325VXXnlFOXz4sN/HuXDhQkjPe/DgQQWA8u677wa1/KlTp5Rbb71VsdlsSt++fZV58+Yp//d//6dkZGQoTzzxhFK9enWlevXqytdffx1SHUU5HA6lWbNmSqNGjTyuf+SRR5S4uDjl0KFD7usyMzMVAMq8efMCPm7Tpk2VZs2aKXa73X3d008/rZhMJmX37t2KoijK7t27FQDu57h48aISFxenrF692n2fIUOGKN27dy/16yuqdu3ayqRJkyL2WN26dYvIYxUC4FHfu+++qwBQDh48GNHn8ea3335TTp8+7XHdpUuXlMaNGys1atQosfzBgweVL7/80ufjzZ8/X3E4HB7XvfjiiwoAZdOmTe7rdu/erVgsFmXChAlB17pjxw7FarUqzz77rAJA+fjjjz1u//7775X8/HyP6/bt26fExMQoAwYMCPp5tKDmOi8uLy9PqVOnjvt9HT58eIllfF1f3PDhw5VZs2a5L48ePVqZMWNGROuVFQ9z6Mi0adNw8eJFvPvuu7jqqqtK3G61WjFq1CjUrFnTfV16ejoSEhLw+++/o2vXrkhMTMSAAQPctxWfM3Hu3Dmkp6cjOTkZ5cqVQ1paGs6dOxd0jTk5OWjfvj2ys7Oxc+dOfPTRR3j44YfRtWtX3H///Zg2bRr279+Pvn37olu3btiyZUup3guLxYKaNWuWqO2TTz7B3XffjVq1armv69SpE66++mp89NFHfh9z165d2LVrFx5++GGPvQmPPvqoe08LAOTl5QEAypcvDwCIj49HXFyc+xPnL7/8gsWLF+Pll18u1WsrrRMnTmDQoEGoUaMGYmJicNVVV6Fnz55ej2N/9913aNWqFWJjY1GvXj0sXLiwxDLnzp3D6NGjUbNmTcTExKBBgwZ48cUXS7U3a8uWLejcuTMqVaqEuLg41K1bF4MHDy7Ny/RwzTXXoFKlSh7XxcTEoGvXrjh69ChycnI8bnv++efRo0cPr59iJ06ciMGDB2P16tUe1y9duhQtW7ZEy5Yt3dc1btwYd9xxR8CeKuqxxx5D7969ceutt3q9vU2bNiX2nDVs2BDXXHMNdu/eHfDxt2/fjvT0dNSrVw+xsbGoWrUqBg8ejDNnzngsN3nyZJhMJhw4cADp6ekoV64ckpOTMWjQoBJ7TfLy8jBq1ChUqlQJiYmJ6NGjB44dO1ZinowvX3zxBW699VaULVsWiYmJ6NatG3bu3BnwfqGYNm0aXC4XHn/88YDL5uXl4dKlSz5vr1evHhYvXoxff/0VGzduxMqVK9GwYcNIlist7l/Vkc8//xwNGjQIeZebw+FA586d0a5dO8yYMQPx8fFel1MUBT179sR3332HYcOGoUmTJli+fDnS0tKCfq7Ro0fDarXiu+++Q2JiIoDLhwXy8/MRHx8Pu92OS5cuYebMmShTpgzS0tKwY8cOmM2Bc+/FixeRl5eH7OxsrFy5El988QX69evnvv3YsWM4deoUWrRoUeK+rVq1wqpVq/w+/tatWwGgxP2rVauGGjVquG+/+uqrkZycjMmTJ2PUqFH46KOPcP78edx4440AgFGjRmHEiBFo0KBBwNcUSffccw927tyJkSNHok6dOjh16hQyMzNx+PBhj9B44MAB9OnTB0OGDEFaWhrmz5+P9PR03HTTTbjmmmsAALm5uWjfvj2OHTuGoUOHolatWvjhhx8wYcIE/Pnnn5g1a1bQdZ06dQp33nknKleujPHjx6NcuXLIysrCsmXLPJY7e/YsnE5nwMcrnCfkz4kTJ7wuN3PmTGzfvh3dunXD119/jeuuuw4A8Morr+A///kPnn76aXTr1s29vMvlwvbt270Gn1atWmHt2rXIyclx97ovH3/8MX744Qfs3r07pEmKiqLg5MmT7vXiT2ZmJv744w8MGjQIVatWxc6dO/Hmm29i586d2LhxI0wmk8fy9957L+rWrYsXXngBv/zyC95++21UqVIFL774onuZ9PR0fPTRRxg4cCBuvvlmfP311x7vjz+LFi1CWloaOnfujBdffBG5ubmYO3cu2rVrh61bt7p7Mj8/v0To86V4cDx8+DCmTp2K+fPnIy4uzu9933vvPbz++utQFAVNmjTBM888g/79+3ssM2zYMCxduhTNmzcHAPTv3x/du3cPqjbd03bHCEVKdna2AkDp1atXidvOnj2rnD592v0nNzfXfVtaWpoCQBk/fnyJ+6WlpSm1a9d2X/70008VAMq0adPc1zkcDuXWW28N6jDHgQMHFKvVqmzdutV93ZQpU5SyZcsqAJQ2bdoo8+fPdz9nfn6+UrVqVWXt2rVBvQdDhw5VACgAFLPZrPTp00f5+++/3bdv3rxZAaAsXLiwxH2feOIJBYBy6dIln48/ffp0BYDXw0QtW7ZUbr75ZvfljIwMJS4uTgGgWCwW967QxYsXKykpKUp2dnZQrykYwRzmOHv2rAJAmT59esDHAqB888037utOnTqlxMTEKGPHjnVf95///EcpW7assm/fPo/7jx8/XrFYLB7vEQIc5li+fLkCQNm8eXNQtQX6E+i92L9/vxIbG6sMHDjQ6+1//fWX0rRpU6Vq1arKgQMHlIULFyomk0kZNmxYiWVPnz6tAFCeffbZErfNmTNHAaDs2bPHbz25ublKrVq13IdENmzY4PUwhzeLFi1SACjvvPNOwGWLbveFPvjggxLre9KkSQoAZfDgwR7L9u7dW6lYsaL78s8//6wAUEaPHu2xXHp6esB1npOTo5QrV0556KGHPO574sQJJTk52eP6wvsG86e4Pn36KG3atHFfho/DGW3atFFmzZqlrFixQpk7d65y7bXXKgCU119/vcSyTqdT2bZtW8D1ajTcM6ET58+fBwAkJCSUuK1Dhw749ddf3ZenT59eYpffI488EvA5Vq1aBavV6rGsxWLByJEj8e233wa8//Lly9GmTRt3ql++fDmmTJmCsWPHom3btvj2228xatQo94S1MmXK4K677sJXX32F1NTUgI8/evRo9OnTB8ePH8dHH30Ep9OJgoIC9+2Fhx9iYmJK3Dc2Nta9jLfbg7l/4ToAgPvvvx9dunTB3r17UbduXaSkpCA3NxdPPvkknn/+eSQkJGDKlClYsGCB+9+9e/cO+BpLKy4uDmXKlMFXX32FIUOGuA/BeNO0aVOPXe2VK1dGo0aNPL6d8PHHH+PWW29F+fLl8ddff7mv79SpE6ZOnYpvvvnGfbgskHLlygG4vGetWbNmsNlsXpdbvHixex34U69ePZ+35ebmom/fvoiLiysxU79QxYoVsXbtWrRt2xa33XYbTp06hXvvvRdz5swpsWywPeXP1KlTYbfb8dRTT/ldrrg9e/Zg+PDhuOWWW4LaO1j0k/mlS5dw4cIF3HzzzQAuH3orfnhl2LBhHpdvvfVWLF++HOfPn0dSUpL7cM+jjz7qsdzIkSMDfk08MzMT586dw/333+/RPxaLBa1bt8aGDRvc13Xu3BmZmZkBX19xGzZswCeffIKffvop4LLff/+9x+XBgwfjpptuwlNPPYX09HSP985sNqNZs2Yh16N3DBM6Ubgb9cKFCyVumzdvHnJycnDy5En885//LHG71WpFjRo1Aj7HoUOHcNVVV5UILI0aNQqqxp9//hkdO3Z0X37rrbeQlpaGadOmAQB69uyJv/76C1999ZV7mZSUlKC/ttm4cWM0btwYAPDAAw/gzjvvRPfu3fHTTz/BZDK5B4T8/PwS9y08TupvV2ig+xe/b/ny5d2DNQC88MILqFKlCgYNGoT58+fjjTfewOLFi5GVlYV+/fph165dUTv0ERMTgxdffBFjx45FSkoKbr75Ztx999144IEHULVqVY9li84nKfpazp496768f/9+bN++HZUrV/b6fKdOnQq6tvbt2+Oee+7BlClTMHPmTHTo0AG9evVC//79Pf6Tbtu2bdCP6Y3T6cR9992HXbt24YsvvkC1atV8Llu9enVMmjQJgwcPRmxsLGbOnOn1UFu4PZWVlYXp06djzpw5Xj8I+HLixAl069YNycnJWLp0KSwWS8D7/P3335gyZQqWLFlSYv1kZ2eXWL54HxQG0LNnzyIpKQmHDh2C2WxG3bp1PZYLpof3798PALj99tu93l70m1xXXXWV1zlg/jgcDowaNQoDBw70mMsSrDJlymDEiBEYNmwYfv75Z7Rr1y7kxzAahgmdSE5OxlVXXYXffvutxG2Fcyh8HYuNiYkJak5CuM6cOeMxgGdlZZU43tiqVSuPMHHkyBGPCaOh6NOnD4YOHYp9+/ahUaNG7gHpzz//LLHsn3/+iQoVKvjcKwHA4/7Fa/rzzz/RqlUrn/fNysrCSy+9hLVr18JsNuODDz7A0KFD3YPpggULsGTJEjzzzDMhv85gjR49Gt27d8enn36KNWvW4N///jdeeOEFrF+/3uMrcL7+Y1IUxf1vl8uF1NRUjBs3zuuyV199ddB1FZ5TYePGjfjss8+wZs0aDB48GC+99BI2btzo/k/29OnTQc2ZSEhI8Pof80MPPYTPP/8cixcv9vmfWKHNmzdj1KhRaNWqFfbt24eePXti/fr1JR63sGd89RQAv6Fl4sSJqF69Ojp06ODePk+cOAHg8uvNyspCrVq1PLbP7Oxs3HXXXTh37hy+/fZbv49f1L333osffvgBTzzxBJo3b46EhAS4XC506dLF66TZYPqgtAqfb9GiRSXCLACPCc6F86CCUfhYCxcuxN69ezFv3rwS415OTg6ysrJQpUoVv3NrCrfxv//+O6jnNjqGCR3p1q0b3n77bWzatMnvf2ylVbt2baxbtw4XLlzwGFT37t0b1P2TkpI8BoWqVavi999/91im6K70U6dOYcWKFfj0009LVW/h7uXC56xevToqV67s9RsimzZtch9+8aXw9i1btni8v8ePH8fRo0c9zmdR3OOPP44ePXq4P+EcP37c4z+BatWq4dixY0G9rnDUr18fY8eOxdixY7F//340b94cL730Et5///2QH+fChQvo1KlTxGq7+eabcfPNN+P5559HRkYGBgwYgCVLluDBBx8EALRs2RKHDh0K+DiTJk0q8U2CJ554Au+++y5mzZqF+++/3+/9d+3ahbvuugsNGzbE2rVrsXPnTqSmpqJnz55YtWqVR+A0m8247rrrvPbUTz/9hHr16vmdfHn48GEcOHDA66GZwsMHZ8+edR8KunTpErp37459+/bhyy+/RNOmTf2+lkJnz57FunXrMGXKFEycONF9feEegtKoXbs2XC4XDh486PGNhgMHDgS8b/369QEAVapUCdhDH374YdDnAykMOocPH4bdbve6N2vhwoVYuHAhli9fjl69evl8rMKxyNfeN/LEMKEj48aNQ0ZGBgYPHox169YhJSXF4/ZwP1F07doVb775JubOnYsnnngCwOVdx7Nnzw7q/k2aNPE4ftm7d29MmDABN954I9q2bYsffvgBb775JpKTk7FmzRqMGTMG7dq1wx133OH3cU+dOoUqVap4XGe327Fw4ULExcV5DLj33HMPFixY4LHHY926ddi3bx/+9a9/edz/999/d+/xAS5/zbBx48Z48803MXToUPcnt7lz58JkMqFPnz5e69uwYQNWrVqFPXv2uK9LSUnxuLx79+6ozpnIzc2F2Wx2H8cHLg/oiYmJXnfRB3Lvvfdi8uTJWLNmDTp37uxx27lz55CQkBD0ybgK/7Ms+m2CwuBWtLbSzpmYPn06ZsyYgaeeegqPPfaY3/tmZWXhzjvvRKVKlbBmzRokJyejTZs2WLZsGXr06IF+/frhk08+8fjU3qdPH4wfPx5btmxxf9Nn7969WL9+fYm5SXv27EF8fLz7EMJzzz3nMWcAAH777Tf8+9//xrhx43DLLbegbNmyAC5va/369cOPP/6IFStW4JZbbgn4XhQqrLf4GBDKt26K69y5M55++mm8/vrrmDlzpvv6YMaDzp07IykpCf/973/RsWPHEvNkTp8+7f5PvDRzJu677z6vHw569+6Nrl274qGHHnLvsS36XIVycnIwa9YsVKpUCTfddFNIz21UDBM60rBhQ2RkZOD+++9Ho0aN3GfAVBQFBw8eREZGBsxmc1DzI7zp3r072rZti/HjxyMrKwtNmzbFsmXLgt4Feffdd+Oll17Cn3/+iauuugrDhg3Dl19+6Z6oV7FiRTzxxBOYOHEievTogSFDhmDGjBkBH3fo0KE4f/48brvtNlSvXh0nTpzA4sWLsWfPHrz00ksee1GeeuopfPzxx+jYsSMee+wxXLhwAdOnT8d1113n8enn2LFjaNKkCdLS0jwmk02fPh09evTAnXfeifvuuw+//fYbXnvtNTz44INo0qRJidqcTidGjx6NJ554wuMYdJ8+fTBu3DhUrlwZhw4dwo4dO7B48eKg3sfS2LdvH+644w7ce++9aNq0KaxWK5YvX46TJ0/ivvvuC/nxnnjiCaxcuRJ33323+2ujFy9exI4dO7B06VJkZWWV+JqeLwsWLMDrr7+O3r17o379+sjJycFbb72FpKQkdO3a1b1caeZMLF++HOPGjUPDhg3RpEmTEntgUlNTPUL3888/D7PZjMzMTI//YDp37oxFixbh/vvvx5o1azzqevTRR/HWW2+hW7duePzxx2Gz2fDyyy8jJSUFY8eO9Xi+Jk2aoH379u5Ded6OxRfuhWjZsqXHJ+exY8di5cqV6N69O/7+++8Sr8XbfKhCSUlJuO222zBt2jTY7XZUr14da9euxcGDB33eJ5CbbroJ99xzD2bNmoUzZ864vxpaeHrv4l81LV7P3LlzMXDgQNx444247777ULlyZRw+fBj/93//h7Zt2+K1114DULo5E0XnTxVXt25dj/d1zpw5+PTTT9G9e3fUqlULf/75J+bPn4/Dhw9j0aJFAc+KS/+j5VdJKDoOHDigPPLII0qDBg2U2NhYJS4uTmncuLEybNgwZdu2bR7LpqWlKWXLlvX6OMW/GqooinLmzBll4MCBSlJSkpKcnKwMHDhQ2bp1a9BnwGzfvr3Su3dvxeVyua/btWuX8v333ysXL15Uzp49q2zatEm5ePFi0K/3gw8+UDp16qSkpKQoVqtVKV++vNKpUydlxYoVXpf/7bfflDvvvFOJj49XypUrpwwYMEA5ceKExzKFZ/VMS0srcf/ly5crzZs3V2JiYpQaNWoozzzzjFJQUOD1uebMmaPUqFGjxOux2+3KmDFjlEqVKim1a9dWFixYEPTrLS6Yr4b+9ddfyvDhw5XGjRsrZcuWVZKTk5XWrVsrH330UYnH8nYGzPbt2yvt27f3uC4nJ0eZMGGC0qBBA6VMmTJKpUqVlDZt2igzZszweD8Q4GuCv/zyi3L//fcrtWrVUmJiYpQqVaood999t7Jly5aQ3gdvCr/m6OvPhg0bSrymAwcO+Hy8ol9rLurIkSNKnz59lKSkJCUhIUG5++67lf3795dYDkCJ97E4X18Nbd++fUhfiyzu6NGjSu/evZVy5copycnJSt++fZXjx4+XWD+F71nxM4d6O4vlxYsXleHDhysVKlRQEhISlF69eil79+5VAChTp071e9/C19q5c2clOTlZiY2NVerXr6+kp6dHZN17Ay9fDV27dq2SmpqqVK1aVbHZbEq5cuWUO++8U1m3bl1UatArk6JEYDYNUZD279+Pli1b4p577sHcuXO9pv68vDxkZmaiR48eGlQonzp16iA9PT1ivxxKFI5t27bhhhtuwPvvvx/014NJfjzMQapq2LAh1qxZgx49emDDhg0YMWIE2rdvjypVquCvv/7C+vXr8eqrr8JiseD2228P6etyRKSuvLy8El99nTVrFsxmM2677TaNqiItMEyQ6lq3bo3ffvsNzz77LJ577jmP48qVKlXCgw8+iPHjxzNIEAlu2rRp7vPHWK1WfPHFF/jiiy/w8MMPl/or3SQnHuYgTTmdTuzduxd//fUXKlasiMaNGwd1Ah66goc5SCuZmZmYMmUKdu3ahQsXLqBWrVoYOHAgnn766aC/zUP6wDBBREREYeFPkBMREVFYGCaIiIgoLIY6qOVyuXD8+HEkJib6PaEKERERXT5rak5ODqpVq+b3N5wMFSaOHz/OGcZEREQhOnLkiN+zJxsqTBT+4E47dIUVtgBLi8MaZ8Pgd/6B+UOWwZFn17ocXVPMJly4oTFu+Wcz7HlmGRwXC7QuyRDY4+ri+60umd9vB+z4Dqv8/mAdYLAwUXhowwobrCZ5woTNZEN8fDxsJhvAozNR5bJa8VendvjsBNDYEgOY+GUnNbDH1cX3W11Sv9//GwIDTQ3gBEwiIiIKC8MEERERhYVhgoiIiMLCMEFERERhYZggIiKisDBMEBERUVgYJoiKMDmcqPnZBjzc2AmT06V1OUREUmCYICrCpChIzDqOa8orMPEHdYmIgsIwQURERGFhmCAqQjGbcK5xPfx0ygTFLNup6oiItMEwQVSEYrHgeOotyPjdAsXPL+QREdEVHC2JiIgoLAwTREREFBaGCSIiIgoLwwQRERGFhWGCiIiIwsIwQURERGFhmCAqwuRwosYX3yL9ap5Om4goWAwTREWYFAVJBw7jhoo8nTYRUbAYJoiIiCgsDBNERSgmE843qIWtZ0xQTDydNhFRMBgmiIpQrBYcvetWvLfPAsXCzYOIKBgcLYmIiCgsDBNEREQUFoYJIiIiCgvDBBEREYWFYYKIiIjCwjBBREREYWGYICrC5HSiWuaP6F/fCZOLp9MmIgoGwwRRESaXgnJ7/kDrKgpMLp5Om4goGAwTREREFBaGCaIiFJMJOXWqYedZnk6biChYDBNERShWC45074g39/B02kREweJoSURERGFhmCAiIqKwWLUugMKX6fo44o+Zau4b8cf0JRr1l1ZugQNNJ64BAHx4/E0kl43TuKLoUHP9AoHXsd1ux6pVq7Di3ALYbDa/y4pWu4xCeb+1IPv4o3aPioB7JnQg0o0r+4ZMRHJTc1yQefwUCcOETkSqgRkkjCHT9bGUA7ba/cke1Q77Uy4MEzoSbiMzSBiP2gN2aXssnPuWBvtTDDIFCiMHCUDiMDF16lSYTCaMHj1a61KEUpqG5kB9hc1ixqS7G6NPXSdsBvlqqNrrI9Re4xwJY5Mh8Bo9SACShonNmzdj3rx5uP7667UuRUgiN7boA7XNYsY/W9fCrVUVw4QJQPz1oha+D2ISeb2IPN6qSbrR8sKFCxgwYADeeustlC9fXutyhBVsg3OPBBUScZcy+5MKGb0/RSfdV0OHDx+Obt26oVOnTnjuuef8Lpufn4/8/Hz35fPnzwMArHE22EzifR3KF1uc1ePvYHUt2x8rzi3weXvPcmmwxanzPqw4twB2u12V5wqH06Vg4++nsT/bhEv5BVqXo7pV+RnoWS5NlefqWrY/AM/eKPy7sAb2Z3QUf79loXZ/Rmr8LO0YLgQFQF7gxUyKokjz04hLlizB888/j82bNyM2NhYdOnRA8+bNMWvWLK/LT548GVOmTClxfUZGBuLj46NcLcko3wmM23R5g5/WyoEYi8YFERFpKDc3F/3790d2djaSkpJ8LidNTDpy5Agee+wxZGZmIjY2Nqj7TJgwAWPGjHFfPn/+PGrWrIn5Q5ZJt2di8Dv3YP6QT2DPc5TqMYombLWSffHnlUFugQPjNq0HANx+++1ILhtcr+mRmn2y9PTbyMzMRGpqKvpUflC155WtPyPFbre7328RT1oVDK3GsdI8byTGcK3YleD2XkkTJn7++WecOnUKN954o/s6p9OJb775Bq+99hry8/NhsXh+jIyJiUFMTEyJx3Lk2QEJfxDSnueAPa90uyW7xvRHputjHoMOwKZcaQybzSrtQBsJqy5mqNYvfSo/iKEZ/dCn8oOl7vFQydifkWaz2aTtcTX7M1LjZzhjuFYcQYYJaSZg3nHHHdixYwe2bdvm/tOiRQsMGDAA27ZtKxEkqCQGCQqVXtejXl+X0Yg4KdOopNkzkZiYiGuvvdbjurJly6JixYolridtcaAmIrWovceVvJNmzwTJgUFCf/R0Wmk9vRa6gutUe1KHia+++srnNzlkJPsGIXv95J/s61f2+sk/2dev7PVLHSb0SNaGkrXu4qxmM8Z1bogetZywmrl5FCfrepa1bgqNrOtZ1rqL4mgpINkaS7Z6/SljNeOhdnVxR3UFZazcPLyRbX3LVi+FR7b1LVu9vnC0FJQsDSZLnRRZsqx3WeqkyJJlvctSZzAYJgQmeqOJXl9pOF0Kth/NxqELl/9Nvom+/kWvj6JL9PUven2hYpgQnKgNJ2pd4cp3OHHPvJ/w8g4r8h1OrcsRnqh9IGpdpC5R+0DUusLBMCEB0U75q8cNgUpPtH4QrR7Slmj9IFo9kcIwQSHR64ZA4RGlL0Spg8QiSl+I9sEwkhgmJKJ1I4qyQZKYtO4PrZ+fxMb+iC6GCclotUFwQyQi2Wk1jmn9QVANDBMSUnuDYJCgYGlxumqeIptCwfEzOhgmJKT2j9rwR3QoWKnmvpr0J3uUgsXxMzoYJiTSs1yaZo1plA3CajZjZMd66FLDxdNph0jrHtH6+Ul8WvVIz3JpmjyvmjhaUtCMMFiXsZox6vYGuKumi6fTJtIRI4xfWuJoSSHhBkneiNIXotRBYhGlL/S8h4JhQgKiNaAoG2Y0uFwK9p+8gD9zL/+b/BNxvoKINZF2ROsF0eqJFIYJgYk8KIpaV7guOZzo+toPmPqrFZd4Om2/RO8B0euj6BO1B0Qe20uLYYJKTW8bAxHpB8cndTFMCEqWDUGWOimyZFnvstRJkSXLepelzmAwTAhItgaTrV4qPRl3z8pYM5WebOtatnp9YZgQjKyNJWvdRKQfso5DstZdFMOEQGRvKNnrJ/9kX7+y10/+yb5+Za+fYYIiSvYNgkrS02ECPb0WuoLrVHsMExRxMm/YVrMZQ9rWxu1X8XTagNzr0h+9vi4j4roUA0dLA1Hz1+tk3cDLWM0Y36URetbh6bSJRKfmOGOUX/8sLY6WBlG4ITBQULDUXH8rzi3w+FsN7E+5aREkGCh8Y5gwgOIbAAOFby6XgqNn83DmknFPp632vAKt+1O2HiVt90gwUHjHMKFzvhqfgcK7Sw4nOr78LZ7daszTaau9rkToT0CuHjU6EQ5tMFCUxDChY4EanoGCtCRSf5IcRAgSwd5uNAwTOhVsozNQUCGRBupQl4sE9qfYjN6fomOY0KFQG5wDtrFpPUci0suHg3MoxMT+FB/DhM6UtrEZKIxJlDkS0bpfabFHxSFykAj3fnrCMKEj4TY0AwVFk0z9SWKQIUhE6v6yY5jQiUg1MgOFMYh+aCPajxMMHvLQFvtTLgwTOhDpBjZyoLCYTRjQqibapbhg0enptGU5tKHW4wUiWo8agYxBIlqPJwt9jpYGEq3GNWqgiLFaMLl7E/St50IMT6dNpDqZg0S0H1dkHC0lFu2GNWqg0DO1B+poDtbsT/3RQ5BQ6/FFwzAhKbUa1WgDtqIoOHOxABfsl/+tF7LOkRDleQDOoYg29qfcGCYkpHaDGilQ5NmduHnqV3h6ixV5dn2cTlv2ORKiPZ/WPapHegwSWj2fVhgmJKNVYxopUFDpGaE/KbL0HCQKqflruFphmJCI1g3JQCEfIwzUWjw/+zMyjNSfescwQSHhgC0Hvc6RCIRzKORhxP7U+gNhNDFMSEC0BmSgEJve50gEwjkU4jNikCgkWj2RwjAhOFEbj4GCAPYnhc7IQaKQqHWFg2FCYKI3HAOFWIx6aMMXHvIQD/vzCtHrCxXDhKBkaTS9BQqL2YTeN1RDq8pynU7b6Ic2fOEhD3EwSJQkS53BkGe0NBDZGkxPgSLGasG0f1yLAQ14Om2iSGGQ8E22en3haCkYWRtLT4FCNno5RXa08NTb2mKQCEzWuotimBCI7A2lhwFbURTkFjiQ7xT/dNqcIxEazqFQH/szeLLXzzBBESV7oMizO9HsP+sxbpPYp9PmHInS4RwK9TBIGAvDBEWc7IGCPOltoNbb6xERg4TxMExQVDBQRA8H6vCxP6OH/WlMDBMUNRywI4tzJCKLcygij/1pXAwTFFUMFJHBORLRwTkUkcMgYWwMExR1DBRyMdpAbbTXGw0MEsQwQapgoCgdHtpQBw95lB77kwCGCVKRDIHCbDKhyzUpaF7BBYvJFOGqQsNDG+riIY/QMUhQIYYJUpXogSLWZsHs+5phUCMXYmyWKFRFpA8MElQUwwSpTvRAIQKeIlsbPPV2cBgkqDiGCdIEB2zvOEdCDJxD4Rv7k7xhmCDNiBgocgscaPjvtXjsRytyCxxRrsoT50iIhXMoSmKQIF8YJkhTIgYKI+BAHRy+T1cwSJA/DBOkOQYKDtQiY3+yPykwhgkSglEHbM6RkIOR51CwPykYDBMkDKMFCs6RkIsR51AwSFCwGCZIKEYLFGrhQB0ZRnofGSQoFAwTJBy9Bwoe2pCbEQ55sD8pVAwTJCStAoXZZEL7qyuhabnonE6bhzb0Qc+HPBgkqDQYJkhYWgSKWJsFbw+8EUOb8HTaZDwMElRaDBMkND0d8uApsvVFb6feZpCgcDBMkPBkH7A5R0Lf9DCHgv1J4WKYICmoNQC5bFZcPX4VnvjJEpHTaXOOhDHIPIeCQYIigWGCpKHWQKTYrChwRX7yZbRxoNaWjO9/z3Jpqj2XjO8PBY9hgqSi5oDUr9rDYd2fn/iMR/ZDctHC/tQ/hgmSjugDNudIGJsMcyi4R4IijWGCpCRqoOAcCQLEnkPBoEvRwDBB0hI1UKiFA7XYRFw/DBIULQwTJDVRAgUPbZA3Ih3yYH9SNDFMkPQiOnApCuKPnkSDJAVQSt7sbUDmoQ3yR4RDHgwSFG0ME6QLkRrAzA4n6iz/EiOvccLsdHpdRsRDHkS+MEiQGhgmSDe0OOTBU2RTMLQ69TaDBKmFYYJ0RZQ5FJHGgVof2J+kV9KEiRdeeAEtW7ZEYmIiqlSpgl69emHv3r1al0UCCmdgc9ms2PvgPXhqswUuqxi/GsqBWl/0tj719nqodKQJE19//TWGDx+OjRs3IjMzE3a7HXfeeScuXryodWkkoHAGOGdcLC46xDidNgdqfdLLetXL66DwWbUuIFirV6/2uPzee++hSpUq+Pnnn3HbbbdpVBWJLNP1sdSTJTlQ6xv7k/REmjBRXHZ2NgCgQoUKPpfJz89Hfn6++/L58+cBANY4G2wmW3QLLAW73e73el+3k2+r8jNCOnVw0UMb1jgrzA5t+mTFuQWGWt9G7fFQ+zNSbHFWj79DZbT+DFew/W2LE+//JSgA8gIvZlIUxcu36cXmcrnQo0cPnDt3Dt99953P5SZPnowpU6aUuD4jIwPx8fHRLJEkle8Exm26PMBOa+VAjBjTJoiINJGbm4v+/fsjOzsbSUlJPpeTMkw88sgj+OKLL/Ddd9+hRo0aPpfztmeiZs2a6BTXR8g9EyvOLfB6vd1uR2ZmJlJTU2GziVe3LIL5BOiyWrDnkfsAANe+txSunPwA94gsXz2gd+xxdX98yxZnxeB37sH8IZ/AnucI+n5G7c9wBdvfWuylCsSu2PFl3tKAYUK6wxwjRozA559/jm+++cZvkACAmJgYxMTElLjekWcHxJhf5yHQIGqz2Qw70EbCqosZAY9Ru2xXsrUjzwFnnnq7cnkM2tg9Hkx/Rpo9zwF7kD3O/gxfoP4Odl2oyaEEV5M03+ZQFAUjRozA8uXLsX79etStW1frkkhCAQdERUHsyTOoWdb76bSjhQM1AeL2gah1kTikCRPDhw/H+++/j4yMDCQmJuLEiRM4ceIE8vKCmBlCVIS/gdHscKLeR6vx+PW+T6dNZCQMEhQMacLE3LlzkZ2djQ4dOuCqq65y//nwww+1Lo0kJMoAyVNkU3Ei9YQodZD4pAkTiqJ4/ZOenq51aSQprQdKrZ+fxKZ1f2j9/CQXacIEUTQUHzBdVgv2p/XElF+iezptDtQUDK36hP1JoWKYIMPzGDhNJtiTEvB3fvS+7sOBmkKhdr+wP6k0GCbI8NT+Op7Mp1Am9bE/SQYME2RYqea+mg2cHLApGFr2J3uUQsEwQYYkwkApQg0kLhH6Q4QaSA4ME0Qa4mBN3rAvSDYME2QoIu6+Fa0e0pZo/SDiNkPiYZggwwhqQFQUxJw5h6px6v7+HQdrAsTuA5FrI+0xTBAVYXY4UT/j/zChuRNmh7qn0+ZgbWxc/yQzhgkyBFkGalnqpMiSZb3LUiepj2GCdE3G472y1UvhkW19y7hNUfQxTJBulWbAc1kt+L1/N7ywLbqn0w6Eg7UxyLyeZa6dIo9hgqgokwn5FcvhRF70TqcdLA7W+sb1S3rCMEG6pJeBWi+vgzzpZb3q5XVQ+BgmSFf0eDxXb6/H6PS2PvW4zVHoGCZIN9Qe0NT8dUUO1vqg5npU+9c/2aPGxjBBVAqFAzUDBQVLiyDBnxMntTBMkPTU3s1afIBmoKBAjNSf7FFjYpggqUV84FIU2M5fQIUY76fT9jUwM1CQLyIc2uAhD4o2hgmiIswOJxouWIFJN4Z+Om0GCipOhCBBpAaGCZKW2gN1MIM1AwUVEi1IBNvDkcL+NBaGCZKO1nMkIr18ODhgi4n9eRnnUBgHwwRJJdoDk8tqwR/3dsGM7Ra4LJZSD7wMFMYlcpAotOLcgghX4h97VP8YJoiKMplwKaUijlw04cM/3wzroRgojEeGIEEUDQwTJA0Z/8NkoDAOGYOEmnso2J/6xjBBwpP9uCsDhf7JGCSi9Xj+yL4tk28MEyQ0tQeez3IWReVxGSj0S+YgEe3H9YU9qj8ME0T/E+0BlYFCf/QQJNR6fNI3hgkSkuhf/xT9eQAGimhjf4aHhzz0hWGChKP1r3+Wj7ehrNX76bSj8XzRxME6OvQYJLR6PvaoPjBMEBURX8aKTRM64r8tnYgvY43a8zBQyEvPQYKotBgmSCginiI7ms+vFgaKyDBKkOCptylUDBMkBL3OkQiEA7Y82J/RxTkUcmOYIM1pPUeiqEt2Jwa8sxmzd1pwyR7ar4ZGo55I42BdOkYMEoU4h4KCwTBBhhJoYHQpCjZlncWB8ya4lOhNwiyOgUJcRg4ShUSti8TBMEGa4kB9BQOFeNifV7A/yR+GCdKEUedIBMIBWxzsz5I4h4J8YZgg1Yk0R0JEDBTaY5DwjXMoyJvofZFeYC6bFS6Tl5fuUmB2Oj2W80lRYHaUclmrBTCZSiyWW+CACSbElbG4r8srcKLA7kC+8/LtNuXK/Yove8nu9Hucv+h5E7RaNs52pV6XxQyYfedZk90BUymWVcxmKJbLy36Wswi5BQ6PZWOtFpjNl5cucLjgcLnctxVdNrfAiYQ4BRYfyxYXY7W4l7U7XbA7fS9bxmKG9X81elt2xaUP0D1x4OXX5nDC9L/3VDGZoFgt8MXkdMLkCm3ZVHNfrHZ8hHyH7wmnVrMZZayX63W6lKCXdbkUXAp2WaVkjxdlMZsQ87/XoygK8vxMkA1lWbPJhNgifXlHzP2Ar+05wmNEYX8WryGvwAkF3rcjb2NEsMsWbp92H2NKsNvyiksfoGfs/Vdem8UCmL2vNwAw2x1BL+ttuy++DReKs1lg+t9Ymu9wwunyPfb42+7DWbbodu9r2cL32+lSYCu8zst2X7RHPLZ7swmKxc+2HMUxAkHOQzcpioqzzDR2/vx5JCcno+boj2COiS9xe/zvR1D9k3XuywdGD4BSxlZiOQCIO3wCNZasdl/+Y8R9cMbHel025s+/UGvR5+7LB4f2gSM5weuyDaskIHNMe/fl1Je/xv5TF7wuW71cHL4ff7v7co/XvsP2o9lel61Qtgx++Xeq+3K/eT/ip4N/e102zmbB7v90cV8e9O4mbNh72uuyAJA1tZv7348u/hmrdpzwuWz9me+7B5YTd7VDznUNfC5bd/YHsOblAwBOdWqN7Bub+Fy2zhtLYTt/+X063aEFzrW61ueya/91G65OSQQAzMzch1fW7fe57IrhbdGsZjkAwLyvf8cLX+zxuewHD92MW+pXBAAs/DELE1fs9Lns/PQWuL1xCgDg4y1H8MTS7T6XrbpiAxL3HgIA5DSqjRM9O/pcNmXVd0j67QAA4GK9Gjjep5PPZStnbkS5rZdfT27Nqjh2fxefy064qzGGtq8PAPj1yDn0nPO9z2Ufu6Mh/pV6NQBg38kc3DnzG5/LPnxbPTzVtQnsdjsWLVuFZ7f6/s954M218Z9el9frmQv5uOm5L30ue8+NNfDSvc0uv7YCB5pOXONz2a7XVcXrA24CcPlT8P5x6T6XjdYYcX2NZKwc0c59ue3U9Th2Ls/rsiKNEYV7DY7dcwdy69f0uiwANJz2nvvff/bogAuN6/hcNpQx4udnOqFiQgwA4N+f/oZFGw/5XPbbcR1Rs8Llcf+/q3bjzW/+8LlstMaI9we3QLurL2/3gcaIaku/RNk/jgIAzl/bACe7tvO5bDTHiIRfduArrEB2djaSkpJ8LsvDHERE4O700pDtEA1FjyH3TNxmuwdWk5dPExof5vgsZ5GPwxwFWLNmLTp3vhM225W6ZTrM4d5lX8pDF6Ee5liZu9jnsoF2Ydrtdvf7nRAXq8lhjuLL3mXrd/m1ReEwR/Flvf0Me7QPc9jtdnz+f6twe6pnjxcVzcMc3WPuc1/2uy1HYIzw9v6qf5jD7nVMKc12n2ruG/XDHEUVff/kOcxx+f3u0e0uxMaUuXydl+2+cJwExDnM4XQWBLVnwpBzJsz2y8cog1kulMcMelkfg6u334KIK2OB1WRFjOXy7TY/g1fRwSgQNZdNNff1ugvM7HQBfv4TLc2yoX5SKmM1o0yx6uwmxf1+W4oMet6W9cVmMcNmidyyma6PkWruC5OiwBRkr5V22Z6x9/t9Hy1mU9C/W2IOZVlT4B5312sK/nEDLVt8j0TUtnu7I+j+LBoAIrls4fZZtMd9vd/BbveFrynYPTvmEI7De9vuffVnjJ//FIsLZVuOxLKF73fR8cTbdu+rn0wuBSZXdLf7cPEwB0UNv/4ZWfyWR+SxPyOHXxs1NoYJigpZv/55ye7Eg4t+wbzdZuSrdDrtUDBQRA6DROTxa6PGxTBB0ovkAOZSFHy97y/sOmeGU9DpRAwU4WOQiB6jvV66jGGCIo4DdfQxUJQe+zP62J/GwzBBEcM5EurigB069qd6OIfCWBgmBCLzBiHrHAnZMVAEj0FCfZxDERyZx/5CDBMkHQ7UnhgoAmOQ0A7fD2NgmBCQTAM2D22IgYHCN/an9njIwzeZavWHYUJQMjQYD22IhYGiJAYJcfCQR0ky1BgshgmB6anRZBFfxor9/7kTr9ziCPoMiyJhoLiCQYJEJvr2EyqGCcGJ2nBqD9QcrIPHQMEgISq1t2X2p3oYJiTQs1ya1iW4cY6EHIw8YLM/xWfkORQi1RJJDBMUNCPMkbhkd2Lkkl/x7l4xT6cdCiMGCgYJeRhxDoVIHwwjjWFCInpuxOK0GqhdioLVO09i29/ink47FEYKFAwS8uH7qB8ME5LRasDmQC0vIwQK9qe8jNCfRvggyDAhITU3CM6R0Ac9D9jsT/npeQ6F1nvs1MIwISk1NggjzJEwEj0GCgYJ/dDbHArRJn5GG8MECYEDtTr0FCgYJPSH77O8GCYkF60BlQO1fukhULA/9Yv9KSeGCR2IZONyjoQxyDxgsz/1T+Y5FEYMEgAQ8vmC8/Pz8dNPP+HQoUPIzc1F5cqVccMNN6Bu3brRqI+ClGruy4EvAuJsFvz679uxZs1axNksWpcTVZmuj1Wd2xCJ/mSQIJEZNUgAIYSJ77//Hq+88go+++wz2O12JCcnIy4uDn///Tfy8/NRr149PPzwwxg2bBgSExOjWTP5EO6AzYEaMJlMiC9jRYzl8r/1TqZAwf40lsJ1wP6UQ1CHOXr06IF+/fqhTp06WLt2LXJycnDmzBkcPXoUubm52L9/P5555hmsW7cOV199NTIzM6NdN/lQmobmoQ1jk+GQB/vTuGQ45GH0IAEEGSa6deuGgwcPYtq0abj11lsRFxfncXu9evWQlpaG1atXY926dTCbORVDS6E0Nr/+6Snf4cS4Zb9h8QEz8h0urctRjciBgkGCRP7aKIPEZUH9rz906FDYbLagHrBp06a44447wiqKwidig8swUDtdCpZvPY5Np81wuowTJgAxAwWDBBUScf2IOM5qJaxdCBcuXMD58+c9/pA4AjU6B2oqTqRAwf6k4ozanzIIOUwcPHgQ3bp1Q9myZZGcnIzy5cujfPnyKFeuHMqXLx+NGikM3hqecyTIHxEGbPYn+SLCHAoGiZJC/mroP//5TyiKgvnz5yMlJcUQM95lV9j4as7cL8SBWk5qf8tjVX6Gx2W1sD/lpPZYVvhND4YI30IOE7/++it+/vlnNGrUKBr1kI5woJabmoNnz3JpGJrRT9VfV2R/yo3/uYsl5MMcLVu2xJEjR6JRC0UZP/FRqPS6HvX6uoxGhENydFnIeybefvttDBs2DMeOHcO1115b4lse119/fcSKIzlxoNYXvX0CZH/qi976U1Yhh4nTp0/j999/x6BBg9zXmUwmKIoCk8kEp9MZ0QKJ1BRns2Dj+A5Y9+WXuj+ddij0MmAzSBBFR8hhYvDgwbjhhhvwwQcfcAImedDDQG0ymVCxbBkk2IxxOu1QyB4o9NCf5J3ap96mkkIOE4cOHcLKlSvRoEGDaNRjaDJvEByojUHWQMH+NAbZ+1PG2guFPAHz9ttvx6+//hqNWuh/ZBv4ZKvXn3yHE5M/242P/zDW6bRDIdv6lq1eCo9s61u2en0Jec9E9+7d8a9//Qs7duzAddddV2ICZo8ePSJWHIlPLxtCIadLweJNRwAY73TaoZDlE6De+pOCI0t/6knIYWLYsGEAgGeffbbEbZyAGTkybAwcqI1N9B5lfxqb6P0J6KtHQz7M4XK5fP5hkIisTNfHwjabqHWRukTtA1HrInWJ2gcij+2lxd8Kl8CKcwu0LsGD3jYCCo9o/SBaPaQt0fpBtHoiJeTDHACwefNmbNiwAadOnYKr2HHll19+OSKF+TJnzhxMnz4dJ06cQLNmzTB79my0atUqqs9JV+h1Q6DwiLJLmf1J3ojSn3oWcpj473//i2eeeQaNGjUqcZ6JaH8v/8MPP8SYMWPwxhtvoHXr1pg1axY6d+6MvXv3okqVKlF9buJATf5pPWCzP8kfrfsTEG8vcySFfJjjlVdewfz587F792589dVX2LBhg/vP+vXro1Gj28svv4yHHnoIgwYNQtOmTfHGG28gPj4e8+fPj+rzimLFuQWaDZgcqCkY7E8SmVZ9oucQUSjkPRNmsxlt27aNRi1+FRQU4Oeff8aECRM8aunUqRN+/PFHr/fJz89Hfn6++/L58+cBANY4G2wmm9f7aMlut/u9vvBvW5z6tfuqTW8sioLMUTfj22+/gwUuw7zuSFqVnxHyr3/a4qwef4dixbkFXE8hKj6mGImW42eg91uL2gJSAOQFXsykKIoSyuNOmzYNx48fx6xZs0pXWCkdP34c1atXxw8//IBbbrnFff24cePw9ddf46effipxn8mTJ2PKlCklrs/IyEB8fHxU6yUiIpJdbm4u+vfvj+zsbCQlJflcLuSPAY8//ji6deuG+vXro2nTpiVOWrVs2bLQq42SCRMmYMyYMe7L58+fR82aNTF/yDIh90z42hVmt9uRmZmJ+UM+gT3PoXJVVxhhVx1w5f1OTU0t0d/kX6h7JArZ4qwY/M49YfW4UfozEoza46Xtz3AV9neg91ur+vyxK8HtvQo5TIwaNQobNmxAx44dUbFiRdV+DKlSpUqwWCw4efKkx/UnT55E1apVvd4nJiYGMTExJa535NkBAX/DKdBGbc9zwJ6n3W7JrjH9dX9susDhwkvr9uJglhmdTBZDDbThisTktnB63Aj9GWk2m80wPa715EsA6FP5Qay6mOHzdi3Hd18c0QoTCxYswCeffIJu3bqFXFQ4ypQpg5tuugnr1q1Dr169AFw+gda6deswYsQIVWsxslRzX10P2A6XC+98fwiAGQ6eTjtoIgzUgP77k0pHlP7Us5C/zVGhQgXUr18/GrUENGbMGLz11ltYsGABdu/ejUceeQQXL17EoEGDNKlHLaLt+uKGSUWJ1g+i1UPaEq0fRKsnUkIOE5MnT8akSZOQm5sbjXr86tevH2bMmIGJEyeiefPm2LZtG1avXo2UlBTVa1FDqrmvsI0nal2kLlH7QNS6SF2i9oHIY3tphXyY49VXX8Xvv/+OlJQU1KlTp8Txtl9++SVixXkzYsQIQxzWkKHRuEvZ2ETvUfansYnen4C+ejTkMFE4X4EI0NfGQMGTYaAG2J9GJUt/6knIYWLSpEnRqIOKkG1D4IBtLOxPEhn7UxtBzZkI8bxWVEoyH0eTtW4KjazrWda6KTSyrmeZx/5CQYWJa665BkuWLEFBQYHf5fbv349HHnkEU6dOjUhxJBc9bBCxVgtWjWiD8c0ciLVatC5HKLKvW9nrJ9/0MPbILqjDHLNnz8aTTz6JRx99FKmpqWjRogWqVauG2NhYnD17Frt27cJ3332HnTt3YsSIEXjkkUeiXTdRVJjNJjRMScD++Mv/psv0MlDrZZcykWiCChN33HEHtmzZgu+++w4ffvghFi9ejEOHDiEvLw+VKlXCDTfcgAceeAADBgxA+fLlo10zCY4Dtr7oJUgUYn/qi976U1YhTcBs164d2rVrF61aKMoyXR+rtuHJOmAXOFyYvf4A9h8xo5PDBYOcadgnvQ7UsvYneVKzP9UcP2UU8kmriIIl44bncLkwe8MfWH2Up9NWc/0V/kiXmj/WJWN/0hVcf2JhmDCATNfH7k9han8a4wYvJ7U/8fm7HE3sTzmpvd6Kjp/co+Udw4TOeWt8tTcIDthy0TJIBLo+GtifclG7P32NoeQp6DBx/PjxaNZBURCo4TlgU3EiBIlgb48k9qccjNqfMgg6TFxzzTXIyPD9O+wkFhEbnQO22EQaqENdLhLYn2ITcf2IOM5qJegw8fzzz2Po0KHo27cv/v7772jWRGEKpcE5h4IAMYNEaZcPB/tTTFrNkYj0snoWdJh49NFHsX37dpw5cwZNmzbFZ599Fs26qJRK09icQ2FsIgeJcO9XGuxPsYgwRyKY+xldSOeZqFu3LtavX4/XXnsN//jHP9CkSRNYrZ4PEe2fICffwm1otc9DUficIomxWvDJ0Nb4/ofvEWOA02nLECSK3p/nSTEOkfdG+Lq/kYNoyL8aeujQISxbtgzly5dHz549S4QJ0gYHvsiwmE24vkYyjiZc/reeyRQkij4OAwWJysiBIqQk8NZbb2Hs2LHo1KkTdu7cicqVK0erLgpBJAe8wsfigK1vMgaJoo/H/tQ39qd8gp4z0aVLFzz55JN47bXXsGzZMgYJQURroDPqMeoChwtvfXcQ646ZUODQ5xkwZR6oo/243ojUn0bA/pRT0GHC6XRi+/bteOCBB6JZDxmUKAO2w+XCtDX7sfKwRZen09bDQK3W4xclSn/qHd9neQUdJjIzM1GjRo1o1kIhUOMbGPzaqL7oKUio/TwA+zPaZJtwGczjG2kPBU+nLSE1G5RfG9UHPQYJLZ6P/RkdMnz9M5znMwKGCclo1ZgcsOWl5yChxfOyPyPLCP2p5q/haoVhQiJGaMhCHLAjwwgDtRbPz/6MDL6P+sEwQUHjHAq5GClIFGKgkIfe5kgEQ88fCBkmJCBSA3IOhRyMGCQKsT/Fp+c5EoGIVEskMUwITtTGU3vAVmvwibFa8P7gFhjR1Cnt6bSNHCQKMVCISc1tGWB/qolhQmB6bDjRWcwmtK5bAQ2TFSlPp82B+goGChKZ6NtPqBgmBCVDo3EOhVgYJEpioBCHEedIBCJDjcFimBCQTA2mtzkUdqcL7/90GN+eMMHulOcMmAwSvumpP2Vl5DkSgchUqz8MEySdaA5MdqcLUz7fg6UHLdKECQaJwBgotMP3wxgYJgQiW6Iuioc8tMEgETwGCvXx0EZwZB77CzFMUMTo7ZCH6BgkQsf+VA8PbRgLwwRFHAfs6GOQKD32Z/SxP42HYYKkZ7QBmwN1+Bgoosdor5cuY5igqOAciuhgkIgcBorI4xwJ42KYoKjhHIrIYpCIPPZn5HCOhLExTFDUyXTq7TIWM9785w14uLETZSzibB4MEtHDQBEeniKbAIYJIg9WixkdG1XGNeUVWAUJExyoo4+Bgig8YoyWpHucQ1E6DBLqYaAIHedIUCGGCVKNDHMo7E4XPvnlGH46pf3ptBkk1Cd6f4qEcySoKIYJ0rVQBzy704Xxy3ci43dtT6fNIKEdBorAZK2boodhglTHQx7+MUhoj4HCNx7aIG8YJkgTMhzy0AKDhDjYnyXx0Ab5wjBBmuKAfQWDhHjYn1ewP8kfhgkyFFEHbA7U4mKgELcuEgfDBGnO6HMoGCTEZ+RAwTkSFAyGCRKCUedQMEjIg/0ZXZwjITeGCRKK1qfeLmMx49V+1yP96uifTptBQj5GCRQ8RTaFimGCqAirxYy7rq2KGypG93TaHKjlZZRAQRQKhgkSjt7nUDBIyE/PgYJzJKg0GCZISFrNoXA4XfjitxPYesYERxTOgMkgoR96DBScI0GlxTBB9D+p5r4ocLow6sPteG+fBQURDhMMEvqjp0DBQyoUDoYJEpra/yl2TxwYlcdlkNAvPQQKHtqgcDFMkPBk3x3KIKF/MgcKHtqgSGCYIGnIOAgxSBiHjIGiZ7m0iDxOMNif+sYwQeRDv2oPh3V/BgnjkTFQEEUCwwRJRZavjTJIGJcMgULNPRIAe9QIGCZIOqKfeptBgtifl3GOhHEwTJC0ojFImZxOVMv8Ef3rO2FyXflqaLCnF2aQoEKiBQqeIpuiiWGCqAiTS0G5PX+gdRUFJpcS0n05UFNxogUKomhhmCCpiTKHgkGCfBEhUPA8EhRtDBMkvUgel1VMJuTUqYadZ01QTCavyxQfmBkkKBAtAwXnSJAaGCaIilCsFhzp3hFv7rFA8fOroYUDNIMEBUuLQMFDH6QWhgnSDVEOeUQDg4Q+iHDII1rYo8bGMEG6osfdrHp7PUant/Wpx22OQscwQbqkl8FNL6+DPOllverldVD4GCaIBMWBWt+4fklPGCZIt2QerGWunYIn83qWuXaKPIYJ0jUZj+fKVi+FR7b1LeM2RdHHMEGGEOzgZ3I6UfWrzehT1/N02mrhIG1Msqx3Weok9TFMEBVhcimosGMfbq0a+um0w8WB2ti4/klmDBNkGCIP1iLXRuoRuQ9Ero20xzBBhhLoeK9iMuFi9SrYn+37dNrRqImokGj9wDkSFAyGCaIiFKsFh/6Ritd2+T+ddqRwkCZv2BckG4YJMiQRBmsRaiBxidAfItRAcmCYIMPScvctB2kKhpb9yR6lUDBMkOGpPWhykKZQsD9JBgwTZHhq/7oifxaaQsH+JBkwTJChaTVwcsCmYLA/SRYME2RYWg+YWj8/iU3r/tD6+UkuDBNkSL4GSpPThSrf/YIetZyqnAEz1dyXgzZ5EKknRKmDxCdFmMjKysKQIUNQt25dxMXFoX79+pg0aRIKCgq0Lo0k5G+ANLlcqLR1N+6ormjy2xxEomGgoGBIESb27NkDl8uFefPmYefOnZg5cybeeOMNPPXUU1qXRpIRdWAUtS5Sl6h9IGpdJA6r1gUEo0uXLujSpYv7cr169bB3717MnTsXM2bM0LAykkkwA6JiMiGvSgUcugDVTqddKNXcl1/LMzDR/8Nmf5I/UoQJb7Kzs1GhQgW/y+Tn5yM/P999+fz58wAAa5wNNpMtqvWVht1u93u9r9spsJ7l0mCLC7zOXVYLDvS7Cy/vAK5NKAOTou4vh3Yt2x8rzi1Q9TlFYPQeD7Y/I8UWZ/X4O1hG7c9wBdvfavZA0BQAeYEXMymKyqNlBBw4cAA33XQTZsyYgYceesjncpMnT8aUKVNKXJ+RkYH4+PholkiSyncC4zZdHmCntXIgxqJxQUREGsrNzUX//v2RnZ2NpKQkn8tpGibGjx+PF1980e8yu3fvRuPGjd2Xjx07hvbt26NDhw54++23/d7X256JmjVrolNcHyH3TPhK/Ha7HZmZmUhNTYXNJl7dIutZLi2k5V1WC/Y8ch8A4Nr3lsKVkx/gHtFjpE+ARu3xUPszUmxxVgx+5x7MH/IJ7HmOUj2GkfozXMH2t1b94I9dsePLvKUBw4SmhznGjh2L9PR0v8vUq1fP/e/jx4+jY8eOaNOmDd58882Ajx8TE4OYmJgS1zvy7IC6h8ODEmgQtdlshhpow1WaY9Au25Vs7chzwJmn3W73rjH9DXeM2kg9LsIcCXueA/ZS9rgR+zNcgfq7tOsimhxKcDVpGiYqV66MypUrB7XssWPH0LFjR9x000149913YTZL8UUU0ogIA3UkcNKbPrE/SW+k+B/52LFj6NChA2rVqoUZM2bg9OnTOHHiBE6cOKF1aSQgvQzUhfT2eoxOb+tTb6+HSkeKMJGZmYkDBw5g3bp1qFGjBq666ir3H6Ki1BzY1PxExgFbH9ifpFdShIn09HQoiuL1D1GhSAxoJqcLlX7aji41XH5Pp104UKs9YHPQlpPa606r/iTjkiJMEAUSqYHM5HKhyqYduKumy+fptHmMmGTCQEFqYJgg6Wm961jtcMEBWy5qry+te5T9aUwMEyS1SA9cCoBLFZLxZ+7lfxflb0DOdH3MAZtKUDvoBupRtbA/jYdhgqQVjQFLsVnxx4C7MfVXKxTrldNfinhogwO22ERcPwwUFC0MEyQlrQ9tRGLZSOCALSYRDm1EYtlwsT+Ng2GCpCNqkCh6Hw7YxiXSoQ1f1DwVNvvTGBgmSCpqDkwfHg98ynZ/GCiMR/SgqxX2p/4xTJA0OCD5x/dHWzK+/9xDQZHCMEFSkHUg4hwKYxB5joSajxUI+1O/GCZIeGoOQJ/lLIr4Y3IOhb7JMEcimMdVC/tTnxgmSGhqD9RWsxlD2tbG7Ve5YI3wL9Py1Nv6otUpsmV9/KLYm/rDMEHC0mKgLmM1Y3yXRuhZx4UyVm4eZCwMFFRaHC1JSHr6xKfVcwEcsKNF5jkSIj0X+1M/GCZIOFoGCZdLwdGzeThz6fK/o/WcHLDlpYc5EsE8r1rYn/rAMEFC0XqPxCWHEx1f/hbPbrXiksOpWi3RxgE7Moz0PjJQUCgYJkgYWgcJtfGQh1z0fGhDhBrYn3JjmCAhGC1IFOIhDzkY4dCGL+xPCgbDBGnOqEGiKA7Y4mJ/sj8pMIYJ0hQHam1wwA4O36crGCjIH4YJ0gyDhCfOoRCLEedIBMJAQb4wTJAmGCS84xwKMRh5jkQg7E/yhmGCVCdykLCYTRjQqibapbhgifDptEPBU29rQ2+nyI4WBgoqjmGCVCX6QB1jtWBy9yboW8+FGJ5Om8gnBgoqiqMlqUb0ICEazqFQF+dIhI6BggoxTJAqZAkSiqLgzMUCXLBf/rfWOIdCHZwjUXrsTwIYJkgFsgQJAMizO3Hz1K/w9BYr8uz6OZ12KIw2YBvt9UYDAwUxTFBUyRQkRMZDHtHBQxuRw0BhbAwTFDUMEpHFQx6RxUMbkcf+NC6GCYoKBono4YAdPvZn9LA/jYlhgiKOA7W+6G3A1tvrEREDhfEwTFBEMUiog3MoSodzJNTDQGEsDBMCkX2DYJBQF+dQhIZzJNTH/gye7PUzTAhG1obSS5CwmE3ofUM1tKqs7em0Q8FTb/vHU2Rri4EiMFnrLkqO0dJgZGssPQ3UMVYLpv3jWgxowNNpE0UKA4VvstXrC0dLQcnSYHoKEjLjHArvOEdCHAwUJclSZzAYJgQmeqPpMUgoioLcAgfynWKcTjsUnEPhiXMkxMP+vEL0+kLFMCE4URtOj0ECuHw67Wb/WY9xm4x7Ou1QsD8pVAwU4tYVDoYJCfQsl6Z1CR70GiT0wuiHPHhoQ3xGDhSi1RMpDBMUEgYJORj1kAcPbcjDiP0p2gfDSGKYkIjWjcggIR8jDdjsT/kYqT/1jmFCMlptEByoKRhG6E+KLCMECq0/CKqBYUJCam8QDBJy0/scCs6RkJ+eA4VRgi7DhKTUalAGCX3Q6xwKzpHQD/an3BgmJBbtRjVikDCbTOhyTQqaV3DBYjJpXU7E6eXU2zxFtj7pKVAYKUgADBPSi+ZgrRaRBupYmwWz72uGQY1ciLFZtC6HyHD0ECiMFiQAhgldiHTjGjVIGIXscyg4R0L/ZA4URgwSAMOEbkSqgRkkjEHWORScI2Ec7E+5MEzoSLiNzCAB5BY40PDfa/HYj1bkFji0LkdXZOpPEoNMgcLo/ckwoTOlbWgGCWOS5ZAHD20YlwyBwuhBAmCY0KVQG5tBwthEP+TBQxvE/hQfw4ROBdvgDBJUSMQBm/1JhYzen6JjmNCxQI3OgZq0JFJ/khxEChTsT08MEzrnq+EZJMgbUeZQcI4E+SJCoGCQKIlhwgCKNz6DBPmj9RwKzpGgQIzSnzJhmDCIwg2AQcI/s8mE9ldXQtNy+jyddijUXH+Fv6qo5q8rytifdIUWgYJBwjeGCQNhkAgs1mbB2wNvxNAmPJ02kehEOORBlzFMUMTJGiSoJL2uS72+LiPiuhQDwwRFFDds/dHTvAI9vRa6gutUewwTApF9g5C9fuDy6bSvf/ZLPPGThafTLkb29St7/eSf7OtX9voZJgQja0PJWrc3eXYXClzGnnxJJCNZxyFZ6y6KYUJAsjWWbPVS6cl4mEDGmqn0ZFvXstXrC8OEoGRpMFnqpMiSZb3LUidFlizrXZY6g8EwQaWmpw2BiPSF45O6GCYEJvLuWVHrIvWI3gOi10fRJ2oPiDy2lxbDhARWnFugdQke9LYRUOmJOCiKWBNpR7ReEK2eSGGYoJDodUMoZDaZ0KpOeTRIUmA2+Om0QyFKX4hSB4lFlL4Q7YNhJDFMUNBE2SCjKdZmweIhLTHyGidieTptIt0wwvilJYYJiaw4t0CzDYIbIgWidY9o/fwkPq16RM97JAoxTEhI7Q2CgzQFS4v5CpwjQaHg+BkdDBMSUvvX64z0a3m5BQ60emEDntrM02mXRqq5ryb9aaQepfBw/IwOhgnJaNWYRtkgAOBsrh0XHZx8SaQ3Wo1jPculafK8amKYkIjWDWmkQEGh07o/tH5+Ehv7I7oYJigk3CDJG1H6QpQ6SCyi9IXWHwijiWFCAqI1oCgbJolBtH4QrR7Slmj9IFo9kcIwIThRG0/UukhdovaBqHWRukTtA1HrCgfDhMBEbzjR66PoEn39i14fRZfo61/0+kLFMCEoWRpNljqDZTaZcF31JNQsy9Np+yPLepelToosWda7LHUGg2FCQLI1mGz1+hNrs2DZsJvx+PU8nbYvsq1v2eql8Mi2vmWr1xeGCcHI2liy1k2hkXU9y1o3hUbW9Sxr3UUxTAhE9oaSvX7yT/b1K3v95J/s61f2+q1aF0D6kmruK/W56PMKnOj08jfIy7OgYycnbDab1iVpTvZBrqjC1yJzj1JJeupRWXHPBEWczBu2AgXHzl3C3/kmKFC0LoeIApB5vNET6cJEfn4+mjdvDpPJhG3btmldjlTU/DTGDVwf9Loe9fq6jEbN9ci9Wf5JFybGjRuHatWqaV2GdAo3BAYKCpaa62/FuQUef6uB/Sk3LYIEA4VvUoWJL774AmvXrsWMGTO0LkUqWm4AHLDlZJT1ZpTXqTdarjcGCu+kmYB58uRJPPTQQ/j0008RHx8f1H3y8/ORn5/vvnz+/HkAgDXOBptJnol1tjirx9+hWHFuAex2u8d1q/IzAKj3mx9dy/ZX9RNnOOx2h8e/i793RtCzXBpsceptH0V71G63Y1V+hqq/RyNTf0ZK0fdbNmr2Z2FfeBtDQ+nRcMZwzSkA8gIvZlIURfhZZoqioGvXrmjbti2eeeYZZGVloW7duti6dSuaN2/u836TJ0/GlClTSlyfkZERdCAhY8l3AuM2Xd7gp7VyIIbnrSIiA8vNzUX//v2RnZ2NpKQkn8tpGpPGjx+PF1980e8yu3fvxtq1a5GTk4MJEyaE9PgTJkzAmDFj3JfPnz+PmjVrYv6QZdLtmRj8zj2YP+QT2PMcge+A0I49q/kpUPRPgHkFTsw7+CMuXriIO+64HUnxsVqXpBot+8ButyMzMxOpqaklvo7L/ow8f++3qETtg2DqKs0YLgq7EtzeK03DxNixY5Genu53mXr16mH9+vX48ccfERMT43FbixYtMGDAACxY4H3Fx8TElLgPADjy7ICEP7tgz3PAnhd4xYZ6TC+Yx4yUrjH9hT7maLPZsHpUO6xatQpJ8bHSDLThUvsYtK/31WazlbiN/Rk93t5vEYnSn96supgRdH3BjuEiccgQJipXrozKlSsHXO7VV1/Fc8895758/PhxdO7cGR9++CFat24dzRKlU5qBsPA+am2wsp/YSm/UHqhDXfeZro9VrZH9KRYZvv6pdo+KSIrZILVq1fK4nJCQAACoX78+atSooUVJQgp3AFRzg+CALQYZBuqi92V/Goss/Vl4fyMHCqm+Gkq+RWrgM/p5KPIKnLjr1e/xwjYL8gqcWpcTNanmvlIN1JF+nGCo/R6RJ/anXKQME3Xq1IGiKH6/yWEkkW5gIwcKBQoOnL6IE3k8nTaRVmQMEtF6PFlIcZiD/BPtP+RQiVS/y2YF/vVPAEC/ag/DmXNJ44r0IdA6tsXZMDSjH3qWSxNugppI/RkpIr/fatPj+tWClHsmiIiISBwME0RERBQWhgkiIiIKC8MEERERhYVhgqgoRYHt/AVUiOE3OYiIgsUwQVSE2eFEwwUrMOlGJ8wO/Z5ngogokhgmiIiIKCwME0RERBQWhgmiIlxWC/64twtmbLfAZbFoXQ4RkRQYJoiKMplwKaUijlw0Sfkz9UREWmCYICIiorAwTBAREVFYGCaIiIgoLAwTREREFBaGCSIiIgoLwwRRMZa8Syhr5em0iYiCxTBBVITZ7kCjtz/Bf1vydNpERMFimCAiIqKwMEwQERFRWBgmiIpwWS3I6t0Js3fydNpERMFimCAqymRCbo0UHDjP02kTEQWLYYKIiIjCwjBBREREYWGYICIiorAwTBAREVFYGCaIiIgoLAwTRMWY7A6UMfN02kREwWKYICrCbHegyRsfYnprnk6biChYDBNEREQUFoYJIiIiCgvDBFERLosFh7t3wLzdZrgs3DyIiILB0ZKoKLMJF+pUx65zZsDE82kTEQWDYYKIiIjCwjBBREREYWGYICIiorAwTBAREVFYGCaIiIgoLFatC1CTolw+RbIDdkCmsyUrQG5uLuyKHQ7FrnU1uuZSFLjycwEADqUATr7f6mCPq4vvt7okfr8duFxv4f+fvpiUQEvoyNGjR1GzZk2tyyAiIpLKkSNHUKNGDZ+3GypMuFwuHD9+HImJiTBJdA6B8+fPo2bNmjhy5AiSkpK0Lkf3+H6rj++5uvh+q0vm91tRFOTk5KBatWowm33PjDDUYQ6z2ew3WYkuKSlJukaUGd9v9fE9Vxffb3XJ+n4nJycHXIYTMImIiCgsDBNEREQUFoYJCcTExGDSpEmIiYnRuhRD4PutPr7n6uL7rS4jvN+GmoBJREREkcc9E0RERBQWhgkiIiIKC8MEERERhYVhgoiIiMLCMCGp/Px8NG/eHCaTCdu2bdO6HN3KysrCkCFDULduXcTFxaF+/fqYNGkSCgoKtC5NN+bMmYM6deogNjYWrVu3xqZNm7QuSbdeeOEFtGzZEomJiahSpQp69eqFvXv3al2WYUydOhUmkwmjR4/WupSIY5iQ1Lhx41CtWjWty9C9PXv2wOVyYd68edi5cydmzpyJN954A0899ZTWpenChx9+iDFjxmDSpEn45Zdf0KxZM3Tu3BmnTp3SujRd+vrrrzF8+HBs3LgRmZmZsNvtuPPOO3Hx4kWtS9O9zZs3Y968ebj++uu1LiU6FJLOqlWrlMaNGys7d+5UAChbt27VuiRDmTZtmlK3bl2ty9CFVq1aKcOHD3dfdjqdSrVq1ZQXXnhBw6qM49SpUwoA5euvv9a6FF3LyclRGjZsqGRmZirt27dXHnvsMa1LijjumZDMyZMn8dBDD2HRokWIj4/XuhxDys7ORoUKFbQuQ3oFBQX4+eef0alTJ/d1ZrMZnTp1wo8//qhhZcaRnZ0NAOznKBs+fDi6devm0et6Y6gf+pKdoihIT0/HsGHD0KJFC2RlZWldkuEcOHAAs2fPxowZM7QuRXp//fUXnE4nUlJSPK5PSUnBnj17NKrKOFwuF0aPHo22bdvi2muv1boc3VqyZAl++eUXbN68WetSoop7JgQwfvx4mEwmv3/27NmD2bNnIycnBxMmTNC6ZOkF+54XdezYMXTp0gV9+/bFQw89pFHlRJExfPhw/Pbbb1iyZInWpejWkSNH8Nhjj2Hx4sWIjY3Vupyo4um0BXD69GmcOXPG7zL16tXDvffei88++wwmk8l9vdPphMViwYABA7BgwYJol6obwb7nZcqUAQAcP34cHTp0wM0334z33nsPZjNzeLgKCgoQHx+PpUuXolevXu7r09LScO7cOaxYsUK74nRuxIgRWLFiBb755hvUrVtX63J069NPP0Xv3r1hsVjc1zmdTphMJpjNZuTn53vcJjOGCYkcPnwY58+fd18+fvw4OnfujKVLl6J169aoUaOGhtXp17Fjx9CxY0fcdNNNeP/993Wz8YugdevWaNWqFWbPng3g8q73WrVqYcSIERg/frzG1emPoigYOXIkli9fjq+++goNGzbUuiRdy8nJwaFDhzyuGzRoEBo3bownn3xSV4eXOGdCIrVq1fK4nJCQAACoX78+g0SUHDt2DB06dEDt2rUxY8YMnD592n1b1apVNaxMH8aMGYO0tDS0aNECrVq1wqxZs3Dx4kUMGjRI69J0afjw4cjIyMCKFSuQmJiIEydOAACSk5MRFxencXX6k5iYWCIwlC1bFhUrVtRVkAAYJoj8yszMxIEDB3DgwIESgY079cLXr18/nD59GhMnTsSJEyfQvHlzrF69usSkTIqMuXPnAgA6dOjgcf27776L9PR09Qsi3eBhDiIiIgoLZ5ERERFRWBgmiIiIKCwME0RERBQWhgkiIiIKC8MEERERhYVhgoiIiMLCMEFERERhYZggIiKisDBMEFFU7d27F1WrVkVOTo7qz7169Wo0b94cLpdL9ecmMhKGCSLyy+l0ok2bNvjHP/7hcX12djZq1qyJp59+2u/9J0yYgJEjRyIxMTGaZXrVpUsX2Gw2LF68WPXnJjISnk6biALat28fmjdvjrfeegsDBgwAADzwwAP49ddfsXnzZvdPtRd3+PBhNGjQAAcPHkT16tXVLNltzpw5eO+997B582ZNnp/ICLhngogCuvrqqzF16lSMHDkSf/75J1asWIElS5Zg4cKFPoMEAHz00Udo1qyZR5B47733UK5cOXz++edo1KgR4uPj0adPH+Tm5mLBggWoU6cOypcvj1GjRsHpdLrvV6dOHTz33HN44IEHkJCQgNq1a2PlypU4ffo0evbsiYSEBFx//fXYsmWLRw3du3fHli1b8Pvvv0f+jSEiAAwTRBSkkSNHolmzZhg4cCAefvhhTJw4Ec2aNfN7n2+//RYtWrQocX1ubi5effVVLFmyBKtXr8ZXX32F3r17Y9WqVVi1ahUWLVqEefPmYenSpR73mzlzJtq2bYutW7eiW7duGDhwIB544AH885//xC+//IL69evjgQce8PhF11q1aiElJQXffvttZN4IIiqBP0FOREExmUyYO3cumjRpguuuuw7jx48PeJ9Dhw55DRN2ux1z585F/fr1AQB9+vTBokWLcPLkSSQkJKBp06bo2LEjNmzYgH79+rnv17VrVwwdOhQAMHHiRMydOxctW7ZE3759AQBPPvkkbrnlFpw8eRJVq1Z1369atWo4dOhQWK+fiHzjngkiCtr8+fMRHx+PgwcP4ujRowGXz8vLQ2xsbInr4+Pj3UECAFJSUlCnTh0kJCR4XHfq1CmP+11//fUetwPAddddV+K64veLi4tDbm5uwHqJqHQYJogoKD/88ANmzpyJzz//HK1atcKQIUMQaP52pUqVcPbs2RLX22w2j8smk8nrdcW/0ll0GZPJ5PO64vf7+++/UblyZb+1ElHpMUwQUUC5ublIT0/HI488go4dO+Kdd97Bpk2b8MYbb/i93w033IBdu3apVKV3ly5dwu+//44bbrhB0zqI9IxhgogCmjBhAhRFwdSpUwFc/mbFjBkzMG7cOGRlZfm8X+fOnfHjjz96fCtDbRs3bkRMTAxuueUWzWog0juGCSLy6+uvv8acOXPw7rvvIj4+3n390KFD0aZNG7+HO+666y5YrVZ8+eWXapVbwgcffIABAwZ41E5EkcWTVhFRVM2ZMwcrV67EmjVrVH/uv/76C40aNcKWLVtQt25d1Z+fyCj41VAiiqqhQ4fi3LlzyMnJUf2U2llZWXj99dcZJIiijHsmiIiIKCycM0FERERhYZggIiKisDBMEBERUVgYJoiIiCgsDBNEREQUFoYJIiIiCgvDBBEREYWFYYKIiIjCwjBBREREYfl/K+N8NPonBgwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAFUCAYAAADYjN+CAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAdINJREFUeJzt3XdYU+fbB/BvEkLYIIgMBcQFilsUcQ/Qam21tY7WWmft0Dro0rbaam1tfX9trdZqbS2Ouqu1ah2l7oGIuBcuFEUBZQVBICTn/QMTjAwJJGT4/VyXV5uT5OROnoTcec597kckCIIAIiIiIiIzIzZ2AERERERElcFEloiIiIjMEhNZIiIiIjJLTGSJiIiIyCwxkSUiIiIis8REloiIiIjMEhNZIiIiIjJLTGSJiIiIyCwxkSUiIiIis8RElohIT/bt2weRSIR9+/bpdb8ikQhffPGFXvdJRGQJmMgSkcV68cUXYWdnh+zs7DJvM2zYMFhbWyMtLa0aIytp+/btTFaJiHQkEgRBMHYQRESGsG7dOgwdOhTLly/HG2+8UeL63Nxc1KpVCz169MCWLVuq/HgqlQoFBQWwtraGWKzbPMGECROwcOFClPYnOS8vD1ZWVrCysqpyjEREloQzskRksV588UU4Ojpi9erVpV7/999/IycnB8OGDavS4+Tl5UGlUkEsFsPGxkbnJPZpbGxsmMQSEZWCiSwRWSxbW1u8/PLL2L17N1JTU0tcv3r1ajg6OuLFF19Eeno6PvjgAzRr1gwODg5wcnJCnz59cPr0aa37qOtg165di88++wy1a9eGnZ0d5HJ5qTWyBw8exKBBg+Dr6wuZTAYfHx9MmTIFDx8+1Nxm5MiRWLhwIYCielj1P7XSamRPnjyJPn36wMnJCQ4ODujZsyeOHj2qdZtly5ZBJBLh8OHDiIiIgLu7O+zt7fHSSy/h3r175b52//vf/yASiXDz5s0S102bNg3W1tbIyMgAAFy5cgUDBw6Ep6cnbGxsUKdOHQwdOhRZWVll7v/zzz+HVCotNY5x48bBxcUFeXl55cZIRMRElogs2rBhw1BYWIj169drbU9PT8euXbvw0ksvwdbWFtevX8fmzZvRr18/fP/99/jwww9x9uxZdO3aFXfu3Cmx3y+//BL//PMPPvjgA3z99dewtrYu9fE3bNiA3NxcvPPOO1iwYAF69+6NBQsWaJU6vPXWWwgPDwcArFy5UvOvLOfPn0fnzp1x+vRpfPTRR5g+fToSEhLQrVs3xMTElLj9e++9h9OnT+Pzzz/HO++8g61bt2LChAnlvm6DBw+GSCQq8boBwPr169GrVy/UqFEDBQUF6N27N44ePYr33nsPCxcuxLhx43D9+nVkZmaWuf/hw4ejsLAQ69at09peUFCAP//8EwMHDoSNjU25MRIRQSAismCFhYWCl5eXEBoaqrV98eLFAgBh165dgiAIQl5enqBUKrVuk5CQIMhkMmHWrFmabXv37hUACPXq1RNyc3O1bq++bu/evZptT95GEARhzpw5gkgkEm7evKnZNn78eKGsP8kAhM8//1xzecCAAYK1tbVw7do1zbY7d+4Ijo6OQpcuXTTbIiMjBQBCWFiYoFKpNNunTJkiSCQSITMzs9THUwsNDRXatGmjte3YsWMCAGHFihWCIAjCyZMnBQDChg0byt1XWfsPCQnR2rZp06YSryERUVk4I0tEFk0ikWDo0KGIjo7GjRs3NNtXr14NDw8P9OzZEwAgk8k0ta1KpRJpaWlwcHBAQEAATpw4UWK/I0aMgK2t7VMf//Hb5OTk4P79++jQoQMEQcDJkyd1fj5KpRL//vsvBgwYgHr16mm2e3l54bXXXsOhQ4cgl8u17jNu3DitUoXOnTtDqVSWWjbwuCFDhiAuLg7Xrl3TbFu3bh1kMhn69+8PAHB2dgYA7Nq1C7m5uTo9lzfeeAMxMTFa+1+1ahV8fHzQtWtXnfZFRM8mJrJEZPHUJ3OpT/q6ffs2Dh48iKFDh0IikQAo6jjwww8/oGHDhpDJZKhZsybc3d1x5syZUms9/f39K/TYiYmJGDlyJFxdXeHg4AB3d3dNklZeDWlZ7t27h9zcXAQEBJS4rnHjxlCpVLh165bWdl9fX63LNWrUAABNjWtZBg0aBLFYrDn8LwgCNmzYoKnNBYpeh4iICPz222+oWbMmevfujYULF1bouQ0ZMgQymQyrVq0CUPR6bNu2DcOGDdNKvImIysJElogsXps2bRAYGIg1a9YAANasWQNBELS6FXz99deIiIhAly5d8Mcff2DXrl2IiopCUFAQVCpViX1WZDZWqVQiPDwc//zzDz7++GNs3rwZUVFRWLZsGQCUul9DUCfrTxKe0n3R29sbnTt31tTJHj16FImJiRgyZIjW7b777jucOXMGn3zyCR4+fIiJEyciKCgIt2/fLnf/NWrUQL9+/TSJ7J9//on8/Hy8/vrrFX1qRPSMYz8XInomDBs2DNOnT8eZM2ewevVqNGzYEG3bttVc/+eff6J79+5YunSp1v0yMzNRs2bNSj3m2bNncfny5RJ9bKOiokrctqIzkO7u7rCzs0N8fHyJ6y5dugSxWAwfH59KxVuaIUOG4N1330V8fDzWrVsHOzs7vPDCCyVu16xZMzRr1gyfffYZjhw5go4dO2Lx4sWYPXt2uft/44030L9/f8TGxmLVqlVo1aoVgoKC9BY/EVk2zsgS0TNBPfs6Y8YMnDp1qkTvWIlEUmKGcsOGDUhKSqr0Y6pnQh/fryAI+PHHH0vc1t7eHgDKPdNfvc9evXrh77//1qr5TUlJwerVq9GpUyfNYX99GDhwICQSCdasWYMNGzagX79+mlgBQC6Xo7CwUOs+zZo1g1gsRn5+/lP336dPH9SsWRPffvst9u/fz9lYItIJZ2SJ6Jng7++PDh064O+//waAEolsv379MGvWLIwaNQodOnTA2bNnsWrVKq0TqnQVGBiI+vXr44MPPkBSUhKcnJywcePGUmtT27RpAwCYOHEievfurTlJrTSzZ89GVFQUOnXqhHfffRdWVlb45ZdfkJ+fj7lz51Y63tLUqlUL3bt3x/fff4/s7OwSZQV79uzBhAkTMGjQIDRq1AiFhYVYuXIlJBIJBg4c+NT9S6VSDB06FD/99BMkEgleffVVvcZPRJaNM7JE9MxQJ6/t2rVDgwYNtK775JNP8P7772PXrl2YNGkSTpw4gX/++adKh+mlUim2bt2Kli1bYs6cOZg5cyYaNmyIFStWlLjtyy+/jPfeew87d+7E8OHDy03ogoKCcPDgQTRt2lSzXz8/P+zduxchISGVjrcsQ4YMQXZ2NhwdHdG3b1+t61q0aIHevXtj69atiIiIwBdffAEHBwfs2LED7du3r9D+1WUXPXv2hJeXl97jJyLLJRKeVu1PRERkQKdPn0bLli2xYsUKDB8+3NjhEJEZ4YwsEREZ1a+//goHBwe8/PLLxg6FiMwMa2SJiMgotm7digsXLmDJkiWYMGGC1klkREQVwdICIiIyirp16yIlJQW9e/fGypUr4ejoaOyQiMjMMJElIiIiIrPEGlkiIiIiMktMZImIiIjILPFkLxStd37nzh04OjpWeJlIIiIiItKNIAjIzs6Gt7c3xOKqz6cykQVw584dva5NTkRERERlu3XrFurUqVPl/TCRBTRnyiYkJMDV1dXI0ZAhKBQK/Pvvv+jVqxekUqmxwyED4BhbPo6x5eMYW7709HT4+/vrrUsJE1lAU07g6OgIJycnI0dDhqBQKGBnZwcnJyf+cbRQHGPLxzG2fBxjy6dQKABAb6WcPNmLiIiIiMwSE1kiIiIiMktMZImIiIjILDGRJSIiIiKzxESWiIiIiMySURPZAwcO4IUXXoC3tzdEIhE2b96sdb0gCJgxYwa8vLxga2uLsLAwXLlyRes26enpGDZsGJycnODi4oIxY8bgwYMH1fgsiIiIiMgYjJrI5uTkoEWLFli4cGGp18+dOxfz58/H4sWLERMTA3t7e/Tu3Rt5eXma2wwbNgznz59HVFQUtm3bhgMHDmDcuHHV9RSIiIiIyEiM2ke2T58+6NOnT6nXCYKAefPm4bPPPkP//v0BACtWrICHhwc2b96MoUOH4uLFi9i5cydiY2MRHBwMAFiwYAH69u2L//3vf/D29tYpnsT0HMgFm6o9KSNzkFnB3VFm7DCIiIhIj+5kPkR+ocrYYVRZZkaOXvdnsgsiJCQkIDk5GWFhYZptzs7OCAkJQXR0NIYOHYro6Gi4uLhoklgACAsLg1gsRkxMDF566aVS952fn4/8/HzNZblcDgDo/3MMxDI7Az2j6iESAb8Ma4XuAe7GDsWkqBswq/9LlodjbPk4xpaPY1y6yCM38fWOeGOHoReq/Fy97s9kE9nk5GQAgIeHh9Z2Dw8PzXXJycmoVauW1vVWVlZwdXXV3KY0c+bMwcyZM0tst5EIkEiEqoZuNAUqQCmI8Pf+43h4zXyfhyFFRUUZOwQyMI6x5eMYWz6OsbZdV8QAxLASCZCa+Wn6Sj3nWSabyBrStGnTEBERobksl8vh4+ODAx90gZubmxEjq5pPN5/H+rgkNGoUgL7d6hk7HJOiUCgQFRWF8PBwLntooTjGlo9jbPk4xqX7b8MZxN1Pxoe9AzC6Y11jh1MlaWlp8PpOf/sz2UTW09MTAJCSkgIvLy/N9pSUFLRs2VJzm9TUVK37FRYWIj09XXP/0shkMshkJetIpVKpWX9wJJKin2lisdisn4chmfsY09NxjC0fx9jycYy1iURF3+8SicTsXxd9x2+yE9T+/v7w9PTE7t27NdvkcjliYmIQGhoKAAgNDUVmZibi4uI0t9mzZw9UKhVCQkKqPWbjEwEAWFRARERkOdTf6yKRyKhxmCKjzsg+ePAAV69e1VxOSEjAqVOn4OrqCl9fX0yePBmzZ89Gw4YN4e/vj+nTp8Pb2xsDBgwAADRu3BjPPfcc3nzzTSxevBgKhQITJkzA0KFDde5YYAnU72+BmSwREZHFEB59sTONLcmoiezx48fRvXt3zWV13eqIESOwbNkyfPTRR8jJycG4ceOQmZmJTp06YefOnbCxKW6RtWrVKkyYMAE9e/aEWCzGwIEDMX/+/Gp/LqZA/QYXOCdLRERkMYpnZI0ahkkyaiLbrVs3za+M0ohEIsyaNQuzZs0q8zaurq5YvXq1IcIzO5yRJSIiskCPvteZx5ZksjWypDsRa2SJiIgsjvpIK2tkS2Iia0GKZ2SZyhIREVkK1aMFvcTMY0tgImtBxI8yWeaxRERElkNz7gtnZEtgImuBeLIXERGR5RBYI1smJrIWhCd7ERERWR52LSgbE1kLwpO9iIiILE/xjCwz2ScxkbUgnJElIiKyROquBUYOwwQxkbUgXBCBiIjI8rBGtmxMZC2IqDiTJSIiIgvBGtmyMZG1IOpGySrWFhAREVkM9fc6a2RLYiJrQVgjS0REZHkEtpEtExNZC8KuBURERJanuLSAmeyTmMhaEM7IEhERWR5BU1pAT2Iia0HYtYCIiMhycUK2JCayFoQzskRERJaHNbJlYyJrQXg2IxERkeVRH2nl93xJTGQtSPGMLKdkiYiILAVnZMvGRNaCcD0EIiIiy8P5qbIxkbUkXBCBiIjI4qi/18Wcki2BiawFEfNkLyIiIovDJWrLxkTWgnBBBCIiIgukrpHlyV4lmHwim52djcmTJ8PPzw+2trbo0KEDYmNjNdcLgoAZM2bAy8sLtra2CAsLw5UrV4wYsfGw/RYREZHl0XQtYB5bgsknsmPHjkVUVBRWrlyJs2fPolevXggLC0NSUhIAYO7cuZg/fz4WL16MmJgY2Nvbo3fv3sjLyzNy5NWv+P3NTJaIiMhSaLoWGDcMk2TSiezDhw+xceNGzJ07F126dEGDBg3wxRdfoEGDBli0aBEEQcC8efPw2WefoX///mjevDlWrFiBO3fuYPPmzcYOv9pxRpaIiMjysEa2bCadyBYWFkKpVMLGxkZru62tLQ4dOoSEhAQkJycjLCxMc52zszNCQkIQHR1d3eEanejRO5yJLBERkeUo7g/PTPZJVsYOoDyOjo4IDQ3Fl19+icaNG8PDwwNr1qxBdHQ0GjRogOTkZACAh4eH1v08PDw015UmPz8f+fn5mstyuRwAoFAooFAoDPBMqodKqQQAKFUqs34ehqB+Pfi6WC6OseXjGFs+jnHp1O23VEql2b82+o7fpBNZAFi5ciVGjx6N2rVrQyKRoHXr1nj11VcRFxdX6X3OmTMHM2fOLLF97969sLOzq0q4RhWfJAIgQeKtW9i+/aaxwzFJUVFRxg6BDIxjbPk4xpaPY6wtI0MCQIQTJ+KguGHeh11zc3P1uj+TT2Tr16+P/fv3IycnB3K5HF5eXhgyZAjq1asHT09PAEBKSgq8vLw090lJSUHLli3L3Oe0adMQERGhuSyXy+Hj44Pu3bvDzc3NYM/F0G4dSMC2xCuoXacO+vZtauxwTIpCoUBUVBTCw8MhlUqNHQ4ZAMfY8nGMLR/HuHRLE48CD+QIDm6DnoG1jB1OlaSlpel1fyafyKrZ29vD3t4eGRkZ2LVrF+bOnQt/f394enpi9+7dmsRVLpcjJiYG77zzTpn7kslkkMlkJbZLpVKz/uBIrSQAimplzfl5GJK5jzE9HcfY8nGMLR/H+AmPzoGRWlmZ/eui7/hNPpHdtWsXBEFAQEAArl69ig8//BCBgYEYNWoURCIRJk+ejNmzZ6Nhw4bw9/fH9OnT4e3tjQEDBhg79GqnOZvRvI86EBER0WM07bd4rlcJJp/IZmVlYdq0abh9+zZcXV0xcOBAfPXVV5qM/qOPPkJOTg7GjRuHzMxMdOrUCTt37izR6eBZwJW9iIiILI9mQQR2LSjB5BPZwYMHY/DgwWVeLxKJMGvWLMyaNasaozJNxX1kmcoSERFZCnbfKlulEtnExETcvHkTubm5cHd3R1BQUKk1p2QcTGOJiIgsB1f2KluFE9kbN25g0aJFWLt2LW7fvq0162dtbY3OnTtj3LhxGDhwIMRik15nwWJxQQQiIiLLU7yyF1PZJ1Uo45w4cSJatGiBhIQEzJ49GxcuXEBWVhYKCgqQnJyM7du3o1OnTpgxYwaaN2+O2NhYQ8dNpeC5XkRERJZHPXnINLakCs3I2tvb4/r166X2WK1VqxZ69OiBHj164PPPP8fOnTtx69YttG3bVu/BUvnUP9RUnJIlIiKyGOqvdTFnZEuoUCI7Z86cCu/wueeeq3QwVDWatzfzWCIiIouh6VrAPLaEChezKhQKxMfHay5HR0cbJCCqPLFY3X6LmSwREZGl4MleZatwIjtixAi88MIL+OSTTwAA77//vsGCosrR1MgyjyUiIrIYmq91ZrIlVDiRPXfuHC5fvgypVIqFCxcaMiaqLHYtICIisjjFJ3sxk31ShRNZLy8vAMDMmTNx+PBhJCQkGCwoqpzirgXMZImIiCxFcfsto4ZhkiqcyHbs2BGFhYUAgMWLFyMkJMRgQVHlFK/sZdw4iIiISI9YI1umCi+IMGPGDM3/Ozk5YfPmzYaIh6pAfciBeSwREZHl4IIIZavUErV37tzBoUOHkJqaCpVKpXXdxIkT9RIY6a54RpapLBERkaVQ94cXM48tQedEdtmyZXjrrbdgbW0NNzc3rV8HIpGIiawRsWsBERGR5dG032IiW4LOiez06dMxY8YMTJs2DWJxhUtsqRpoZmSNGwYRERHpUfFJ3Mxkn6RzJpqbm4uhQ4cyiTVBIk37LaayREREloIzsmXTORsdM2YMNmzYYIhYqIqK228RERGRpeDKXmXTubRgzpw56NevH3bu3IlmzZpBKpVqXf/999/rLTjSjYgLIhAREVksdi0oqVKJ7K5duxAQEAAAJU72IuPhjCwREZHlKV7Zi56kcyL73Xff4ffff8fIkSMNEA5VBdtvERERWR6u7FU2nWtkZTIZOnbsaIhYqIr4BiciIrI8xTWy/KJ/ks6J7KRJk7BgwQJDxEJVpH6DqzgjS0REZDHU3+ucsCpJ59KCY8eOYc+ePdi2bRuCgoJKnOy1adMmvQVHuikuLTBuHERERKQ/LC0om84zsi4uLnj55ZfRtWtX1KxZE87Ozlr/9EmpVGL69Onw9/eHra0t6tevjy+//FKrBlQQBMyYMQNeXl6wtbVFWFgYrly5otc4zAW7FhAREVkelhaUTecZ2cjISEPEUapvv/0WixYtwvLlyxEUFITjx49j1KhRcHZ21iyFO3fuXMyfPx/Lly+Hv78/pk+fjt69e+PChQuwsbGptlhNQXHXAmayREREloOlBWXROZGtTkeOHEH//v3x/PPPAwDq1q2LNWvW4NixYwCKZmPnzZuHzz77DP379wcArFixAh4eHti8eTOGDh1qtNiNgaUFRERElocre5VN50Q2LS0NM2bMwN69e5GamgqVSqV1fXp6ut6C69ChA5YsWYLLly+jUaNGOH36NA4dOqRZdCEhIQHJyckICwvT3MfZ2RkhISGIjo4uM5HNz89Hfn6+5rJcLgcAKBQKKBQKvcVf3VRKZdF/BcGsn4chqF8Pvi6Wi2Ns+TjGlo9jXDr1yV7KwkKzf230Hb/Oiezw4cNx9epVjBkzBh4eHgZdBGHq1KmQy+UIDAyERCKBUqnEV199hWHDhgEAkpOTAQAeHh5a9/Pw8NBcV5o5c+Zg5syZJbbv3bsXdnZ2enwG1etUmgiABOlp6di+fbuxwzFJUVFRxg6BDIxjbPk4xpaPY6ytoEACQISDBw/iqvmmKQCA3Nxcve5P50T24MGDOHToEFq0aKHXQEqzfv16rFq1CqtXr0ZQUBBOnTqFyZMnw9vbGyNGjKj0fqdNm4aIiAjNZblcDh8fH3Tv3h1ubm76CN0oxOdTEHn5NGq41kDfvu2MHY5JUSgUiIqKQnh4eIlOG2QZOMaWj2Ns+TjGpfv81F6gUIEuXbqgYS0HY4dTJWlpaXrdn86JbGBgIB4+fKjXIMry4YcfYurUqZoSgWbNmuHmzZuYM2cORowYAU9PTwBASkoKvLy8NPdLSUlBy5Yty9yvTCaDTCYrsV0qlZr1B0dqJQEACBCZ9fMwJHMfY3o6jrHl4xhbPo6xNnVpgbUFvC76jl/n9ls///wzPv30U+zfvx9paWmQy+Va//QpNzcXYrF2iBKJRFOX6+/vD09PT+zevVtzvVwuR0xMDEJDQ/Uai3lQt9/i2V5ERESWgn1ky6bzjKyLiwvkcjl69OihtV0QBIhEIigfnXCkDy+88AK++uor+Pr6IigoCCdPnsT333+P0aNHAyjqmzp58mTMnj0bDRs21LTf8vb2xoABA/QWh7nQdC0wbhhERESkT5o+svQknRPZYcOGQSqVYvXq1QY/2WvBggWYPn063n33XaSmpsLb2xtvvfUWZsyYobnNRx99hJycHIwbNw6ZmZno1KkTdu7c+cz1kAUAMRdEICIisjjFM7JMZZ+kcyJ77tw5nDx5EgEBAYaIR4ujoyPmzZuHefPmlXkbkUiEWbNmYdasWQaPx9QVL4hARERElkJdMsg0tiSda2SDg4Nx69YtQ8RCVaT5ocYpWSIiIovBGtmy6Twj+95772HSpEn48MMP0axZsxJnnzVv3lxvwZFuWCNLRERkeTQre3FOtgSdE9khQ4YAgOaEK6Do8L4hTvYi3YjAGlkiIiJLIzyaouKMbEk6J7IJCQmGiIP0QTMjy0yWiIjIUmhmZJnIlqBzIuvn52eIOEgP1O/vR212iYiIyAIUJ7LMZJ9UoZO9jh49WuEd5ubm4vz585UOiCpP/QbnfCwREZHl0JQWGDkOU1ShRHb48OHo3bs3NmzYgJycnFJvc+HCBXzyySeoX78+4uLi9BokVUxx0wKmskRERJaCpQVlq1BpwYULF7Bo0SJ89tlneO2119CoUSN4e3vDxsYGGRkZuHTpEh48eICXXnoJ//77L5o1a2bouKkUYr7DiYiILI6m/RbnZEuoUCIrlUoxceJETJw4EcePH8ehQ4dw8+ZNPHz4EC1atMCUKVPQvXt3uLq6GjpeKoem/RYnZImIiCyGZkEE5rEl6HyyV3BwMIKDgw0RC1VR8cpezGSJiIgsRfGMLD1J55W9yIRxRpaIiMjiCMxky8RE1oJoFkQwchxERESkH4+fwM0a2ZKYyFoQde2MilOyREREFuHxr3Qx89gSmMhaEM37m3ksERGRRXj8K50LIpRUpUQ2Ly9PX3GQHnBBBCIiIsuiXVpAT9I5kVWpVPjyyy9Ru3ZtODg44Pr16wCA6dOnY+nSpXoPkCquuP0WU1kiIiJLoD0ja7QwTJbOiezs2bOxbNkyzJ07F9bW1prtTZs2xW+//abX4Eg36toZprFERESW4fG5KZ7sVZLOieyKFSuwZMkSDBs2DBKJRLO9RYsWuHTpkl6DI109Ki1gJktERGQRtHrDM48tQedENikpCQ0aNCixXaVSQaFQ6CUoqhxNaQHnZImIiCyC1owsE9kSdE5kmzRpgoMHD5bY/ueff6JVq1Z6CYoqR7OyF/NYIiIii8M8tiSdl6idMWMGRowYgaSkJKhUKmzatAnx8fFYsWIFtm3bZogYqYI0XQuYyBIREVkE7T6yTGWfpPOMbP/+/bF161b8999/sLe3x4wZM3Dx4kVs3boV4eHheg+wbt26EIlEJf6NHz8eQFELsPHjx8PNzQ0ODg4YOHAgUlJS9B6HOSiekWUmS0REZAkeX+SIeWxJOs/IAkDnzp0RFRWl71hKFRsbC6VSqbl87tw5hIeHY9CgQQCAKVOm4J9//sGGDRvg7OyMCRMm4OWXX8bhw4erJT5TImLXAiIiIoui1X6LxQUl6JzIxsbGQqVSISQkRGt7TEwMJBIJgoOD9RYcALi7u2td/uabb1C/fn107doVWVlZWLp0KVavXo0ePXoAACIjI9G4cWMcPXoU7du312sspk7ErgVEREQWReCMbLl0Li0YP348bt26VWJ7UlKS5nC/oRQUFOCPP/7A6NGjIRKJEBcXB4VCgbCwMM1tAgMD4evri+joaIPGYorYtYCIiMiy8Bu9fDrPyF64cAGtW7cusb1Vq1a4cOGCXoIqy+bNm5GZmYmRI0cCAJKTk2FtbQ0XFxet23l4eCA5ObnM/eTn5yM/P19zWS6XAwAUCoVZtxBTKgsBFM3ImvPzMAT168HXxXJxjC0fx9jycYxLUhQUvxaFhYVQQGXEaKpO32OrcyIrk8mQkpKCevXqaW2/e/curKwqVXJbYUuXLkWfPn3g7e1dpf3MmTMHM2fOLLF97969sLOzq9K+jSkpBwCskJeXh+3btxs7HJNUXbXdZDwcY8vHMbZ8HONiuYWAOl3btXMnrHQ+lm5acnNz9bo/nTPPXr16Ydq0afj777/h7OwMAMjMzMQnn3xikK4Fajdv3sR///2HTZs2abZ5enqioKAAmZmZWrOyKSkp8PT0LHNf06ZNQ0REhOayXC6Hj48PunfvDjc3N4PEXx0uJWdj7ploWMtk6Nu3m7HDMSkKhQJRUVEIDw+HVCo1djhkABxjy8cxtnwc45IycxWYFrsXANCnz3OQSsw7k01LS9Pr/nROZP/3v/+hS5cu8PPz0yyAcOrUKXh4eGDlypV6De5xkZGRqFWrFp5//nnNtjZt2kAqlWL37t0YOHAgACA+Ph6JiYkIDQ0tc18ymQwymazEdqlUatYfHKnU6rH/N9/nYUjmPsb0dBxjy8cxtnwc42JWVsVVsjJra0jE5n3Gl77HVedEtnbt2jhz5gxWrVqF06dPw9bWFqNGjcKrr75qsDedSqVCZGQkRowYoVW+4OzsjDFjxiAiIgKurq5wcnLCe++9h9DQ0GeuYwFQ3LVAxcpwIiIii6DVR9aIcZiqShW12tvbY9y4cfqOpUz//fcfEhMTMXr06BLX/fDDDxCLxRg4cCDy8/PRu3dv/Pzzz9UWmynRdC1g/y0iIiKLoNVHlplsCRVKZLds2YI+ffpAKpViy5Yt5d72xRdf1Etgj+vVq1eZyZmNjQ0WLlyIhQsX6v1xzY1mZS+jRkFERET68nj6I2ImW0KFEtkBAwYgOTkZtWrVwoABA8q8nUgk0lqFi6pX8YysceMgIiIi/WBv+PJVKJFVqVSl/j+ZFvUvNZYWEBERWYhHX+mcjC2defdwIC0sLSAiIrIs6u905rGlq9CM7Pz58yu8w4kTJ1Y6GKoaUfEatURERGQBBM2MLFPZ0lQokf3hhx8qtDORSMRE1og4I0tERGRZ1DWyTGNLV6FENiEhwdBxkB6of6ypWCNLRERkEdS94cWckS1VlWtklUolTp06hYyMDH3EQ1WgXhCBeSwREZFl0JzAzTy2VDonspMnT8bSpUsBFCWxXbp0QevWreHj44N9+/bpOz7SQXGJLDNZIiIiS8A8tnw6J7J//vknWrRoAQDYunUrbty4gUuXLmHKlCn49NNP9R4g6Y4zskRERJaFlQWl0zmRvX//Pjw9PQEA27dvx6BBg9CoUSOMHj0aZ8+e1XuAVHFsWkBERGRZimdkmcmWRudE1sPDAxcuXIBSqcTOnTsRHh4OAMjNzYVEItF7gFRxYmayREREFkXTtYB5bKkq1LXgcaNGjcLgwYPh5eUFkUiEsLAwAEBMTAwCAwP1HiBVHGtkiYiILAtrZMuncyL7xRdfoGnTprh16xYGDRoEmUwGAJBIJJg6dareA6SKY9cCIiIiy6JZ2YtTsqXSOZEFgFdeeaXEthEjRlQ5GKoaVhYQERFZFnX7LeaxpatyH1kyHer3OBdEICIisgwqlhaUi4msJVHPyDKPJSIishDqGVmmsqVhImtB2JqDiIjIsmhO9uJXfKmYyFqQx9/kAqdliYiIzJ7mZC+jRmG6KpzIjhkzBjExMWVen5GRgR49euglKKqcx9/kzGOJiIjMX/GMLFPZ0lQ4kY2MjES3bt0QGRlZ6vUFBQXYv3+/3gIj3Ykfe5MzjyUiIjJ/mgURjByHqdKptOCjjz7CW2+9hUmTJkGlUhkqJqoklhYQERFZFtbIlk+nRHb8+PGIiorC2rVr0atXL6SnpxsqLqqEx0/2YhpLRERk/ornpZjJlkbnk726du2KY8eOIS0tDW3btsW5c+cMEZdGUlISXn/9dbi5ucHW1hbNmjXD8ePHNdcLgoAZM2bAy8sLtra2CAsLw5UrVwwak8l67D3OXrJERETmT/19LmYeW6pKdS3w8/PDkSNH0K5dO3To0AGbNm3Sd1wAik4g69ixI6RSKXbs2IELFy7gu+++Q40aNTS3mTt3LubPn4/FixcjJiYG9vb26N27N/Ly8gwSkynTLi0wXhxERESkXywtKF2Fl6h98mw5W1tbrFmzBt9++y2GDh2KsWPH6j24b7/9Fj4+PlonmPn7+2v+XxAEzJs3D5999hn69+8PAFixYgU8PDywefNmDB06VO8xmTK+x4mIiCyLpkaW3/KlqnAiW9bJQx9//DGaN2+OYcOG6S0otS1btqB3794YNGgQ9u/fj9q1a+Pdd9/Fm2++CQBISEhAcnIywsLCNPdxdnZGSEgIoqOjy0xk8/PzkZ+fr7ksl8sBAAqFAgqFQu/Po7oUFhZq/r+gQAEJeEKemnpczXl8qXwcY8vHMbZ8HOOSFIXq10KwiNdF38+hwolsZGQknJ2dS72uT58+iImJwZo1a/QWGABcv34dixYtQkREBD755BPExsZi4sSJsLa2xogRI5CcnAwA8PDw0Lqfh4eH5rrSzJkzBzNnziyxfe/evbCzs9Prc6hO+UpAPaQ7d+2CTGLUcExSVFSUsUMgA+MYWz6OseXjGBe7+QAArJCXl4ft27cbO5wqy83N1ev+REIF+zTl5eXBxsam3NtcuXIFDRs21EtgAGBtbY3g4GAcOXJEs23ixImIjY1FdHQ0jhw5go4dO+LOnTvw8vLS3Gbw4MEQiURYt25dqfstbUbWx8cHd+/ehZubm97ir265BYVo8eUeAMCpz3rAXlbh3ykWT6FQICoqCuHh4ZBKpcYOhwyAY2z5OMaWj2Nc0unbWXjllxh4O9tg/wddjB1OlaWlpcHLywtZWVlwcnKq8v4qnOm0bNkSy5cvR0hISKnXf//995g+fTpycnKqHJSal5cXmjRporWtcePG2LhxIwDA09MTAJCSkqKVyKakpKBly5Zl7lcmk0Emk5XYLpVKzfqDI3vs3D0rqRRSKRPZJ5n7GNPTcYwtH8fY8nGMi0kkRYdXRSKRRbwm+n4OFe5aEB4ejs6dO2PatGla9Q1XrlxBx44dMWfOHPz22296Da5jx46Ij4/X2nb58mX4+fkBKDrxy9PTE7t379ZcL5fLERMTg9DQUL3GYm64IAIREZH5U3+bs2tB6SqcyC5YsAA7duzAmjVr0Lp1axw/fhw//PADWrRogZo1a+Ls2bN49dVX9RrclClTcPToUXz99de4evUqVq9ejSVLlmD8+PEAin6dTJ48GbNnz8aWLVtw9uxZvPHGG/D29saAAQP0Gos50Gq/ZbwwiIiISE/U81JiZrKl0unYc8+ePXH27Fm8/vrrCAkJgZ2dHX755RcMHz7cIMG1bdsWf/31F6ZNm4ZZs2bB398f8+bN0+qQ8NFHHyEnJwfjxo1DZmYmOnXqhJ07dz61ntcSaa3sxYYFREREZk99hJV5bOl0LqJcs2YN9u7di5CQEJw4cQIHDhzASy+9BAcHB0PEh379+qFfv35lXi8SiTBr1izMmjXLII9vTrRnZDknS0REZO40pQVGjcJ0Vbi0ICkpCb1798bHH3+M+fPn48iRI4iJiUFsbCyCgoK06lTJOB5/k7NEloiIyPxpFkTglGypKpzINm3aFCKRCGfPnsXIkSMBAC1atEBsbCyGDx+OPn364J133jFUnFQBj7/JmccSERGZP01pgZHjMFUVTmTnzJmDnTt3ok6dOlrbpVIpZs+ejcOHD+PAgQN6D5AqTntGlqksERGRudN8mzOTLVWFE9m333673Ovbtm2LkydPVjkgqjx2LSAiIrIsmtIC44ZhsiqcyFaEtbW1PndHOtIqLWAmS0REZPbUJ2+zRrZ0ek1kyfjU73N2LSAiIrIAmj6yxg3DVDGRtTDq9zlnZImIiMyfSlNawEy2NBVKZM+cOQOVih32zYH60AMTWSIiIvNXXFpg5EBMVIUS2VatWuH+/fsAgHr16iEtLc2gQVHlaWZkWVpARERk9jgxVb4KJbIuLi5ISEgAANy4cYOzsyZMUyPLNz4REZHZ06zsxSnZUlVoidqBAweia9eu8PLygkgkQnBwMCQSSam3vX79ul4DJN0U1dBwPpaIiMgScEGE8lUokV2yZAlefvllXL16FRMnTsSbb74JR0dHQ8dGlaGZkWUqS0REZO6KZ2SNGobJqlAiCwDPPfccACAuLg6TJk1iImui2LWAiIjIgqi7FjCRLVWFE1m1yMhIzf/fvn0bAEosW0vGI+Y7nYiIyGJouhawuKBUOveRValUmDVrFpydneHn5wc/Pz+4uLjgyy+/5ElgJoAnexEREVkOgQsilEvnGdlPP/0US5cuxTfffIOOHTsCAA4dOoQvvvgCeXl5+Oqrr/QeJFWc+n2uYiZLRERk9lQski2Xzons8uXL8dtvv+HFF1/UbGvevDlq166Nd999l4mskWkWRDByHERERFR17FpQPp1LC9LT0xEYGFhie2BgINLT0/USFFVe8cleTGWJiIjMHSdky6dzItuiRQv89NNPJbb/9NNPaNGihV6CoipQ18gaNwoiIiLSA/W8FPPY0ulcWjB37lw8//zz+O+//xAaGgoAiI6Oxq1bt7B9+3a9B0i6YfstIiIiS/KotIBTsqXSeUa2a9euuHz5Ml566SVkZmYiMzMTL7/8MuLj49G5c2dDxEg6KH6jM5MlIiIyd5yRLZ/OiSwAeHt746uvvsLGjRuxceNGzJ49G97e3vqODV988QVEIpHWv8frc/Py8jB+/Hi4ubnBwcEBAwcOREpKit7jMCfiSrTfOnD5Hv4+lWQydbV3sx7i90MJSM8pMHYoRHqlUglYH3sLc3deQmJarrHDAQCcvpWJOdsvIurCs/23kyxTYlouIg8nQJ6nMHYoAACFUoU/jt7EuaSsCt+HNbLl07m0oLoFBQXhv//+01y2sioOecqUKfjnn3+wYcMGODs7Y8KECXj55Zdx+PBhY4RqEnTtWrDpxG1ErD8NALid8RDjuzcwUGQVk/YgH68sikZS5kNsiLuNtePaw9lWatSYiPRBEATM3Hoey6NvAgCO38jA+rdDjRpTfqES41YeR4o8H78cuI4v+wdheGhdo8ZEpC8303LwyuJo3MvOx7Yzd7HmzfawtqrU/J3efPznGWw6mQQbqRgrx4SgbV3Xp95HMyPLTLZUxh3RCrCysoKnp6fmX82aNQEAWVlZWLp0Kb7//nv06NEDbdq0QWRkJI4cOYKjR48aOWrj0aWPbNSFFHz45xnN5R93X0Fqdp6BIquYxfuvISnzIQDg4l05xiyLxcMCpVFjItKHH/67okliAeDYjXTE3cwwYkTA5pNJSJHnay7P2HIef59KMmJERPqRIs/D60tjcC+76P0ddzMDm08a970ddzMdmx7FkKdQYfSyWJy/8/SZWRXbb5XL5BPZK1euwNvbG/Xq1cOwYcOQmJgIAIiLi4NCoUBYWJjmtoGBgfD19UV0dLSxwjW6iq7sFX0tDeNXn4BSJWBg6zpo5euCgkIVIg/fMHiMZcnKVWB1TNH4fvRcAJxsrHD8Zgbe/iMOBYVcNY7M19JDCZi/+woA4Mv+QRgcXLSs9+L914wWk0ol4JcD1wEAn/ZtjBGhfhAE4P31p7HnEssMyHxl5hZg+NIY3Ep/CD83O7zZ2R8AsPjANahUxiuhW7Sv6PPWv6U32tV1RXZeIUb8fgwJ93PKvR9LC8pn0qUFISEhWLZsGQICAnD37l3MnDkTnTt3xrlz55CcnAxra2u4uLho3cfDwwPJycnl7jc/Px/5+cWzEHK5HACgUCigUJhGHU1VKRSFZT6Xs0lZGLv8OAoKVQgLdMfsFwOx7/J9vLP6FFZG38SbHX3haFP9h/OXHb6OnAIlAjwcMLaDL9r4OGPEsuPYf/kepqw9ie8GNYOkkmv0qV8LSxlfKslUx3jjiSR8ue0CAGBKzwYYGlwbbf1csCHuNqIupOBiUgYa1HKo9rj+vZCC6/dy4GRjhVdae8FOKkFGTgG2nLmLd/44gd9HtEa7Chz2rE6mOsakP1Ud45z8QoxYFofLKQ/g4ShD5IjWcLG1xtrYW7h+Lwc7ziahVxMPfYZcIVdSHuC/iykQiYB3u/jD3dEaw5Yex8XkbAz79SjWvtkOXs42pd63sLCw6H8EwSLe+/p+DiLBVM7wqYDMzEz4+fnh+++/h62tLUaNGqWVkAJAu3bt0L17d3z77bdl7ueLL77AzJkzS2xfvXo17Ozs9B53dZp+XAK5QoQPmxeijn3J65NzgfnnJcgpFKGhkwpvNVZBKi5aAu+b0xKkPBThRV8letau3rdFgRKYeUKCB4UiDG+gRLB70eNfzBTh10tiKAUROnioMNhfxV+lZDbOpIvwe7wYAkTo5qXCAL/i9+9vl8Q4myFGO3cVhjWo3iMOggD8cE6Cmw9ECK+tQj/fosdXqoCll8U4nyGGjUTAhCZK+FR/jk1UKYUq4JdLYlzOEsPOSsDEICW8Hn2lb0sUIypJDD8HAVOaKqv9e2TVVTGO3ROjuasKYwKKPm/ZCmD+OQlS80TwsC2K16GUOaTj90RYeVWChk4qTAgy/6OTubm5eO2115CVlQUnJ6cq769SM7J//vkn1q9fj8TERBQUaJ9ZfuLEiSoHVRYXFxc0atQIV69eRXh4OAoKCpCZmak1K5uSkgJPT89y9zNt2jRERERoLsvlcvj4+KB79+5wc3MzVPjV4qtz+yFX5KNjx04I8tZ+gyRlPsTXvx5DTmE+mtd2wvJRwXCQFb8F8r2SMPWv8ziaYYevR3WGrBqL4lcdu4UHhRdR28UGn7zeCVaSosfuC6Dx2WRM3nAGR1LEaB5QH++HN9R5/wqFAlFRUQgPD4dUypPHLJGpjfGRa2lYsfIEBAgY2NobcwYEaZ2s4dUsE4OXHMPJdAn+17FbmbMxhhCTkI6bR4/D2kqMWa93RU0Hmea6cIUSo1ecQOyNDPx+3RZrxrRDPfdSfhUbgamNMelfZce4UKnCpPVncDkrFXbWEqwYFYwWdZw117d7kI/93x3EzQcq1GzSHiH+1Xe04W5WHt6POQhAwIxBoVpxder6EEN/PYZkeT7W3nXF8pHBcLTRTs0Up+9i5dWzcK9ZE337Bldb3IaSlpam1/3pnMjOnz8fn376KUaOHIm///4bo0aNwrVr1xAbG4vx48frNbgnPXjwANeuXcPw4cPRpk0bSKVS7N69GwMHDgQAxMfHIzExUbNQQ1lkMhlkMlmJ7VKp1Oz/OKq/J62srLSey73sfIxafgIp8nw0rOWAZaNDUMPeWuu+L7fxxY97ruFuVh62nU3B0Ha+1RJzoVKF3w8XnQTzZud6sLXRHpv+rX2QWyhg2qazWHwgATXsZXira/1KPZYljDGVzxTG+NStTLyz+hQUSgHPBXni24EtND/O1NrVc0eIvytiEtKx4ugtfNavSbXF9+uhos/b4OA68KqhPeUqlUrx+8i2ePXXoziXJMeo5XHY8E4H1Haxrbb4nsYUxpgMS5cxFgQBn2w+g38vpMJaIsavbwQj2L+m1m28akgxqE0drIpJxG+Hb6JTo+orL1h+9AoKVQLa13MtEVdddyn+GNseg3+JxtkkOd5dcwrLRrWDjVSiuY3k0d8OsVhsEe97fT8Hnafcfv75ZyxZsgQLFiyAtbU1PvroI0RFRWHixInIyqp4X7SK+OCDD7B//37cuHEDR44cwUsvvQSJRIJXX30Vzs7OGDNmDCIiIrB3717ExcVh1KhRCA0NRfv27fUahzkRPTqv8fGCkayHCk1BeW0XW6wcEwLXJ5JYALC2EmNMp6Ki+CUHrkNZTUXxO84lIzE9FzXspBjc1qfU27zazhdT+xT1EJ6z4xLWHEusltiIdHU5JRsjI48ht0CJjg3c8OOrLUsksWpvdyv6QbbmWCKycqun9u3CHTn2X74HsQgY17n0H4SONlIsH1U0E3snKw/Df4vB/Qf5pd6WyJgEQcBX/1zEhrjbEIuABa+1QscGNUu97bgu9SAWAfvi7+HiXXm1xJeZW6D5vnq7jAmYBrUcsHxUOzjIrHD0ejomrD6JQmVxCUFx+y2Dh2uWdE5kExMT0aFDBwCAra0tsrOzAQDDhw/HmjVr9Brc7du38eqrryIgIACDBw+Gm5sbjh49Cnd3dwDADz/8gH79+mHgwIHo0qULPD09sWnTJr3GYG40CyI8Os/xYYESY5fH4sJdOWo6yLBqbAg8yzmEObSdL5xsrHD9fg6iLpR/0pw+CIKgOXN7RIe6sLMu+yDB213ra/4QfPLXWfxz5q7B4yPSxa30XAxfGoPMXAVa+rhgyfBgyKwkZd6+WyN3BHo6IqdAiZVHb1RLjL8cKPq89W3mBV+3ss8JcHOQ4Y8xIfB2tsH1+zkY8fsxk2kqT6S2cO9V/HYoAQDw7cDm6B1Udmmhn5s9+jTzAgD8Uk0dQ1ZG30RugRKNvZzQtZF7mbdrVscZv40IhrWVGP9dTMFHf57RdFhgH9ny6ZzIenp6Ij09HQDg6+ur6dmakJCg95Wh1q5dizt37iA/Px+3b9/G2rVrUb9+8S8aGxsbLFy4EOnp6cjJycGmTZueWh9r6TQLIghAQaEK76yKQ+yNDDjaWGHF6HaoW7P8WjcHmRXeeNQQfVWM4Wc9zyZl4fwdOWykYoyoQCP2j58LwKvtfCAIwOR1J3Hg8j2Dx0hUEanZRX0rU+T5aOThgMiRbWEvK796SyQSaX6cRR6+gTyFYXsm30rPxbZHPwDLmh16nLeLLVaODYGbvTXO35Fj7PLjBo+RqKJWRt/A//69DACY3q8JBgWXfkTvce88et9vO3MXWQ8N+8NMEATNbOxbXeo9NRFtX88NP7/WGhKxCJtOJmHWtgsQBKG4/ZZBozVfOieyPXr0wJYtWwAAo0aNwpQpUxAeHo4hQ4bgpZde0nuAVDmFKgER609hX/w92EjFiBzZFk28K3Z24EutawMAjl5PM/gMzL/ni/pV9gisVaJmtzQikQizBzTD8829oFAKeGtlHOJuphs0RqKnycpV4I2lx3AzLRc+rkXlOxV5PwNAv+Ze8Ha2QVpOAfbFG/aH2d+nkqBUCehQ3w1Nazs//Q4A6rs7YPnodnCUWeFYQjreXXUCCqX5nzlN5u3vU0mYseU8AGBijwaasrinaVrbGQ1rOaBQJWBffKohQ8T5O3LcycqDrVSC55pWbJItrIkH/jeoOQBg2ZEb+HH3leIFEZjJlkrnRHbJkiX49NNPAQDjx4/H77//jsaNG2PWrFlYtGiR3gMk3ajf6F9vv4htZ+5CKhHhl+HBCNahH2R9dwfUd7eHQikY/Iv130flC72aVHwmXSIW4YfBLdG1kTseKpQYFRlbbfVORE/KLSjEqGXHcCk5G+6ORYfjPZwq3oHASiLWHO7818DlPP9eKPrh+GILb53u17S2M5aObAuZlRh7LqXigw2njdpYnp5tey6l4P31pyEIwIhQP0wJb6TT/XsFFZ3opZ5IMZR/zxd9nrs2ctc6eetpXmpVBzNfDAIAzPvvCtbF3gLAGdmy6JzIisViWFkVHy4bOnQo5s+fj/feew/W1hWbgSDDUSeycTczIBIBPwxpWW5dTlnCHyWWURcM90G/mZaDyykPIBGL0D2glk73tbYSY9HrrdHGrwbkeYUYvvQYbjxldRQifcsvVOKtlXE4kZgJJxsrrBzTDn5uureqCn/UoH3PpVStkzz06W7WQ5y5nQWRCOjZWPczttv5u2LR661hJRbh71N38MXW83ovJyN6mpjraXjnjxMoVAkY0NIbn78QpHPtqPr7bV98KvILDVcqo/7hGF6JBRhGdKiLiEcJunopa9bIlq5SjUIPHjyI119/HaGhoUhKKlo3eOXKlTh06JBegyPdiR77zfbVgGbo11y3mRc19S/WfZdSDbY8rDpJbl/PFc52urfjsLO2wu8j2iLQ0xH3H+Tj9aUxSM7K03eYRKVSqgRErDuNg1fuw1YqQeSodgj0rFxz72C/GqhhJ0VmrgKxNzL0HGmR/x593lr71oC7Y8n2gxXRI9AD3w1uAZEIWBF9E99HXdZniETlOvdoVcr8QhV6BtbC/w1qAXElVntsXtsZHk4y5BQoEX1Nvz1N1W6l5+JScjYkYhF6BOo2UaP2Xo8GGN2xuGSCaWzpdE5kN27ciN69e8PW1hYnT57UrKyVlZWFr7/+Wu8Bkm7UX1AfPxeI10Iq3we2ZR0XuDvKkJ1fiKPXDfNBVx/WCa/E7JCas50UK8a0Q103O9zOeIjhS2OQkVPw9DsSVYEgCPhs81n8c7aofGfJG23Qxq9GpfdnJRGjR2DR58BQR0GqMjv0uP4ta2NW/6YAgAV7ruK3g9erHBvR01y79wAjfj+G7PxChPi7YuGw1pCW0dbuacRiEcIefe/8a+DPW9u6NSpcL/8kkUiEz55vjIGt6wBApX+AWjqd3wWzZ8/G4sWL8euvv2o1te3YsaNBV/WiivnptVZY/1Yo3ulWuQUD1Io+6EW/Ig3xxZr2IB/HH52kFVbFL9ZajjZYOSYEHk4yXEl9gJHLYvEgv1AfYRKV6pudl7Dm2C2IRcCPQ1uhc0Pdy3eepD4KEnUxWe+H7OV5Cs0PUn2sMz+8vR8+7B0AAJj9z0WsP36ryvskKktS5kMM/y0GaTkFaFrbCb+NCNap5rQ06h90/11IMUi9t7p9ZbgO53+URiwWYe4rzbFyTDtM69NYH6FZHJ0T2fj4eHTp0qXEdmdnZ2RmZuojJqoCL2dbtNPT0nu9HquT1fcX6+5LqVAJQJC3E+rUKLuXZUX5uNrhjzEhcLGT4vStTIxbwTZBZBiL9l3DL/uLZiHnvNwMfR+dqFVVnRvWhMxKjFvpD3EpOVsv+1TbF38PCqWA+u72qOfu8PQ7VMC73erjzc5Fhz2nbjyDnecM33eanj33H+Rj+G8xuJOVh3ru9lg+qh0cbaq+MlRofTc4yKyQmp2P07czqx7oYzJyCnAsoWiiRh8/HCViETo3dK9UCd6zoFJ9ZK9evVpi+6FDh1CvXj29BEWmIbS+G+ysJUiW5+Fskn5XbYvS02HOxzX0cMSyUe1gby3BkWtpmLjmpMFOnKFn0+qYRHy78xIA4JO+gRjSVn/LONtZW6Fzw6IVifR9FKT486a/PtsikQif9G2MwcF1oBKAiWtO4tCV+3rbP5E8r2hVyuv3c+DtbIM/xoTAzUE/h9dlVhJ0DSg6kqLvz9ueRxM1gZ6O8HGt+kQNlU/nRPbNN9/EpEmTEBMTA5FIhDt37mDVqlX44IMP8M477xgiRjISG6kE3R590PXZpuRhgRIHrxS19dKl7VZFtPRxwa9vFK2O8u+FFEzddJZtgkgvtp6+g083nwVQNBs5rkvVyndKo/486LMNV0GhCvsuFfXLVJcv6ItIJMLXLzXDc0GeKFCqMG7lcZxMNMzJavRsyVMoMXb5cZy/I4ebvTX+GBsCbxdbvT6GerZU33Wy6sS4VzmrjJH+6JzITp06Fa+99hp69uyJBw8eoEuXLhg7dizeeustvPfee4aIkYxIPWOqz1+sB6/cQ55Chdoutmjs5ai3/ap1aFATP73aChKxCH/G3cbsfy6yTRBVyb74VESsPwVBAIaF+GrqQ/WtR+NaEImAc0ly3Ml8qJd9Hr2ehuz8Qrg7ytCyjote9vk4K4kYP77aEp0a1ERugRIjI2MRr+fSCHq2KFXAe2tP41hCOhxlVlg+up3eSmIe1y2gFqzEIlxNfYAEPbVvzFMosf+yeqJGvz8cqXQ6JbJKpRIHDx7E+PHjkZ6ejnPnzuHo0aO4d+8evvzyS0PFSEbUPaAWJGIR4lOycTNNPx/0x8sKDNUXr1eQJ74dWLQ6yu+HE/Dz/gSDPA5ZvuM30vH2H3FQKAW80MIbs/o3Ndj7tqaDDMGPuh/8d1E/Px7Vn7ewxh6ValVUETIrCX4Z3gYtfVyQ9VCB4UtjcCs91yCPRZZNpRKw6poY+y7fh8xKjKUj21Z4FTpdOdtK0b6eG4Dik7Oq6vDV+3ioUMLb2QZBFVxNk6pGp0RWIpGgV69eyMjIgLW1NZo0aYJ27drBwUH/v5TINLjYWSPk0clj+piVVaoE7DbQYc4nvdKmDmb0awIAmLf7Kg7cZRc+0s2FO3KMWhaLPIUK3QLc8d2gFpAYKBlUUx8F0Uc5jyAIxYc5DTw7ZC+zwrJRbRHg4YjU7HwM+y0GqXL2daaKEwQBX26/hLj7YliJRVj0emu9nbxcFn2v8qVpK2nAiRrSpnNpQdOmTXH9OvsGPkvC9VhHFHczA+k5BXC2laKdDsvmVtboTv6Y2LMhAGDjDQn+Pn3X4I9JliHhfg7e+P0YsvMKEexXA4uGtYG1VeX6VupCfULW0etpyHqoqNK+ziZlIVmeB3trCULru+kjvHK52FljxZh28HG1RWJ6LoYvPYbMXPZ1por5Ieoy/oi5BREEzB3YVNNb2ZDU/WTjEjNw/0F+lfZVNFGj/xMrqXyV6iP7wQcfYNu2bbh79y7kcrnWP7I86kT2+I10pFdxsQH14ZuegbVgVclm1rqaEtYQw9sXnV3+8aZzmhWOiMpyN+shXv8tBvcf5KOJlxOWjmwLW+uq9a2sKP+a9mhYywGFKgH74lOrtC/17FDXAN3Weq8KD6eis8vdHWWIT8nGqGWxyC1gX2cq328Hr2P+nqKOSK/4q/BCc/20tXsabxdbNKvtDEEAdlexnOfUrQzcf1AARxsrhNQz/EQNFdE5k+jbty9Onz6NF198EXXq1EGNGjVQo0YNuLi4oEaNyq9sQ6arTg07NPFygqqKH3RBEPS2upAuRCIRPusTgOCaKihVAsavPmGw1crI/KXnFGD40mNIynwI/5r2WD66HZxtq7d/o76OghiizV1F+LnZ448xIXC2leJkYibeWhln0DXtybytP34Ls/+5CACICGuATp7Ve3Kuvk5qVv9w7BFYq9KrjpHudH6l9+7dq/m3Z88ezT/1ZbJMmjqiKnzQr6Q+wM20XFhbidGlUdVXQtKFWCzCa/VV6BHgjvxCFcYuP46zt/XbG5fM34P8QoyMPIarqQ/g6WSDlWPaGWVZSHXbnn2XUiudAN5My0F8yqO13gOq/+zpAE9HRI5qC1upBAev3MfktaegZCs8esLOc8mYuvEMAODNzv54u4t/tceg/n47eOV+pY8ePD5Ro++2klQ+nRPZrl27lvnPzc3wNVhkHOpfrAev3MPDgsp9sf57vqisoFODmrCXWekttoqSiIEfhzRHiL8rHuQXYsSjhIUIKGqb8+by4zhzOws17KT4Y2w7vaw6VxnNazujlqMMOQVKRF+r3NED9exSiL+r0VYEau1bA0veaAOpRIQd55LxyaazbIVHGoev3sfENSehEoDBwXXwSd/GRjlBKsDDET6utsgvVOHA5cot6nHtXlELL2uJWLPQAlWPKs99Z2dnY8mSJWjXrh1atGihj5jIBDXxckJtF1vkKVQ4dLVyH3RjHeZ8nI1Ugt9GBKNZbedHh5BjkKSnfp1kvgqVKry35iSir6fB4VHfyga19N/juKLEYlGVD3f+W03dCp6mc0N3zB/aCmIRsO74LczZcYnJLOFkYgbeXHEcBUoVngvyxNcvNTPaWf4ikQjhjYuXZK8M9edNvfQtVZ9KJ7IHDhzAiBEj4OXlhf/973/o0aMHjh49qs/YyISIRKLH2gLp3m8vOSsPp29nQSQCejaupe/wdOJoI8WyUW1R390ed7PyMPzRST30bFKpBHy08QyiLqTA2kqMX98IRnMDLBygq8cTWV1Xp0vPKcDxG0VrvYeZQFP2Ps288M3LRX2dlxy4jp/3XTNyRGRM8cnZGBkZi9wCJTo1qIkfX21ZbSf/lkVdXrD7UkqlljYvXs3L+J+3Z41O75zk5GR88803aNiwIQYNGgQnJyfk5+dj8+bN+Oabb9C2bVtDxUkmQD2zs/tSqs61blGPThJr5eOCWo42eo9NV24OMqwcE4LaLra4fj8Hbyw9Bnle1VodkfkRBAGztl3AphNJkIhFWPha62ppU1UR6pmd1Ox8nEnSrZ5798UUqISiIynGKo940uC2Pvi0b2MAwP/tiscfR28aOSIyhlvpuRi+NAZZDxVo6eOCX4a3gcyqejpqlCfYrwZc7KTIzFXg+E3dlllOlefhZGImgOJ2XlR9KpzIvvDCCwgICMCZM2cwb9483LlzBwsWLDBkbGRi2vq7wtlWivScAsTp+EE3xbWnvV1ssXJMO7jZW+PCXTnGLjte6fpfMk/zd1/FsiM3AAD/90pzo5a9PElmJdHU2ul6FORfE50derNLPYzvXh8AMP3vc9hy+o6RI6LqlCrPK1ooIzsfAR6OWDaqrVHOlyiNlUSMnoGVWxzhv4tFbfJa+rjAw8n4EzXPmgonsjt27MCYMWMwc+ZMPP/885BIjP8LiqqXVCJGj8CisgBdlvOT5ykQfa2ortaUEgUAqOfugOWj28FRZoVjN9Lx7qo4KCpxWInMz7LDCfjhv8sAgC9eaIKXW9cxckQl9apEnezDAiUOXila693UPm8A8EGvALze3heCAESsO4W9l6rWK5fMQ1auAm/8fgyJ6bnwdbXDijHt4GJnbeywtGjKeS4m61TH/e+j70NT/Lw9Cyr8U+jQoUNYunQp2rRpg8aNG2P48OEYOnSoIWMr4ZtvvsG0adMwadIkzJs3DwCQl5eH999/H2vXrkV+fj569+6Nn3/+GR4efEMZQngTD/x1Mgn/Xkip8Bmm++PvQaEUUM/dHvXdTW8546a1nfH7qLYYvjQGe+Pv4f31pzWrgZk6X1e7alltqiJUKgGJ6bkoNFKLpcLCQqQ8BK7dy4GVVfl/2mIS0vDF1gsAgClhjTCyY/W3/KmIbgG1YCUW4Upq0RnR/jXtn3qfQ1fvI0+hQm0XWzTxMr213kUiEWa92BTyh4XYcvoO3lkVh59ebY26FXhuuoyxIdhIxajtYmsyS48+yC9EcpbpLwOsEgRM3XgGl5KzUctRhj/GhJjkzGWXRjUhsxLjVvpDXErORuMKfH4e5BfiyNWiziLGPrHyWVXhvwTt27dH+/btMW/ePKxbtw6///47IiIioFKpEBUVBR8fHzg6Gu4s39jYWPzyyy9o3ry51vYpU6bgn3/+wYYNG+Ds7IwJEybg5ZdfxuHDhw0Wy7OsSyN3WFuJcTMtF1dSH6CRx9PHPMoMeuu1reuKRcPa4M0Vx7Hl9B2zOeRZ28UWa8e1h4+r8esgp/99DqtiEo0chRW+PlXxz/6ojnUxsWcDA8ZTNc62UrSv54ZDV+8j6kIyxnWp/9T7qMsQTHmtd7FYhO8Gt0B2ngJ74+9h7IrjOtxbtzHWt89faIJRJvDDJ+5mOkZGxiI7z3xWTXO2lWLlmBD4uhn/71Vp7Kyt0LlhTfx3MRVRF1IqlMgeuHwPBUoV/Gvao0Et05uoeRbo/JPW3t4eo0ePxujRoxEfH4+lS5fim2++wdSpUxEeHo4tW7boPcgHDx5g2LBh+PXXXzF79mzN9qysLCxduhSrV69Gjx49AACRkZFo3Lgxjh49ivbt2+s9lmedg8wKHeu7YW/8PURdSHlqIltQqNIcOjT1wy7dA2th/qut8PX2i2bx5ZD1UIGkzIeYvO4U/nw71KhJS1LmQ6yLvQUAcLKxMlIsAhQFCkitpQDKf3yxCBjY2nh9K3XRK8jjUSKb8tREtmit91TN/UyZVCLGz8Pa4IM/T+PQlYq29Kv4GOubSiUgO78QC/dew6vtfKttyd/S5CmUeOePE5q/U9W98lxl1HKU4dtXmiPA03ht7SoivImHJpGtyJE5c/jhaOmqdGwmICAAc+fOxZw5c7B161b8/vvv+opLy/jx4/H8888jLCxMK5GNi4uDQqFAWFiYZltgYCB8fX0RHR1dZiKbn5+P/PzidktyuRwAoFAooFDwzPWn6Rnojr3x97Dr3F2M6+RX7m0PX01Ddn4hajpYo6mnvdFeX/XjPu3xwwNrIjywc3WEVGV3s/IQNu8Q4m5mIPrqPbSta7wlopfsv4pClYDQeq5YMSrYKDEoFApERUUhPLwHpNKKfbErlYVQmvj5fd0aFnVROH4zA8kZD+DmUPZKY7E3MpCeUwBnWyu0qu1o8n/PrETAvEHNKnz7yoyxviiUKvT84RDuZuVhQ2wihrY1Xk31+thbSM3Oh5ezDXZN7Ahba/M5Z+Vp78mK/q02lK4NXCESAWeTspB4PxtezmWXQCiUKux59MOxRyM3k/+8mQp9v056KTKSSCQYMGAABgwYoI/daVm7di1OnDiB2NjYEtclJyfD2toaLi4uWts9PDyQnFz2yUhz5szBzJkzS2zfu3cv7OxM85CHKREKABEkOJMkx+q/tsOlnBU8N1wXAxCjoV0edu7cUW0xliUqKsrYIehVsKsYR1LFmL0xBm81Ns5JajkKYM0JCQARWsruYfv27UaJQ83SxhgA6thLcDtHhB//3IP2tcquQd5849Hnzb4A/+7aWX0BVjNjjXH7GiL8lSXBj/+eh0PqGYiNMAGnEoD5J4s+b+1r5GDvf7uqP4hqYMzPcV0HCRKyRZi/cS86e5b9eYvPEkGeJ4GDlYC756Kx/Xw1BmnGcnNz9bo/0+h7UYZbt25h0qRJiIqKgo2N/grDp02bhoiICM1luVwOHx8fdO/encvsVtCm1BicvJUFoXYz9G3nU+ptBEHAnP8dAJCP0b3boFsj4y3bVzyTE17tMzmG1CQtB71+PIwLmWLUb93RKIftFuy9hgLVNTTxcsSUV9sb7fCapY4xAFy3vYYf91xDipUn+vZtVeptBEHAd/MOAXiIEWGt8JyJlxZUhrHHuGt+IfZ8dwD3HxZC4tcafZpWf93/9rPJuH/0DFxspfhieA/YWZv017jOjD3GAHDH6Qa+3XUZd8Tu6Nu37CNMx/+5BCARfVrUQb/ng6ovQDOXlla5ZbfLYtKfgLi4OKSmpqJ169aabUqlEgcOHMBPP/2EXbt2oaCgAJmZmVqzsikpKfD0LPsPjEwmg0xWchpRKpVa3BegofQK8sLJW1nYE38fIzvWK/U2Z29nIVmeDztrCTo38oDUiDVlapY2xg09XdC3qRf+OXsXS48k4ochLav18XMLCrHyaNEJXm93awBra+O307G0MQaA55p548c913D4WhoUgqjU5OVySjYS0x/C2kqMHo09IZWa9J/3KjHWGLtIpRgRWhfz91zFr4du4oWWdar1h5sgCPj18A0AwIgOdeFsb1ttj13djPk5fq6ZN77ddRnHEjKQW1h6DbIgCNhzqajNXe8gL4v7m2NI+n6tTKNvTxl69uyJs2fP4tSpU5p/wcHBGDZsmOb/pVIpdu/erblPfHw8EhMTERoaasTILZ/6xK3oa/fLXBFL3VuvayN3o54YYene7lp0AtCW03dwO0O/h2yeZn3sLWTkKuDraoe+RpidelYEejrCx9UW+YUqHCzjxCh1d5BODWqaTJN5SzSiQ13YSMU4m5SFI9f0O7P0NIevpuFckhw2UjFGdKhbrY/9LFF3IChUCdgXX3qf4/N35EjKfAhbqQSdGtas5gjpcSadyDo6OqJp06Za/+zt7eHm5oamTZvC2dkZY8aMQUREBPbu3Yu4uDiMGjUKoaGh7FhgYA1qOaCeuz0USgH74++VehuuPV09mtVxRscGblCqBPx2MKHaHlehVOHXR4/3Zpd6Rl8r3ZKJRCKENy76oVDWqkOPnz1NhuPmIMOQ4KJyqsX7r1XrY6sfb2hbX7jaG//ohyVT94T9t4zFSNTfb10a1eREjZGZ/TfPDz/8gH79+mHgwIHo0qULPD09sWnTJmOH9UwIL2fVocS0XFxKzoZELEL3gFrVHdozRz0ruy72FjJyCqrlMf85cxdJmQ9R08Eag9qY3qpYlkb9g3DPpRQUPrH6XHJWHk7fzoJIBPRszM+boY3tXA8SsQgHr9zHuaSsannMs7ezcOjqfUjEIozpZPw+tpZO/f22P/4e8gtLtjZRJ7jhJtwf/Vlhdonsvn37NKt6AYCNjQ0WLlyI9PR05OTkYNOmTeXWx5L+qBc42HspFQWF2l+s6rKCEH9Xk1uG0BJ1alATQd5OeKhQYnn0DYM/niAImtmhkR3qckaiGgT71YCLnRQZuQocv5mhdV3UxaIv1VY+LqjlaHorJlkaH1c79GvuBaD6ZmUXHyh6nBeae5nEAiiWrkUdF9RylOFBfiGinyghuZWei4t35RCLgJ6B/OFobGaXyJLpaOXjgpoOMmTnFyImQfuDHqX5tcrDnNVBJBJpZmWXH7mB3ALDLuiw7/I9XErOhr21BMPb1zXoY1ERK4kYPR59aT55FCSKs0PV7q1Hi1NsP3sXN9NyDPpYN+7nYMfZu0WP2/Xpq7tR1YnFIoSVcdTxv0c/HNvWdUUNlngYHRNZqjSxWITwJkVfrI/X7aXnFCD2RjoAJrLVqU9TT/i62iEjV6FZZctQFu8rmh16tZ0vnO14tm51UR8FibqQAkEo6m+ZnadA9LWiE8BYj159mng7oWsjd6gE4NeD1w36WEsOXodKALoFuFdo2VTSj16PJbIqVXE/WfX3Xa8g/nA0BUxkqUoer5NVf7HuuZQKlQA08XJCnRo8BFZdrCRijOtS1Artt4MJUCgNs0DCicQMxCSkQyoRYUxn1upVpy6NakJmJUZiei7iU7IBAPvi70GhFFDP3R713bnWe3VSHwVZf/w27mXnP+XWlZOanYc/424DAN7hbGy1Cq3vBgeZFVKz83HmUS10Zm4Bjj2aqOnFiRqTwESWqqRD/Zqws5YgWZ6Hs48+6Dx72nheaVMHNR2skZT5ENvO3DHIY6hnYwe0rA0vZ8vtY2mK7Kyt0PlRq5+oR7NCmu4gLCuodu3ruaKljwsKClVYdsQwHUOWHb6BgkIVWvm6oJ2/q0Eeg0ons5Kg66OFfNTfa3supUKpEh61xONEjSlgIktVYiMt/qBHXUjBwwIlDlwpasfFw5zVz0YqwaiORbOkv+y/rpkl15erqQ80Jxa91bX0hTDIsMIfawtUUKjC3kdrvfOHY/V7vDZ9ZfRNPMjXb216dp4CK4/eBFA0+2usVfOeZervMfUPxuIfjvy8mQomslRlj5cXHLp6H3kKFWq72KIJa7mM4vUQP9hbS3ApORv7yujxW1lLDlyDIBSNeYNa1b8cLgE9G3tAJALOJmVh88kkZOcXoqaDDK18XIwd2jOpVxMP1HO3hzyvEGtiEvW67zXHEpGdV4j67vYIb8zEyRi6BdSClViEK6kPcClZjv2Xi/6m8sRK08FElqqsR2AtSMQiXErOxu+Hig6vhTfx4OyBkTjbSfFaiC8AYJEeWwMlZ+Xhr5NJAIprA6n61XSQoY1vDQDARxvPAADCm9SCWMzPmzGIxSK89ag2femhhBKtCCsrv1CJpY/+nr7VpT7H10icbaVoX88NADBzywXkFijh5WyDprU5UWMqmMhSlbnYWaNd3aLarejrRW24eNjFuMZ0qgepRIRjCek4kZjx9DtUwO+HE6BQCmhX1xVt/GroZZ9UOU+WEbCswLgGtKoNDycZkuV52HwqSS/7/PvkHaTI8+HhJEP/Vt562SdVjmZJ9kffb5yoMS1MZEkvHv8idbKxQluelGBUns42GNCyNoDik7OqIuuhAqsfHTZ9uxtrY43t8bY/dtYSdKjPtd6NSWYlwWhNbfo1rVZNlaFSCZoFEMZ08ofMiguOGFMYfziaNCaypBePf7B7NvaAVMK3lrG91bUeRKKik4KupmZXaV9/HC06kSXAw5FLDpsA/5r2GNmhLuq72yMivBFXVjMBr4X4wtHGCtfu5Wga5lfWvxdScP1eDpxsrPBqO189RUiVVdvFVlNK4GhjhRB/NyNHRI9jtkF64eNqh+Z1nAEUNeYn42tQy1Fzgsgv+yvfsD1PoUTk4aJavbe71eMhNRPxxYtB2P1+N4ztzBlyU+BoI8Xw9n4AimrTK9sx5PHln4eH+sHRhguOmII+TYuWJA5v4gFrK6ZOpoSjQXqz8LXWWDSsNQ+7mJC3uxWdlLX5VBLuZj2s1D7+jLuN+w8KUNvFFv2as1aPqCyjOvrD2kqMk4mZOJaQXql9xCSk49StTFhbiTGyAxccMRXjutTDd4Na4PN+QcYOhZ7ARJb0xsfVDn2aeXHGzoS09q2Bdv6uUCgFTUcJXShVgmb5zbGd/VkyQlQOd0cZXmlTBwA0s6q6Ut9vUJs6cHeU6S02qhqpRIyBbepwSW4TxG8lIgunXtZydUwisnIVOt13x7m7uJmWixp2Ugxp62OI8IgsyrjO9SAWAXvj7+FSslyn+168K8e++HsQi6BZbpqIysdElsjCdQtwR6CnI3IKlPgj5maF7/d4rd4boXVhZ21lqBCJLEbdmvaaekpda9N/efR569PMC35u9nqPjcgSMZElsnAikUiznGzk4QTkKZQVut/hq2k4lySHjVSMER3qGjBCIsuiXjBky+k7uJ2RW6H73ErPxdYzdwEUH0UhoqdjIkv0DOjX3Bu1XWxx/0EB/oy7XaH7qGdjh7b1hau9tSHDI7Iozeo4o2MDNyhVAn47WLHa9KWHEqBUCejcsCaa1nY2cIREloOJLNEzQCoR483ORWdALzlwHYXK8pfRPHs7C4eu3odELMLYzjxzmkhX73RtAABYF3sL6TkF5d427UE+1sY+WnCEs7FEOmEiS/SMGNzWBzXspEhMz8WOc8nl3lY9G/tiC2/UqWFXHeERWZSODdzQtLYTHiqUWH7kRrm3XR59E3kKFZrVdkaH+my2T6QLJrJEzwg7aytNrevichq237ifgx3nimr11LW1RKQbkUikmV1dHn0DuQWFpd4ut6AQK6JvACiajWX7QiLdMJEleoaMCK0LW6kE5+/Icejq/VJvs+TgdagEoHuAOwI9nao5QiLL0aepF/zc7JCZq8C62Ful3mbtsVvIzFWgrpsdnuOqiEQ6YyJL9AypYW+t6QdbWsP21Ow8zclgrNUjqhqJWIQ3Hy0h/NvBBCieqE1XKFVY+mihkje71INEzNlYIl2ZdCK7aNEiNG/eHE5OTnByckJoaCh27NihuT4vLw/jx4+Hm5sbHBwcMHDgQKSkpBgxYiLTN7azPyRiEQ5fTcPZ21la1y07fAMFhSq08nVBO39XI0VIZDleaVMHNR2skZT5ENvO3NG6buvpO0jKfIiaDjIMbF3HSBESmTeTTmTr1KmDb775BnFxcTh+/Dh69OiB/v374/z58wCAKVOmYOvWrdiwYQP279+PO3fu4OWXXzZy1ESmrU4NO/Rv4Q1Ae1Y2O0+BlUeLFkxgrR6RfthIJRjVsajzxy/7r2tq0wVB0CyYMLpTXdhIJUaLkcicmXQi+8ILL6Bv375o2LAhGjVqhK+++goODg44evQosrKysHTpUnz//ffo0aMH2rRpg8jISBw5cgRHjx41duhEJu2tR2UDO87dRcL9HADAmmOJyM4rRH13e4Q39jBmeEQW5fX2fnCQWeFScjb2xd8DAOyNT0V8SjYcZFYYFuJn5AiJzJfZrDmpVCqxYcMG5OTkIDQ0FHFxcVAoFAgLC9PcJjAwEL6+voiOjkb79u3L3Fd+fj7y8/M1l+XyovWwFQoFFArd1qIn86AeV45vkXpuNujWqCb2Xb6PxfuuYvrzgVj6qHH72E51oVQWQlmxBcBMBsfY8pnrGNtZAUOCa2Pp4Zv4ed9VdKpfAz/vvQoAGNq2DuyszO85GYq5jjFVnL7H1uQT2bNnzyI0NBR5eXlwcHDAX3/9hSZNmuDUqVOwtraGi4uL1u09PDyQnFx+j8w5c+Zg5syZJbbv3bsXdnbsmWnJoqKijB2CyWguBfbBChvjbuFByk2kZEvgbC3A+s5pbE8+bezwKo1jbPnMcYx98wGJSILYGxn44LcdOH5TAolIgO/Dq9i+/aqxwzM55jjGVDG5uRVbtrmiTD6RDQgIwKlTp5CVlYU///wTI0aMwP79+6u0z2nTpiEiIkJzWS6Xw8fHB927d4ebG5tRWyKFQoGoqCiEh4dDKpUaOxyTIAgCDv56DCdvZeGfW0X1ee/0CMCLHesaN7BK4hhbPnMf47M4jz9PJOHvm0Wft5db18GrA4KMHJVpMfcxpqdLS0vT6/5MPpG1trZGgwZFS/21adMGsbGx+PHHHzFkyBAUFBQgMzNTa1Y2JSUFnp7l9+KTyWSQyWQltkulUn5wLBzHWNs73Rpg3Mo4AICjjRVeD/WHVGryfxbKxTG2fOY6xm93a4A/TyRpXTbH51EdzHWM6en0Pa4mfbJXaVQqFfLz89GmTRtIpVLs3r1bc118fDwSExMRGhpqxAiJzEdYYw80q+0MaysxFrzaCg4y805iiUxZg1oOmNU/CCIRMKClN+q7Oxg7JCKzZ9LfWtOmTUOfPn3g6+uL7OxsrF69Gvv27cOuXbvg7OyMMWPGICIiAq6urnBycsJ7772H0NDQck/0IqJiYrEI698KRU5BIWo6lDxKQUT69UZoXfRq4gk3B2tjh0JkEUw6kU1NTcUbb7yBu3fvwtnZGc2bN8euXbsQHh4OAPjhhx8gFosxcOBA5Ofno3fv3vj555+NHDWRebG1lsDWmj0siaqLp7ONsUMgshgmncguXbq03OttbGywcOFCLFy4sJoiIiIiIiJTYXY1skREREREABNZIiIiIjJTTGSJiIiIyCwxkSUiIiIis8REloiIiIjMEhNZIiIiIjJLTGSJiIiIyCyZdB/Z6iIIAgAgOzubaztbKIVCgdzcXMjlco6xheIYWz6OseXjGFu+7OxsAMW5V1UxkQWQlpYGAPD39zdyJERERESWLy0tDc7OzlXeDxNZAK6urgCAxMREvbyoZHrkcjl8fHxw69YtODk5GTscMgCOseXjGFs+jrHly8rKgq+vryb3qiomsgDE4qJSYWdnZ35wLJyTkxPH2MJxjC0fx9jycYwtnzr3qvJ+9LIXIiIiIqJqxkSWiIiIiMwSE1kAMpkMn3/+OWQymbFDIQPhGFs+jrHl4xhbPo6x5dP3GIsEffU/ICIiIiKqRpyRJSIiIiKzxESWiIiIiMwSE1kiIiIiMkvPfCK7cOFC1K1bFzY2NggJCcGxY8eMHRLpyZw5c9C2bVs4OjqiVq1aGDBgAOLj440dFhnQN998A5FIhMmTJxs7FNKzpKQkvP7663Bzc4OtrS2aNWuG48ePGzss0hOlUonp06fD398ftra2qF+/Pr788ku9LWNK1e/AgQN44YUX4O3tDZFIhM2bN2tdLwgCZsyYAS8vL9ja2iIsLAxXrlzR+XGe6UR23bp1iIiIwOeff44TJ06gRYsW6N27N1JTU40dGunB/v37MX78eBw9ehRRUVFQKBTo1asXcnJyjB0aGUBsbCx++eUXNG/e3NihkJ5lZGSgY8eOkEql2LFjBy5cuIDvvvsONWrUMHZopCfffvstFi1ahJ9++gkXL17Et99+i7lz52LBggXGDo0qKScnBy1atMDChQtLvX7u3LmYP38+Fi9ejJiYGNjb26N3797Iy8vT6XGe6a4FISEhaNu2LX766ScAgEqlgo+PD9577z1MnTrVyNGRvt27dw+1atXC/v370aVLF2OHQ3r04MEDtG7dGj///DNmz56Nli1bYt68ecYOi/Rk6tSpOHz4MA4ePGjsUMhA+vXrBw8PDyxdulSzbeDAgbC1tcUff/xhxMhIH0QiEf766y8MGDAAQNFsrLe3N95//3188MEHAIqWrvXw8MCyZcswdOjQCu/7mZ2RLSgoQFxcHMLCwjTbxGIxwsLCEB0dbcTIyFCysrIAQG/rO5PpGD9+PJ5//nmtzzNZji1btiA4OBiDBg1CrVq10KpVK/z666/GDov0qEOHDti9ezcuX74MADh9+jQOHTqEPn36GDkyMoSEhAQkJydr/c12dnZGSEiIzjmYlb6DMxf379+HUqmEh4eH1nYPDw9cunTJSFGRoahUKkyePBkdO3ZE06ZNjR0O6dHatWtx4sQJxMbGGjsUMpDr169j0aJFiIiIwCeffILY2FhMnDgR1tbWGDFihLHDIz2YOnUq5HI5AgMDIZFIoFQq8dVXX2HYsGHGDo0MIDk5GQBKzcHU11XUM5vI0rNl/PjxOHfuHA4dOmTsUEiPbt26hUmTJiEqKgo2NjbGDocMRKVSITg4GF9//TUAoFWrVjh37hwWL17MRNZCrF+/HqtWrcLq1asRFBSEU6dOYfLkyfD29uYYU7me2dKCmjVrQiKRICUlRWt7SkoKPD09jRQVGcKECROwbds27N27F3Xq1DF2OKRHcXFxSE1NRevWrWFlZQUrKyvs378f8+fPh5WVFZRKpbFDJD3w8vJCkyZNtLY1btwYiYmJRoqI9O3DDz/E1KlTMXToUDRr1gzDhw/HlClTMGfOHGOHRgagzrP0kYM9s4mstbU12rRpg927d2u2qVQq7N69G6GhoUaMjPRFEARMmDABf/31F/bs2QN/f39jh0R61rNnT5w9exanTp3S/AsODsawYcNw6tQpSCQSY4dIetCxY8cSrfMuX74MPz8/I0VE+pabmwuxWDslkUgkUKlURoqIDMnf3x+enp5aOZhcLkdMTIzOOdgzXVoQERGBESNGIDg4GO3atcO8efOQk5ODUaNGGTs00oPx48dj9erV+Pvvv+Ho6Kipu3F2doatra2RoyN9cHR0LFHzbG9vDzc3N9ZCW5ApU6agQ4cO+PrrrzF48GAcO3YMS5YswZIlS4wdGunJCy+8gK+++gq+vr4ICgrCyZMn8f3332P06NHGDo0q6cGDB7h69armckJCAk6dOgVXV1f4+vpi8uTJmD17Nho2bAh/f39Mnz4d3t7ems4GFSY84xYsWCD4+voK1tbWQrt27YSjR48aOyTSEwCl/ouMjDR2aGRAXbt2FSZNmmTsMEjPtm7dKjRt2lSQyWRCYGCgsGTJEmOHRHokl8uFSZMmCb6+voKNjY1Qr1494dNPPxXy8/ONHRpV0t69e0v9Dh4xYoQgCIKgUqmE6dOnCx4eHoJMJhN69uwpxMfH6/w4z3QfWSIiIiIyX89sjSwRERERmTcmskRERERklpjIEhEREZFZYiJLRERERGaJiSwRERERmSUmskRERERklpjIEhEREZFZYiJLRERERGaJiSwRmaRLly6hffv2sLGxQcuWLY0dDvbt2weRSITMzExjh2LyvvjiC60xGzlyZIWWnRw+fDi+/vprwwVWjvbt22Pjxo1GeWwiqjwmskRkkj7//HPY29sjPj4eu3fvNnY4elO3bl3MmzdPa9uyZcvg4uJilHhMxenTp7F9+3ZMnDjRKI//2WefYerUqVCpVEZ5fCKqHCayRGSSrl27hk6dOsHPzw9ubm6l3kahUFRzVGQoCxYswKBBg+Dg4GCUx+/Tpw+ys7OxY8cOozw+EVUOE1kiMqgVK1bAzc0N+fn5WtsHDBiA4cOHl3ofkUiEuLg4zJo1CyKRCF988QVu3LgBkUiEdevWoWvXrrCxscGqVaugUqkwa9Ys1KlTBzKZDC1btsTOnTs1+1Lfb/369ejcuTNsbW3Rtm1bXL58GbGxsQgODoaDgwP69OmDe/fuPfX5HD58GM2bN4eNjQ3at2+Pc+fOaV2/ceNGBAUFQSaToW7duvjuu+8013Xr1g03b97ElClTIBKJIBKJsG/fPowaNQpZWVmabV988QUAICMjA2+88QZq1KgBOzs79OnTB1euXNHsTz2Tu23bNgQEBMDOzg6vvPIKcnNzsXz5ctStWxc1atTAxIkToVQqS30+WVlZkEgkOH78OABApVLB1dUV7du319zmjz/+gI+Pj+byxx9/jEaNGsHOzg716tXD9OnTq/SjQqlU4s8//8QLL7ygtb1u3bqYPXs23njjDTg4OMDPzw9btmzBvXv30L9/fzg4OKB58+aa2KvymkgkEvTt2xdr166t9PMgIiMQiIgMKDc3V3B2dhbWr1+v2ZaSkiJYWVkJe/bsKfU+d+/eFYKCgoT3339fuHv3rpCdnS0kJCQIAIS6desKGzduFK5fvy7cuXNH+P777wUnJydhzZo1wqVLl4SPPvpIkEqlwuXLlwVBEDT3CwwMFHbu3ClcuHBBaN++vdCmTRuhW7duwqFDh4QTJ04IDRo0EN5+++0yn8fevXsFAELjxo2Ff//9Vzhz5ozQr18/oW7dukJBQYEgCIJw/PhxQSwWC7NmzRLi4+OFyMhIwdbWVoiMjBQEQRDS0tKEOnXqCLNmzRLu3r0r3L17V8jPzxfmzZsnODk5abZlZ2cLgiAIL774otC4cWPhwIEDwqlTp4TevXsLDRo00DxeZGSkIJVKhfDwcOHEiRPC/v37BTc3N6FXr17C4MGDhfPnzwtbt24VrK2thbVr15b53Fq3bi383//9nyAIgnDq1CnB1dVVsLa21sQxduxYYdiwYZrbf/nll8Lhw4eFhIQEYcuWLYKHh4fw7bffaq7//PPPhRYtWmgujxgxQujfv3+Zj3/ixAkBgJCcnKy13c/PT3B1dRUWL14sXL58WXjnnXcEJycn4bnnnhPWr18vxMfHCwMGDBAaN24sqFSqKr8mixYtEvz8/MqMk4hMDxNZIjK4d955R+jTp4/m8nfffSfUq1dPk3yUpkWLFsLnn3+uuaxOSOfNm6d1O29vb+Grr77S2ta2bVvh3Xff1brfb7/9prl+zZo1AgBh9+7dmm1z5swRAgICyoxHncg+nvykpaUJtra2wrp16wRBEITXXntNCA8P17rfhx9+KDRp0kRz2c/PT/jhhx+0bhMZGSk4Oztrbbt8+bIAQDh8+LBm2/379wVbW1vNj4LIyEgBgHD16lXNbd566y3Bzs5Ok4QKgiD07t1beOutt8p8bhEREcLzzz8vCIIgzJs3TxgyZIjQokULYceOHYIgCEKDBg2EJUuWlHn///u//xPatGmjuaxrIvvXX38JEomkxPvBz89PeP311zWX7969KwAQpk+frtkWHR0tABDu3r0rCELVXpO///5bEIvFglKpLDNWIjItLC0gIoN788038e+//yIpKQlA0eHfkSNHQiQS6byv4OBgzf/L5XLcuXMHHTt21LpNx44dcfHiRa1tzZs31/y/h4cHAKBZs2Za21JTU5/6+KGhoZr/d3V1RUBAgOaxLl68WGosV65cKfPQflkuXrwIKysrhISEaLa5ublpPR4A2NnZoX79+lrPo27dulq1pk97bl27dsWhQ4egVCqxf/9+dOvWDd26dcO+fftw584dXL16Fd26ddPcft26dejYsSM8PT3h4OCAzz77DImJiTo9v8c9fPgQMpms1PdDRcYNgNbzq+xrYmtrC5VKVaIMhohMFxNZIjK4Vq1aoUWLFlixYgXi4uJw/vx5jBw5slL7sre3r9T9pFKp5v/VCdOT28zxjPXHnwNQ9DxK21bec+vSpQuys7Nx4sQJHDhwQCuR3b9/P7y9vdGwYUMAQHR0NIYNG4a+ffti27ZtOHnyJD799FMUFBRU+jnUrFkTubm5pe6jIuMGQOv5VfY1SU9Ph729PWxtbSv5TIioujGRJaJqMXbsWCxbtgyRkZEICwvTOnmospycnODt7Y3Dhw9rbT98+DCaNGlS5f2X5ujRo5r/z8jIwOXLl9G4cWMAQOPGjUuNpVGjRpBIJAAAa2vrErOzpW1r3LgxCgsLERMTo9mWlpaG+Ph4vT83FxcXNG/eHD/99BOkUikCAwPRpUsXnDx5Etu2bUPXrl01tz1y5Aj8/Pzw6aefIjg4GA0bNsTNmzer9PjqnrMXLlyo0n6q6ty5c2jVqpVRYyAi3TCRJaJq8dprr+H27dv49ddfMXr0aL3t98MPP8S3336LdevWIT4+HlOnTsWpU6cwadIkvT3G42bNmoXdu3fj3LlzGDlyJGrWrKlp9v/+++9j9+7d+PLLL3H58mUsX74cP/30Ez744APN/evWrYsDBw4gKSkJ9+/f12x78OABdu/ejfv37yM3NxcNGzZE//798eabb+LQoUM4ffo0Xn/9ddSuXRv9+/fX+/Pq1q0bVq1apUlaXV1d0bhxY02XCLWGDRsiMTERa9euxbVr1zB//nz89ddfVXpsd3d3tG7dGocOHarSfqrq4MGD6NWrl1FjICLdMJElomrh7OyMgQMHwsHBoUKrPFXUxIkTERERgffffx/NmjXDzp07sWXLFs2hcH375ptvMGnSJLRp0wbJycnYunUrrK2tAQCtW7fG+vXrsXbtWjRt2hQzZszArFmztMooZs2ahRs3bqB+/fpwd3cHAHTo0AFvv/02hgwZAnd3d8ydOxcAEBkZiTZt2qBfv34IDQ2FIAjYvn17icPk+tC1a1colUqtWthu3bqV2Pbiiy9iypQpmDBhAlq2bIkjR45g+vTpVX78sWPHYtWqVVXeT2UlJSXhyJEjGDVqlNFiICLdiQRBEIwdBBE9G3r27ImgoCDMnz/f2KGQiXn48CECAgKwbt06rRPqqsvHH3+MjIwMLFmypNofm4gqz8rYARCR5cvIyMC+ffuwb98+/Pzzz8YOh0yQra0tVqxYoSm3qG61atVCRESEUR6biCqPM7JEZHB169ZFRkYGpk+frlUvSkREVBVMZImIiIjILPFkLyIiIiIyS0xkiYiIiMgsMZElIiIiIrPERJaIiIiIzBITWSIiIiIyS0xkiYiIiMgsMZElIiIiIrPERJaIiIiIzBITWSIiIiIyS/8PE5qFxvnzTbQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAFUCAYAAADYjN+CAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcmxJREFUeJzt3XdYU+fbB/BvFmGDIFNBceJeiOIeqNXW6q9Wq7UWR7VDq5UubWtbbR317bC21tFStdbdYW1rtVRxIyKKW1woigIKQhAEQnLePzBBZEggIcnx+7kuLuUkObmTJyF3nnOf+5EIgiCAiIiIiMjKSM0dABERERFRVTCRJSIiIiKrxESWiIiIiKwSE1kiIiIiskpMZImIiIjIKjGRJSIiIiKrxESWiIiIiKwSE1kiIiIiskpMZImIiIjIKjGRJSIykt27d0MikWD37t1G3a9EIsHHH39s1H0SEYkBE1kiEq2nn34a9vb2yM7OLvc6o0ePho2NDdLT02swstK2bdvGZJWIyEASQRAEcwdBRGQKGzduxMiRI7F69Wq8+OKLpS7Pzc2Fp6cn+vTpg61bt1b7/rRaLQoKCmBjYwOp1LB5gilTpmDJkiUo609yXl4e5HI55HJ5tWMkIhITzsgSkWg9/fTTcHJywrp168q8/I8//kBOTg5Gjx5drfvJy8uDVquFVCqFra2twUnso9ja2jKJJSIqAxNZIhItOzs7PPPMM9i5cyfS0tJKXb5u3To4OTnh6aefRkZGBt566y20atUKjo6OcHZ2xsCBA3H8+PESt9HVwW7YsAEffPAB6tSpA3t7e6hUqjJrZPft24fhw4fD398fSqUSfn5+mD59Ou7du6e/ztixY7FkyRIARfWwuh+dsmpkjx07hoEDB8LZ2RmOjo7o27cvDh06VOI6q1atgkQiwYEDBxAeHg4PDw84ODjgf//7H27dulXhc/f5559DIpHg6tWrpS6bOXMmbGxscOfOHQDAhQsXMGzYMHh7e8PW1hZ169bFyJEjkZWVVe7+z549Czs7u1Iz5fv374dMJsO7775bYXxERADAr/hEJGqjR4/G6tWrsWnTJkyZMkW/PSMjAzt27MCoUaNgZ2eH06dPY8uWLRg+fDgCAgKQmpqK5cuXo2fPnjhz5gx8fX1L7PeTTz6BjY0N3nrrLeTn58PGxqbM+9+8eTNyc3Px6quvwt3dHYcPH8Y333yD69evY/PmzQCAl19+GTdu3EBkZCTWrFnzyMd0+vRpdO/eHc7OznjnnXegUCiwfPly9OrVC3v27EGnTp1KXP/1119HrVq18NFHH+HKlStYtGgRpkyZgo0bN5Z7HyNGjMA777yDTZs24e233y5x2aZNm9C/f3/UqlULBQUFGDBgAPLz8/H666/D29sbycnJ+Ouvv5CZmQkXF5cy99+sWTN88sknePvtt/Hss8/i6aefRk5ODsaOHYvAwEDMmTPnkc8DEREEIiIRKywsFHx8fISQkJAS25ctWyYAEHbs2CEIgiDk5eUJGo2mxHUSExMFpVIpzJkzR78tKipKACA0aNBAyM3NLXF93WVRUVH6bQ9fRxAEYf78+YJEIhGuXr2q3zZ58mShvD/JAISPPvpI//vQoUMFGxsb4dKlS/ptN27cEJycnIQePXrot61cuVIAIISGhgparVa/ffr06YJMJhMyMzPLvD+dkJAQoUOHDiW2HT58WAAg/PTTT4IgCMKxY8cEAMLmzZsr3FdZNBqN0K1bN8HLy0u4ffu2MHnyZEEulwuxsbEG74uIHk8sLSAiUZPJZBg5ciSio6Nx5coV/fZ169bBy8sLffv2BQAolUp9batGo0F6ejocHR3RtGlTHD16tNR+w8LCYGdn98j7f/A6OTk5uH37Nrp06QJBEHDs2DGDH49Go8G///6LoUOHokGDBvrtPj4+eP7557F//36oVKoSt5k0aVKJUoXu3btDo9GUWTbwoOeeew5xcXG4dOmSftvGjRuhVCoxZMgQANDPuO7YsQO5ubkGPRapVIpVq1bh7t27GDhwIL777jvMnDkTQUFBBu2HiB5fTGSJSPR0J3PpTvq6fv069u3bh5EjR0ImkwEo6jjw1VdfoXHjxlAqlahduzY8PDxw4sSJMms9AwICKnXfSUlJGDt2LNzc3ODo6AgPDw/07NkTACqsIS3PrVu3kJubi6ZNm5a6rFmzZtBqtbh27VqJ7f7+/iV+r1WrFgDoa1zLM3z4cEilUn0JgiAI2Lx5s742Fyh6HsLDw/HDDz+gdu3aGDBgAJYsWVLpx9awYUN8/PHHiI2NRYsWLTBr1qxK3Y6ICGAiS0SPgQ4dOiAwMBDr168HAKxfvx6CIJToVjBv3jyEh4ejR48e+Pnnn7Fjxw5ERkaiRYsW0Gq1pfZZmdlYjUaDfv364e+//8a7776LLVu2IDIyEqtWrQKAMvdrCrpk/WHCI7ov+vr6onv37ti0aRMA4NChQ0hKSsJzzz1X4npffPEFTpw4gffeew/37t3D1KlT0aJFC1y/fr1S8f37778AgBs3bpi9ny8RWRcmskT0WBg9ejROnTqFEydOYN26dWjcuDE6duyov/yXX35B7969ERERgZEjR6J///4IDQ1FZmZmle/z5MmTOH/+PL744gu8++67GDJkCEJDQ0udOAagxKH/inh4eMDe3h4JCQmlLjt37hykUin8/PyqHPPDnnvuORw/fhwJCQnYuHEj7O3tMXjw4FLXa9WqFT744APs3bsX+/btQ3JyMpYtW/bI/S9btgyRkZGYO3cuCgoK8PLLLxstdiISPyayRPRY0M2+fvjhh4iPjy/VO1Ymk5Waody8eTOSk5OrfJ+6mdAH9ysIAr7++utS13VwcACARybOMpkM/fv3xx9//FGi5jc1NRXr1q1Dt27d9If9jWHYsGGQyWRYv349Nm/ejKeeekofKwCoVCoUFhaWuE2rVq0glUqRn59f4b4TExPx9ttvY9iwYXjvvffw+eefY+vWrfjpp5+MFj8RiRvbbxHRYyEgIABdunTBH3/8AQClEtmnnnoKc+bMwbhx49ClSxecPHkSa9euLXFClaECAwPRsGFDvPXWW0hOToazszN+/fXXMmtTO3ToAACYOnUqBgwYoD9JrSyffvopIiMj0a1bN7z22muQy+VYvnw58vPzsXDhwirHWxZPT0/07t0bX375JbKzs0uVFezatQtTpkzB8OHD0aRJExQWFmLNmjWQyWQYNmxYufsVBAHjx4+HnZ0dli5dCqCoDdmvv/6KadOmlTtzTUT0IM7IEtFjQ5e8BgcHo1GjRiUue++99/Dmm29ix44dmDZtGo4ePYq///67WofpFQoF/vzzT7Rt2xbz58/H7Nmz0bhx4zJnHJ955hm8/vrr2L59O8aMGYNRo0aVu98WLVpg3759aNmypX6/9erVQ1RUVKkessbw3HPPITs7G05OThg0aFCJy9q0aYMBAwbgzz//RHh4OD7++GM4Ojrin3/+QefOncvd5zfffIPdu3dj2bJl8PDw0G+PiIiAVqvFxIkTjf44iEh8JMKjqv2JiIiIiCwQZ2SJiIiIyCoxkSUiIiIiq8REloiIiIisEhNZIiIiIrJKTGSJiIiIyCoxkSUiIiIiq8QFEVC03vmNGzfg5ORU6WUiiYiIiMgwgiAgOzsbvr6+kEqrP5/KRBbAjRs3jLo2ORERERGV79q1a6hbt26198NEFoCTkxOAonW/3dzczBwNmYJarca///6L/v37Q6FQmDscMgGOsfhxjMWPYyx+GRkZCAgI0Ode1cVEFtCXEzg5OcHZ2dnM0ZApqNVq2Nvbw9nZmX8cRYpjLH4cY/HjGIufWq0GAKOVcvJkLyIiIiKySkxkiYiIiMgqMZElIiIiIqvERJaIiIiIrBITWSIiIiKySmZNZPfu3YvBgwfD19cXEokEW7ZsKXG5IAj48MMP4ePjAzs7O4SGhuLChQslrpORkYHRo0fD2dkZrq6umDBhAu7evVuDj4KIiIiIzMGsiWxOTg7atGmDJUuWlHn5woULsXjxYixbtgwxMTFwcHDAgAEDkJeXp7/O6NGjcfr0aURGRuKvv/7C3r17MWnSpJp6CERERERkJmbtIztw4EAMHDiwzMsEQcCiRYvwwQcfYMiQIQCAn376CV5eXtiyZQtGjhyJs2fPYvv27YiNjUVQUBAA4JtvvsGgQYPw+eefw9fX16B4kjJyoBJsq/egzMxRKYeHk9LcYRAREZER3ci8h/xCrbnDqLbMOzlG3Z/FLoiQmJiIlJQUhIaG6re5uLigU6dOiI6OxsiRIxEdHQ1XV1d9EgsAoaGhkEqliImJwf/+978y952fn4/8/Hz97yqVCgAw5LsYSJX2JnpENUMiAZaPbofeTT3MHYpF0TVg1v1L4sMxFj+OsfhxjMu28uBVzPsnwdxhGIU2P9eo+7PYRDYlJQUA4OXlVWK7l5eX/rKUlBR4enqWuFwul8PNzU1/nbLMnz8fs2fPLrXdViZAJhOqG7rZFGgBjSDBH3uO4N4l630cphQZGWnuEMjEOMbixzEWP45xSTsuSAFIIZcIUFj5afoaI+dZFpvImtLMmTMRHh6u/12lUsHPzw973+oBd3d3M0ZWPe9vOY1Ncclo0qQpBvVqYO5wLIparUZkZCT69evHZQ9FimMsfhxj8eMYl+2/zScQdzsFbw9oivFd65s7nGpJT0+HzxfG25/FJrLe3t4AgNTUVPj4+Oi3p6amom3btvrrpKWllbhdYWEhMjIy9Lcvi1KphFJZuo5UoVBY9RtHJiv6miaVSq36cZiStY8xPRrHWPw4xuLHMS5JIin6fJfJZFb/vBg7foudoA4ICIC3tzd27typ36ZSqRATE4OQkBAAQEhICDIzMxEXF6e/zq5du6DVatGpU6caj9n8JAAAFhUQERGJh+5zXSKRmDUOS2TWGdm7d+/i4sWL+t8TExMRHx8PNzc3+Pv744033sCnn36Kxo0bIyAgALNmzYKvry+GDh0KAGjWrBmeeOIJTJw4EcuWLYNarcaUKVMwcuRIgzsWiIHu9S0wkyUiIhIN4f4HO9PY0syayB45cgS9e/fW/66rWw0LC8OqVavwzjvvICcnB5MmTUJmZia6deuG7du3w9a2uEXW2rVrMWXKFPTt2xdSqRTDhg3D4sWLa/yxWALdC1zgnCwREZFoFM/ImjUMi2TWRLZXr176bxllkUgkmDNnDubMmVPuddzc3LBu3TpThGd1OCNLREQkQvc/15nHlmaxNbJkOAlrZImIiERHd6SVNbKlMZEVkeIZWaayREREYqG9v6CXlHlsKUxkRUR6P5NlHktERCQe+nNfOCNbChNZEeLJXkREROIhsEa2XExkRYQnexEREYkPuxaUj4msiPBkLyIiIvEpnpFlJvswJrIiwhlZIiIiMdJ1LTBzGBaIiayIcEEEIiIi8WGNbPmYyIqIpDiTJSIiIpFgjWz5mMiKiK5Rspa1BURERKKh+1xnjWxpTGRFhDWyRERE4iOwjWy5mMiKCLsWEBERiU9xaQEz2YcxkRURzsgSERGJj6AvLaCHMZEVEXYtICIiEi9OyJbGRFZEOCNLREQkPqyRLR8TWRHh2YxERETiozvSys/50pjIikjxjCynZImIiMSCM7LlYyIrIlwPgYiISHw4P1U+JrJiwgURiIiIREf3uS7llGwpTGRFRMqTvYiIiESHS9SWj4msiHBBBCIiIhHS1cjyZK9SLD6Rzc7OxhtvvIF69erBzs4OXbp0QWxsrP5yQRDw4YcfwsfHB3Z2dggNDcWFCxfMGLH5sP0WERGR+Oi7FjCPLcXiE9mXXnoJkZGRWLNmDU6ePIn+/fsjNDQUycnJAICFCxdi8eLFWLZsGWJiYuDg4IABAwYgLy/PzJHXvOLXNzNZIiIisdB3LTBvGBbJohPZe/fu4ddff8XChQvRo0cPNGrUCB9//DEaNWqEpUuXQhAELFq0CB988AGGDBmC1q1b46effsKNGzewZcsWc4df4zgjS0REJD6skS2fRSeyhYWF0Gg0sLW1LbHdzs4O+/fvR2JiIlJSUhAaGqq/zMXFBZ06dUJ0dHRNh2t2kvuvcCayRERE4lHcH56Z7MPk5g6gIk5OTggJCcEnn3yCZs2awcvLC+vXr0d0dDQaNWqElJQUAICXl1eJ23l5eekvK0t+fj7y8/P1v6tUKgCAWq2GWq02wSOpGVqNBgCg0Wqt+nGYgu754PMiXhxj8eMYix/HuGy69ltajcbqnxtjx2/RiSwArFmzBuPHj0edOnUgk8nQvn17jBo1CnFxcVXe5/z58zF79uxS26OiomBvb1+dcM0qIVkCQIaka9ewbdtVc4djkSIjI80dApkYx1j8OMbixzEu6c4dGQAJjh6Ng/qKdR92zc3NNer+LD6RbdiwIfbs2YOcnByoVCr4+PjgueeeQ4MGDeDt7Q0ASE1NhY+Pj/42qampaNu2bbn7nDlzJsLDw/W/q1Qq+Pn5oXfv3nB3dzfZYzG1a3sT8VfSBdSpWxeDBrU0dzgWRa1WIzIyEv369YNCoTB3OGQCHGPx4xiLH8e4bBFJh4C7KgQFdUDfQE9zh1Mt6enpRt2fxSeyOg4ODnBwcMCdO3ewY8cOLFy4EAEBAfD29sbOnTv1iatKpUJMTAxeffXVcvelVCqhVCpLbVcoFFb9xlHIZQCKamWt+XGYkrWPMT0ax1j8OMbixzF+yP1zYBRyudU/L8aO3+IT2R07dkAQBDRt2hQXL17E22+/jcDAQIwbNw4SiQRvvPEGPv30UzRu3BgBAQGYNWsWfH19MXToUHOHXuP0ZzNa91EHIiIieoC+/RbP9SrF4hPZrKwszJw5E9evX4ebmxuGDRuGuXPn6jP6d955Bzk5OZg0aRIyMzPRrVs3bN++vVSng8cBV/YiIiISH/2CCOxaUIrFJ7IjRozAiBEjyr1cIpFgzpw5mDNnTg1GZZmK+8gylSUiIhILdt8qX5USWbVajZSUFOTm5sLDwwNubm7GjouqgWksERGReHBlr/JVekGE7OxsLF26FD179oSzszPq16+PZs2awcPDA/Xq1cPEiRMRGxtryljpEbggAhERkfgUr+zFVPZhlUpkv/zyS9SvXx8rV65EaGgotmzZgvj4eJw/fx7R0dH46KOPUFhYiP79++OJJ57AhQsXTB03lYHnehEREYmPrmSQaWxplSotiI2Nxd69e9GiRYsyLw8ODsb48eOxbNkyrFy5Evv27UPjxo2NGig9mu6LmpZTskRERKKh+1iXcka2lEolsuvXr6/UzpRKJV555ZVqBURVp395M48lIiISDX3XAuaxpVS6RhYAcnJy9P+/cuWKsWOhapJKde23mMkSERGJBU/2Kl+lE9mpU6fCz88Py5cvBwA8//zzJguKqkZfI8s8loiISDT0H+vMZEupdPutnTt3IiUlBa+99hpq165typioqti1gIiISHSKT/ZiJvuwSieyderUgY2NDZYvX46hQ4fixo0bpoyLqqC4awEzWSIiIrEobr9l1jAsUqVLCxo3bozCwkLIZDKsWLECrq6uJgyLqqJ4ZS/zxkFERERGxBrZclV6RnbJkiX6//v4+CA+Pt4U8VA16A45MI8lIiISDy6IUL4qLVGbl5eHEydOIC0tDVqttsRlTz/9tFECI8MVz8gylSUiIhILXX94KfPYUgxOZLdv344XX3wRt2/fLnWZRCKBRqMxSmBkOHYtICIiEh99+y0msqUY1EcWAF5//XUMHz4cN2/ehFarLfHDJNa89DOy5g2DiIiIjKj4JG5msg8zOJFNTU1FeHg4vLy8TBEPVYNE336LqSwREZFYcEa2fAYnss8++yx2795tglCouorbbxEREZFYcGWv8hlcI/vtt99i+PDh2LdvH1q1agWFQlHi8qlTpxotODKMhAsiEBERiRa7FpRmcCK7fv16/Pvvv7C1tcXu3btLPKkSiYSJrBlxRpaIiEh8ilf2oocZnMi+//77mD17NmbMmAGp1ODKBDIhtt8iIiISH67sVT6DM9GCggI899xzTGItEF/gRERE4lNcI8sP+ocZnI2GhYVh48aNpoiFqkn3AtdyRpaIiEg0dJ/rnLAqzeDSAo1Gg4ULF2LHjh1o3bp1qZO9vvzyS6MFR4YpLi0wbxxERERkPCwtKJ/BM7InT55Eu3btIJVKcerUKRw7dkz/Ex8fb9TgNBoNZs2ahYCAANjZ2aFhw4b45JNPStSACoKADz/8ED4+PrCzs0NoaCguXLhg1DisBbsWEBERiQ9LC8pn8IxsVFSUKeIo02effYalS5di9erVaNGiBY4cOYJx48bBxcVF3x1h4cKFWLx4MVavXo2AgADMmjULAwYMwJkzZ2Bra1tjsVqC4q4FzGSJiIjEg6UF5TE4ka1JBw8exJAhQ/Dkk08CAOrXr4/169fj8OHDAIpmYxctWoQPPvgAQ4YMAQD89NNP8PLywpYtWzBy5EizxW4OLC0gIiISH67sVT6DE9m8vDx88803iIqKQlpaGrRabYnLjx49arTgunTpghUrVuD8+fNo0qQJjh8/jv379+vrcBMTE5GSkoLQ0FD9bVxcXNCpUydER0eXm8jm5+cjPz9f/7tKpQIAqNVqqNVqo8Vf07QaTdG/gmDVj8MUdM8Hnxfx4hiLH8dY/DjGZdOd7KUpLLT658bY8RucyE6YMAH//vsvnn32WQQHB5t0lYkZM2ZApVIhMDAQMpkMGo0Gc+fOxejRowEAKSkpAAAvL68St/Py8tJfVpb58+dj9uzZpbZHRUXB3t7eiI+gZsWnSwDIkJGegW3btpk7HIsUGRlp7hDIxDjG4scxFj+OcUkFBTIAEuzbtw8XrTdNAQDk5uYadX8GJ7J//fUXtm3bhq5duxo1kLJs2rQJa9euxbp169CiRQvEx8fjjTfegK+vL8LCwqq835kzZyI8PFz/u0qlgp+fH3r37g13d3djhG4W0tOpWHn+OGq51cKgQcHmDseiqNVqREZGol+/fqU6bZA4cIzFj2Msfhzjsn0UHwUUqtGjRw809nQ0dzjVkp6ebtT9GZzI1qlTB05OTkYNojxvv/02ZsyYoS8RaNWqFa5evYr58+cjLCwM3t7eAIDU1FT4+Pjob5eamoq2bduWu1+lUgmlUllqu0KhsOo3jkIuAwAIkFj14zAlax9jejSOsfhxjMWPY1ySrrTARgTPi7HjN7j91hdffIF3330XV69eNWogZcnNzS21gphMJtPX5QYEBMDb2xs7d+7UX65SqRATE4OQkBCTx2d5dO23eLYXERGRWLCPbPkMnpENCgpCXl4eGjRoAHt7+1KZdUZGhtGCGzx4MObOnQt/f3+0aNECx44dw5dffonx48cDKOqb+sYbb+DTTz9F48aN9e23fH19MXToUKPFYS30XQvMGwYREREZk76PLD3M4ER21KhRSE5Oxrx58+Dl5WXSk72++eYbzJo1C6+99hrS0tLg6+uLl19+GR9++KH+Ou+88w5ycnIwadIkZGZmolu3bti+fftj10MWAKRcEIGIiEh0imdkmco+zOBE9uDBg4iOjkabNm1MEU8JTk5OWLRoERYtWlTudSQSCebMmYM5c+aYPB5LV7wgAhEREYmFrmSQaWxpBtfIBgYG4t69e6aIhapJ/0WNU7JERESiwRrZ8hmcyC5YsABvvvkmdu/ejfT0dKhUqhI/ZD6skSUiIhIf/cpenJMtxeDSgieeeAIA0Ldv3xLbBUGARCKB5v7qUlTzJGCNLBERkdgI96eoOCNbmsGJbFRUlCniIGPQz8gykyUiIhIL/YwsE9lSDE5ke/bsaYo4yAh0r+/7bXaJiIhIBIoTWWayD6tUjWxSUpJBO01OTq5SMFQ9uhc452OJiIjEQ19aYOY4LFGlEtmOHTvi5ZdfRmxsbLnXycrKwvfff4+WLVvi119/NVqAVHnFTQuYyhIREYkFSwvKV6nSgjNnzmDu3Lno168fbG1t0aFDB/j6+sLW1hZ37tzBmTNncPr0abRv3x4LFy7EoEGDTB03lUHKVzgREZHo6NtvcU62lErNyLq7u+PLL7/EzZs38e2336Jx48a4ffs2Lly4AAAYPXo04uLiEB0dzSTWjPTttzghS0REJBr6BRGYx5Zi0MlednZ2ePbZZ/Hss8+aKh6qhuKVvZjJEhERiUXxjCw9zOAFEciCcUaWiIhIdARmsuViIisi+gURzBwHERERGceDJ3CzRrY0JrIioqud0XJKloiISBQe/EiXMo8thYmsiOhf38xjiYiIROHBj3QuiFAaE1kR4YIIRERE4lKytIAeVqVEds2aNejatSt8fX1x9epVAMCiRYvwxx9/GDU4Mkxx+y2mskRERGJQckbWbGFYLIMT2aVLlyI8PByDBg1CZmYmNBoNAMDV1RWLFi0ydnxkAF3tDNNYIiIicXhwboone5VmcCL7zTff4Pvvv8f7778PmUym3x4UFISTJ08aNTgy1P3SAmayREREolCiNzzz2FIMTmQTExPRrl27UtuVSiVycnKMEhRVjb60gHOyREREolBiRpaJbCkGJ7IBAQGIj48vtX379u1o1qyZMWKiKtKv7MU8loiISHSYx5Zm0BK1ABAeHo7JkycjLy8PgiDg8OHDWL9+PebPn48ffvjBFDFSJem7FjCRJSIiEoWSfWSZyj7M4BnZl156CZ999hk++OAD5Obm4vnnn8fSpUvx9ddfY+TIkUYPsH79+pBIJKV+Jk+eDADIy8vD5MmT4e7uDkdHRwwbNgypqalGj8MaFM/IMpMlIiISgwcXOWIeW5rBM7IAMHr0aIwePRq5ubm4e/cuPD09jR2XXmxsrL4zAgCcOnUK/fr1w/DhwwEA06dPx99//43NmzfDxcUFU6ZMwTPPPIMDBw6YLCZLJWHXAiIiIlEp0X6LxQWlGJzIJiYmorCwEI0bN4a9vT3s7e0BABcuXIBCoUD9+vWNGqCHh0eJ3xcsWICGDRuiZ8+eyMrKQkREBNatW4c+ffoAAFauXIlmzZrh0KFD6Ny5s1FjsXQSdi0gIiISFYEzshUyuLRg7NixOHjwYKntMTExGDt2rDFiKldBQQF+/vlnjB8/HhKJBHFxcVCr1QgNDdVfJzAwEP7+/oiOjjZpLJaIXQuIiIjEhZ/oFTN4RvbYsWPo2rVrqe2dO3fGlClTjBJUebZs2YLMzEx9wpySkgIbGxu4urqWuJ6XlxdSUlLK3U9+fj7y8/P1v6tUKgCAWq2GWq02etw1RaMpBFA0I2vNj8MUdM8Hnxfx4hiLH8dY/DjGpakLip+LwsJCqKE1YzTVZ+yxNTiRlUgkyM7OLrU9KyurRC2rKURERGDgwIHw9fWt1n7mz5+P2bNnl9oeFRWlL5WwRsk5ACBHXl4etm3bZu5wLFJkZKS5QyAT4xiLH8dY/DjGxXILAV26tmP7dsgNPpZuWXJzc426P4MT2R49emD+/PlYv369fmUvjUaD+fPno1u3bkYN7kFXr17Ff//9h99++02/zdvbGwUFBcjMzCwxK5uamgpvb+9y9zVz5kyEh4frf1epVPDz80Pv3r3h7u5ukvhrwrmUbCw8EQ0bpRKDBvUydzgWRa1WIzIyEv369YNCoTB3OGQCHGPx4xiLH8e4tMxcNWbGRgEABg58AgqZdWey6enpRt2fwYnsZ599hh49eqBp06bo3r07AGDfvn1QqVTYtWuXUYN70MqVK+Hp6Yknn3xSv61Dhw5QKBTYuXMnhg0bBgBISEhAUlISQkJCyt2XUqmEUqkstV2hUFj1G0ehkD/wf+t9HKZk7WNMj8YxFj+OsfhxjIvJ5cVVskobG8ik1n3Gl7HH1eC0vnnz5jhx4gRGjBiBtLQ0ZGdn48UXX8S5c+fQsmVLowano9VqsXLlSoSFhUEuL07WXFxcMGHCBISHhyMqKgpxcXEYN24cQkJCHruOBUBx1wItK8OJiIhEoUQfWTPGYamq1EfW19cX8+bNM3Ys5frvv/+QlJSE8ePHl7rsq6++glQqxbBhw5Cfn48BAwbgu+++q7HYLIm+awH7bxEREYlCiT6yzGRLqVQie+LECbRs2RJSqRQnTpyo8LqtW7c2SmAP6t+/f7nJma2tLZYsWYIlS5YY/X6tjX5lL7NGQURERMbyYPojYSZbSqUS2bZt2yIlJQWenp5o27YtJBJJmYmlRCIxeecCKl/xjKx54yAiIiLjYG/4ilUqkU1MTNSvsJWYmGjSgKjqdN/UWFpAREQkEvc/0jkZW7ZKJbL16tUr8/9kWVhaQEREJC66z3TmsWWrVCK7devWSu/w6aefrnIwVD2S4jVqiYiISAQE/YwsU9myVCqRHTp0aKV2xhpZ8+KMLBERkbjoamSZxpatUomsVmvd6/o+LnRf1rSskSUiIhIFXW94KWdky2SUdc4yMzONsRuqJt2CCMxjiYiIxEF/Ajfz2DIZnMh+9tln2Lhxo/734cOHw83NDXXq1MHx48eNGhwZprhElpksERGRGDCPrZjBieyyZcvg5+cHAIiMjMR///2H7du3Y+DAgXj77beNHiAZjjOyRERE4sLKgrIZvERtSkqKPpH966+/MGLECPTv3x/169dHp06djB4gVR6bFhAREYlL8YwsM9myGDwjW6tWLVy7dg0AsH37doSGhgIoquFgxwLzkjKTJSIiEhV91wLmsWUyeEb2mWeewfPPP4/GjRsjPT0dAwcOBAAcO3YMjRo1MnqAVHmskSUiIhIX1shWzOBE9quvvkL9+vVx7do1LFy4EI6OjgCAmzdv4rXXXjN6gFR57FpAREQkLvqVvTglWyaDE1mFQoG33nqr1Pbp06cbJSCqOlYWEBERiYuu/Rbz2LIZpY8sWQbda5wLIhAREYmDlqUFFWIiKya6GVnmsURERCKhm5FlKlsWJrIiwtYcRERE4qI/2Ysf8WViIisiD77IBU7LEhERWT39yV5mjcJyVTqR/eSTT3Dp0qVyL1epVBg/frxRgqKqefBFzjyWiIjI+hXPyDKVLUulE9mPPvoIwcHB+O+//8q8/N69e1i9erXRAiPDSR94kTOPJSIisn76BRHMHIelMqi0YMiQIRg0aBC++uorU8VD1cDSAiIiInFhjWzFKp3ISiQSLFiwACtXrsQHH3yAsWPHoqCgwJSxkYEePNmLaSwREZH1K56XYiZblkonsroZvtGjR2Pv3r2IiopCjx49cPPmTZMFBwDJycl44YUX4O7uDjs7O7Rq1QpHjhwpEdeHH34IHx8f2NnZITQ0FBcuXDBpTBbrgdc4e8kSERFZP93nuZR5bJmq1LWgQ4cOiI2NhY2NDYKCghATE2PsuAAAd+7cQdeuXaFQKPDPP//gzJkz+OKLL1CrVi39dRYuXIjFixdj2bJliImJgYODAwYMGIC8vDyTxGTJSpYWmC8OIiIiMi6WFpSt0kvUPny2nKenJ3bt2oXXX38dvXr1wocffmj04D777DP4+flh5cqV+m0BAQH6/wuCgEWLFuGDDz7AkCFDAAA//fQTvLy8sGXLFowcOdLoMVkyvsaJiIjERV8jy0/5MlU6kS3r5CG5XI6lS5eiXbt2mDp1qlEDA4CtW7diwIABGD58OPbs2YM6dergtddew8SJEwEAiYmJSElJQWhoqP42Li4u6NSpE6Kjo8tNZPPz85Gfn6//XaVSAQDUajXUarXRH0dNKSws1P+/oEANGbRmjMay6MbVmseXKsYxFj+OsfhxjEtTF+qeC0EUz4uxH0OlE9mPPvoIjo6OZV42adIktGjRAhEREUYLDAAuX76MpUuXIjw8HO+99x5iY2MxdepU2NjYICwsDCkpKQAALy+vErfz8vLSX1aW+fPnY/bs2aW2R0VFwd7e3qiPoSblawDdkG7fsQNKmVnDsUiRkZHmDoFMjGMsfhxj8eMYF7t6FwDkyMvLw7Zt28wdTrXl5uYadX+VTmQ9PDwqTPK6du2Krl27GiUoHa1Wi6CgIMybNw8A0K5dO5w6dQrLli1DWFhYlfc7c+ZMhIeH639XqVTw8/ND79694e7uXu24zSW3oBDvHN4FAOjfvz8clJUeXtFTq9WIjIxEv379oFAozB0OmQDHWPw4xuLHMS7t+PUsfHkyBvZ2dhg0qIe5w6m29PR0o+6v0pnOBx98gD/++AMrV66Er6+vUYMoj4+PD5o3b15iW7NmzfDrr78CALy9vQEAqamp8PHx0V8nNTUVbdu2LXe/SqUSSqWy1HaFQmHVbxzlA+fuyRUKKBRMZB9m7WNMj8YxFj+OsfhxjIvJZEWHVyUSiSieE2M/hkp3LTh16hTkcjlatmyJn3/+2ahBlKdr165ISEgose38+fOoV68egKITv7y9vbFz50795SqVCjExMQgJCamRGC0VF0QgIiKyfrpPc3YtKFulp+x8fX3x999/Y9WqVZg6dSp+//13vP/++5DLS+6idevWRgtu+vTp6NKlC+bNm4cRI0bg8OHDWLFiBVasWAGg6NvJG2+8gU8//RSNGzdGQEAAZs2aBV9fXwwdOtRocViLEu23zBcGERERGYluXkrKTLZMBh97Hjt2LOrWrYsnnngCW7ZsgSAIkEgk+n81Go3RguvYsSN+//13zJw5E3PmzEFAQAAWLVqE0aNH66/zzjvvICcnB5MmTUJmZia6deuG7du3w9bW1mhxWIsSK3uxYQEREZHV0x1hZR5bNoMT2S+//BKzZs3CCy+8gFmzZpWakTW2p556Ck899VS5l0skEsyZMwdz5swxaRzWoOSMLOdkiYiIrJ2+tMCsUViuSmehly9fRlhYGC5cuIB169bpFyAgy/Hgi5wlskRERNZPvyACp2TLVOmTvVq3bg0vLy+cOnWKSayFevBFzjyWiIjI+ulLC8wch6Wq9IzssmXL8MILL5gyFqqmkjOyTGWJiIisnf7TnJlsmSo9I8sk1vKxawEREZG46EsLzBuGxap0IkuWr0RpATNZIiIiq6c7eZs1smVjIisyutc5uxYQERGJgL6PrHnDsFSVSmRPnDgBrZaNSa2B7nXOGVkiIiLrp9WXFjCTLUulEtl27drh9u3bAIAGDRogPT3dpEFR1ekOPTCRJSIisn7FpQVmDsRCVSqRdXV1RWJiIgDgypUrnJ21YPoZWZYWEBERWT1OTFWsUu23hg0bhp49e8LHxwcSiQRBQUGQyWRlXvfy5ctGDZAMo6+R5QufiIjI6ulX9uKUbJkqlciuWLECzzzzDC5evIipU6di4sSJcHJyMnVsVAVFNTScjyUiIhIDLohQsUoviPDEE08AAOLi4jBt2jQmspZKPyPLVJaIiMjaFc/ImjUMi1XpRFZn5cqV+v9fv34dAFC3bl3jRUTVwq4FREREIqLrWsBEtkwG95HVarWYM2cOXFxcUK9ePdSrVw+urq745JNPeBKYBZDylU5ERCQa+q4FLC4ok8Ezsu+//z4iIiKwYMECdO3aFQCwf/9+fPzxx8jLy8PcuXONHiRVHk/2IiIiEg+BCyJUyOBEdvXq1fjhhx/w9NNP67e1bt0aderUwWuvvcZE1sx0r3MtM1kiIiKrp2WRbIUMLi3IyMhAYGBgqe2BgYHIyMgwSlBUdfoFEcwcBxEREVUfuxZUzOBEtk2bNvj2229Lbf/222/Rpk0bowRFVVd8shdTWSIiImvHCdmKGVxasHDhQjz55JP477//EBISAgCIjo7GtWvXsG3bNqMHSAbS1ciaNwoiIiIyAt28FPPYshk8I9uzZ0+cP38e//vf/5CZmYnMzEw888wzSEhIQPfu3U0RIxmA7beIiIjE5H5pAadky2TwjCwA+Pr68qQuC1X8QmcmS0REZO04I1sxg2dka9LHH38MiURS4ufBE83y8vIwefJkuLu7w9HREcOGDUNqaqoZIzY/aRXab+09fwt/xCdbTF3tzax7+HF/IjJyCswdCpFRabUCNsVew8Lt55CUnmvucAAAx69lYv62s4g883j/7SRxSkrPxcoDiVDlqc0dCgBArdHi50NXcSo5q9K3YY1sxao0I1uTWrRogf/++0//u1xeHPL06dPx999/Y/PmzXBxccGUKVPwzDPP4MCBA+YI1SIY2rXgt6PXEb7pOADg+p17mNy7kYkiq5z0u/l4dmk0kjPvYXPcdWyY1BkudgqzxkRkDIIgYPafp7E6+ioA4MiVO9j0SohZY8ov1GDSmiNIVeVj+d7L+GRIC4wJqW/WmIiM5Wp6Dp5dFo1b2fn468RNrJ/YGTZy887fvfvLCfx2LBm2CinWTOiEjvXdHnkb/YwsM9kyWfSMLFCUuHp7e+t/ateuDQDIyspCREQEvvzyS/Tp0wcdOnTAypUrcfDgQRw6dMjMUZuPIX1kI8+k4u1fTuh//3rnBaRl55kosspZtucSkjPvAQDO3lRhwqpY3CvQmDUmImP46r8L+iQWAA5fyUDc1TtmjAjYciwZqap8/e8fbj2NP+KTzRgRkXGkqvLwQkQMbmUXvb7jrt7BlmPmfW3HXc3Ab/djyFNrMX5VLE7fePTMrJbttypk8YnshQsX4OvriwYNGmD06NFISkoCAMTFxUGtViM0NFR/3cDAQPj7+yM6Otpc4ZpdZVf2ir6UjsnrjkKjFTCsfV2083dFQaEWKw9cMXmM5cnKVWNdTNH4vvNEUzjbynHk6h288nMcCgq5/DFZr4j9iVi88wIA4JMhLTAiqC6Aoi9u5qLVCli+9zIA4P1BzRAWUg+CALy56Th2nWOZAVmvzNwCjImIwbWMe6jnbo+J3QMAAMv2XoJWa74SuqW7i95vQ9r6Iri+G7LzChH242Ek3s6p8HYsLaiYRZcWdOrUCatWrULTpk1x8+ZNzJ49G927d8epU6eQkpICGxsbuLq6lriNl5cXUlJSKtxvfn4+8vOLZyFUKhUAQK1WQ622jDqa6lKrC8t9LCeTs/DS6iMoKNQiNNADnz4diN3nb+PVdfFYE30VE7v6w8m25g/nrzpwGTkFGjT1csRLXfzRwc8FYauOYM/5W5i+4Ri+GN4Ksiqu0ad7LsQyvlSapY7xr0eT8clfZwAA0/s2wsigOuhYzxWb464j8kwqzibfQSNPxxqP698zqbh8KwfOtnI8294H9goZ7uQUYOuJm3j156P4Maw9gitx2LMmWeoYk/FUd4xz8gsRtioO51PvwstJiZVh7eFqZ4MNsddw+VYO/jmZjP7NvYwZcqVcSL2L/86mQiIBXusRAA8nG4yOOIKzKdkY/f0hbJgYDB8X2zJvW1hYWPQfQRDFa9/Yj0EiVOEMn19++QWbNm1CUlISCgpKnpBz9OhRowX3sMzMTNSrVw9ffvkl7OzsMG7cuBIJKQAEBwejd+/e+Oyzz8rdz8cff4zZs2eX2r5u3TrY29sbPe6aNOuIDCq1BG+3LkRdh9KXp+QCi0/LkFMoQWNnLV5upoVCWrQE3oLjMqTek+Bpfw361qnZb60FGmD2URnuFkowppEGQR5F9382U4Lvz0mhESTo4qXFiAAtv5WS1TiRIcGPCVIIkKCXjxZD6xW/fn84J8XJO1IEe2gxulHNHnEQBOCrUzJcvStBvzpaPOVfdP8aLRBxXorTd6SwlQmY0lwDv5rPsYmqpFALLD8nxfksKezlAqa20MDn/kf6X0lSRCZLUc9RwPSWmhr/HFl7UYrDt6Ro7abFhKZF77dsNbD4lAxpeRJ42RXF61jGHNKRWxKsuShDY2ctprSw/qOTubm5eP7555GVlQVnZ+dq78/gGdnFixfj/fffx9ixY/HHH39g3LhxuHTpEmJjYzF58uRqB1QRV1dXNGnSBBcvXkS/fv1QUFCAzMzMErOyqamp8Pb2rnA/M2fORHh4uP53lUoFPz8/9O7dG+7u7qYKv0bMPbUHKnU+unbthha+JV8gyZn3MO/7w8gpzEfrOs5YPS4Ijsril0C+TzJm/H4ah+7YY9647lDWYFH82sPXcLfwLOq42uK9F7pBLiu670EAmp1MwRubT+BgqhStmzbEm/0aG7x/tVqNyMhI9OvXDwoFTx4TI0sb44OX0vHTmqMQIGBYe1/MH9qixMkaPq0yMWLFYRzLkOHzrr3KnY0xhZjEDFw9dAQ2cinmvNATtR2V+sv6qTUY/9NRxF65gx8v22H9hGA08CjjW7EZWNoYk/FVdYwLNVpM23QC57PSYG8jw0/jgtCmrov+8uC7+djzxT5cvatF7ead0Smg5o423MzKw5sx+wAI+HB4SIm4uvW8h5HfH0aKKh8bbrph9dggONmWTM3Ux29izcWT8KhdG4MGBdVY3KaSnp5u1P0ZnMh+9913WLFiBUaNGoVVq1bhnXfeQYMGDfDhhx8iIyPDqME97O7du7h06RLGjBmDDh06QKFQYOfOnRg2bBgAICEhAUlJSfoVx8qjVCqhVCpLbVcoFFb/x1H3OSmXy0s8llvZ+Ri3+ihSVflo7OmIVeM7oZaDTYnbPtPBH1/vuoSbWXn462QqRgb710jMhRotfjxQdBLMxO4NYGdbcmyGtPdDbqGAmb+dxLK9iajloMTLPRtW6b7EMMZUMUsY4/hrmXh1XTzUGgFPtPDGZ8Pa6L+c6QQ38ECnADfEJGbgp0PX8MFTzWssvu/3F73fRgTVhU+tklOuCoUCP47tiFHfH8KpZBXGrY7D5le7oI6rXY3F9yiWMMZkWoaMsSAIeG/LCfx7Jg02Mim+fzEIQQG1S1zHp5YCwzvUxdqYJPxw4Cq6Nam58oLVhy6gUCugcwO3UnHV91Dg55c6Y8TyaJxMVuG19fFYNS4YtgqZ/jqy+387pFKpKF73xn4MBk+5JSUloUuXLgAAOzs7ZGdnAwDGjBmD9evXGzW4t956C3v27MGVK1dw8OBB/O9//4NMJsOoUaPg4uKCCRMmIDw8HFFRUYiLi8O4ceMQEhKCzp07GzUOayK5f17jgwUjWffU+oLyOq52WDOhE9weSmIBwEYuxYRuRUXxK/ZehqaGiuL/OZWCpIxc1LJXYERHvzKvMyrYHzMGFvUQnv/POaw/nFQjsREZ6nxqNsauPIzcAg26NnLH16PalkpidV7pVfSFbP3hJGTl1kzt25kbKuw5fwtSCTCpe9lfCJ1sFVg9rmgm9kZWHsb8EIPbd/PLvC6ROQmCgLl/n8XmuOuQSoBvnm+Hro1ql3ndST0aQCoBdifcwtmbqhqJLzO3QP959Uo5EzCNPB2xelwwHJVyHLqcgSnrjqFQU1xCUNx+y+ThWiWDE1lvb2/9zKu/v7++1VViYqLRG+pfv34do0aNQtOmTTFixAi4u7vj0KFD8PDwAAB89dVXeOqppzBs2DD06NED3t7e+O2334wag7XRL4hw/zzHewUavLQ6FmduqlDbUYm1L3WCdwWHMEcG+8PZVo7Lt3MQeabik+aMQRAE/ZnbYV3qw96m/IMEr/RsqP9D8N7vJ/H3iZsmj4/IENcycjEmIgaZuWq09XPFijFBUMpl5V6/VxMPBHo7IadAgzWHrtRIjMv3Fr3fBrXygb97+ecEuDsq8fOETvB1scXl2zkI+/GwxTSVJ9JZEnURP+xPBAB8Nqw1BrQov7SwnrsDBrbyAQAsr6GOIWuiryK3QINmPs7o2cSj3Ou1quuCH8KCYCOX4r+zqXjnlxP6DgvsI1sxgxPZPn36YOvWrQCAcePGYfr06ejXrx+ee+45/O9//zNqcBs2bMCNGzeQn5+P69evY8OGDWjYsPgbja2tLZYsWYKMjAzk5OTgt99+e2R9rNjpF0QQgIJCLV5dG4fYK3fgZCvHT+ODUb92xbVujko5XrzfEH1tjOlnPU8mZ+H0DRVsFVKEVaIR+7tPNMWoYD8IAvDGxmPYe/6WyWMkqoy07KK+lamqfDTxcsTKsR3hoKy4eksikei/nK08cAV5atP2TL6WkYu/7n8BLG926EG+rnZY81InuDvY4PQNFV5afcTkMRJV1proK/j83/MAgFlPNcfwoLKP6D3o1fuv+79O3ETWPdN+MRMEQT8b+3KPBo9MRDs3cMd3z7eHTCrBb8eSMeevMxAEobj9lkmjtV4GJ7IrVqzA+++/DwCYPHkyfvzxRzRr1gxz5szB0qVLjR4gVU2hVkD4pnjsTrgFW4UUK8d2RHPfyp0d+L/2dQAAhy6nm3wG5t/TRf0q+wR6lqrZLYtEIsGnQ1vhydY+UGsEvLwmDnFXTVubTfQoWblqvBhxGFfTc+HnVlS+U5nXMwA81doHvi62SM8pwO4E034x+yM+GRqtgC4N3dGyjsujbwCgoYcjVo8PhpNSjsOJGXht7VGoNdZ/5jRZtz/ik/Hh1tMAgKl9GunL4h6lZR0XNPZ0RKFWwO6ENFOGiNM3VLiRlQc7hQxPtKzcJFtocy98Prw1AGDVwSv4eueF4gURmMmWyeBEViqVllgmduTIkVi8eDFef/112NhU7g83mY7uhT5v21n8deImFDIJlo8JQpAB/SAbejiioYcD1BrB5B+s/94vX+jfvPIz6TKpBF+NaIueTTxwT63BuJWxNVbvRPSw3IJCjFt1GOdSsuHhVHQ43su58h0I5DKp/nDnvyYu5/n3TNEXx6fb+Bp0u5Z1XBAxtiOUcil2nUvDW5uPm7WxPD3edp1LxZubjkMQgLCQepjer4lBt+/fouhEL91Eiqn8e7ro/dyziUeJk7ce5X/t6mL20y0AAIv+u4CNsdcAcEa2PFXqr7Rv3z688MILCAkJQXJy0XJra9aswf79+40aHBlOl8jGXb0DiQT46rm2FdbllKff/cQy8ozp3uhX03NwPvUuZFIJejf1NOi2NnIplr7QHh3q1YIqrxBjIg7jyiNWRyEytvxCDV5eE4ejSZlwtpVjzYRg1HM3vFVVv/sN2nedSytxkocx3cy6hxPXsyCRAH2bGX7GdnCAG5a+0B5yqQR/xN/Ax3+eNvp5EUSPEnM5Ha/+fBSFWgFD2/rio8EtDK4d1X2+7U5IQ36h6UpldF8c+1VhAYawLvURfj9B1y1lzRrZshmcyP76668YMGAA7OzscOzYMf2CBFlZWZg3b57RAyTDSB74zjZ3aCs81dqwmRcd3TfW3efSTLY8rC5J7tzADS72hrfjsLeR48ewjgj0dsLtu/l4ISIGKVl5xg6TqEwarYDwjcex78Jt2ClkWDkuGIHeVWvuHVSvFmrZK5CZq0bslTtGjrTIf/ffb+39a8HDqXT7wcroE+iFL0a0gUQC/BR9FV9GnjdmiEQVOnV/Vcr8Qi36Bnri/4a3gbQKqz22ruMCL2clcgo0iL5k3J6mOtcycnEuJRsyqQR9Ag2bqNF5vU8jjO9aXDLBNLZsBieyn376KZYtW4bvv/++RC+wrl27mnRVL6oc3QfUu08E4vlOVe8D27auKzyclMjOL8Shy6Z5o+sO6/SrwuyQjou9Aj9NCEZ9d3tcv3MPYyJicCen4NE3JKoGQRDwwZaT+PtkUfnOihc7oEO9WlXen1wmRZ/AoveBqY6CVGd26EFD2tbBnCEtAQDf7LqIH/ZdrnZsRI9y6dZdhP14GNn5hegU4IYlo9tDUU5bu0eRSiUIvf+586+J328d69eqdL38wyQSCT54shmGta8LAFX+Aip2Br8KEhIS0KNHj1LbXVxckJmZaYyYqBq+fb4dNr0cgld7VW3BAJ2iN3rRt0hTfLCm383HkfsnaYVW84PV08kWayZ0gpezEhfS7mLsqljczS80RphEZVqw/RzWH74GqQT4emQ7dG9sePnOw3RHQSLPphj9kL0qT63/QmqMdebHdK6Htwc0BQB8+vdZbDpyrdr7JCpPcuY9jPkhBuk5BWhZxxk/hAUZVHNaFt0Xuv/OpJqk3lvXvrKfAed/lEUqlWDhs62xZkIwZg5sZozQRKdKfWQvXrxYavv+/fvRoEEDowRFVefjYodgIy291/+BOlljf7DuPJcGrQC08HVG3Vrl97KsLD83e/w8oRNc7RU4fi0Tk35imyAyjaW7L2H5nqJZyPnPtMKg+ydqVVf3xrWhlEtxLeMezqVkG2WfOrsTbkGtEdDQwwENPBwffYNKeK1XQ0zsXnTYc8avJ7D9lOn7TtPj5/bdfIz5IQY3svLQwMMBq8cFw8m2+itDhTR0h6NSjrTsfBy/nln9QB9wJ6cAhxOLJmqM8cVRJpWge2OPKpXgPQ4MTmQnTpyIadOmISYmBhKJBDdu3MDatWvx1ltv4dVXXzVFjGQmIQ3dYW8jQ4oqDyeTs4y670gjHeZ8UGMvJ6waFwwHGxkOXkrH1PXHTHbiDD2e1sUk4bPt5wAA7w0KxHMdjbeMs72NHN0bF61IZOyjIMXvN+P12ZZIJHhvUDOMCKoLrQBMXX8M+y/cNtr+iVR5RatSXr6dA18XW/w8oRPcHY1zeF0pl6Fn06IjKcZ+v+26P1ET6O0EP7fqT9RQxQxOZGfMmIHnn38effv2xd27d9GjRw+89NJLePnll/H666+bIkYyE1uFDL3uv9GN2abkXoEG+y4UtfUypO1WZbT1c8X3LxatjvLvmVTM+O0k2wSRUfx5/Abe33ISQNFs5KQe1SvfKYvu/WDMNlwFhVrsPlfUL1NXvmAsEokE8/7XCk+08EaBRotJa47gWJJpTlajx0ueWoOXVh/B6RsquDvY4OeXOsHX1c6o96GbLTV2nawuMe5fwSpjZDwGJbIajQb79u3D5MmTkZGRgVOnTuHQoUO4desWPvnkE1PFSGakmzE15jfWfRduIU+tRR1XOzTzcTLafnW6NKqNb0e1g0wqwS9x1/Hp32fZJoiqZXdCGsI3xUMQgNGd/PX1ocbWp5knJBLgVLIKNzLvGWWfhy6nIzu/EB5OSrSt62qUfT5ILpPi61Ft0a1RbeQWaDB2ZSwSjFwaQY8XjRZ4fcNxHE7MgJNSjtXjg41WEvOgXk09IZdKcDHtLhKN1L4xT63BnvO6iRrjfnGkshmUyMpkMvTv3x937tyBjY0NmjdvjuDgYDg6Gv8FRpahd1NPyKQSJKRm42q6cd7oD5YVmKovXv8W3vhsWNHqKD8eSMR3exJNcj8kfkeuZOCVn+Og1ggY3MYXc4a0NNnrtrajEkH3ux/8d9Y4Xx5177fQZl5ValVUGUq5DMvHdEBbP1dk3VNjTEQMrmXkmuS+SNy0WgFrL0mx+/xtKOVSRIztWOlV6AzlYqdA5wbuAIpPzqquAxdv455aA18XW7So5GqaVD0Glxa0bNkSly+z3crjwtXeBp3unzxmjFlZjVbAThMd5nzYsx3q4sOnmgMAFu28iL032YWPDHPmhgrjVsUiT61Fr6Ye+GJ4G8hMlAzq6I6CGKOcRxCE4sOcJp4dclDKsWpcRzT1ckJadj5G/xCDNBX7OlPlCYKAT7adQ9xtKeRSCZa+0N5oJy+Xx9irfOnbSppwooZKqlIf2bfeegt//fUXbt68CZVKVeKHxKefEeuI4q7eQUZOAVzsFAg2YNncqhrfLQBT+zYGAPx6RYY/jt80+X2SOCTezsGLPx5Gdl4hgurVwtLRHWAjr1rfSkPoTsg6dDkdWffU1drXyeQspKjy4GAjQ0hDd2OEVyFXexv8NCEYfm52SMrIxZiIw8jMZV9nqpyvIs/j55hrkEDAwmEt9b2VTUnXTzYu6Q5u382v1r6KJmqMf2IlVczgv8qDBg3C8ePH8fTTT6Nu3bqoVasWatWqBVdXV9SqVfWG4GS5dInskSsZyKjmYgO6wzd9Az0hr2Iza0NND22MMZ2Lzi5/97dT+hWOiMpzM+seXvghBrfv5qO5jzMixnaEnU31+lZWVkBtBzT2dEShVsDuhLRq7Us3O9SzqWFrvVeHl3PR2eUeTkokpGZj3KpY5BawrzNV7Id9l7F4V1Frz2cDtBjc2jht7R7F19UOreq4QBCAndUs54m/dge37xbAyVaOTg1MP1FDRQzOJKKiovQ/u3bt0v/ofifxqVvLHs19nKGt5htdEASjrS5kCIlEgg8GNkVQbS00WgGT1x012WplZP0ycgowJuIwkjPvIaC2A1aPD4aLXc32bzTWURBTtLmrjHruDvh5Qie42ClwLCkTL6+JM+ma9mTdNh25hk//PgsACA9thG7eNXtyrrFOatZ9cewT6FnlVcfIcAY/0z179iz3x93d9IeuyDz0dUTVeKNfSLuLq+m5sJFL0aNJ9VdCMoRUKsHzDbXo09QD+YVavLT6CE5eN25vXLJ+d/MLMXblYVxMuwtvZ1usmRBslmUhdW17dp9Lq3ICeDU9Bwmp99d6b1rzZ0839XbCynEdYaeQYd+F23hjQzw0bIVHD9l+KgUzfj0BAJjYPQCv9Aio8Rh0n2/7Ltyu8tGDBydqjN1WkipW7a8M2dnZWLFiBYKDg9GmTRtjxEQWSPeNdd+FW7hXULUP1n9PF5UVdGtUGw5KudFiqyyZFPj6udboFOCGu/mFCLufsBABRW1zJq4+ghPXs1DLXoGfXwo2yqpzVdG6jgs8nZTIKdAg+lLVjh7oZpc6BbiZbUWg9v61sOLFDlDIJPjnVAre++0kW+GR3oGLtzF1/TFoBWBEUF28N6iZWU6QaurlBD83O+QXarH3fNUW9bh0q6iFl41Mql9ogWpGlRPZvXv3IiwsDD4+Pvj888/Rp08fHDp0yJixkQVp7uOMOq52yFNrsf9i1d7o5jrM+SBbhQw/hAWhVR2X+4eQY5BspH6dZL0KNVq8vv4Yoi+nw/F+38pGnsbvcVxZUqmk2oc7/62hbgWP0r2xBxaPbAepBNh45Brm/3OOySzhWNIdTPzpCAo0WjzRwhvz/tfKbGf5SyQS9GtWvCR7Vejeb7qlb6nmGJTIpqSkYMGCBWjcuDGGDx8OZ2dn5OfnY8uWLViwYAE6duxoqjjJzCQSyQNtgQzvt5eSlYfj17MgkQB9m3kaOzyDONkqsGpcRzT0cMDNrDyMuX9SDz2etFoB7/x6ApFnUmEjl+L7F4PQ2gQLBxjqwUTW0NXpMnIKcORK0VrvoRbQlH1gKx8seKaor/OKvZfx3e5LZo6IzCkhJRtjV8Yit0CDbo1q4+tRbWvs5N/y6MoLdp5LrdLS5sWreZn//fa4qfQrZ/DgwWjatClOnDiBRYsW4caNG/jmm29MGRtZGN3Mzs5zaQbXukXeP0msnZ8rPJ1sjR6bodwdlVgzoRPquNrh8u0cvBhxGKq86rU6IusjCALm/HUGvx1NhkwqwZLn29dIm6rK0M3spGXn40SyYfXcO8+mQisUHUkxV3nEw0Z09MP7g5oBAP5vRwJ+PnTVzBGROVzLyMWYiBhk3VOjrZ8rlo/pAKW8ZjpqVCSoXi242iuQmavGkauGLbOcpsrDsaRMAMXtvKjmVDqR/eeffzBhwgTMnj0bTz75JGQy87/wqGZ1DHCDi50CGTkFiDPwjW6Ja0/7utphzYRguDvY4MxNFV5adaTK9b9knRbvvIhVB68AAP7v2dZmLXt5mFIu09faGXoU5F8LnR2a2KMBJvduCACY9ccpbD1+w8wRUU1KU+UVLZSRnY+mXk5YNa6jWc6XKItcJkXfwKotjvDf2aI2eW39XOHlbP6JmsdNpRPZ/fv3Izs7Gx06dECnTp3w7bff4vbtqtVKknVSyKToE1hUFmDIcn6qPDWiLxW9ViwpUQCABh6OWD0+GE5KOQ5fycBra+OgrsJhJbI+qw4k4qv/zgMAPh7cHM+0r2vmiErrX4U62XsFGuy7ULTWu6W93wDgrf5N8UJnfwgCEL4xHlHnqtcrl6xDVq4aL/54GEkZufB3s8dPE4Lham9j7rBK0JfznE0xqI773/ufh5b4fnscVPqrUOfOndG5c2csWrQIGzduxI8//ojw8HBotVpERkbCz88PTk6mPTliwYIFmDlzJqZNm4ZFixYBAPLy8vDmm29iw4YNyM/Px4ABA/Ddd9/By4svKFPo19wLvx9Lxr9nUit9humehFtQawQ08HBAQw/HGojSMC3ruODHcR0xJiIGUQm38Oam4/rVwCydv5t9jaw2VRlarYCkjFwUmqnFUmFhIVLvAZdu5UAur/hPW0xiOj7+8wwAYHpoE4ztWvMtfyqjV1NPyKUSXEgrOiM6oLbDI2+z/+Jt5Km1qONqh+Y+lrfWu0QiwZynW0J1rxBbj9/Aq2vj8O2o9qhficdmyBibgq1Cijqudhaz9Ojd/EKkZFn+MsBaQcCMX0/gXEo2PJ2U+HlCJ4ucuezRpDaUcimuZdzDuZRsNKvE++dufiEOXizqLGLuEysfVwb/JXBwcMD48eMxfvx4JCQkICIiAgsWLMCMGTPQr18/bN261RRxIjY2FsuXL0fr1q1LbJ8+fTr+/vtvbN68GS4uLpgyZQqeeeYZHDhwwCRxPO56NPGAjVyKq+m5uJB2F028Hv3lJdIKeut1rO+GpaM7YOJPR7D1+A2rOeRZx9UOGyZ1hp+b+esgZ/1xCmtjkswchRzz4iv/3h/XtT6m9m1kwniqx8VOgc4N3LH/4m1EnknBpB4NH3kbXRmCJa/1LpVK8MWINsjOUyMq4RZe+umIAbc2bIyN7aPBzTHOAr74xF3NwNiVscjOs55V01zsFFgzoRP83c3/96os9jZydG9cG/+dTUPkmdRKJbJ7z99CgUaLgNoOaORpeRM1j4NqfaVt2rQpFi5ciPnz5+PPP//Ejz/+aKy4Srh79y5Gjx6N77//Hp9++ql+e1ZWFiIiIrBu3Tr06dMHALBy5Uo0a9YMhw4dQufOnU0Sz+PMUSlH14buiEq4hcgzqY9MZAsKtfpDh5Z+2KV3oCcWj2qHedvOWsWHQ9Y9NZIz7+GNjfH45ZUQsyYtyZn3sDH2GgDA2VZuplgEqAvUUNgoAFR8/1IJMKy9+fpWGqJ/C6/7iWzqIxPZorXe0/S3s2QKmRTfje6At345jv0XKlumVvkxNjatVkB2fiGWRF3CqGD/Glvytyx5ag1e/fmo/u9UTa88VxWeTkp89mxrNPU2X1u7yujX3EufyFbmyJw1fHEUO6Mcm5HJZBg6dCiGDh1qjN2VMnnyZDz55JMIDQ0tkcjGxcVBrVYjNDRUvy0wMBD+/v6Ijo4uN5HNz89Hfn5xuyWVSgUAUKvVUKt55vqj9A30QFTCLew4dROTutWr8LoHLqYjO78QtR1t0NLbwWzPr+5+H3X//QJro19g95oIqdpuZuUhdNF+xF29g+iLt9Cxfi2zxbJiz0UUagWENHDDT+OCzBKDWq1GZGQk+vXrA4Wich/sGk0hNBZ+fl+vxkVdFI5cvYOUO3fh7lj+SmOxV+4gI6cALnZytKvjZPF/z+QSYNHwVpW+flXG2FjUGi36frUfN7PysDk2CSM7mq+melPsNaRl58PHxRY7pnaFnY31nHz9qNdkZf9Wm0rPRm6QSICTyVlIup0NH5fySyDUGi123f/i2KeJu8W/3yyFsZ8nyzhdsAIbNmzA0aNHERsbW+qylJQU2NjYwNXVtcR2Ly8vpKSUfzLS/PnzMXv27FLbo6KiYG9vmYc8LIlQAEggw4lkFdb9vg2uFazgufmyFIAUje3zsH37PzUWY3kiIyPNHYJRBblJcTBNik9/jcHLzcxzklqOGlh/VAZAgrbKW9i2bZtZ4tAR2xgDQF0HGa7nSPD1L7vQ2bP8GuQtV+6/3xwK8O+O7TUXYA0z1xh3riXB71kyfP3vaTimnYDUDBNwWgFYfKzo/da5Vg6i/ttR80HUAHO+j+s7ypCYLcHiX6PQ3bv891tClgSqPBkc5QJunorGttM1GKQVy83NNer+LDqRvXbtGqZNm4bIyEjY2hqvMHzmzJkIDw/X/65SqeDn54fevXvD3d0yekhaut/SYnDsWhaEOq0wKNivzOsIgoD5n+8FkI/xAzqgVxPzLdtXPJPTr8ZnckypeXoO+n99AGcypWjYvqtZDtt9E3UJBdpLaO7jhOmjOpvt8JpYxxgALttdwte7LiFV7o1Bg9qVeR1BEPDFov0A7iEstB2esPDSgqow9xj3zC/Eri/24va9QsjqtcfAljVf97/tZApuHzoBVzsFPh7TB/Y2Fv0xbjBzjzEA3HC+gs92nMcNqQcGDSr/CNORv88BSMLANnXx1JMtai5AK5eeXrVlt8tj0e+AuLg4pKWloX379vptGo0Ge/fuxbfffosdO3agoKAAmZmZJWZlU1NT4e1d/h8YpVIJpbL0NKJCoRDdB6Cp9G/hg2PXsrAr4TbGdm1Q5nVOXs9Ciiof9jYydG/iBYUZa8p0xDbGjb1dMailD/4+eRMRB5Pw1XNta/T+cwsKseZQ0Qler/RqBBsb87fTEdsYA8ATrXzx9a5LOHApHWpBUmbycj41G0kZ92Ajl6JPM28oFBb9571azDXGrgoFwkLqY/Gui/h+/1UMblu3Rr+4CYKA7w9cAQCEdakPFwe7GrvvmmbO9/ETrXzx2Y7zOJx4B7mFZdcgC4KAXeeK2twNaOEjur85pmTs58oy+vaUo2/fvjh58iTi4+P1P0FBQRg9erT+/wqFAjt37tTfJiEhAUlJSQgJCTFj5OKnO3Er+tLtclfE0vXW69nEw6wnRojdKz2LTgDaevwGrt8x7iGbR9kUew13ctXwd7PHIDPMTj0uAr2d4Odmh/xCLfaVc2KUrjtIt0a1LabJvBiFdakPW4UUJ5OzcPCScWeWHuXAxXScSlbBViFFWJf6NXrfjxNdB4JCrYDdCWX3OT59Q4XkzHuwU8jQrXHtGo6QHmTRiayTkxNatmxZ4sfBwQHu7u5o2bIlXFxcMGHCBISHhyMqKgpxcXEYN24cQkJC2LHAxBp5OqKBhwPUGgF7Em6VeR2uPV0zWtV1QddG7tBoBfywL7HG7let0eL7+/c3sUcDs6+VLmYSiQT9mhV9UShv1aEHz54m03F3VOK5oKJyqmV7LtXofevub2RHf7g5mP/oh5jpesL+W85iJLrPtx5NanOixsys/pPnq6++wlNPPYVhw4ahR48e8Pb2xm+//WbusB4L/SpYdSgpPRfnUrIhk0rQu6lnTYf22NHNym6MvYY7OQU1cp9/n7iJ5Mx7qO1og+EdLG9VLLHRfSHcdS4VhQ+tPpeSlYfj17MgkQB9m/H9ZmovdW8AmVSCfRdu41RyVo3c58nrWdh/8TZkUgkmdDN/H1ux032+7Um4hfzC0q1NdAluPwvuj/64sLpEdvfu3fpVvQDA1tYWS5YsQUZGBnJycvDbb79VWB9LxqNb4CDqXBoKCkt+sOrKCjoFuFncMoRi1K1RbbTwdcY9tQaro6+Y/P4EQdDPDo3tUp8zEjUgqF4tuNorcCdXjSNX75S4LPJs0YdqOz9XeDpZ3opJYuPnZo+nWvsAqLlZ2WV7i+5ncGsfi1gAReza1HWFp5MSd/MLEf1QCcm1jFycvamCVAL0DeQXR3OzukSWLEc7P1fUdlQiO78QMYkl3+iR+m+rPMxZEyQSiX5WdvXBK8gtMO2CDrvP38K5lGw42MgwpnN9k94XFZHLpOhz/0Pz4aMgkZwdqnEv31+cYtvJm7ianmPS+7pyOwf/nLxZdL89H726G1WfVCpBaDlHHf+7/8WxY3031GKJh9kxkaUqk0ol6Ne86IP1wbq9jJwCxF7JAMBEtiYNbOkNfzd73MlV61fZMpVlu4tmh0YF+8PFnmfr1hTdUZDIM6kQhKL+ltl5akRfKjoBjPXoNae5rzN6NvGAVgC+33fZpPe1Yt9laAWgV1OPSi2bSsbR/4FEVqst7ier+7zr34JfHC0BE1mqlgfrZHUfrLvOpUErAM19nFG3Fg+B1RS5TIpJPYpaof2wLxFqjWkWSDiadAcxiRlQyCSY0J21ejWpR5PaUMqlSMrIRUJqNgBgd8ItqDUCGng4oKEH13qvSbqjIJuOXMet7PxHXLtq0rLz8EvcdQDAq5yNrVEhDd3hqJQjLTsfJ+7XQmfmFuDw/Yma/pyosQhMZKlaujSsDXsbGVJUeTh5/43Os6fN59kOdVHb0QbJmffw14kbJrkP3Wzs0LZ14OMi3j6WlsjeRo7u91v9RN6fFdJ3B2FZQY3r3MANbf1cUVCoxaqDpukYsurAFRQUatHO3xXBAW4muQ8qm1IuQ8/7C/noPtd2nUuDRivcb4nHiRpLwESWqsVWUfxGjzyTinsFGuy9UNSOi4c5a56tQoZxXYtmSZfvuayfJTeWi2l39ScWvdyz7IUwyLT6PdAWqKBQi6j7a73zi2PNe7A2fU30VdzNN25tenaeGmsOXQVQNPtrrlXzHme6zzHdF8biL458v1kKJrJUbQ+WF+y/eBt5ai3quNqhOWu5zOKFTvXgYCPDuZRs7C6nx29Vrdh7CYJQNOaNPGt+OVwC+jbzgkQCnEzOwpZjycjOL0RtRyXa+bmaO7THUv/mXmjg4QBVXiHWxyQZdd/rDychO68QDT0c0K8ZEydz6NXUE3KpBBfS7uJcigp7zhf9TeWJlZaDiSxVW59AT8ikEpxLycaP+4sOr/Vr7sXZAzNxsVfg+U7+AIClRmwNlJKVh9+PJQMorg2kmlfbUYkO/rUAAO/8egIA0K+5J6RSvt/MQSqV4OX7tekR+xNLtSKsqvxCDSLu/z19uUdDjq+ZuNgp0LmBOwBg9tYzyC3QwMfFFi3rcKLGUjCRpWpztbdBcP2i2q3oy0VtuHjYxbwmdGsAhUyCw4kZOJp059E3qIQfDyRCrREQXN8NHerVMso+qWoeLiNgWYF5DW1XB17OSqSo8rAlPtko+/zj2A2kqvLh5azEkHa+RtknVY1+Sfb7n2+cqLEsTGTJKB78IHW2laMjT0owK28XWwxtWwdA8clZ1ZF1T4119w+bvtKLtbHm9mDbH3sbGbo05Frv5qSUyzBeX5t+qUSrpqrQagX9AggTugVAKeeCI+YUyi+OFo2JLBnFg2/svs28oJDxpWVuL/dsAImk6KSgi2nZ1drXz4eKTmRp6uXEJYctQEBtB4ztUh8NPRwQ3q8JV1azAM938oeTrRyXbuXoG+ZX1b9nUnH5Vg6cbeUYFexvpAipquq42ulLCZxs5egU4G7miOhBzDbIKPzc7NG6rguAosb8ZH6NPJ30J4gs31P1hu15ag1WHiiq1XulVwMeUrMQHz/dAjvf7IWXunOG3BI42SowpnM9AEW16VXtGPLg8s9jQurByZYLjliCgS2LliTu19wLNnKmTpaEo0FGs+T59lg6uj0Pu1iQV3oVnZS1JT4ZN7PuVWkfv8Rdx+27BajjaoenWrNWj6g847oGwEYuxbGkTBxOzKjSPmISMxB/LRM2cinGduGCI5ZiUo8G+GJ4G3z0VAtzh0IPYSJLRuPnZo+BrXw4Y2dB2vvXQnCAG9QaQd9RwhAaraBffvOl7gEsGSGqgIeTEs92qAsA+llVQ+luN7xDXXg4KY0WG1WPQibFsA51uSS3BeKnEpHI6Za1XBeThKxctUG3/efUTVxNz0UtewWe6+hnivCIRGVS9waQSoCohFs4l6Iy6LZnb6qwO+EWpBLol5smoooxkSUSuV5NPRDo7YScAg1+jrla6ds9WKv3Ykh92NvITRUikWjUr+2gr6c0tDZ9+f3328BWPqjn7mD02IjEiIkskchJJBL9crIrDyQiT62p1O0OXEzHqWQVbBVShHWpb8IIicRFt2DI1uM3cP1ObqVucy0jF3+euAmg+CgKET0aE1mix8BTrX1Rx9UOt+8W4Je465W6jW42dmRHf7g52JgyPCJRaVXXBV0buUOjFfDDvsrVpkfsT4RGK6B749poWcfFxBESiQcTWaLHgEImxcTuRWdAr9h7GYWaipfRPHk9C/sv3oZMKsFL3XnmNJGhXu3ZCACwMfYaMnIKKrxu+t18bIi9v+AIZ2OJDMJElugxMaKjH2rZK5CUkYt/TqVUeF3dbOzTbXxRt5Z9TYRHJCpdG7mjZR1n3FNrsPrglQqvuzr6KvLUWrSq44IuDdlsn8gQTGSJHhP2NnJ9reuyChq2X7mdg39OFdXq6WpricgwEolEP7u6OvoKcgsKy7xebkEhfoq+AqBoNpbtC4kMw0SW6DESFlIfdgoZTt9QYf/F22VeZ8W+y9AKQO+mHgj0dq7hCInEY2BLH9Rzt0dmrhobY6+VeZ0Nh68hM1eN+u72eIKrIhIZjIks0WOkloONvh9sWQ3b07Lz9CeDsVaPqHpkUgkm3l9C+Id9iVA/VJuu1mgRcX+hkok9GkAm5WwskaEsOpFdunQpWrduDWdnZzg7OyMkJAT//POP/vK8vDxMnjwZ7u7ucHR0xLBhw5CammrGiIks30vdAyCTSnDgYjpOXs8qcdmqA1dQUKhFO39XBAe4mSlCIvF4tkNd1Ha0QXLmPfx14kaJy/48fgPJmfdQ21GJYe3rmilCIutm0Yls3bp1sWDBAsTFxeHIkSPo06cPhgwZgtOnTwMApk+fjj///BObN2/Gnj17cOPGDTzzzDNmjprIstWtZY8hbXwBlJyVzc5TY82hogUTWKtHZBy2ChnGdS3q/LF8z2V9bbogCPoFE8Z3qw9bhcxsMRJZM4tOZAcPHoxBgwahcePGaNKkCebOnQtHR0ccOnQIWVlZiIiIwJdffok+ffqgQ4cOWLlyJQ4ePIhDhw6ZO3Qii/by/bKBf07dROLtHADA+sNJyM4rREMPB/Rr5mXO8IhE5YXO9eColONcSjZ2J9wCAEQlpCEhNRuOSjlGd6pn5giJrJfVrDmp0WiwefNm5OTkICQkBHFxcVCr1QgNDdVfJzAwEP7+/oiOjkbnzp3L3Vd+fj7y8/P1v6tURethq9VqqNWGrUVP1kE3rhzfIg3cbdGrSW3sPn8by3ZfxKwnAxFxv3H7S93qQ6MphKZyC4BZDI6x+FnrGNvLgeeC6iDiwFV8t/siujWshe+iLgIARnasC3u59T0mU7HWMabKM/bYWnwie/LkSYSEhCAvLw+Ojo74/fff0bx5c8THx8PGxgaurq4lru/l5YWUlIp7ZM6fPx+zZ88utT0qKgr29uyZKWaRkZHmDsFitFYAuyHHr3HXcDf1KlKzZXCxEWBz4zi2pRw3d3hVxjEWP2scY/98QCaRIfbKHbz1wz84clUGmUSA/72L2LbtornDszjWOMZUObm5lVu2ubIsPpFt2rQp4uPjkZWVhV9++QVhYWHYs2dPtfY5c+ZMhIeH639XqVTw8/ND79694e7OZtRipFarERkZiX79+kGhUJg7HIsgCAL2fX8Yx65l4e9rRfV5r/Zpiqe71jdvYFXEMRY/ax/jkziNX44m44+rRe+3Z9rXxaihLcwclWWx9jGmR0tPTzfq/iw+kbWxsUGjRkVL/XXo0AGxsbH4+uuv8dxzz6GgoACZmZklZmVTU1Ph7V1xLz6lUgmlUllqu0Kh4BtH5DjGJb3aqxEmrYkDADjZyvFCSAAUCov/s1AhjrH4WesYv9KrEX45mlzid2t8HDXBWseYHs3Y42rRJ3uVRavVIj8/Hx06dIBCocDOnTv1lyUkJCApKQkhISFmjJDIeoQ280KrOi6wkUvxzah2cFRadxJLZMkaeTpizpAWkEiAoW190dDD0dwhEVk9i/7UmjlzJgYOHAh/f39kZ2dj3bp12L17N3bs2AEXFxdMmDAB4eHhcHNzg7OzM15//XWEhIRUeKIXERWTSiXY9HIIcgoKUdux9FEKIjKuF0Pqo39zb7g72pg7FCJRsOhENi0tDS+++CJu3rwJFxcXtG7dGjt27EC/fv0AAF999RWkUimGDRuG/Px8DBgwAN99952ZoyayLnY2MtjZsIclUU3xdrE1dwhEomHRiWxERESFl9va2mLJkiVYsmRJDUVERERERJbC6mpkiYiIiIgAJrJEREREZKWYyBIRERGRVWIiS0RERERWiYksEREREVklJrJEREREZJWYyBIRERGRVbLoPrI1RRAEAEB2djbXdhYptVqN3NxcqFQqjrFIcYzFj2Msfhxj8cvOzgZQnHtVFxNZAOnp6QCAgIAAM0dCREREJH7p6elwcXGp9n6YyAJwc3MDACQlJRnlSSXLo1Kp4Ofnh2vXrsHZ2dnc4ZAJcIzFj2Msfhxj8cvKyoK/v78+96ouJrIApNKiUmEXFxe+cUTO2dmZYyxyHGPx4xiLH8dY/HS5V7X3Y5S9EBERERHVMCayRERERGSVmMgCUCqV+Oijj6BUKs0dCpkIx1j8OMbixzEWP46x+Bl7jCWCsfofEBERERHVIM7IEhEREZFVYiJLRERERFaJiSwRERERWaXHPpFdsmQJ6tevD1tbW3Tq1AmHDx82d0hkJPPnz0fHjh3h5OQET09PDB06FAkJCeYOi0xowYIFkEgkeOONN8wdChlZcnIyXnjhBbi7u8POzg6tWrXCkSNHzB0WGYlGo8GsWbMQEBAAOzs7NGzYEJ988onRljGlmrd3714MHjwYvr6+kEgk2LJlS4nLBUHAhx9+CB8fH9jZ2SE0NBQXLlww+H4e60R248aNCA8Px0cffYSjR4+iTZs2GDBgANLS0swdGhnBnj17MHnyZBw6dAiRkZFQq9Xo378/cnJyzB0amUBsbCyWL1+O1q1bmzsUMrI7d+6ga9euUCgU+Oeff3DmzBl88cUXqFWrlrlDIyP57LPPsHTpUnz77bc4e/YsPvvsMyxcuBDffPONuUOjKsrJyUGbNm2wZMmSMi9fuHAhFi9ejGXLliEmJgYODg4YMGAA8vLyDLqfx7prQadOndCxY0d8++23AACtVgs/Pz+8/vrrmDFjhpmjI2O7desWPD09sWfPHvTo0cPc4ZAR3b17F+3bt8d3332HTz/9FG3btsWiRYvMHRYZyYwZM3DgwAHs27fP3KGQiTz11FPw8vJCRESEftuwYcNgZ2eHn3/+2YyRkTFIJBL8/vvvGDp0KICi2VhfX1+8+eabeOuttwAULV3r5eWFVatWYeTIkZXe92M7I1tQUIC4uDiEhobqt0mlUoSGhiI6OtqMkZGpZGVlAYDR1ncmyzF58mQ8+eSTJd7PJB5bt25FUFAQhg8fDk9PT7Rr1w7ff/+9ucMiI+rSpQt27tyJ8+fPAwCOHz+O/fv3Y+DAgWaOjEwhMTERKSkpJf5mu7i4oFOnTgbnYHJjB2ctbt++DY1GAy8vrxLbvby8cO7cOTNFRaai1WrxxhtvoGvXrmjZsqW5wyEj2rBhA44ePYrY2Fhzh0ImcvnyZSxduhTh4eF47733EBsbi6lTp8LGxgZhYWHmDo+MYMaMGVCpVAgMDIRMJoNGo8HcuXMxevRoc4dGJpCSkgIAZeZgussq67FNZOnxMnnyZJw6dQr79+83dyhkRNeuXcO0adMQGRkJW1tbc4dDJqLVahEUFIR58+YBANq1a4dTp05h2bJlTGRFYtOmTVi7di3WrVuHFi1aID4+Hm+88QZ8fX05xlShx7a0oHbt2pDJZEhNTS2xPTU1Fd7e3maKikxhypQp+OuvvxAVFYW6deuaOxwyori4OKSlpaF9+/aQy+WQy+XYs2cPFi9eDLlcDo1GY+4QyQh8fHzQvHnzEtuaNWuGpKQkM0VExvb2229jxowZGDlyJFq1aoUxY8Zg+vTpmD9/vrlDIxPQ5VnGyMEe20TWxsYGHTp0wM6dO/XbtFotdu7ciZCQEDNGRsYiCAKmTJmC33//Hbt27UJAQIC5QyIj69u3L06ePIn4+Hj9T1BQEEaPHo34+HjIZDJzh0hG0LVr11Kt886fP4969eqZKSIyttzcXEilJVMSmUwGrVZrpojIlAICAuDt7V0iB1OpVIiJiTE4B3usSwvCw8MRFhaGoKAgBAcHY9GiRcjJycG4cePMHRoZweTJk7Fu3Tr88ccfcHJy0tfduLi4wM7OzszRkTE4OTmVqnl2cHCAu7s7a6FFZPr06ejSpQvmzZuHESNG4PDhw1ixYgVWrFhh7tDISAYPHoy5c+fC398fLVq0wLFjx/Dll19i/Pjx5g6Nquju3bu4ePGi/vfExETEx8fDzc0N/v7+eOONN/Dpp5+icePGCAgIwKxZs+Dr66vvbFBpwmPum2++Efz9/QUbGxshODhYOHTokLlDIiMBUObPypUrzR0amVDPnj2FadOmmTsMMrI///xTaNmypaBUKoXAwEBhxYoV5g6JjEilUgnTpk0T/P39BVtbW6FBgwbC+++/L+Tn55s7NKqiqKioMj+Dw8LCBEEQBK1WK8yaNUvw8vISlEql0LdvXyEhIcHg+3ms+8gSERERkfV6bGtkiYiIiMi6MZElIiIiIqvERJaIiIiIrBITWSIiIiKySkxkiYiIiMgqMZElIiIiIqvERJaIiIiIrBITWSIiIiKySkxkiYiIiMgqMZElIlE5d+4cOnfuDFtbW7Rt29bc4WD37t2QSCTIzMys9G1yc3MxbNgwODs7G3xbY3o49lWrVsHV1fWRt4uIiED//v1NG1w5ZsyYgddff90s901ENY+JLBGJykcffQQHBwckJCRg586d5g6nSlavXo19+/bh4MGDuHnzJu7cuQOJRIL4+Hhzh/ZIeXl5mDVrFj766COz3P9bb72F1atX4/Lly2a5fyKqWUxkiUhULl26hG7duqFevXpwd3cv8zpqtbqGozLMpUuX0KxZM7Rs2RLe3t6QSCTmDqnSfvnlFzg7O6Nr165muf/atWtjwIABWLp0qVnun4hqFhNZIrJIt27dgre3N+bNm6ffdvDgQdjY2JQ70yqRSBAXF4c5c+ZAIpHg448/xpUrVyCRSLBx40b07NkTtra2WLt2LbRaLebMmYO6detCqVSibdu22L59u35futtt2rQJ3bt3h52dHTp27Ijz588jNjYWQUFBcHR0xMCBA3Hr1i2DHtv+/fv1+/Tz88PUqVORk5MDAOjVqxe++OIL7N27FxKJBL169UJAQAAAoF27dvptZQkKCsLnn3+u/33o0KFQKBS4e/cuAOD69euQSCS4ePEiAGDNmjUICgqCk5MTvL298fzzzyMtLc2gx/KwDRs2YPDgwSW2jR07FkOHDsW8efPg5eUFV1dXzJkzB4WFhXj77bfh5uaGunXrYuXKlfrbVOf5Hzx4MDZs2FCtx0FEVkIgIrJQf//9t6BQKITY2FhBpVIJDRo0EKZPn17u9W/evCm0aNFCePPNN4WbN28K2dnZQmJiogBAqF+/vvDrr78Kly9fFm7cuCF8+eWXgrOzs7B+/Xrh3LlzwjvvvCMoFArh/PnzgiAI+tsFBgYK27dvF86cOSN07txZ6NChg9CrVy9h//79wtGjR4VGjRoJr7zySrkxRUVFCQCEO3fuCIIgCBcvXhQcHByEr776Sjh//rxw4MABoV27dsLYsWMFQRCE9PR0YeLEiUJISIhw8+ZNIT09XTh8+LAAQPjvv//028oSHh4uPPnkk4IgCIJWqxXc3NyE2rVrC//8848gCILw888/C3Xq1NFfPyIiQti2bZtw6dIlITo6WggJCREGDhxYbuwrV64UXFxcKhwzFxcXYcOGDSW2hYWFCU5OTsLkyZOFc+fOCREREQIAYcCAAcLcuXOF8+fPC5988omgUCiEa9euVfv5P3v2rABASExMrDBWIrJ+TGSJyKK99tprQpMmTYTnn39eaNWqlZCXl1fh9du0aSN89NFH+t91CdGiRYtKXM/X11eYO3duiW0dO3YUXnvttRK3++GHH/SXr1+/XgAg7Ny5U79t/vz5QtOmTcuN5+FkcMKECcKkSZNKXGffvn2CVCoV7t27JwiCIEybNk3o2bNnqcdw7NixCh/71q1bBRcXF6GwsFCIj48XvL29hWnTpgnvvvuuIAiC8NJLLwnPP/98ubePjY0VAAjZ2dllxv6oRPbOnTsCAGHv3r0ltoeFhQn16tUTNBqNflvTpk2F7t27638vLCwUHBwchPXr15d4zFV5/rOysgQAwu7du8uNlYjEgaUFRGTRPv/8cxQWFmLz5s1Yu3YtlEpllfYTFBSk/79KpcKNGzdK1XF27doVZ8+eLbGtdevW+v97eXkBAFq1alVimyGH448fP45Vq1bB0dFR/zNgwABotVokJiYa9Jge1r17d2RnZ+PYsWPYs2cPevbsiV69emH37t0AgD179pQoS4iLi8PgwYPh7+8PJycn9OzZEwCQlJRUpfu/d+8eAMDW1rbUZS1atIBUWvyR4+XlVeJ5lMlkcHd3L/VcVuX5t7OzA1DU/YGIxI2JLBFZtEuXLuHGjRvQarW4cuVKlffj4OBQpdspFAr9/3UnXT28TavVVnp/d+/excsvv4z4+Hj9z/Hjx3HhwgU0bNiwSjHquLq6ok2bNti9e7c+ae3RoweOHTuG8+fP48KFC/pkNScnBwMGDICzszPWrl2L2NhY/P777wCAgoKCKt2/u7s7JBIJ7ty5U+qyB58zoOh5K2vbw89lVZ7/jIwMAICHh0cVHgURWRO5uQMgIipPQUEBXnjhBTz33HNo2rQpXnrpJZw8eRKenp7V2q+zszN8fX1x4MABfWIHAAcOHEBwcHB1w65Q+/btcebMGTRq1KjSt7GxsQEAaDSaR163Z8+eiIqKwuHDhzF37ly4ubmhWbNmmDt3Lnx8fNCkSRMARf1209PTsWDBAvj5+QEAjhw5UoVHVDLO5s2b48yZM2brIwsAp06dgkKhQIsWLcwWAxHVDM7IEpHFev/995GVlYXFixfj3XffRZMmTTB+/Hij7Pvtt9/GZ599ho0bNyIhIQEzZsxAfHw8pk2bZpT9l+fdd9/FwYMHMWXKFMTHx+PChQv4448/MGXKlHJv4+npCTs7O2zfvh2pqanIysoq97q9evXCjh07IJfLERgYqN+2du3aEkm7v78/bGxs8M033+Dy5cvYunUrPvnkk2o/vgEDBmD//v3V3k917Nu3T9/pgIjEjYksEVmk3bt3Y9GiRVizZg2cnZ0hlUqxZs0a7Nu3zyg9QqdOnYrw8HC8+eabaNWqFbZv346tW7eicePGRoi+fK1bt8aePXtw/vx5dO/eHe3atcOHH34IX1/fcm8jl8uxePFiLF++HL6+vhgyZEi51+3evTu0Wm2JpLVXr17QaDQl6mM9PDywatUqbN68Gc2bN8eCBQtKtO6qqgkTJmDbtm0VJtumtmHDBkycONFs909ENUciCIJg7iCIiEg8hg8fjvbt22PmzJk1ft///PMP3nzzTZw4cQJyOavniMSOM7JERGRU//d//wdHR0ez3HdOTg5WrlzJJJboMcEZWSIiIiKySpyRJSIiIiKrxESWiIiIiKwSE1kiIiIiskpMZImIiIjIKjGRJSIiIiKrxESWiIiIiKwSE1kiIiIiskpMZImIiIjIKjGRJSIiIiKr9P8q4jrzcuVIBgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "==== Grid Infill 30.0% ====\n", + "XY Total Area = 52.1754 mm²\n", + " Shell Area = 31.1879 mm²\n", + " Infill Area = 20.9874 mm²\n", + "I_x = 567.1050\n", + "I_y = 567.1050\n", + "I_xy = 0.0000\n", + "Polar moment, J = 1134.2101\n", + "-- Cross-sections through Z (pattern constant over Z) --\n", + "Length along X @ y=1.000 mm: 4.0801 mm\n", + "Length along Y @ x=-2.000 mm: 3.6045 mm\n", + "Area of XZ plane @ y=1.000: 40.8010 mm² (Z=10.000 mm)\n", + "Area of YZ plane @ x=-2.000: 36.0451 mm² (Z=10.000 mm)\n", + "\n", + "A_xz(y=1mm) = 40.80100125156456 mm^2\n", + "A_yz(x=-2mm) = 36.04505632040059 mm^2\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# ------------------------------\n", + "# Geometry utilities\n", + "# ------------------------------\n", + "\n", + "def _dist_mod(u, spacing):\n", + " r = np.mod(u, spacing)\n", + " return np.minimum(r, spacing - r)\n", + "\n", + "def _rectilinear_mask(XX, YY, spacing, line_width, angle_deg=0.0, phase=0.0):\n", + " th = np.deg2rad(angle_deg)\n", + " u = XX * np.cos(th) + YY * np.sin(th)\n", + " dist = _dist_mod(u + phase, spacing)\n", + " return dist <= (line_width / 2.0)\n", + "\n", + "def _spacing_for_grid_density(line_width, f):\n", + " f = float(np.clip(f, 0.0, 1.0))\n", + " if f <= 0.0:\n", + " return np.inf\n", + " if f >= 1.0:\n", + " return line_width\n", + " r = 1.0 - np.sqrt(1.0 - f)\n", + " return line_width / r\n", + "\n", + "# ------------------------------\n", + "# Area & inertia on a raster mask\n", + "# ------------------------------\n", + "\n", + "def compute_area_moments(XX, YY, mask):\n", + " x_vals = XX[mask]\n", + " y_vals = YY[mask]\n", + "\n", + " if x_vals.size == 0:\n", + " return {\"A\": 0.0, \"x_c\": 0.0, \"y_c\": 0.0, \"I_x\": 0.0, \"I_y\": 0.0, \"I_xy\": 0.0, \"J\": 0.0}\n", + "\n", + " dx = XX[0, 1] - XX[0, 0]\n", + " dy = YY[1, 0] - YY[0, 0]\n", + " dA = dx * dy\n", + "\n", + " A = x_vals.size * dA\n", + " x_c = float(np.mean(x_vals))\n", + " y_c = float(np.mean(y_vals))\n", + "\n", + " x_shift = x_vals - x_c\n", + " y_shift = y_vals - y_c\n", + "\n", + " I_x = float(np.sum(y_shift**2) * dA)\n", + " I_y = float(np.sum(x_shift**2) * dA)\n", + " I_xy = float(np.sum(x_shift * y_shift) * dA)\n", + " J = I_x + I_y\n", + "\n", + " return {\"A\": A, \"x_c\": x_c, \"y_c\": y_c, \"I_x\": I_x, \"I_y\": I_y, \"I_xy\": I_xy, \"J\": J}\n", + "\n", + "# ------------------------------\n", + "# Main: Prusa-style rectilinear/grid with shells\n", + "# ------------------------------\n", + "\n", + "def prusa_style_grid_or_rectilinear(\n", + " width, height,\n", + " infill_fraction,\n", + " line_width=0.42,\n", + " shell_layers=2,\n", + " base_infill_angle_deg=45.0,\n", + " grid=True,\n", + " z_height=0.0, # optional phase control\n", + " phase_per_mm=0.0,\n", + " # Cross-sections extruded through Z\n", + " z_object_height=None, # mm (if set => areas in mm²; else lengths in mm)\n", + " y_plane=0.0, # mm, plane parallel to XZ at y = y_plane\n", + " x_plane=0.0, # mm, plane parallel to YZ at x = x_plane\n", + " N=800,\n", + " plot=True,\n", + " verbose=True\n", + "):\n", + " # ----- Raster grid (centered at origin)\n", + " xs = np.linspace(-width/2, width/2, N)\n", + " ys = np.linspace(-height/2, height/2, N)\n", + " XX, YY = np.meshgrid(xs, ys)\n", + "\n", + " # ----- Shells (perimeters)\n", + " shell_mask = np.zeros_like(XX, dtype=bool)\n", + " for i in range(shell_layers):\n", + " off = (i + 0.5) * line_width\n", + " shell_mask |= np.abs(XX - (-width/2 + off)) <= (line_width / 2)\n", + " shell_mask |= np.abs(XX - ( +width/2 - off)) <= (line_width / 2)\n", + " shell_mask |= np.abs(YY - (-height/2 + off)) <= (line_width / 2)\n", + " shell_mask |= np.abs(YY - ( +height/2 - off)) <= (line_width / 2)\n", + "\n", + " # ----- Infill region (inside shells)\n", + " inner_offset = shell_layers * line_width\n", + " inner_rect = (\n", + " (np.abs(XX) <= (width/2 - inner_offset)) &\n", + " (np.abs(YY) <= (height/2 - inner_offset))\n", + " )\n", + "\n", + " if infill_fraction <= 0.0:\n", + " infill_mask = np.zeros_like(XX, dtype=bool)\n", + " elif infill_fraction >= 1.0:\n", + " spacing = line_width\n", + " masks = []\n", + " angles = [base_infill_angle_deg] + ([base_infill_angle_deg + 90] if grid else [])\n", + " phase = phase_per_mm * z_height\n", + " for a in angles:\n", + " masks.append(_rectilinear_mask(XX, YY, spacing, line_width, angle_deg=a, phase=phase))\n", + " infill_mask = np.logical_or.reduce(masks) & inner_rect\n", + " else:\n", + " spacing = _spacing_for_grid_density(line_width, infill_fraction) if grid \\\n", + " else line_width / infill_fraction\n", + " masks = []\n", + " angles = [base_infill_angle_deg] + ([base_infill_angle_deg + 90] if grid else [])\n", + " phase = phase_per_mm * z_height\n", + " for a in angles:\n", + " masks.append(_rectilinear_mask(XX, YY, spacing, line_width, angle_deg=a, phase=phase))\n", + " infill_mask = np.logical_or.reduce(masks) & inner_rect\n", + "\n", + " # ----- Final mask (material present)\n", + " final_mask = shell_mask | infill_mask\n", + "\n", + " # ----- Plot: XY bitmap preview\n", + " if plot:\n", + " plt.figure(figsize=(6, 6))\n", + " img = np.where(final_mask, 1.0, np.nan)\n", + " plt.imshow(img, origin='lower',\n", + " extent=[-width/2, width/2, -height/2, height/2],\n", + " interpolation='nearest')\n", + " title = \"Grid\" if grid else \"Rectilinear\"\n", + " plt.title(f\"{title} @ {infill_fraction*100:.1f}% | shells={shell_layers}×{line_width:.2f} angle={base_infill_angle_deg:.0f}°\")\n", + " plt.xlabel(\"X (mm)\")\n", + " plt.ylabel(\"Y (mm)\")\n", + " plt.gca().set_aspect('equal', 'box')\n", + " plt.grid(True)\n", + "\n", + " # guide lines\n", + " plt.hlines(y_plane, -width/2, width/2, linestyles='--')\n", + " plt.vlines(x_plane, -height/2, height/2, linestyles='--')\n", + "\n", + " plt.show()\n", + "\n", + " # ----- XY numbers\n", + " total = compute_area_moments(XX, YY, final_mask)\n", + " shells = compute_area_moments(XX, YY, shell_mask)\n", + " A_infill = total[\"A\"] - shells[\"A\"]\n", + "\n", + " # ----- Cross-sections parallel to XZ and YZ at specific planes\n", + " dx = XX[0, 1] - XX[0, 0]\n", + " dy = YY[1, 0] - YY[0, 0]\n", + " ys_centered = YY[:, 0]\n", + " xs_centered = XX[0, :]\n", + " row = int(np.argmin(np.abs(ys_centered - y_plane)))\n", + " col = int(np.argmin(np.abs(xs_centered - x_plane)))\n", + "\n", + " length_x_at_y = float(np.count_nonzero(final_mask[row, :]) * dx)\n", + " length_y_at_x = float(np.count_nonzero(final_mask[:, col]) * dy)\n", + "\n", + " area_xz_at_y = None\n", + " area_yz_at_x = None\n", + " if z_object_height is not None and z_object_height > 0:\n", + " area_xz_at_y = length_x_at_y * z_object_height\n", + " area_yz_at_x = length_y_at_x * z_object_height\n", + "\n", + " # ----- NEW: Variation curves over full width/height\n", + " # lengths per row/column\n", + " length_x_vs_y = np.count_nonzero(final_mask, axis=1) * dx # for each y-row, length along X\n", + " length_y_vs_x = np.count_nonzero(final_mask, axis=0) * dy # for each x-col, length along Y\n", + "\n", + " if z_object_height is not None and z_object_height > 0:\n", + " area_xz_vs_y = length_x_vs_y * z_object_height\n", + " area_yz_vs_x = length_y_vs_x * z_object_height\n", + " y_label_curves = \"Area of XZ slice (mm²)\"\n", + " x_label_curves = \"Area of YZ slice (mm²)\"\n", + " else:\n", + " area_xz_vs_y = length_x_vs_y\n", + " area_yz_vs_x = length_y_vs_x\n", + " y_label_curves = \"Length along X (mm) [set z_object_height for area]\"\n", + " x_label_curves = \"Length along Y (mm) [set z_object_height for area]\"\n", + "\n", + " # axes remapped to start at 0 (wall) → up to width/height\n", + " y_axis_0_to_H = ys_centered + height/2.0\n", + " x_axis_0_to_W = xs_centered + width/2.0\n", + "\n", + " if plot:\n", + " # --- Area vs y (XZ plane area as y varies)\n", + " plt.figure(figsize=(7, 3.5))\n", + " plt.plot(y_axis_0_to_H, area_xz_vs_y)\n", + " plt.xlabel(\"y from bottom wall (mm)\")\n", + " plt.ylabel(y_label_curves)\n", + " plt.title(\"Variation vs y\")\n", + " plt.grid(True)\n", + " plt.xlim(0, height)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + " # --- Area vs x (YZ plane area as x varies)\n", + " plt.figure(figsize=(7, 3.5))\n", + " plt.plot(x_axis_0_to_W, area_yz_vs_x)\n", + " plt.xlabel(\"x from left wall (mm)\")\n", + " plt.ylabel(x_label_curves)\n", + " plt.title(\"Variation vs x\")\n", + " plt.grid(True)\n", + " plt.xlim(0, width)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + " if verbose:\n", + " print(f\"==== {('Grid' if grid else 'Rectilinear')} Infill {infill_fraction*100:.1f}% ====\")\n", + " print(f\"XY Total Area = {total['A']:.4f} mm²\")\n", + " print(f\" Shell Area = {shells['A']:.4f} mm²\")\n", + " print(f\" Infill Area = {A_infill:.4f} mm²\")\n", + " print(f\"I_x = {total['I_x']:.4f}\")\n", + " print(f\"I_y = {total['I_y']:.4f}\")\n", + " print(f\"I_xy = {total['I_xy']:.4f}\")\n", + " print(f\"Polar moment, J = {total['J']:.4f}\")\n", + " print(f\"-- Cross-sections through Z (pattern constant over Z) --\")\n", + " print(f\"Length along X @ y={y_plane:.3f} mm: {length_x_at_y:.4f} mm\")\n", + " print(f\"Length along Y @ x={x_plane:.3f} mm: {length_y_at_x:.4f} mm\")\n", + " if area_xz_at_y is not None:\n", + " print(f\"Area of XZ plane @ y={y_plane:.3f}: {area_xz_at_y:.4f} mm² (Z={z_object_height:.3f} mm)\")\n", + " if area_yz_at_x is not None:\n", + " print(f\"Area of YZ plane @ x={x_plane:.3f}: {area_yz_at_x:.4f} mm² (Z={z_object_height:.3f} mm)\")\n", + " print()\n", + "\n", + " return {\n", + " \"mask\": final_mask,\n", + " \"XX\": XX, \"YY\": YY,\n", + " \"dx\": dx, \"dy\": dy,\n", + " \"area_total_xy\": total[\"A\"],\n", + " \"area_shells_xy\": shells[\"A\"],\n", + " \"area_infill_xy\": A_infill,\n", + " \"moments_xy\": total,\n", + " \"length_x_at_y\": length_x_at_y,\n", + " \"length_y_at_x\": length_y_at_x,\n", + " \"area_xz_at_y\": area_xz_at_y,\n", + " \"area_yz_at_x\": area_yz_at_x,\n", + " # NEW: full variation arrays and their axes (0→W/H)\n", + " \"y_axis_mm\": y_axis_0_to_H,\n", + " \"x_axis_mm\": x_axis_0_to_W,\n", + " \"area_xz_vs_y\": area_xz_vs_y,\n", + " \"area_yz_vs_x\": area_yz_vs_x,\n", + " }\n", + "\n", + "# ------------------------------\n", + "# Demo\n", + "# ------------------------------\n", + "if __name__ == \"__main__\":\n", + " W, H = 10.0, 10.0\n", + " Z = 10.0 # object height in Z\n", + " res = prusa_style_grid_or_rectilinear(\n", + " width=W, height=H,\n", + " infill_fraction=0.3,\n", + " line_width=0.42,\n", + " shell_layers=2,\n", + " base_infill_angle_deg=45.0,\n", + " grid=True,\n", + " z_object_height=Z, # set Z height for true areas\n", + " y_plane=+1.0, # XZ cross-section at y = +1 mm\n", + " x_plane=-2.0, # YZ cross-section at x = -2 mm (centered coords)\n", + " N=800,\n", + " plot=True, verbose=True\n", + " )\n", + "\n", + " print(\"A_xz(y=1mm) =\", res[\"area_xz_at_y\"], \"mm^2\")\n", + " print(\"A_yz(x=-2mm) =\", res[\"area_yz_at_x\"], \"mm^2\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "adbb08c3-31f7-4b32-b37b-f6fde39033fd", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWEAAAIjCAYAAADSh6otAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWB9JREFUeJzt3Xl8TOf+B/DPTDKZLJIIIqmKWGqvXRGlRcVaohRXlFA/VC230lZpVROqtV2qlVp6a6mKraVKXZqqorVrVYtSaqt9S4Jsk5nn94ebuZl9PTNzks/79cqLOfOcM99hfDzznOc5RyGEECAiIq9QersAIqLSjCFMRORFDGEiIi9iCBMReRFDmIjIixjCRERexBAmIvIihjARkRcxhImIvMirITxkyBBUrVrVZrvz589DoVBg+fLlktdEpqpWrYqUlBSb7VJSUqBQKEz2HTJkiCR1FX0u5syZI8nxyTE//PADFAoFvvjiC2+X4hX5+flO7edUCJ87dw5jxoxBrVq1EBwcjODgYNSrVw+jR4/GsWPHnCpEavfv34dOp3Nq30OHDmHMmDGoX78+QkJCUKVKFfTr1w+nT5822/7kyZPo0qULypQpg3LlymHQoEG4efOm3a/39ddfo2nTpggMDESVKlXwzjvvoLCw0KDNiRMn0LZtW4SGhqJ58+bYt2+fyXHmzp2L+vXrm+xL7qPT6bB8+XL07NkTMTExCAkJweOPP453330XeXl5bn2dWbNmoVq1aggMDETDhg2xevVqp441fPhwKBQKPPvsswbbb9++jdmzZ+Opp55CZGQkypYti1atWmHt2rXueAsO27t3L1JSUpCZmSnJ8c+ePYvAwEAoFAocPnzY4Lnly5dDoVCY/bl27ZpB23PnzqFly5b6vxeHM1A4aPPmzSI4OFiEhYWJUaNGiUWLFoklS5aI5ORkUbVqVaFQKMT58+ftOlZBQYHIy8uz2e7cuXMCgFi2bJnddep0OrFu3TrRtWtXERISIgAIlUolHn/8cfHuu++KrKwsu4/Vp08fER0dLcaOHSs++eQTMW3aNBEVFSVCQkLEb7/9ZtD20qVLokKFCqJGjRpi/vz5Yvr06SIiIkI0atRI5Ofn23ytrVu3CoVCIdq3by+WLFkixo4dK5RKpXjppZf0bQoLC0Xt2rVFXFycWLhwoejatauIjIw0eE/Xr18X4eHhYvv27Xa/T0tiY2PFO++8Y7PdO++8I4w/Unl5eaKgoMDlGswp+lzMnj1bkuPb4969ewKAaNWqlXj33XfFkiVLxNChQ4VSqRTt2rUTOp3OLa8zceJEAUAMHz5cLFmyRHTv3l0AEKtXr3boOIcOHRL+/v4iMDBQdO/e3eC5zZs3C5VKJRISEsQHH3wgFixYINq3by8AiClTptg89s6dOwUAsX79eodqsmT27NkCgDh37pxbjmesR48e+mw4dOiQwXPLli0TAMTUqVPFypUrDX5yc3MN2nbs2FH07t1bbNq0SYwYMULUrVvXoTocCuEzZ86IkJAQUbduXXHlyhWT5zUajZg/f764ePGi1ePcv3/foSIdDeEbN26Itm3bCpVKJfr27SsWL14svvnmG5Geni5ef/118eijj4pHH31U7Nq1y67j/fTTTyYBevr0aaFWq8XAgQMNto8aNUoEBQWJCxcu6LdlZGQIAGLx4sU2X6tevXqiUaNGQqPR6Le99dZbQqFQiJMnTwohhDh58qQAoH+NBw8eiKCgILFt2zb9PsOGDRM9evSw6/3Z4koIS8kXQjg/P1/89NNPJttTU1MFAJGRkWGwXafTiaVLl1oM5927d+v/nov8/fffQqVSidGjRxscp23btqJy5cqisLDQrlp1Op2Ii4sTL774ooiNjTUJ4b/++sukA6XT6USHDh2EWq22+e9WTiG8bds2ERAQICZPnmw1hI23mxMSEiIyMzP1jyMiIsStW7fsrsWhfzEjRowQAMT+/fvt3icpKUmEhISIM2fOiK5du4oyZcqIhIQE/XOxsbEG7e/evSuSkpJEWFiYCA8PF4MHDxa//PKL3SGcnZ0t6tatKxo2bChOnz5ttk1OTo545ZVXRJkyZez6Q7akadOmomnTpgbbKlasKPr27WvStlatWuKZZ56xerzjx48LACItLc1g++XLlwUAMW3aNCGEED///LMAILKzs/VtypUrJzZs2CCEEOLIkSMiMDBQ/Pnnn069L2OuhHBsbKxISkqy2kaI/33oi/+DO3TokOjUqZMoX768CAwMFFWrVhVDhw7VP28uhHU6nRg+fLhQqVTiyy+/1G9fuXKlaNq0qQgMDBQRERGif//+NjsLrjh27JgAID788EOD7Xv27BEAxPjx4032+fnnn0VYWJjJ5yctLU0AEMePHzfYnp6eLgCIPXv22FXTihUrRGhoqLh69arZELbkww8/FADEsWPHrLYzF8J5eXmie/fuIiwsTPz0009WO1QA9J+zos+J8Y87ArmgoEDUrl1bvP766xbDtvj27Oxsq//RNWjQQLz11lvir7/+EmlpaaJ8+fIOfQPyd2ToYsuWLXjsscfQsmVLR3ZDYWEhOnfujDZt2mDOnDkIDg42204IgYSEBPz444946aWXULduXWzcuBFJSUl2v9Yrr7wCf39//PjjjwgNDQUAaLVa5OfnIzg4GBqNBnl5eZg3bx4CAgKQlJSE3377DUqlY8PjQghcv34d9evX12+7fPkybty4gebNm5u0b9GiBbZu3Wr1mL/88gsAmOxfqVIlVK5cWf98rVq1EB4ejpSUFIwbNw7r1q1DdnY2mjZtCgAYN24cxowZg8cee8yh9+RLbty4gU6dOiEyMhITJ05E2bJlcf78eWzYsMHiPlqtFi+++CLWrl2LjRs3onv37gCA6dOn4+2330a/fv3wf//3f7h58yY++ugjPPXUU/jll19QtmxZAEBOTg5ycnJs1ubn54eIiAirbYrGDStUqGCwvU2bNpg1axYmTJiAiIgIvP322wCAP//8E126dEGVKlWwePFig31++eUXhISEoG7dugbbW7RooX++TZs2Vuu5d+8e3njjDbz55puIjo62+R7teS+25ObmIiEhAYcPH8Z3332HJ554AufPn7dr3969e+P06dNYvXo15s2bp3/tyMhIAEBWVhY0Go3N4wQGBqJMmTIG2z744APcvXsXkydPtvp5AoD27dvj/v37CAgIQOfOnfGvf/0LNWvWNGgzf/58PPfcc5g+fTqCg4Px+eefm5ygtsretM7KyhIARK9evUyeu3v3rrh586b+JycnR/9cUlKSACAmTpxosp9xT/irr74SAMSsWbP02woLC0Xbtm3t6gmfOXNG+Pv7i19++UW/LTU1VT/u07p1a7F06VL9a+bn54vo6Gjx7bff2veHUMzKlSsFAPHpp5/qtx06dEgAEJ999plJ+9dff10AsDoGXvT1y1wP7YknnhCtWrXSP05PTxdBQUECgPDz8xNz5swRQgixatUqERUV5dCYty3e6Alv3LjR5tfB4j1hjUYj+vfvL4KCggzGwc+fPy/8/PzE9OnTDfb97bffhL+/v8F2S70v4x/jb2/mdOzYUYSFhYm7d++aff6NN94QAMSCBQvE33//LWJjY0W1atXMDvN1795dVK9e3WT7gwcPLP7bMvbaa6+JatWq6T9/9vaEb9++LSpWrCjatm1rs23xnvC9e/fE008/LSpUqGDw79HenrAQ1ocjnn76abv+rop/9oQQ4urVqyI0NFQ/NGipJ7x27VoxZMgQsWLFCrFx40YxefJkERwcLCpUqGD232dmZqbYv3+/uH37ts0/J2N294Szs7MBwOR/FQBo164dfv31V/3j2bNn47XXXjNoM2rUKJuvsXXrVvj7+xu09fPzw9ixY7Fnzx6b+2/cuBGtW7dG48aN9Y9TU1Px6quv4sknn8SePXswbtw4lC9fHgAQEBCArl274ocffkB8fLzN4xf5448/MHr0aMTFxRn00nNzcwEAarXaZJ/AwEB9G3PP27N/0d8BAAwYMABdunTBqVOnUK1aNURFRSEnJwdvvPEGpk+fjjJlyiA1NRUrVqzQ//65556z+z16W1HvdMuWLWjUqBFUKpXFtgUFBejbty8yMjKwdetWtGvXTv/chg0boNPp0K9fP9y6dUu/PTo6GjVr1sTOnTvx5ptvAgAGDx5ss0cJAEFBQVaff++99/Ddd9/h448/1r8PYzNmzMDt27cxduxYzJgxA4WFhfjxxx/xyCOPmLS19Jkp/pmy5vTp05g/fz5Wr15t8bNnjk6nw8CBA5GZmYmPPvrI7v2ysrLQqVMn/PXXX/jhhx8Mvi26y7/+9S/cvXvXZrtKlSoZPH7jjTdQvXp1/N///Z/V/fr164d+/frpH/fq1QudO3fGU089henTp2PRokUG7cPDwx0eIShidwgXfbW/f/++yXOLFy/GvXv3cP36dbzwwgumL+Lvj8qVK9t8jQsXLuCRRx4xCfratWvbVeORI0fQvn17/eNPPvkESUlJmDVrFgAgISEBt27dwg8//KBvExUV5dD0sWvXrqF79+4IDw/HF198AT8/P/1zRf84zc0XLJquZO0fsK39jfeNiIhAq1at9I/ff/99VKxYEUOHDsXSpUuxaNEirFq1CufPn0f//v1x4sQJ2QxRPP300+jTpw9SU1Mxb948tGvXDr169UJiYqJJkLz//vu4f/8+/vOf/xgEMPDwa74QwuQrZJHi4V69enVUr17dpbrXrl2LyZMnY9iwYTY7HrNnz8b69evx999/Y+7cuahRo4bZdkFBQU5/pgDgn//8J1q3bo0+ffrY+S4eGjt2LLZt24bPPvsMjRo1snu/V155BXl5efjll18kCWAAaNasmcP77N+/HytXrsSOHTscHn4EHg4ltWzZEt99953D+1pjdwiHh4fjkUcewe+//27yXNH/AJbGe9RqtVNv2lG3b982+J/v/Pnz6NGjh0GbFi1aGITwpUuXEBMTY9fxs7Ky0LVrV2RmZmLPnj0m/8sW9WKuXr1qsu/Vq1dRrlw5qz2R4vsb13T16lX9GKA558+fx7/+9S98++23UCqVWL16NUaOHIkOHToAAFasWIE1a9Zg8uTJdr1XqVgaK9NqtSbtvvjiC+zfvx+bN2/G9u3b8eKLL+Jf//oX9u/fb/AfdefOnbFt2zbMmjUL7dq10/cQgYe9OYVCgf/85z8G/2EWKX6c+/fvm+1kGPPz89OPTRaXkZGBwYMHo3v37iY9JWN5eXno1asXCgsL8eSTT+LNN99EkyZNTP4TAR5+Lnbu3AkhhMGfX9HnzPhzWNz333+Pbdu2YcOGDQb/PgsLC5Gbm4vz58+jXLlyCAsLM9gvNTUVH3/8MWbMmIFBgwZZfS/GEhISsGbNGsyYMQOfffaZwb99e//+bblz5w4KCgpstgsKCkJ4eDgAYMKECWjbti2qVaum/7Mo+nZ09epVXLx4EVWqVLF6vJiYGJw6dcqhWm1x6MRc9+7d8e9//xsHDx60GgjOio2NxY4dO3D//n2Dfxz2vumwsDBkZWXpH0dHR+Ps2bMGbf766y/972/cuIFNmzbhq6++snnsvLw89OjRA6dPn8Z3332HevXqmbR59NFHERkZaTLxGwAOHjyoHyaxpOj5w4cPG/z5XrlyBX///TdGjBhhcd/XXnsNPXv21H+dvnLlisE/zkqVKuHy5ctWX98Tik5oZWZmGnxVv3Dhgtn2rVq1QqtWrTB9+nSkp6dj4MCBWLNmjcHXyVatWuGll17Cs88+i759+2Ljxo3w93/40a5RowaEEKhWrRpq1apltbY5c+YgNTXV5nuIjY016XAcOHAAzz33HJo3b45169bpX9+cwsJC9OvXD/v378eWLVvQunVrdOrUCT179sTOnTtNenmNGzfGv//9b5w8edLgc3fgwAH985ZcvHgRwMMTXcYuX76MatWqYd68eXjllVf029PS0pCSkoJXXnkFb7zxhsVjW9KrVy906tQJQ4YMQWhoKBYuXKh/rvjff3Hm/v6tndzq3bs3du3aZbOWpKQk/Urbixcv4sKFC6hWrZpJu549eyI8PNzmwpC//vrL7H/ArnAohCdMmID09HS8+OKL2LFjB6KiogyeFy7eM7Rbt25YsmQJFi5ciNdffx3Aw/8h7R2Pqlu3rv6DCQDPPfccJk2ahKZNm+LJJ5/E3r17sWTJEoSHh2P79u1ITk5GmzZt8Mwzz1g9rlarRf/+/bFv3z5s2rQJcXFxFtv26dMHK1asMOhh79ixA6dPn8b48eP17TQaDc6ePav/hgEA9evXR506dbBkyRKMHDlS33NbuHAhFAoFnn/+ebOvuXPnTmzduhV//PGHfltUVJTB45MnT/rEmHDRV+7du3ejZ8+eAIAHDx5gxYoVBu3u3r2LsmXLGvxDLAobc1/NO3bsiDVr1qBv374YNGgQVq1aBaVSid69e2PSpElITU01OWsthMCdO3f05wicHRM+efIkunfvjqpVq2LLli1WhweEEBg6dCi2bt2KdevWoWPHjgAejn23a9cOXbp0wZ49e1CnTh39PgkJCRg/fjw+/vhjLFiwQH+cRYsW4dFHH0Xr1q31ba9evYqsrCzUqFEDKpUKHTp0wMaNG03qGDFiBGJjY/HWW2+hQYMG+u1r167FuHHjMHDgQMydO9fmn4UlgwcPRnZ2NsaOHYuwsDDMnDkTwMOOUoUKFbB7926D4P/4449NjhESEgLANLAB58aElyxZYjL75fvvv8dHH32EOXPmGPyZ37x50yRst27diiNHjmDcuHE2X9chjp7J++qrr0RQUJAIDw8XL7/8sli8eLFYtGiReOONN0RMTIxQKpUGq3iK5gmbYzw7QqvViieffFIolUrx8ssviwULFogOHTqIhg0b2jU7Yv/+/SIoKEh/hrmgoED07NlTf6a0fPnyYurUqQKACAgIEKNGjRIPHjyw+Z7/+c9/CgCiR48eJqtnVq5cadD24sWLonz58qJGjRriww8/FO+9956IiIgQDRo0MJgZUXSW2Pjs7ebNm4VCoRAdOnQQS5YsEePGjRNKpVIMHz7cbG2FhYWiYcOGJiuaPvroIxEUFCTee+89MXLkSKFUKsXvv/9u872a487ZEQUFBaJKlSqiQoUKYubMmWLOnDmiXr16olmzZgZnwufNmydq1qwpJkyYIBYvXizmzJkjateuLcLCwsRff/0lhDA/T3jlypVCoVCIESNG6Le9//77+tkxs2bNEgsXLhQTJkwQNWvWdHmhR3Z2tv5zP2PGDJPPxt69ew3a79mzRygUCrF06VKTY127dk089thjZueZF82uGTFihPjkk0/0K+ZWrVpl0K5oNpKt+bTmZkccOHBABAQEiMjISLF06VKT93L27FmrxzQ3T3j69OkCgMEslKLVf8OGDRMLFy4UAwYM0P/9F/+cHTx4UAAQ3bp1E5999plYvXq1wwu9bLE0O6Lo72HmzJli0aJFYsSIEcLf31/ExMSIa9euubUGp5Y3nTlzRowaNUo89thjIjAwUAQFBYk6deqIl156SRw9etSgrSMhLMTDKTGDBg3SL9YYNGiQQ4s1nn76afHcc88ZTJY+ceKE+Omnn8SDBw/E3bt3xcGDB+0K3+LHhIUpMOb+H/v9999Fp06dRHBwsChbtqwYOHCgyV+cpRAW4uH0rMaNGwu1Wi0qV64sJk+ebHHpb1pamqhcubLJ+9FoNCI5OVlUqFBBxMbGihUrVtj9fo25M4SFeLiYpGXLliIgIEBUqVJFzJ0712SK2s8//ywGDBggqlSpItRqtahYsaJ49tlnxeHDh/XHsbRi7uOPPxYAxGuvvabf9uWXX4o2bdqIkJAQERISIurUqSNGjx4tTp065dgfhpGiGiz9mPv7LT5ly9j58+fFnTt3TLZrtVrx3nvvidjYWBEQECDq168vPv/8c5N2roRw0d+BpR9b//4srZibMGGCfjqeEA8XSw0bNkyEh4eL0NBQ0a9fP3Hjxg2TEBZCiGnTpolHH31UKJVKSVbPWQrht956SzRu3FiEh4cLlUolqlSpIkaNGuX2ABZCCIUQLo4h+Jg///wTTzzxBPr06YOFCxciICDApE1ubi4yMjL0X4fJuqIrodlzJTVjMTEx6Ny5M/7973+7vzCiEsChMWE5qFmzJrZv364/yTFmzBg8/fTTqFixIm7duoXvv/8eH374Ifz8/NChQwez857JPTQaDW7fvu3wSiui0qREXtS9ZcuW+P3339G9e3e8++67aN68OapUqYKmTZtixowZSExMxC+//MIAltD27dsxYsQI5Obm2jzxSVSalbjhCGNarRanTp3CrVu3UL58edSpU8fsfFGyzJnhiPbt2+PMmTMYNWqUfkUaEZkq8SFMROTLSuRwBBGRXDCEiYi8qMTNjiDP0el0uHLlCkJDQx27fmoJI4TAvXv3UKlSJY9cI4VKFoYwOe3KlSt2X/yoNLh06ZJdVwskKo4hTE4rurxpu8AEwMUbCwulAtkNHl5uMuy3P6HQ2Xe+2D9IhRc/7Y2lwzagMNf2nRYkEQj8kLdJ/+dB5AiGMDmtaAjCX6ECXByN0Pn7406XpwEAEScvQakptGs/lUKF4OBgqNxQg9P++7qleUiGnMcBLCIiL2IIExF5EUOYiMiLOCZMksjQrXeofU5BIepN2Q4A2HxvJYIDLH8045V93frajrD12kSOYk+YZMdayEoZwERSYAiTLJkLWwYwyRGHI8gnBPgpsXRIc/3vbTE3LBCv7MsgJtlhT5h8gr+fEh3qRKFDnSj42whha+OyHLMluWEIk6wYh+ymzBU22xD5MoYw+QSNVof1hy9h/eFL0Gh1ZtsYh2vxoQfjMGYQk1wwhMknaLQ6vP7FMbz+xTGzIWwtgC1tYxCTHDCEyefZE8CWnmMQk69jCJNPcySALbVhEJMvYwiTz3ImgC21ZRCTr2IIkyRcDT1XAtjSPu6uicgdGMIkGWdDq0foIIPHrizAcFcQM4BJKgxhkpSr4eWOFXCuBjEDmKTEECbJ2RNiAX5KRG/aiehNO6Eo1AJw77UgnA1iBjBJjSFMknA09Lqq+iP01AWEnroAhRCSXAPC0ZrcMS5NZAtDmCRjb+h5Mux8sSYq3RjCJClboVf0WCgUuFc7Fq8c/RCFFpYte7omS+2J3IkhTJKzFHrFw074++FaQnuMTv8ZBRKHsL01mWtH5G4MYfIIW73PzfdWerIcALZrYgCTJzCEyWMshZo3w84Xa6LShSFMRORFDGHyGHtnIniSL9ZEpQtDuIRauHAhGjZsiLCwMISFhSEuLg7/+c9/9M/n5eVh9OjRKF++PMqUKYM+ffrg+vXrktVja7zVeKmyJ9iqiUFMnsAQLqEqV66MGTNm4MiRIzh8+DA6dOiAhIQEHD9+HAAwfvx4bN68GevXr8euXbtw5coV9O7dW5JaLIWdN8dd7a2JQUxSYwiXUD169EC3bt1Qs2ZN1KpVC9OnT0eZMmWwf/9+ZGVl4dNPP8XcuXPRoUMHNGvWDMuWLcPevXuxf/9+t9Zhq7dZ9Fih1SJq64+I2vojVHbcbdkTNVlqT+RODOFSQKvVYs2aNXjw4AHi4uJw5MgRaDQadOzYUd+mTp06qFKlCvbt22fxOPn5+cjOzjb4AQBVoB9UQSqDH41Gg24hiQbbtuanQ6PRmPxszU9HgNof5c9eQPmzF5AQ9oLZdpZ+ANjd1pGairfrFpIIjUZj8j5VQSqoAv2k/QukEk0hhBDeLoKk8dtvvyEuLg55eXkoU6YM0tPT0a1bN6Snp2Po0KHIz883aN+iRQu0b98eM2fONHu8lJQUpKammmxPT09HcHCwJO9BDnJycpCYmIisrCyEhYV5uxySGX9vF0DSqV27No4ePYqsrCx88cUXSEpKwq5du5w+3qRJk5CcnKx/nJ2djZiYGKwcvQnIt/ylytxt6Y0VanXYc+Y2pvWfizIXrkLx376BrX01Gg0yMjIQHx8PlUplsV1C2SSHa7K0rwm19Cv8qORiCJdgAQEBeOyxxwAAzZo1w6FDhzB//nz0798fBQUFyMzMRNmyZfXtr1+/jujoaIvHU6vVUKvVJts1eVogT2t2H3tPvmlEIUZ8/gvQoz1qzPscSk0hAKCbOtGuY6hUKosh7OpKuK0P0q2PC/O7JLmAY8KliE6nQ35+Ppo1awaVSoUdO3bonzt16hQuXryIuLg4t72es7MfjJcwu3JizF1LkbmCjqTCEC6hJk2ahN27d+P8+fP47bffMGnSJPzwww8YOHAgwsPDMWzYMCQnJ2Pnzp04cuQIhg4diri4OLRq1cotr+9qaLljhoK7rwXBICYpcDiihLpx4wYGDx6Mq1evIjw8HA0bNsT27dsRHx8PAJg3bx6USiX69OmD/Px8dO7cGR9//LGXqzaUoVtvEKTxyr52ByEvxkNywRAuoT799FOrzwcGBiItLQ1paWkeqsg5zgQxA5jkhMMR5PMcGZpgAJPcMIRJFuwJYgYwyRFDmHyCyk+JqQn1MTWhvsVly9aC2HguLwOY5IIhTD5B5afE4LiqGBxX1eq1I4zD1dxCCgYwyQlDmGTHWsgygEluGMLkE7Q6gX1nb2Pf2dvQ6mwvQTMXtgxgkiOGMPmE/EItBnyyHwM+2Y/8QvNLoIuz58QckRwwhEl2HJmiRuTrGMIkK8Yha+5qaAxikhOGMMmGtXnAxmHMICa5YAiTLNizEIO3JSI5YgiTz3NkJRyDmOSGIUw+zZmlyAxikhOGMPkEf6USk7rWwaSudeCvfPixdOVaEAxikguGMEnC0dAL8Fdi5NM1MPLpGgjwV7rlYjzuDmIGOUmBIUyScTa03Hk1NHcFMQOYpMIQJknZG15ancCvlzLRttJLEAqFfrs7liK7GsQMYJISQ5gkZ0+I5RdqkZD2Ey4N7gHh7wfAvdeCcDaIGcAkNYYwScLR0OsROsjq/t6oiReJJ09gCJNk7A094+3Gt7z3hZoYwCQVhjBJylboeePrvqM1MYBJSgxhkpyl0PPmeKu9NTGASWoMYfIIW71PKYcgLLFVEwOYPIEhTB5jKdS8GXa+WBOVLv7eLoAIeLhs+Z/P1NT/nqi04KedPMbaTIQAfyXGx9fC+PhaCPD33MfS3tkRRFJhCJNH2Bpv9Ubo+WJNVPowhElylsKueOgJAE9FDsfp6/egs+Nuy56oyVw7IndjCJOkbPU2ix4LlT8uDuuFTvN2I8+Ouy17oiZL7YnciSFMkrF3ypfxduMlzL5QE4OYpMIQJkk4OufWeJ6wFKHnaE0MYvIEhjBJztk5t+4MPWcXYnC+MEmNIUyScjXE3BHErq6EYxCTlBjCJBlnw8udQxPuWorMICapMIRJEq6GljvGY919LQgGMUmBIUw+wV+pxIinqmPEU9X1y5ZdCWJejIfkgiFMPiHAX4k3u9XFm93qGixbdiaIGcAkJwxh8nmOBDEDmOSGIUw+QacTuHQnB5fu5JhdtmxPEDOASY4YwuQT8gq1aDtrJ9rO2mlx2bK1IE4om2S1LZGvYgiTrBiHq3H4mmtD5MsYwiQ71kKWAUxywxAmWTIXtgxgkiOGMMmSPSfmiOSAIUyy48gUNSJfxxAmWTEO2U2ZK2y2IfJlDGHyCX5KBQa1isWgVrHwUyrMtrE2D9g4jBnEJBcMYfIJan8/TOv1OKb1ehxqfz+T5+1ZiMGLsJMcMYTJ5zmyEo5BTHLDECafIITA7fv5uH0/H0JYvtuyPdPQOFWN5MTf2wUQAUCuRotm734HADgxtTOCA/xduhZEhm69fv+iXxnO5IvYEyZJuDoM4I6L8bh7aIJDGyQFhjBJxtnQMr7lvSs9WHcFMQOYpMIQJp/mjiEEnqwjX8YQJknFK/s6HXruHMN1NohdqZ/IHgzhEur999/HE088gdDQUFSsWBG9evXCqVOnDNrk5eVh9OjRKF++PMqUKYM+ffrg+vXrbnl9R0PPnUMQ7qqJF4knT2AIl1C7du3C6NGjsX//fmRkZECj0aBTp0548OCBvs348eOxefNmrF+/Hrt27cKVK1fQu3dvt9Vgb+gZbze+5b07OVsTA5ikwhAuobZt24YhQ4agfv36aNSoEZYvX46LFy/iyJEjAICsrCx8+umnmDt3Ljp06IBmzZph2bJl2Lt3L/bv3++2OmyFnv6xTofQ386gT9PKFpcte7wmC+2J3InzhEuJrKwsAEC5cuUAAEeOHIFGo0HHjh31berUqYMqVapg3759aNWqlckx8vPzkZ+fr3+cnZ0NAFAF+gEKw//PNRqN/vdb89MN7oDRLSQRmzJXIKFsElRBKv32n796+eFvhA4ajc6u91X0OsVfzx721rQpc4XBsYs/p6fWAbkOvTyRnkJYW55EJYJOp0PPnj2RmZmJH3/8EQCQnp6OoUOHGoQqALRo0QLt27fHzJkzTY6TkpKC1NRUk+3p6ekIDg6WpngZyMnJQWJiIrKyshAWFubtckhm2BMuBUaPHo3ff/9dH8DOmjRpEpKTk/WPs7OzERMTg5WjNwH5hj1hc5eYBMzfE25T5goIIZCreXiDzyCVHxQK+4YkNBoNMjIyEB8fD5XKTC/VDpZqsrct1Pb12onMYQiXcGPGjMGWLVuwe/duVK5cWb89OjoaBQUFyMzMRNmyZfXbr1+/jujoaLPHUqvVUKvVJts1eVogz/AOyZYCUZNrOmygUqmQU1CIRtMyAPx32bLKsY+mSqVyOoQt1WRvW/C7JLmAJ+ZKKCEExowZg40bN+L7779HtWrVDJ5v1qwZVCoVduzYod926tQpXLx4EXFxcZLUZO9MBE/yxZqodGEIl1CjR4/G559/jvT0dISGhuLatWu4du0acnMfnkEKDw/HsGHDkJycjJ07d+LIkSMYOnQo4uLizJ6Uc5WtGQfG84Q9wVZNDGLyBIZwCbVw4UJkZWWhXbt2eOSRR/Q/a9eu1beZN28enn32WfTp0wdPPfUUoqOjsWHDBrfXYinsfGnql6WaGMQkNY4Jl1D2THoJDAxEWloa0tLSJKvDVm+z+CUnPcXRmuKVfX3qPwwqWdgTJsnYu+jBk0MTztbEHjFJhSFMknB01ZnxUmUpQs/RmhjE5AkMYZKcPV/llQoFujWIRpk/zgO6h0Mp7gw9Z5cicxiCpMYQJknZG2KBKj98PLAZfv9qNJTa/805dkcQu3otCAYxSYkhTJJxNrzcOQzgrovxMIhJKgxhkoSroeWOIHb31dAYxCQFhjD5hJyCQlSd+A2qTvwGOQWFAFwLYl6OkuSCIUw+zZkgZgCTnDCEyec5EsQMYJIbhjARkRdx2TLJQlGPtqinW/Tr1vx0AA+v81v8MpPsAZNcsCdMsmIcruYuss4AJjlhCJPsWAtZBjDJDUOYfIJSoUD72pFoXzsSSjtubWQubBnAJEccEyafEKjyw7KhLexub26GBC85SXLEnjDJjiNT1Ih8HUOYZMU4ZM3dFZlBTHLCECafkFNQiLpvb0Pdt7fply0bs7YQwziMGcQkFwxh8hm5Gi1yNVqzz9mzEo4XYSc5YgiTz3NkKTKDmOSGIUw+zZlrQTCISU4YwuSzXLkYD4OY5IIhTJJwNfTccTU0dwcxg5ykwBAmyTgbWsa3vHdlAYa7gpgBTFLhijnyCUqFAi2rlQMA3BLCy9UQeQ5DmCRl71LiQJUf7oyaC+B/X8/ctQTZ0mUw7T0+e8EkJQ5HkCSKB1y8sq/NIPPEHTEcHZowrpvXpSApMIRJMvaGnidvSeSLNVHpxuEI8qqisNOp/HF+5PMIjwxDTkEhggOk+2hm6NZziIF8BkOYJGVtPNY4CLXBgbjzoMBjddlTE3vAJDUOR5BH2BoG2HxvpSfLAWC7JgYweQJDmDzGUqh5M+x8sSYqXRjC5FW+EHa+UAOVXgxh8hhLtyTy5kkyS6/PE3fkKQxh8ghb463GS5U9wVZNDGLyBIYwSc5S2BmEnhBQX72FhpXD7brbskdqMtOOyN0YwiQpW73NosfKQi2qrNyCr8e0QaDKz2P1WaupCIOYpMQQJsnYO+XL0SXOrtZkz1JkBjF5CkOYJOHonFtPhJ4v1kTEECbJ2TMFLLdAi3Mjn8e5kc9D5+/Z4QhrOH2NpMZlyyQpe0NMQKAwvMzDB/89MefoJSctcXUlHK81QVJiT5gk42x4Gi9hdiUA3bUUmT1ikgpDmCThami5YzzW3deCYBCTFBjC5LPcGXoMUPJVDGHyac5MX+MdMUhOGMLk8xwZmuDlKEluGMLkExRQoGbFMqhZsQwUMF22bE8QM4BJjjhFjXxCUIAfMpKfttrGkaliDGCSC/aESVaMx4gTyiYBgP5X4zZEvo4hTLJjLWQZwCQ3DGHyCbkFWsTP3YX4ubuQW6D1djlEHsMQJp8gIPDnjfv488Z9CAib7c31eNkLJjniiTmSHUsn59x1rQkiT2JPmGTFOIA3Za6w2YbIlzGEiYi8iCFcQu3evRs9evRApUqVoFAo8NVXXxk8L4TAlClT8MgjjyAoKAgdO3bEn3/+6Z1i7WBuKXLxYYdNmSs8eocOIndhCJdQDx48QKNGjZCWlmb2+VmzZuHDDz/EokWLcODAAYSEhKBz587Iy8vzcKW2ObISjnfDILnhibkSqmvXrujatavZ54QQ+OCDDzB58mQkJCQAAD777DNERUXhq6++wj/+8Q9Plgrg4bLlR8sG6X9fxJmlyMYr6+KVfXmyjnwWQ7gUOnfuHK5du4aOHTvqt4WHh6Nly5bYt2+fxRDOz89Hfn6+/nF2djYAQBXoBygMv1RpNBqHavJXAD+82va/j3TQaHQPjx2k0rfZlLnC5LhFj423b81PN1hF52g9lhSvR0+tA3LdcngqhRRCCNuTMknWFAoFNm7ciF69egEA9u7diyeffBJXrlzBI488om/Xr18/KBQKrF271uxxUlJSkJqaarI9PT0dwcHBktQuBzk5OUhMTERWVhbCwsK8XQ7JDHvCZLdJkyYhOTlZ/zg7OxsxMTFYOXoTkG/+9IK5KWS2FO/B2jqGRqNBRkYG4uPjoVKZ6aU6eDx7azKg1jl8PKIiDOFSKDo6GgBw/fp1g57w9evX0bhxY4v7qdVqqNVqk+2aPC2QZ36pcTd1ol3jsXkaLfot3odTh86iskYHZeHD49k7lqtSqSyG8NYH6QZjxPbWVMTmyT1+lyQXcHZEKVStWjVER0djx44d+m3Z2dk4cOAA4uLivFKTTggc+zsL+Y9U0N9tmbc3otKAIVxC3b9/H0ePHsXRo0cBPDwZd/ToUVy8eBEKhQKvvPIK3n33XXz99df47bffMHjwYFSqVEk/buwqR+fs9ggdZHF/d3G0Jt4miTyBIVxCHT58GE2aNEGTJk0AAMnJyWjSpAmmTJkCAJgwYQLGjh2LESNG4IknnsD9+/exbds2BAYGuq0Ge+fsGm83vuW9OzlbEwOYpMIx4RKqXbt2sDbxRaFQYOrUqZg6daoHqyIiY+wJk6Rs9Ty9saLNeMmzrZrYCyYpsSdMkisKsaJwMxe8m++tRL0p2z1el7WaGL7kCewJk8dYCrWi7eVCAlAuJMCTJdmsiUhq7AmTVxWFXXCAP35+O97L1RB5HnvC5DHmvvL76lXOfLUuKnkYwuQR1k52eevav7bmATOIyRMYwiQ5SwFcPPR0/n6om/gp+i/ehzyN9Hdbtqcmc+2I3I0hTB5l8YSXQoHcKtE4cO4OdF6+sB9PypEn8cQcScae+bZF255RD9Bv6xE6CDvyV3utpqLtxtPXGM4kBfaESRKOLngwXqosxTCAozVxaII8gSFMknO2B+nO0HN2FRx7vyQ1hjBJqiSEWEl4D+S7GMIkGWfDq/jQhKvT18xNQ3OmLgYxSYUhTJJwJrSCVH4IUvmZ3d+ZIHb3hXgYxCQFzo4gnxAc4I+T07p4uwwij2NPmHyWrUtOWuOOIQgiT2AIk89zZIkzb0lEcsMQJp+Qp9Fi6LKDGLrsoNlly/aMEfNi7CRHHBMmn6ATAjtP3dT/nqi0YAiTbJi7Q4cqSIWR6f2RUDbJpB2RHHA4gmTHWsgygEluGMIkS9YuBkQkJwxhIiIv4pgwyY6lKWq85CTJEXvCJCvGAbwpc4XNNkS+jD1h8gnBAf44P6O7t8sg8jj2hEk2rC3GMO4RszdMcsGeMPk8R25JVLw9x4hJDtgTJp+Qp9Hi5VVH8PKqIwbLlp1ZiszbEpGcMITJJ+iEwNbfrmHrb9e4bJlKFYYw+SxXLkfpymUwiTyJY8IkCVfGY3uEDoJSU6h/7MqYrrtuXc8QJ6mwJ0yScjW83HFSzdUxYgYwSYkhTETkRQxhkoSj47E9QgeZ7O/OqWXmxojtqYt36SCpMYRJMvaGnvH24re8l7Imc69dfDsDmDyBISyx/Px87N69GytXrsTixYuxYcMGnDt3zttleYyt0Ct6rNAUosa8z3Fiamf9be+9XZOl9kTuxNkREvnpp58wf/58bN68GRqNBuHh4QgKCsKdO3eQn5+P6tWrY8SIEXjppZcQGhrq7XK9ToGHQRwcwI8klS78xEugZ8+e+Pnnn5GYmIhvv/0WzZs3R1BQkP75v/76C3v27MHq1asxd+5cfPbZZ4iPj/dixdKytJzYXJvSXBOVTgxhCXTv3h1ffvklVCqV2eerV6+O6tWrIykpCSdOnMDVq1c9XKF3FJ+za7w9v1CLNzf8DgB4r/fjUPtLOyRhT01EnsAQlsDIkSPtbluvXj3Uq1dPwmrkQasT+PLnvwEA03rV93I1RJ7DEPag+/fvQ6fTGWwLCwvzUjVE5As4O0Ji586dQ/fu3RESEoLw8HBEREQgIiICZcuWRUREhLfL8xhrU768uSLNWk1cKUeewJ6wxF544QUIIbB06VJERUVBoVB4uySPszTlq/h4bI/QQcD4F3yqpqJ2HB8mKTGEJfbrr7/iyJEjqF27trdLISIfxOEIiT3xxBO4dOmSt8vwGluXo/RGL9PWYgxeBpM8iT1hif373//GSy+9hMuXL+Pxxx83mbbWsGFDL1UmLUdWnWXo1iOnoBD1pmwH8L9LWbo7oB1dCWfuMphE7sYQltjNmzdx9uxZDB06VL9NoVBACAGFQgGtVmtl75LBnjANUvnhyOSOeD5qGBT/vZawO8djnV2KbGkeMZG7MIQl9uKLL6JJkyZYvXp1qT0xZw+FQoHyZdTwz833dilEHsUQltiFCxfw9ddf47HHHvN2KR7nTC/W3HJiV3vDrl4NzbgmIndiCEusQ4cO+PXXX0t0CAt/JYTK8Bzv5nsrkafRIrDYFdFyCgqNd9Ur1ArM3n4KADD52brYlLdaf43hZ9QD9McEAKVCYXDcAu3DY6uE4beMHqGDACH0Z58zdOuRW6CFgPkbiSqgQFDA/46bp9Ea3HS0eE0ADG7BROQshRC8ta2UlixZgnfffRcvvvgiGjRoYHJirmfPnl6qzHXZ2dkIDw9HzCvroFQHmzzfvnYklg1toX9c9+1tyNWYHwNvHhuBwxfuAgBOTO2MNjN34s6DArNtG1YOx9dj2gAANBoNWr67HXfyzQ/zBNy6i9ilm/7Xm527C3/euG+27aNlg/DTxA76xz0X/Ihjf2eZbeuXk4fqC9Y8fBAIfJf7BbKysrgCkhzGnrDEXnrpJQDA1KlTTZ4rLSfmiMgy9oTJaUU94WdC+0Hkmw5HGA8bWBuOyNNo0XTadwAe9oSNFR8G+Ob+5/rjajQafLV5Kzp17qT/llG87ZZ7nxsMMbgyHGF8bP1wBHvC5AL2hMllikIdFBrDCxOZuzi7IxdsN267I3/1/5Y4q/8B4H8nzAL8Hrbv9t+x4+JjwMaKh6wtgWbu8MFxYHI3hrAHHDp0CDt37sSNGzdMrqI2d+5cL1X1UFpaGmbPno1r166hUaNG+Oijj9CiRQvbOxKRWzCEJfbee+9h8uTJqF27tsk8YW/PGV67di2Sk5OxaNEitGzZEh988AE6d+6MU6dOoWLFil6tzRxzF9fZmp8OAEgom2TSlkgOGMISmz9/PpYuXYohQ4Z4uxQTc+fOxfDhw/Wr+RYtWoRvvvkGS5cuxcSJE71cnXnGc3YTyiZhZHp/k+eJ5IIhLDGlUoknn3zS22WYKCgowJEjRzBp0iT9NqVSiY4dO2Lfvn1m98nPz0d+/v9WtGVnZwMAVIF+gMLwxJxGo3GoHj8hsDO57X9/r7O5/9b8dCSUTYIq6OFHWBXkj02ZKxx+XUepgszcskqtA3IlfVkqwTg7QmKzZs3ClStX8MEHH3i7FANXrlzBo48+ir179yIuLk6/fcKECdi1axcOHDhgsk9KSgpSU1NNtqenpyM42HSecGmRk5ODxMREzo4gp7AnLLHXXnsN3bt3R40aNVCvXj2TxRobNmzwUmWOmzRpEpKTk/WPs7OzERMTg5WjNwFGU9Q2Za6QtJaiMWBVkD9e/LQPlg77EprcQo+9rgG1znQbkZ0YwhIbN24cdu7cifbt26N8+fJePxlXpEKFCvDz88P169cNtl+/fh3R0dFm91Gr1VCr1SbbNXlaIM9w0YmlO01bUlCow5xvHy5bfq1TbQT4m7/UtfH1GzZlrsDWrVuhyS2EJleDbupEANKNDWtyzQx38LskuYAhLLEVK1bgyy+/RPfu3b1dioGAgAA0a9YMO3bsQK9evQAAOp0OO3bswJgxYzxeT6FOhyW7/wIAvNKxJgLM3G/A3OUoi8aAN2Wu0AdwUVuepCM5YAhLrFy5cqhRo4a3yzArOTkZSUlJaN68OVq0aIEPPvgADx48MLj2MRFJiyEssZSUFLzzzjtYtmyZz5286t+/P27evIkpU6bg2rVraNy4MbZt24aoqChvl2bCnstRSnEZTCKpMYQl9uGHH+Ls2bOIiopC1apVTcZKf/75Zy9V9tCYMWO8MvxgL2fuiGHutkQMY/JVDGGJFY23EhGZwxCW2DvvvOPtEmTL2fvCFbU1XuLM3jD5It7yXgJc/+L6rYCMx4CdvS2RO29dz9sbkRQYwhKoX78+1qxZg4IC83eGKPLnn39i1KhRmDFjhocq86x4ZV+7gyvQ3w/fjn8KVT79Cj0DB+i3u6P3ahzEjoapM/sQ2YvDERL46KOP8MYbb+Dll19GfHw8mjdvjkqVKiEwMBB3797FiRMn8OOPP+L48eMYM2YMRo0a5e2SvU6pVKBWVCjUtzO9XQqRRzGEJfDMM8/g8OHD+PHHH7F27VqsWrUKFy5cQG5uLipUqIAmTZpg8ODBGDhwICIiIrxdruTsHY91ZQzYFmfHiNkDJqkxhCXUpk0btGnTxttleIUjc3bjlX0hlErcebIxAGD/zkkWly27u6bi283VZWlfInfhmDBJytZ4bNFj4fcwhO882RiFOmkviGMcuuZqsmdxCJE7MISJiLyIIUySs9TzLN7b3HxvpcdrMjd9TcpxaSJzGMISuXLlirdL8CnW5ux6M+is1cQAJk9gCEukfv36SE9P93YZROTjGMISmT59OkaOHIm+ffvizp073i6HiHwUQ1giL7/8Mo4dO4bbt2+jXr162Lx5s7dL8jpL07u8Oe3LF2ui0oXzhCVUrVo1fP/991iwYAF69+6NunXrwt/f8I/c25ey9ARrJ7uKnusZlIiYqHJYcGAG1P5+PlETL4NJnsAQltiFCxewYcMGREREICEhwSSE6SGFEAi8dhuNYsp6uxQij2IiSOiTTz7Bq6++io4dO+L48eOIjIz0dkkeZ2vKlzcuOemLNVHpxRCWSJcuXXDw4EEsWLAAgwcP9nY5XmHvNLQM3Xp09O+PzOZ1AQAd/fvju8K1ktdkrS7eKok8hSEsEa1Wi2PHjqFy5creLsUrHJ0H/HXOKtSbsh0AEP7LKbePxzq7CMPcrZKI3IkhLJGMjAxvl0BEMsApaiQpV3uy7uh9uroUmcMQJCX2hEkSrgTX5nsrERzg75bxWHctj+alLEkq7AmTz3LltkS8HCXJBUOYiMiLGMLk02xdgN0cXo6S5IRjwuQT1P5+WD28lf73xdl7WyKGL8kRe8LkE/yUCsTVKI+4GuXhp1SYbWMtdBPKJlltS+SrGMJERF7EECafoNHq8Nm+8/hs33lotJZv9GncwzXuAZtrQ+TLOCZMPkGj1WHKpuMAgOebVYbKz3L/wNKcXYYvyRF7wkREXsQQJlkyN1WNq9lIjhjCJDvWwpZBTHLDECbZMLcUeVPmCgDQ/2quHZEvYwgTEXkRQ5hkwZ6ZEM4scSbyNk5RI58Q4KfE0iHN9b8vzpGrofG2RCQ3DGHyCf5+SnSoE2WwzZV5wOZuS8QwJl/E4QgiIi9iCJMkHB2P1Wh1WH/4EtYfvgSNVueW1XDuHiPmGDNJgcMRJBlHxmM1Wh1e/+IYAGDRkxP0vQNXhxDsvQymLQxgkgp7wiSpkhBeJeE9kO9iCJPknA0xd55Ic3ZoggFMUmMIkyQcDb0eoYOs7u+NmniVNvIEjgmTZOyZs6sPOtX/Poqb7630aE3Ft5vUZeY5IndiT5g8Sg5f7+VQI5UcDGGSnKVepjfDzt6a2AsmqXE4gjyi+Ao2wPTrfqFWh+3HrwMwXbYsZU3Fa2EAkzewJ0weY+2iO/5+SnRv+Ai6N3wE/h4KYWsYwOQp3v+0U6nG8Vcq7RjC5DGWAjde2ReFWh2+OXYV3xy7ikIrd1v2ZE1EnsAxYZKctbHWouc6Bw/E2fEvAABOTO3skSEJS9PQePU18iT2hElStk52eSPgzN0mqTheHJ48iSFMRORFDGGSjL1Tvoy3Gy9h9oWa2BsmqTCES6Dp06ejdevWCA4ORtmyZc22uXjxIrp3747g4GBUrFgRr7/+OgoLC91Wg/HXfVvDDsZLlaUIPUdrMm7DICYpMIRLoIKCAvTt2xejRo0y+7xWq0X37t1RUFCAvXv3YsWKFVi+fDmmTJni4Uqtc2foMUDJVzGES6DU1FSMHz8eDRo0MPv8t99+ixMnTuDzzz9H48aN0bVrV0ybNg1paWkoKChway2unnhzR3i6uhKOsyNISgzhUmjfvn1o0KABoqL+d2PNzp07Izs7G8ePH7e4X35+PrKzsw1+AEAV6AdVkMrkZ2t+OjQajV0/0Gkx47n6mPFcfWzOWm5wnG4hidb3BSw+1y0k0emaiv9szU83+x5VQSqoAv2k/QujEk0hhBDeLoKksXz5crzyyivIzMw02D5ixAhcuHAB27dv12/LyclBSEgItm7diq5du5o9XkpKClJTU022p6enIzg42K21y0lOTg4SExORlZWFsLAwb5dDMsPFGjIxceJEzJw502qbkydPok6dOpLVMGnSJCQnJ+sfZ2dnIyYmBitHbwLyDb9Ubcpc4ZbXTCibZPW4Go0GGRkZiI+Ph0qlsns/d9UDAFB7boUflTwMYZl49dVXMWTIEKttqlevbtexoqOjcfDgQYNt169f1z9niVqthlqtNtmuydMCeVqDbcUD0R6FWh12/3kTAPBUzUj9irmtD9INxnS7qRPNjtGqVCr9a0p5NTRNrsZ0I79LkgsYwjIRGRmJyMhItxwrLi4O06dPx40bN1CxYkUAQEZGBsLCwlCvXj23vIajCrQ6vLj8MADTZcvmLoNpKVh5OUqSG4ZwCXTx4kXcuXMHFy9ehFarxdGjRwEAjz32GMqUKYNOnTqhXr16GDRoEGbNmoVr165h8uTJGD16tNmeri+wdO3frfnpAB4OExTvpTJ8SS4YwiXQlClTsGLF/8ZAmzRpAgDYuXMn2rVrBz8/P2zZsgWjRo1CXFwcQkJCkJSUhKlTp3qrZKJSi1PUSqDly5dDCGHy065dO32b2NhYbN26FTk5Obh58ybmzJkDf3/f/z/ZuIdr7kQZe8EkJ77/r47IiPHQhPF2IjlhT5hkydxKOi5NJjliCBMReRGHI8gnqPyUmJpQX/97a6z1eK1NXyPyRewJk09Q+SkxOK4qBsdVtRrCxpejLFoJV3xFHIclSE4YwiQbjoQrg5jkgiFMPkGrE9h39jb2nb0Nrc50HbA9MyF4NwySI4Yw+YT8Qi0GfLIfAz7Zj/xCw+tQODIVjUFMcsMQJp/m6C2JzLVjEJMvYwiTz+Ltjag0YAiTJFwNPXeshnP30ASDnKTAECbJOBtaxre8d2Xer7uCmAFMUmEIk6RcCS97x4AdPU68si+nu5HPYAiT5OQcYnKuneSBIUyScHQYoGfwQFT44RAq/HAICq1OkqXHjtbEq7SRJzCESTL2hl68si8UOh0iDh7H4f0p+K5wraQ12TN9jQFMnsIQJknZCmJf+LpvqyYGMEmJIUySsxTExcNOKBSYc+ET/Hop0+yyZW/UZK4dkbsxhMkjbPWIv85NR0LaT0hI+8lk2bK3amIAkycwhMljLF10x5thZ+n1GcDkKQxh8ipfHBMm8iSGMHmMvTMRPMkXa6LShSFMHmFrvNV4qbIn2KqJQUyewHvMkaSsBV2Gbr3Xgs74EpnGvzeeLcExYpIKe8LkVd4IN/ZwyZcwhEky9k75ytCth0KrQ7mfjqLcT0fRM3igT9RkbT8id+FwBEnC0td9S74rXGuwjxS3rnd0HrCloQkid2IIk6QcCVKpxmNdXYThzbFrKvkYwuQTdDqBMzfvAwAEAIV3yyHyGI4Jk2Qc6XHmFWrRad5udJq3G1/nrTZ4zpVeqLuWInN2BEmFIUyScDW03HFizN3XgmAQkxQYwuSzXAliXoyH5IIhTD7NmSBmAJOcMITJ5zkSxAxgkhuGMMmCPUHMACY5YgiTbFgL4oSySVbbEvkqhjD5BH+lEiOeqo4RT1WHv9Lyx9I4XI3D11wbIl/GxRrkEwL8lXizW1272lpbwcYAJrlhT5hkibckopKCIUw+QacTuHQnB5fu5EBnx92W7TkxRyQHDGHyCXmFWrSdtRNtZ+1Eno27LTsyRY3I1zGESVaMQ3ZT5gqbbYh8GUOYZMPaPGDjMGYQk1wwhEkW7FmIwbthkBwxhMnnObISjkFMcsMQJp/mzFJkBjHJCUOYfJYr14JgEJNcMIRJEo6Gnp9SgUGtYjGoVSz8lAq3XIzH3UHMICcpMIRJMo6EltrfD9N6PY5pvR7HswH/MHjOlZVw7gpiBjBJhSFMknI0vKS4HKWrQcwAJikxhEly9oSYEALtQ15AYZAaRYuW3XktCGeDmAFMUmMIkyQcDb2OgYk4N3YAzo0dAKHyl+RiPI7WxIvEkycwhEky9oae8fbN91b6XE0MYJIKQ5gkZSv0vPF1P0O33qAuWzUxgElKDGGSnKUg9qXxVks1MYBJagzhEub8+fMYNmwYqlWrhqCgINSoUQPvvPMOCgoKDNodO3YMbdu2RWBgIGJiYjBr1ixJ67LVI5ZyCMISWzUxgMkTGMIlzB9//AGdTofFixfj+PHjmDdvHhYtWoQ333xT3yY7OxudOnVCbGwsjhw5gtmzZyMlJQVLliyRtDZLoebNsPPFmqh04T3mSpguXbqgS5cu+sfVq1fHqVOnsHDhQsyZMwcAsGrVKhQUFGDp0qUICAhA/fr1cfToUcydOxcjRozwVulEpRJDuBTIyspCuXLl9I/37duHp556CgEBAfptnTt3xsyZM3H37l1ERESYPU5+fj7y8/P1j7OzswEAqkA/QGH4pUqj0Zjsn1A2Caoglcn2biGJWHdrGZ5rUgkAoNNqodHYvsVR8dcx93r2sFaTuQvGm2sLtQ7IderliaAQQtj3aSdZOnPmDJo1a4Y5c+Zg+PDhAIBOnTqhWrVqWLx4sb7diRMnUL9+fZw4cQJ165q/63FKSgpSU1NNtqenpyM4OFiaNyADOTk5SExMRFZWFsLCwrxdDskMe8IyMXHiRMycOdNqm5MnT6JOnTr6x5cvX0aXLl3Qt29ffQC7YtKkSUhOTtY/zs7ORkxMDFaO3gTkG/aEi/ciE8omOfWcPTQaDTIyMhAfHw+Vykwv1QJnazJ+DsDDnjCRkxjCMvHqq69iyJAhVttUr15d//srV66gffv2aN26tckJt+joaFy/ft1gW9Hj6Ohoi8dXq9VQq9Um2zV5WiDP8OacRYFoa8bB1gfpiFf2hQAgVP7oUmYwvstLh0KhsFiHOSqVyu4QtremIt3Uifo2mlwzwx78LkkuYAjLRGRkJCIjI+1qe/nyZbRv3x7NmjXDsmXLoFQa9lLj4uLw1ltvQaPR6IMrIyMDtWvXtjge7Ax7p3xl6NbjGfUAnB3/AoCHS5h35K92Wx3O1lS8bbyyL2dMkCQ4Ra2EuXz5Mtq1a4cqVapgzpw5uHnzJq5du4Zr167p2yQmJiIgIADDhg3D8ePHsXbtWsyfP99gqMFVjs65NZ4nLMVCDkdr4oXhyRPYEy5hMjIycObMGZw5cwaVK1c2eK7oHGx4eDi+/fZbjB49Gs2aNUOFChUwZcoUSaanudJ7dGfv09mFGEXtGMAkFYZwCTNkyBCbY8cA0LBhQ+zZs0f6glzkjiDmSjjyZRyOIMk4G3buHJpwVwAzuEkqDGGShKuh5Y7xWHf3gBnEJAWGMPksW5ectKZ4W+PjEPkShjD5BKVCgW4NotGtQTSUVuYI2xPEPIlGcsIQJp8QqPLDxwOb4eOBzRCo8jN4zpGhCZ6EI7lhCJMs2BPEDGCSI4YwyYa1IDa+pgMDmOSCIUw+IaegEFUnfoOqE79BTkGhxXbG4WrugjoMYJIThjDJjrWQZQCT3DCESZbMhS0DmOSIIUyyZM+JOSI5YAiT7DgyRY3I1zGESVaMQ9bcnTgYxCQnDGGSDWvzgI3DmEFMcsEQJp+gVCjQvnYk2teONLts2Z6FGLwIO8kRQ5h8QqDKD8uGtsCyoS1Mli07shKOQUxywxAmn+bMUmQGMckJQ5h8livXgmAQk1wwhEkSjoZeTkEh6r69DXXf3oacgkK3XIzH3UHMICcpMIRJMo6GVq5Gi1yNFj1CBxlsd2UlnLuCmAFMUmEIk6RcDS93LEV2NYgZwCQlhjBJztkQc+e1IJwNYgYwSY0hTJJwNPTcOQThrpp4kXjyBIYwScbe0DPebnzLe1+oiQFMUmEIk6RshZ43vu47WhMDmKTEECbJWQo9g7ATAi2rlUPLauWs3m3ZozWZaUfkbv7eLoBKhwzdeoOAMw67HQVrPF2SzZoYwOQJ7AmTx1gKNW+GnS/WRKULQ5iIyIsYwuQx1mYi5BQUoum0DDSdlmH1bsuerInIExjC5BG2xlt7hA7CnQcFuPOgwGdqYhCTJzCESXKWws6b46721sQgJqkxhElStnqb3ghiR2tiEJOUGMIkGXunfJkbmvC1mhjEJBWGMEnC0Tm3xkuVpQg9R2tiEJMnMIRJcs4OObgz9JxdiMH5wiQ1hjBJyt4QUyoUaFg5HA0rhwNC6Le7I4hdXQnHICYpMYRJMo6EV6DKD1+PaYOvx7QxWcLsShC7aykyg5ikwhAmSbgaWu4Yj3X3tSAYxCQFhjD5LFeCmBfjIblgCJNPyC3Q4skZ3+PJGd8jt0Cr3+5MEDOASU4YwuQTBAQuZ+bicmYuBITBc44EMQOY5IYhTLJgTxAzgEmOGMIkG9aCOKFsktW2RL6KIUyyYhyuxuFrrg2RL2MIk+xYC1kGMMkNQ5hkyVzYMoBJjhjC5BMUUKBmxTKoWbEMFLB9t2V7TswRyQHvtkw+ISjADxnJT9vV1tYUNfaISU7YEyZZMQ7gTZkrbLYh8mUMYZINa/OAjcOYQUxywRAmn5BboEX83F2In7vLYNlyEXsWYvAi7CRHDGHyCQICf964jz9v3DdZtuzISjgGMckNQ5h8mjNLkRnEJCcMYfJZrlwLgkFMcsEQLoF69uyJKlWqIDAwEI888ggGDRqEK1euGLQ5duwY2rZti8DAQMTExGDWrFlurcHV0HPHxXjcHcQMcpICQ7gEat++PdatW4dTp07hyy+/xNmzZ/H888/rn8/OzkanTp0QGxuLI0eOYPbs2UhJScGSJUvcWoezoWV8y3tX5v26K4gZwCQVhnAJNH78eLRq1QqxsbFo3bo1Jk6ciP3790Oj0QAAVq1ahYKCAixduhT169fHP/7xD4wbNw5z5851ey2uhpc7Fl64GsQMYJISV8yVcHfu3MGqVavQunVrqFQqAMC+ffvw1FNPISAgQN+uc+fOmDlzJu7evYuIiAizx8rPz0d+fr7+cXZ2NgBAFegHKCz/f94tJNHsooriCjVaqLLv//d4/lD6K7Apc4X+Pw5Lip631W5rfrrBFdfsqQl4eJU2VZDKeiO1Dsi1eSgisxRCCGG7GcnNG2+8gQULFiAnJwetWrXCli1bUL58eQBAp06dUK1aNSxevFjf/sSJE6hfvz5OnDiBunXrmj1mSkoKUlNTTbanp6cjODhYmjciAzk5OUhMTERWVhbCwsK8XQ7JDENYJiZOnIiZM2dabXPy5EnUqVMHAHDr1i3cuXMHFy5cQGpqKsLDw7FlyxYoFAqnQ9hcTzgmJgZdI/oD+YY94aJepvH1fs31Pu1pY4lGo0FGRgbi4+P1PX1bXKnJ3PWLodbhP3fXMoTJKRyOkIlXX30VQ4YMsdqmevXq+t9XqFABFSpUQK1atVC3bl3ExMRg//79iIuLQ3R0NK5fv26wb9Hj6Ohoi8dXq9VQq9Um2zV5WiDPcJVbUSBufZBuMKbaTZ1oMEbrrlsSqVQqu0PYlZo0uWaGPdiNIRfwxJxMREZGok6dOlZ/io/xFqfT6QBA34uNi4vD7t27DcZRMzIyULt2bYvjwa6wdGKseNjp/P0Q9OE/0XPBj8jTmC5b9kZN5toRuRtDuIQ5cOAAFixYgKNHj+LChQv4/vvvMWDAANSoUQNxcXEAgMTERAQEBGDYsGE4fvw41q5di/nz5yM5OVmyumzNUNh8/3Mc+zsLx/7Ogs5DI2S2amIAkycwhEuY4OBgbNiwAc888wxq166NYcOGoWHDhti1a5d+KCE8PBzffvstzp07h2bNmuHVV1/FlClTMGLECElrsxRq3gw7X6yJSheOCZcwDRo0wPfff2+zXcOGDbFnzx4PVERE1rAnTB5jadGDNxdD+GJNVLowhMkjbI23Gi9V9gRbNTGIyRMYwiQ5S2HnzXFXe2tiEJPUGMIkKVu9zeKP/XLy4JeT51M1mWtP5E4MYZKMvVO+MnTrodQUovqCNai+YA0SAgf4RE3W9iNyF4YwScLRObeeCD1frImIIUySs3fsV8rQc3YhBucLk9QYwiQpe0MsT6NF/8X7UG5hMnT+fvrt7ghiV1fCMYhJSgxhkowj4aUTAgfO3cGBc3ew+f7nBs+5EsTuWorMICapMIRJEq6GljuGJtx9LQgGMUmBIUw+y5Ug5sV4SC4YwuTTnAliBjDJCUOYfJ4jQcwAJrlhCJMs2BPEDGCSI4Yw+YwglR+CVH4Wn7cWxMb3fmMAk1wwhMknBAf44+S0Ljg5rQuCAyxf5to4XM3deJMBTHLCECbZsRayDGCSG4YwyZK5sGUAkxwxhMkn5Gm0GLrsIIYuO2jX3ZbtOTFHJAcMYfIJOiGw89RN7Dx10+bdlh2Zokbk63ijT5KEo2GoU/kD418A8PBWR0pNocdem8ib2BMmIvIihjARkRcxhImIvIghTETkRTwxR04T/53FUCg0gNGEhk1Znzl0rJyCQrSYvgMAsOpymtVVc8VpNBp8++23WHnxI6hUKode0xkJ4YNNN/73vQsbszqIzFEIfnLISX/99Rdq1Kjh7TJ8xtmzZ1G9enVvl0Eyw54wOa1cuXIAgIsXLyI8PNwrNWRnZyMmJgaXLl1CWFiYV2rIyspClSpV9H8eRI5gCJPTlMqHpxTCw8O9FoBFwsLCvF5D0Z8HkSP4qSEi8iKGMBGRFzGEyWlqtRrvvPMO1Go1a/ByDSRfnB1BRORF7AkTEXkRQ5iIyIsYwkREXsQQJiLyIoYwuUXVqlWhUCgMfmbMmCHpa6alpaFq1aoIDAxEy5YtcfDgQUlfz1hKSorJe65Tp45HayD544o5cpupU6di+PDh+sehoaGSvdbatWuRnJyMRYsWoWXLlvjggw/QuXNnnDp1ChUrVpTsdY3Vr18f3333nf6xvz//SZFj2BMmtwkNDUV0dLT+JyQkRLLXmjt3LoYPH46hQ4eiXr16WLRoEYKDg7F06VLJXtMcf39/g/dcoUIFj74+yR9DmNxmxowZKF++PJo0aYLZs2ejsND5+8RZU1BQgCNHjqBjx476bUqlEh07dsS+ffskeU1L/vzzT1SqVAnVq1fHwIEDcfHiRY++PskfvzuRW4wbNw5NmzZFuXLlsHfvXkyaNAlXr17F3Llz3f5at27dglarRVRUlMH2qKgo/PHHH25/PUtatmyJ5cuXo3bt2rh69SpSU1PRtm1b/P7775IOxVDJwhAmiyZOnIiZM2dabXPy5EnUqVMHycnJ+m0NGzZEQEAARo4ciffff7/ELuft2rWr/vcNGzZEy5YtERsbi3Xr1mHYsGFerIzkhCFMFr366qsYMmSI1TaWLmLesmVLFBYW4vz586hdu7Zb66pQoQL8/Pxw/fp1g+3Xr19HdHS0W1/LEWXLlkWtWrVw5swZr9VA8sMQJosiIyMRGRnp1L5Hjx6FUqmUZKZCQEAAmjVrhh07dqBXr14AAJ1Ohx07dmDMmDFufz173b9/H2fPnsWgQYO8VgPJD0OYXLZv3z4cOHAA7du3R2hoKPbt24fx48fjhRdeQEREhCSvmZycjKSkJDRv3hwtWrTABx98gAcPHmDo0KGSvJ45r732Gnr06IHY2FhcuXIF77zzDvz8/DBgwACP1UDyxxAml6nVaqxZswYpKSnIz89HtWrVMH78eINxYnfr378/bt68iSlTpuDatWto3Lgxtm3bZnKyTkp///03BgwYgNu3byMyMhJt2rTB/v37nf72QKUTL2VJRORFnCdMRORFDGEiIi9iCBMReRFDmIjIixjCRERexBAmIvIihjARkRcxhImIvIghTD7r1KlTiI6Oxr179zz+2tu2bUPjxo2h0+k8/tpUujCESTJarRatW7dG7969DbZnZWUhJiYGb731ltX9J02ahLFjx3rl2rxdunSBSqXCqlWrPP7aVLpw2TJJ6vTp02jcuDE++eQTDBw4EAAwePBg/Prrrzh06BACAgLM7nfx4kU89thjOHfuHB599FFPlqyXlpaG5cuX49ChQ155fSod2BMmSdWqVQszZszA2LFjcfXqVWzatAlr1qzBZ599ZjGAAWDdunVo1KiRQQAvX74cZcuWxZYtW1C7dm0EBwfj+eefR05ODlasWIGqVasiIiIC48aNg1ar1e9XtWpVvPvuuxg8eDDKlCmD2NhYfP3117h58yYSEhJQpkwZNGzYEIcPHzaooUePHjh8+DDOnj3r/j8YoiKCSGI6nU60a9dOPPPMM6JixYpi2rRpNvfp2bOneOmllwy2LVu2TKhUKhEfHy9+/vlnsWvXLlG+fHnRqVMn0a9fP3H8+HGxefNmERAQINasWaPfLzY2VpQrV04sWrRInD59WowaNUqEhYWJLl26iHXr1olTp06JXr16ibp16wqdTmfwmlFRUWLZsmVu+XMgMochTB5x8uRJAUA0aNBAaDQam+0bNWokpk6darBt2bJlAoA4c+aMftvIkSNFcHCwuHfvnn5b586dxciRI/WPY2NjxQsvvKB/fPXqVQFAvP322/pt+/btEwDE1atXDV6zSZMmIiUlxf43SuQgDkeQRyxduhTBwcE4d+4c/v77b5vtc3NzERgYaLI9ODgYNWrU0D+OiopC1apVUaZMGYNtN27cMNivYcOGBs8DQIMGDUy2Ge8XFBSEnJwcm/USOYshTJLbu3cv5s2bhy1btqBFixYYNmwYhI3zwRUqVMDdu3dNtqtUKoPHCoXC7DbjqWXF2ygUCovbjPe7c+cOL9JOkmIIk6RycnIwZMgQjBo1Cu3bt8enn36KgwcPYtGiRVb3a9KkCU6cOOGhKs3Ly8vD2bNn0aRJE6/WQSUbQ5gkNWnSJAghMGPGDAAPZyrMmTMHEyZMwPnz5y3u17lzZ+zbt89gloOn7d+/H2q1GnFxcV6rgUo+hjBJZteuXUhLS8OyZcsQHBys3z5y5Ei0bt3a6rBE165d4e/vj++++85T5ZpYvXo1Bg4caFA7kbtxsQb5rLS0NHz99dfYvn27x1/71q1bqF27Ng4fPoxq1ap5/PWp9ODdlslnjRw5EpmZmbh3757Hly6fP38eH3/8MQOYJMeeMBGRF3FMmIjIixjCRERexBAmIvIihjARkRcxhImIvIghTETkRQxhIiIvYggTEXkRQ5iIyIv+H1W9RDFkjEfLAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAFUCAYAAADYjN+CAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjP1JREFUeJzt3Xd4FOXaB+Df9vTeQwhpNOkgLUgRRInSrHhAg+XYUASseCxHLCDHAihi/cACqCAiKi3Se+8lBBJ6es8m2Wx25/tjM7M72Tab7GzB574uLpLZzey777RnnnmLhGEYBoQQQgghhHgZqbsLQAghhBBCSEtQIEsIIYQQQrwSBbKEEEIIIcQrUSBLCCGEEEK8EgWyhBBCCCHEK1EgSwghhBBCvBIFsoQQQgghxCtRIEsIIYQQQrwSBbKEEEIIIcQrUSBLCPnH27p1KyQSCbZu3cotmzx5Mtq1ayfaZw4dOhRDhw7lfr948SIkEgmWLFki2mcSQsiNhgJZQojHGTNmDPz8/FBdXW31PRMnToRSqURpaakLS0YIIcSTSBiGYdxdCEIIMfXzzz9jwoQJ+O677/Dwww+bvV5bW4uoqCjceuutWLNmTas/T6/Xo6GhAUqlElKp4f5eq9VCr9dDpVK1ev2WNDQ0AACUSiUAgGEYaDQaKBQKyGQyUT6TEEJuNJSRJYR4nDFjxiAwMBDLli2z+Prvv/8OtVqNiRMntupz6uvrodfrIZVK4ePjwwWxAKBQKEQLYgFDAMsGsQAgkUjg4+PjMUFsbW2tu4tACCF2USBLCPE4vr6+uPvuu7Fp0yYUFRWZvb5s2TIEBgZizJgxKCsrw4svvoiuXbsiICAAQUFBGDVqFI4dO8b7G7Yd7E8//YTXX38d8fHx8PPzQ1VVleA2sh9++CEGDhyI8PBw+Pr6onfv3li5cqXF7/Djjz+ib9++8PPzQ2hoKAYPHoyNGzdyrwtpI3v8+HFMnjwZycnJ8PHxQUxMDB599FFBzSnY7/Tzzz/jtddeQ0xMDPz9/TFmzBhcuXKF996hQ4eiS5cuOHToEAYPHgw/Pz+89tprAACNRoO33noLqampUKlUSEhIwMsvvwyNRsNbh0QiwbPPPosVK1agc+fO8PX1xYABA3DixAkAwJdffonU1FT4+Phg6NChuHjxIu/vd+zYgfvuuw9t27blPmf69Omoq6uz+T1zc3MhkUjwySefmL22e/duSCQSLF++3G59EUK8k9zdBSCEEEsmTpyI7777Dr/88gueffZZbnlZWRk2bNiABx98EL6+vjh16hRWr16N++67D0lJSSgsLMSXX36JIUOG4PTp04iLi+Ot95133oFSqcSLL74IjUbDy4raM3/+fIwZMwYTJ05EQ0MDfvrpJ9x33334888/ceedd3Lve/vtt/Hf//4XAwcOxKxZs6BUKrFv3z5s3rwZI0eOFPx5WVlZyM3NxSOPPIKYmBicOnUKX331FU6dOoW9e/dCIpHYXcd7770HiUSCV155BUVFRZg3bx5GjBiBo0ePwtfXl3tfaWkpRo0ahQkTJmDSpEmIjo6GXq/HmDFjsHPnTjzxxBPo1KkTTpw4gU8++QTnzp3D6tWreZ+1Y8cOrFmzBlOmTAEAzJ49G3fddRdefvllfP7553jmmWdQXl6OuXPn4tFHH8XmzZu5v12xYgVqa2vx9NNPIzw8HPv378enn36Kq1evYsWKFVa/X3JyMtLT07F06VJMnz6d99rSpUsRGBiIsWPHCqluQog3YgghxAM1NjYysbGxzIABA3jLv/jiCwYAs2HDBoZhGKa+vp7R6XS89+Tl5TEqlYqZNWsWt2zLli0MACY5OZmpra3lvZ99bcuWLdyyzMxMJjExkfe+5n/X0NDAdOnShbn11lu5ZTk5OYxUKmXGjx9vVi69Xs/9PGTIEGbIkCG8MgNgFi9ebPXzGIZhli9fzgBgtm/fbvaape8UHx/PVFVVcct/+eUXBgAzf/58XlkAMF988QVvHT/88AMjlUqZHTt28Jaz22DXrl3cMgCMSqVi8vLyuGVffvklA4CJiYnhlWHmzJkMAN57LX3X2bNnMxKJhLl06ZLN78p+zpkzZ7hlDQ0NTEREBJOZmWnzbwkh3o2aFhBCPJJMJsOECROwZ88e3mPoZcuWITo6GsOHDwcAqFQqrm2rTqdDaWkpAgIC0KFDBxw+fNhsvZmZmbxMpCNM/668vByVlZW45ZZbeJ+zevVq6PV6vPnmm7w2twAEZVCtfV59fT1KSkrQv39/ALD43Sx5+OGHERgYyP1+7733IjY2FmvXruW9T6VS4ZFHHuEtW7FiBTp16oSOHTuipKSE+3frrbcCALZs2cJ7//Dhw3nNMfr16wcAuOeee3hlYJfn5uZa/K5qtRolJSUYOHAgGIbBkSNHbH7H+++/Hz4+Pli6dCm3bMOGDSgpKcGkSZNs/i0hxLtRIEsI8VhsZy6209fVq1exY8cOTJgwgesUpdfr8cknnyAtLQ0qlQoRERGIjIzE8ePHUVlZabbOpKSkFpfnzz//RP/+/eHj44OwsDBERkZi0aJFvM+5cOECpFIpOnfu3OLPYZWVleH5559HdHQ0fH19ERkZyZXf0nezJC0tjfe7RCJBamqqWRvV+Ph4s2YWOTk5OHXqFCIjI3n/2rdvDwBm7Zfbtm3L+z04OBgAkJCQYHF5eXk5t+zy5cuYPHkywsLCEBAQgMjISAwZMkTQdw0JCcHo0aN5nQOXLl2K+Ph4LugmhNyYqI0sIcRj9e7dGx07dsTy5cvx2muvYfny5WAYhjdawfvvv4833ngDjz76KN555x2EhYVBKpVi2rRp0Ov1ZutsaTZ2x44dGDNmDAYPHozPP/8csbGxUCgUWLx4sdXRFVrr/vvvx+7du/HSSy+hR48eCAgIgF6vxx133GHxu7WGpXrR6/Xo2rUrPv74Y4t/0zxAtTbigrXlTNPojzqdDrfddhvKysrwyiuvoGPHjvD398e1a9cwefJkQd/14YcfxooVK7B792507doVa9aswTPPPGOWFSeE3FgokCWEeLSJEyfijTfewPHjx7Fs2TKkpaXh5ptv5l5fuXIlhg0bhm+//Zb3dxUVFYiIiHBaOX799Vf4+Phgw4YNvGG5Fi9ezHtfSkoK9Ho9Tp8+jR49erT488rLy7Fp0ya8/fbbePPNN7nlOTk5Dq2n+fsZhsH58+fRrVs3u3+bkpKCY8eOYfjw4Q43i3DEiRMncO7cObNxg7OysgSv44477kBkZCSWLl2Kfv36oba2Fg899JAYxSWEeBC6VSWEeDQ2+/rmm2/i6NGjZmPHymQyLrPHWrFiBa5du+bUcshkMkgkEuh0Om7ZxYsXzXrujxs3DlKpFLNmzTLLJDYvp73Ps/Q38+bNc6jc33//PW+GtJUrVyI/Px+jRo2y+7f3338/rl27hq+//trstbq6OqjVaofKYo2l78owDObPny94HXK5HA8++CB++eUXLFmyBF27dhUUrBNCvBtlZAkhHi0pKQkDBw7E77//DgBmgexdd92FWbNm4ZFHHsHAgQNx4sQJLF26FMnJyU4tx5133omPP/4Yd9xxB/71r3+hqKgICxcuRGpqKo4fP869LzU1Ff/5z3/wzjvv4JZbbsHdd98NlUqFAwcOIC4uDrNnzxb0eUFBQRg8eDDmzp0LrVaL+Ph4bNy4EXl5eQ6VOywsDIMGDcIjjzyCwsJCzJs3D6mpqfj3v/9t928feugh/PLLL3jqqaewZcsWpKenQ6fT4ezZs/jll1+wYcMG9OnTx6HyWNKxY0ekpKTgxRdfxLVr1xAUFIRff/2V14ZWiIcffhgLFizAli1b8MEHH7S6XIQQz0eBLCHE402cOBG7d+9G3759kZqaynvttddeg1qtxrJly/Dzzz+jV69e+Ouvv/Dqq686tQy33norvv32W8yZMwfTpk1DUlISPvjgA1y8eJEXyALArFmzkJSUhE8//RT/+c9/4Ofnh27dujn8qHvZsmV47rnnsHDhQjAMg5EjR2LdunVmY+Pa8tprr+H48eOYPXs2qqurMXz4cHz++efw8/Oz+7dSqRSrV6/GJ598gu+//x6//fYb/Pz8kJycjOeff57r9NVaCoUCf/zxB6ZOnYrZs2fDx8cH48ePx7PPPovu3bsLXk/v3r1x00034cyZM62e9Y0Q4h0kjCPPuggh5B/ioYcewp49e3D+/HmXfN6FCxeQmpqKH374wSlDRm3duhXDhg3DihUrcO+99zqhhN6hZ8+eCAsLw6ZNm9xdFEKIC1AbWUIIsSA/P9+pncWEfB4Al37mjebgwYM4evQor8MYIeTGRk0LCCHExPHjx7F69Wps374dL730kks+8//+7//wf//3f/Dz8+MmPCDCnTx5EocOHcJHH32E2NhYPPDAA+4uEiHERSgjSwghJlatWoX58+djwoQJmDlzpks+84knnkBZWRlWrFiBkJAQl3zmjWTlypV45JFHoNVqsXz5cvj4+Li7SIQQF6E2soQQQgghxCtRRpYQQgghhHglCmQJIYQQQohXos5eMMwnfv36dQQGBoo6DSMhhBBCyD8ZwzCorq5GXFwcpNLW51MpkAVw/fp1JCQkuLsYhBBCCCH/CFeuXEGbNm1avR4KZAEEBgYCAPLy8hAWFubm0tw4tFotNm7ciJEjR0KhULi7ODcUqltxUL2Kh+pWHFSv4qG6FUdZWRmSkpK42Ku1KJAFuOYEgYGBCAoKcnNpbhxarRZ+fn4ICgqik4CTUd2Kg+pVPFS34qB6FQ/VrTi0Wi0AOK0pJ3X2IoQQQgghXokCWUIIIYQQ4pUokCWEEEIIIV6JAllCCCGEEOKVKJAlhBBCCCFeya2B7Pbt2zF69GjExcVBIpFg9erVvNcZhsGbb76J2NhY+Pr6YsSIEcjJyeG9p6ysDBMnTkRQUBBCQkLw2GOPoaamxoXfghBCCCGEuINbA1m1Wo3u3btj4cKFFl+fO3cuFixYgC+++AL79u2Dv78/br/9dtTX13PvmThxIk6dOoWsrCz8+eef2L59O5544glXfQVCCCGEEOImbh1HdtSoURg1apTF1xiGwbx58/D6669j7NixAIDvv/8e0dHRWL16NSZMmIAzZ85g/fr1OHDgAPr06QMA+PTTT5GRkYEPP/wQcXFxDpXncpkaVYwPb5m/SoaoQB8rf0EIIYQQQprLr6xDvVZvtlxTo3Hq53jshAh5eXkoKCjAiBEjuGXBwcHo168f9uzZgwkTJmDPnj0ICQnhglgAGDFiBKRSKfbt24fx48dbXLdGo4FGY6zIqqoqAMDYz/dBqvIze/+CB7phVJcYZ321fwx20GP2f+I8VLfioHoVD9WtOKhexUN123Lf772Md/46a/E1vabWqZ/lsYFsQUEBACA6Opq3PDo6mnutoKAAUVFRvNflcjnCwsK491gye/ZsvP3222bL5RIGKhnD/d6gB3SMBH/sPArmsvldBREmKyvL3UW4YVHdioPqVTxUt+KgehUP1a3jNpyXApBCLmGgMGnE2qAHnB1NeWwgK6aZM2dixowZ3O9VVVVISEjAlKHJmDqqO7f83bVn8d2ey0hJSUHGbWnuKKpX02q1yMrKwm233UbT+zkZ1a04qF7FQ3UrDqpX8VDdttzWVSeB4uuYflt7PHFLErd8zvpsfL35jFM/y2MD2ZgYw6P8wsJCxMbGcssLCwvRo0cP7j1FRUW8v2tsbERZWRn395aoVCqoVCqz5TKZjLezyqQyAIBEKqWduBUUCgXVn0iobsVB9SoeqltxUL2Kh+rWcRKJBAAgbxZXSaXOH2PAY8eRTUpKQkxMDDZt2sQtq6qqwr59+zBgwAAAwIABA1BRUYFDhw5x79m8eTP0ej369evn8Gc21bvZ7wxj/l5CCCGEEGJBU9xkHldJzN/bSm7NyNbU1OD8+fPc73l5eTh69CjCwsLQtm1bTJs2De+++y7S0tKQlJSEN954A3FxcRg3bhwAoFOnTrjjjjvw73//G1988QW0Wi2effZZTJgwweERCwghhBBCiHicH8a6OZA9ePAghg0bxv3OtlvNzMzEkiVL8PLLL0OtVuOJJ55ARUUFBg0ahPXr18PHxzgc1tKlS/Hss89i+PDhkEqluOeee7BgwYIWlcfszqHpfwaUkiWEEEIIEYKNmiTNQ1cRIlm3BrJDhw4FY+O5vUQiwaxZszBr1iyr7wkLC8OyZcucUp7m9SsxRrKEEEIIIUQANrYzTxA6P5L12Day7tC87Qb7O8WxhBBCCCHCWIubRGgiS4GsLVxClnp7EUIIIYQIwnCdvcRoFctHgawJs+qmUQsIIYQQQhxibCPLJ0ZYS4GsCWttOSiOJYQQQggRxmobWWpaIC5rnb0oI0sIIYQQIoz1jCx19hJX885eTf/T8FuEEEIIIQJZaSNLGVmRUUaWEEIIIaR12ASgtfH5nYkCWRvESIETQgghhNzIuFELXPBZFMiasNYomYbfIoQQQggRhgubXNDbiwJZE80zsDSxFyGEEEKIY7imBc2WU9MCkZndKLAze1EkSwghhBAiiHFCBP5y6uzlYjRqASGEEEKIY4zDbzV/0k1NC0RlvY2s68tCCCGEEOKNvCYjq9FonFUOj0QzexFCCCGEOMpyG1kxOBTIrlu3DpmZmUhOToZCoYCfnx+CgoIwZMgQvPfee7h+/bpY5XQRywP3UkaWEEIIIUQYqxlZET5LUCD722+/oX379nj00Uchl8vxyiuvYNWqVdiwYQO++eYbDBkyBH///TeSk5Px1FNPobi4WISiis96hVMkSwghhBAihNU2siJEsnIhb5o7dy4++eQTjBo1ClKpeex7//33AwCuXbuGTz/9FD/++COmT5/u3JK6AM3sRQghhBDSOoyVGRGaT1nrDIIC2T179ghaWXx8PObMmdOqArmTeSBLw28RQgghhDjCmJEVX4s7e92IHb2sDQtBw28RQgghhAhjbCMrftMCwYHsnDlzEBsbiz///BMAMGzYMOeXxs1o+C1CCCGEkNaxlpEVYxxZQU0LAOC7777DwYMHMWXKFAQHBzu9IJ6Iht8ihBBCCHEM20ZWjAxsc4ID2fj4eMTHx2Pp0qUYP348SktLxSyXW1BnL0IIIYQQ5/CoCRFCQkLQ2NgIf39/fPrppygsLHR+adyteVuOpv+pjSwhhBBCiDDGQQssx1XOJDgju3LlSu7nDh06oKKiQoTiuJe1jCzFsYQQQgghwrAJQFdkZAUHss0VFRWhqKgIer2et7xbt26tLpS7mE+IQG1kCSGEEEIcYa1Jpls7e7EOHTqEzMxMnDlzxqQxrwQMw0AikUCn0zm9kK5ivY0shbKEEEIIIUK4cvgthwPZRx99FO3bt8e3336L6OhoUWZp8DQUxhJCCCGECMM1LXDBZzkcyObm5uLXX39FamqqGOVxK/M7B5rZixBCCCHEEcaMrPif5fDMXsOHD8exY8fEKIvbmQ/ca0BxLCGEEEKIMMYJESwnCJ3J4YzsN998g8zMTJw8eRJdunSBQqHgvT5mzBinFc7VrM/sRaEsIYQQQoggVjKybh1+i7Vnzx7s2rUL69atM3vN2zt7NUcZWUIIIYQQx1hrI+vWCRFYzz33HCZNmoT8/Hzo9XreP28PYq21kaVIlhBCCCFEGGttZMXIyDocyJaWlmL69OmIjo4WoTiexRjHUiRLCCGEECKEMWoSv7eXw4Hs3XffjS1btohRFrez2tmL4lhCCCGEEEGM8wzwl3tEZ6/27dtj5syZ2LlzJ7p27WrW2Wvq1KlOK5yrmdUvDb9FCCGEEOIQ46gFfB4xIcI333yDgIAAbNu2Ddu2beO9JpFIvDuQbT5MRNP/1LSAEEIIIUQYqzN7ifBZDgeyeXl5IhTDM1gffsv1ZSGEEEII8UbWMrJipGQdbiP7T8JmaCmOJYQQQggRyFobWRE+yuGMLMMwWLlyJbZs2YKioiLo9Xre66tWrXJa4dyNMrKEEEIIIY7hMrIumKLW4UB22rRp+PLLLzFs2DBER0eL0gPNbazeOVAkSwghhBAiBNdG1myKWud/lsOB7A8//IBVq1YhIyPD+aVxM/MJEQz/U0aWEEIIIUQYrpO8WYLQA9rIBgcHIzk52ekF8QQ3UG6ZEEIIIcSjeMQUtf/973/x9ttvo66uzvmlcTPzRsnU2YsQQgghxBGM5YSsZ3T2uv/++7F8+XJERUWhXbt2ZhMiHD582GmFczXzYSIM/zHUtoAQQgghRBCr48h6QhvZzMxMHDp0CJMmTRK9s5dOp8N///tf/PjjjygoKEBcXBwmT56M119/nftchmHw1ltv4euvv0ZFRQXS09OxaNEipKWltfrzjRMiEEIIIYQQIayOIysChwPZv/76Cxs2bMCgQYPEKA/PBx98gEWLFuG7777DTTfdhIMHD+KRRx5BcHAwN4PY3LlzsWDBAnz33XdISkrCG2+8gdtvvx2nT5+Gj4+PQ59nfudAU9QSQgghhDiCsTqOrPNDW4cD2YSEBAQFBTm9IJbs3r0bY8eOxZ133gkAaNeuHZYvX479+/cDMFTUvHnz8Prrr2Ps2LEAgO+//x7R0dFYvXo1JkyY4NDnWWvLQXEsIYQQQohjzAJXT+js9dFHH+Hll1/GxYsXnV+aZgYOHIhNmzbh3LlzAIBjx45h586dGDVqFADDdLkFBQUYMWIE9zfBwcHo168f9uzZ4/gHWp2ilkJZQgghhBAhjG1k+cs9orPXpEmTUFtbi5SUFPj5+Zl19iorK3Na4V599VVUVVWhY8eOkMlk0Ol0eO+99zBx4kQAQEFBAQAgOjqa93fR0dHca5ZoNBpoNBru96qqKgCAvlEHrVbLLdfrdIb/9QxvORGGrTOqO+ejuhUH1at4qG7FQfUqHqrbltMzhllfdbpGflyl1zn9sxwOZOfNm+f0Qljzyy+/YOnSpVi2bBluuukmHD16FNOmTUNcXBwyMzNbvN7Zs2fj7bffNlt+7NgxoOic8fdiCQAZikuKsXbt2hZ/3j9dVlaWu4tww6K6FQfVq3iobsVB9SoeqlvHVVfLAEiwf99+lJ81PtU+XuwBbWRbE0A66qWXXsKrr77KtXXt2rUrLl26hNmzZyMzMxMxMTEAgMLCQsTGxnJ/V1hYiB49elhd78yZMzFjxgzu96qqKiQkJKBHj+4Y1TuVW954LB8/nD+BiPAIZGT0cfK3u/FptVpkZWXhtttuM8vck9ahuhUH1at4qG7FQfUqHqrblltwfhdQp0b//v3QLymMW95w9Dp+OLXfqZ8lKJBVq9Xw9/cXvFJH329NbW0tpFJ+M16ZTAa93pCyTkpKQkxMDDZt2sQFrlVVVdi3bx+efvppq+tVqVRQqVRmy+VyOW9nlctlhh8kEtqJW0GhUFD9iYTqVhxUr+KhuhUH1at4qG5brnlcJZPJnP4Zgjp7paamYs6cOcjPz7f6HoZhkJWVhVGjRmHBggVOKdzo0aPx3nvv4a+//sLFixfx22+/4eOPP8b48eMBGIbHmjZtGt59912sWbMGJ06cwMMPP4y4uDiMGzfO4c8za5RMw28RQgghhDjE2jiybpsQYevWrXjttdfw3//+F927d0efPn0QFxcHHx8flJeX4/Tp09izZw/kcjlmzpyJJ5980imF+/TTT/HGG2/gmWeeQVFREeLi4vDkk0/izTff5N7z8ssvQ61W44knnkBFRQUGDRqE9evXOzyGLGA+TIRx+C2KZAkhhBBCBLE2s5e7xpHt0KEDfv31V1y+fBkrVqzAjh07sHv3btTV1SEiIgI9e/bE119/jVGjRjk1bRwYGIh58+bZ7GAmkUgwa9YszJo1q9WfZ56RNfxPGVlCCCGEEGG4jKyVuMqZHOrs1bZtW7zwwgt44YUXnF8SD8TeOVAcSwghhBAiDDezlws+y+EJEW5kVu8cKJIlhBBCCBHEekbW+aEtBbI2UBtZQgghhBDHGJtkip+TpUDWhFlnL2ojSwghhBDiEDYB6IopaimQNWFewdRGlhBCCCHEEWwC0BXDb1Ega8JahTOUkiWEEEIIEYTxtOG3LKmtrcXly5fR0NDAW96tW7dWF8pdzCvcgMJYQgghhBDHeMyECKaKi4vxyCOPYN26dRZf1+l0rS6Up6CZvQghhBBCHMMNv+WJbWSnTZuGiooK7Nu3D76+vli/fj2+++47pKWlYc2aNSIU0X0oI0sIIYQQ4hjjFLXij1rgcEZ28+bN+P3339GnTx9IpVIkJibitttuQ1BQEGbPno0777xTjHK6htVxZCmUJYQQQggRwthGlr/cIzp7qdVqREVFAQBCQ0NRXFwMAOjatSsOHz7s3NK5mNXOXi4vCSGEEEKId7I+/r4HTIjQoUMHZGdnAwC6d++OL7/8EteuXcMXX3yB2NhYpxfQlaz1rqOELCGEEEKIMK7MyDrctOD5559Hfn4+AOCtt97CHXfcgaVLl0KpVGLJkiXOLp9LmdUvl5GlSJYQQgghRAhrbWTFaDHrcCA7adIk7ufevXvj0qVLOHv2LNq2bYuIiAinFs7VrPWuo4wsIYQQQogw1jOyHtC0YPny5bzf/fz80KtXL0REROCll15yWsE8AQ2/RQghhBDiKMvDb4nB4UD26aeftjiG7PTp0/Hjjz86pVDuYi0FTnEsIYQQQogwxilqxW9a4HAgu3TpUjz44IPYuXMnt+y5557DL7/8gi1btji1cK5mrVEyTVFLCCGEECIM10bWE4ffuvPOO/H5559jzJgxOHToEJ555hmsWrUKW7ZsQceOHZ1fQjdyxUC+hBBCCCE3Em5mr2bLPWLUAgD417/+hYqKCqSnpyMyMhLbtm1Damqqs8vmctYzsq4vCyGEEEKIN7KakRUhQSgokJ0xY4bF5ZGRkejVqxc+//xzbtnHH3/snJK5gdmdQ9P/NPwWIYQQQogwxgSgleGgnEhQIHvkyBGLy1NTU1FVVcW9LsawCq5kVnzKyBJCCCGEOIRrWiB+HCsskPX2Tlwtxc3s5eZyEEIIIYR4C+OECOJzuLMX6/z589iwYQPq6uoA3Bg9+601Sr4RvhshhBBCiEtwEyI0G37LEyZEKC0txfDhw9G+fXtkZGRw09U+9thjeOGFF5xeQFeyOrOXy0tCCCGEEOKdrGVkPWIc2enTp0OhUODy5cvw8/Pjlj/wwANYv369UwvnamYD93IpWTcUhhBCCCHEC1ltI+sJw29t3LgRGzZsQJs2bXjL09LScOnSJacVzC2sDb/l+pIQQgghhHglY0a2+cxeHtC0QK1W8zKxrLKyMqhUKqcUyl2sDr9FbWQJIYQQQgThpqj1xJm9brnlFnz//ffc7xKJBHq9HnPnzsWwYcOcWjh3o4wsIYQQQohjXDn+vsNNC+bOnYvhw4fj4MGDaGhowMsvv4xTp06hrKwMu3btEqOMLmPem65p+C2KZAkhhBBCBLGakRXhsxzOyHbp0gXnzp3DoEGDMHbsWKjVatx99904cuQIUlJSRCii61gdfotysoQQQgghghinqPWQmb2aCw4Oxn/+8x9nl8XtvHxiMkIIIYQQjyVGZy9Bgezx48fRpUsXSKVSHD9+3OZ7AwICkJCQAIVC4ZQCupLVcWQpIUsIIYQQIgzbtKDZYrcNv9WjRw8UFBQgKioKPXr0gEQisdmTPzg4GF988QUeeOABpxXUNSyPI0uBLCGEEEKIMGyTTFe0kRUUyObl5SEyMpL72RaNRoMVK1bglVde8cJAlo9aGhBCCCGEOIbr7OWCSEpQIJuYmGjxZ2ueeeYZHDp0qOWlchdrEyJQSpYQQgghRBBjZy/+cvPRoVrP4VEL1q9fj507d3K/L1y4ED169MC//vUvlJeXAwBCQ0OxatUq55XSRcwH32pqWuD6ohBCCCGEeCVuitpmyz1iQoSXXnoJVVVVAIATJ07ghRdeQEZGBvLy8jBjxgynF9CVrM1AQQlZQgghhBBhuLDJU9rImsrLy0Pnzp0BAL/++ivuuusuvP/++zh8+DAyMjKcXkBXstaWg8aRJYQQQggRxlobWY/IyCqVStTW1gIA/v77b4wcORIAEBYWxmVqvRVlZAkhhBBCnMM8cHXTOLKmBg0ahBkzZiA9PR379+/Hzz//DAA4d+4c2rRp4/QCuhO1kSWEEEIIEc60g7wrRn9yOCP72WefQS6XY+XKlVi0aBHi4+MBAOvWrcMdd9zh9AK6ktUpaimSJYQQQgixyzRmaj5KgdsmRDDVtm1b/Pnnn2bLP/nkE6cUyJ2sVzhFsoQQQggh9phGTOajQTmfwxlZALhw4QJef/11PPjggygqKgJgyMieOnXKqYVzN65pAcWxhBBCCCF28ZoWeOI4stu2bUPXrl2xb98+rFq1CjU1NQCAY8eO4a233nJ6AV3Jamcv1xeFEEIIIcTr8DOyzZ50i/B5Dgeyr776Kt59911kZWVBqVRyy2+99Vbs3bvXqYVzNWspcJrZixBCCCHEPsZG2wKPGH7rxIkTGD9+vNnyqKgolJSUOKVQpq5du4ZJkyYhPDwcvr6+6Nq1Kw4ePMi9zjAM3nzzTcTGxsLX1xcjRoxATk6OUz6bMrKEEEIIIcKZjr0vRuDanMOBbEhICPLz882WHzlyhBvBwFnKy8uRnp4OhUKBdevW4fTp0/joo48QGhrKvWfu3LlYsGABvvjiC+zbtw/+/v64/fbbUV9f7/DnmU+IQG1kCSGEEEKE4o1a0Ow1axNPtYbDoxZMmDABr7zyClasWAGJRAK9Xo9du3bhxRdfxMMPP+zUwn3wwQdISEjA4sWLuWVJSUnczwzDYN68eXj99dcxduxYAMD333+P6OhorF69GhMmTHDo86wPv0WRLCGEEEKII1wx/JbDGdn3338fHTt2REJCAmpqatC5c2cMHjwYAwcOxOuvv+7Uwq1ZswZ9+vTBfffdh6ioKPTs2RNff/0193peXh4KCgowYsQIbllwcDD69euHPXv2OPx5Zp29mv6nMJYQQgghxD5bGVkxOJSRZRgGBQUFWLBgAd58802cOHECNTU16NmzJ9LS0pxeuNzcXCxatAgzZszAa6+9hgMHDmDq1KlQKpXIzMxEQUEBACA6Opr3d9HR0dxrlmg0Gmg0Gu53dmrdRl0jtFott1ynawRg2Cimy4kwbJ1R3Tkf1a04qF7FQ3UrDqpX8VDdtkyDtpH7ubFRC63UGNmycZUzORzIpqam4tSpU0hLS0NCQoLTC2RKr9ejT58+eP/99wEAPXv2xMmTJ/HFF18gMzOzxeudPXs23n77bbPlu3buQk6wH/d7cR0AyKFt1GLt2rUt/rx/uqysLHcX4YZFdSsOqlfxUN2Kg+pVPFS3jtHoADa83LhhI5Qy42vX1M7/PIcCWalUirS0NJSWloqSgW0uNjYWnTt35i3r1KkTfv31VwBATEwMAKCwsBCxsbHcewoLC9GjRw+r6505cyZmzJjB/V5VVYWEhATccks6UtoY13OprBbvHt0JuUyOjIzbnfGV/lG0Wi2ysrJw2223QaFQuLs4NxSqW3FQvYqH6lYcVK/iobptmRpNI7B/MwDgjjtuh4/CGMmeLajGnAObnPp5Dnf2mjNnDl566SUsWrQIXbp0cWphmktPT0d2djZv2blz55CYmAjA0PErJiYGmzZt4gLXqqoq7Nu3D08//bTV9apUKqhUKrPlcpmCt7Mq5YafGYB24lZQKBRUfyKhuhUH1at4qG7FQfUqHqpbx8h1xp8NdWcMZOVyh8NO+5/n6B88/PDDqK2tRffu3aFUKuHr68t7vayszGmFmz59OgYOHIj3338f999/P/bv34+vvvoKX331FQBDb7hp06bh3XffRVpaGpKSkvDGG28gLi4O48aNc/jzrM7sRb29CCGEEELs4s2H4IIJERwOZOfNm+f8Ulhx880347fffsPMmTMxa9YsJCUlYd68eZg4cSL3npdffhlqtRpPPPEEKioqMGjQIKxfvx4+Pj4Of5618c0YGreAEEIIIcQu/qgFzaeo9YBxZFvTyaol7rrrLtx1111WX5dIJJg1axZmzZrV6s+ijCwhhBBCSCuYBrKemJEFAJ1Oh99++w1nzpwBAHTu3Bljx44Vpe2DK5lPiNA0s5fri0IIIYQQ4nV4U9Q2e02McWUdjjxPnTqFMWPGoKCgAB06dABgmIErMjISf/zxh+gdwERlZUIEimQJIYQQQuzjNS3wxJm9Hn/8cdx00024evUqDh8+jMOHD+PKlSvo1q0bnnjiCeeX0I24pgUUyRJCCCGE2MXr7OWCz3M4I3v06FEcPHgQoaGh3LLQ0FC89957uPnmm51aONez3CiZ2sgSQgghhNjHmARN5hlY54e2Dmdk27dvj8LCQrPlRUVFSE1NdUqh3MVqZy/XF4UQQgghxOvwh9/ywKYFs2fPxtSpU7Fy5UpcvXoVV69excqVKzFt2jR88MEHqKqq4v55G2uNkhlKyRJCCCGE2GUrZPKIzl7sUFj333+/sVd/U6lHjx7N/S6RSKDT6SyvxEOZ3SlQRpYQQgghRDC2X5Gl7GvzDK0zOBzIbtmyxemF8BTWBu6lhCwhhBBCiABNMZOlkNUjMrJDhgwRoRieSYy2HIQQQgghNyo29ydG9tUSh9vI3sjMOnuZ/EztZAkhhBBCbGNsZWQ9obPXjczazF4ANS8ghBBCCLHHZhtZTxh+64bWfJgIk58pjiWEEEIIsc2YkTUPWikjKzLzjKzxZ2paQAghhBBiGxctuaifkeBA9ocffkBZWZnV19VqNWbNmuWUQrmLeRtZk6YFLi4LIYQQQoi3YRN/HtdGNjMzE3379sXJkyctvl5TU4O3337baQXzCLyMrPuKQQghhBDiDbimBZ6WkQWA5ORkDBw4EKtWrRKrPG5ls2kB5WQJIYQQQgSx3EbWjZ29JBIJfvzxR7zyyiu4//778dZbbzm9MO5mNiewyc+UkSWEEEIIsc1WRlaMJK3gQJZt8/Cf//wHq1evxvz58zF+/Hio1WoRiuUetobfIoQQQgghtnHDb1l4zWNGLbjrrruwd+9enDlzBv369UNubq6zy+UWFLcSQgghhIjDrePINs9OduzYEfv370diYiJuvvlmbNy40emFczVqWkAIIYQQ0nLGpgUeNo6spXFUg4KC8Oeff+LJJ5/E5MmTnVkuj0CdvQghhBBChGOjJVc95HZo+C1fX1+z5RKJBO+//z6WL1+OIUOGOLVw7sYbR5biWEIIIYQQmxjj1F5mxAhu5ULfuHjxYpuv33///Rg/fnyrC+RJ+BlZQgghhBBii82MrDubFjz00EOoqqqy+vrBgwfRs2dPpxTKE9EUtYQQQgghttlsI+vOzl6nT59G586dsWHDBt5yrVaLmTNnYuDAgUhPT3d6Ad2JMrKEEEIIIY5oGn7LUtMCd2Zk9+3bh0cffRSjR4/Gk08+iZqaGhw8eBA9evTAsmXL8Oeff+LLL790fgndiNrIEkIIIYQIZ6OJrHsnRJDL5Zg1axZ2796NXbt2oX379hg4cCD69++PEydOYOTIkSIUz714dw4UyBJCCCGE2MS1kbU4/JYbmxawfHx8oFAoUFlZCaVSiWHDhiEoKMjpBfME/DiWIllCCCGEEFtsZWTF4NA4srNnz0afPn3Qo0cPXLt2DXPnzsXTTz+Nu+++G8XFxWKW0y1M7xyoaQEhhBBCiG2MrTayInye4EC2f//++PTTT7FixQosXrwYISEheOaZZ3Ds2DGUlJSgc+fO+Pnnn0UoovtQywJCCCGEEOGMiT8Pm9krKSkJJ0+exOjRo3nLk5OTsW3bNrz22mt47LHHnF5Ad+KNWkApWUIIIYQQm4zDb5m/5tbht3766SeEhYVZfE0ikWD69Ok4cuSI0wrmCXhNC9xYDkIIIYQQb8A1LbD0ojszskKkpaU5c3UehRKyhBBCCCG22czIenogeyNiK51GLSCEEEIIEUaMZgSWUCBrB7cZKI4lhBBCCLHJdhtZ56NA1g62nSzFsYQQQgghttlqI+sREyL807BVTm1kCSGEEEJsM2ZkLQy/JcLnyVvyR2q1Gtu2bcPly5fR0NDAe23q1KlOKZinoDayhBBCCCHC2IqWxOjs5XAge+TIEWRkZKC2thZqtRphYWEoKSmBn58foqKibrxAFhIADGVkCSGEEELsYMfd97hxZFnTp0/H6NGjUV5eDl9fX+zduxeXLl1C79698eGHHzq9gG7HZWQJIYQQQogtbLwkRvbVEocD2aNHj+KFF16AVCqFTCaDRqNBQkIC5s6di9dee02MMrqVsY0shbKEEEIIIbZwbWQ9bYpalkKhgFRq+LOoqChcvnwZABAcHIwrV644t3QegGsjS3EsIYQQQogd1psWiMHhNrI9e/bEgQMHkJaWhiFDhuDNN99ESUkJfvjhB3Tp0kWMMrqVqwb0JYQQQgjxdsaMrDmPyMi+//77iI2NBQC89957CA0NxdNPP43i4mJ89dVXTi+gu1FGlhBCCCFEGGMbWUvDbzk/knU4I9unTx/u56ioKKxfv96pBfI0XBtZ6u5FCCGEEGKTqzOyLRpH1l3mzJmDmTNn4vnnn8e8efMAAPX19XjhhRfw008/QaPR4Pbbb8fnn3+O6Ohop3wmN7OXE+JYhmFQo2k0C4mVMil8FDKz99drdWjQ6c2Wy6US+Cnds+kaGvWob9SZLZdKJAhQ8cvEMAzqGoHqei3kzf7ETyGDXOae+Tiq67UWb0t85DIo5eZlUmsaoWu2A8gkEvir3LcNauq1ZnVraRsAQKNOj1qt+TZz5zbQ6xnUNDSaLXdkGwDWjx1XqGvQQas3Pz4VUil8lfwyWdsGABCokosy24091rYBAAQo5ZBK+WWqbWhEo96ztoG1c6SlbWDr/e7aBgCg1elRZ2Hf8FfKIWu2DRiGQbWGv80atYZzgVanh0IhalGtqtE0Qt/s+LR2ndI06qBpNN8G7jynWtsGjVrz48PadRwAfBUyKNx0TrV2jlTJpVDJzY8FS+cva9cQRzG2IlkROFziwsJCvPjii9i0aROKiorMevPrdJZP1q114MABfPnll+jWrRtv+fTp0/HXX39hxYoVCA4OxrPPPou7774bu3btcsrnGjOyrTf1p6P449h1s+UKmQTP3ZqGqcPTuGXbzhXj398dtHjSlUiA1+/sjMcGJTmhVMKdya/CPYt2o7bB8jZ+fFASXr+rM/f75CWHsDtXjlcPbDF7b1ywD9ZNG4xgX9eeeV9ZeRw/H7TcKTHQR461U29BQpgft2z22jP4cnuuxfc/PzwN029rL0o5rTlfVINxC3ehRtMIwLxuHx6QiFljjW3Vy9QNuH3edhRXa8zWFR2kwucTe6N3YqjYxeZRaxox+rOdyC1Wm73mr5Rh9ZR0pEUHcss+33oec9dnW1yXUi7Fd4/0xYCUcNHKa8mvh67ipZXHYCGug0wqwUf3dce4nvEAgKp6LUZ+vB0FVfUW13VLWgR+eKyfmMU106jTY/Rnu3Amv8ri62lRAVj7/C3cRfmbHbl4b+0Zizf0CpkEXz/cB0M7RIlZZDN/Hc/H8z8dsRhcSyXAnHu64f4+CdyyfbmleOj/9qPBQhDVs20IVjw5wOU3dlvOFmH6L0dRUas1ey0pwh/rnr+Fd5Pw9I+Hsf5UgYU1yTH39DZsmDYEkYEqEUts7rXfTmDZvssWX3v9zk54/JZk7vfjVyvwwJd7LQaNAPDssFS8eHsHUcppzbWKOty5YIfFbQAAvSOkyDD5fdrPR/H7UfPrOACE+CmwduotiAvxFaGk1n2w/iwWbb1g8TU/pQy/PDkAXeKDARhuYGf9eRrf77lo8fz1aHoS3hzd2fwFB3BNCyy8JkZs6/BRO3nyZBw+fBhvvPEGVq5ciVWrVvH+iaGmpgYTJ07E119/jdBQ40W3srIS3377LT7++GPceuut6N27NxYvXozdu3dj7969zvlwro1s60LZK2W1FoNYANDqGHycdQ4nrlZyy7afK7YYxBrKAvx+9FqrytMSq49esxrEAsDm7CLu53qtDrtzy6y+93plPbadK3Zq+exhGAZrT+Rbfb26vhF7c0u5388XVePrHZaDWABYtPUCrpTVOrWM9uzIKW4KYi3749h13r66I6fYYhALAIVVGjz/0xGnl9Ger3fkWgxiAUDdoMOPey/xlm04VWh1XQ2Nevx9xvrrYvl6R67FiwAA6PQMduSUcL+fulZlNYgFgB05JSiqtv66GM4WVFsNYgEgp6iGt29vO1ds9amUVsfg/3ZddHIJ7dt4usBiEAsAegb4+zR/v1i866LFIBYAjlyuwIpDV51eRlvqtTpMXX7EagCVV6LG0SsVvPdvPG0piDUoU2tx4KL1c64Yjl+tsBrEAsDHWed4+/aOnBKrQSwA/Hnc8jVSTOtO5FvdBgBwppwfem0+U2TlnUBFrRbrT1rfRmJZddj6vlvboMPuC8bz0eazRViy23IQCwBL911CVb31+hDC5hS1Ijz5cDgju3PnTuzYsQM9evRwemGsmTJlCu68806MGDEC7777Lrf80KFD0Gq1GDFiBLesY8eOaNu2Lfbs2YP+/ftbXJ9Go4FGY7y4V1UZTuharRZaLX8DslWu1TaaveaI1YcNWcD+SaH45uHevNfu/XIfzhZUI6ewEh2jDdnA6+WGi8jMO9pjYr+23HuvV9Rh5PxdOH29CtW19S59pLejKfD84O6bcGfXWG55XokaoxfuQUm1hqujokrDyUsqYXBo5hAoFEru/R9uPIcley5je3YRRnWOdFn5C6vqUa1phFQCHPrPrbxHQG/9cRq/Hr6OK2Vq7jv8dew69AwwOC0cn/+rJ29dj353CPsvlmPN0at44hbXZcZzCg376mMD26KzLhfDhw+HXKFAQ6MOfd7fgvJaLa6V1SA6yAcAcPiS4cI2sW8CZo4yZjrKaxtwy/+242p5HQor1AjzV5p/mEjYk+6H93TBHV1iuOU7z5fgqaVHsebYdbx6exqXHbtcagh6f32yHzrEGDO1q49ex+u/n8bp65WtOjZNseuxtb7sgmqcLaiGQibB9hcHI9DH+FThtyPX8caa0yitqefWcb3cUP6b24VicSb/2B+/aA9yitQ4lFeKEZ1cl9E8eNFwwzYwJQxfTerFe+2uz3bjYmktrperkRBiyO6V1hjOl1/8qwcGpUVw771SVotRn+7GzpxiXC+rsZkNFFK3jjhfVA0AWPBAN9za0Vh3O3NK8NSyo7hUajyWq+u12HTWENiueqof2ptk/L/fewlzN+Tg10NXcG/PWLhKTkE1qjWNUMgkODBzGC8bPGPFcWw8XYRDF0vROyEIAHD6WiX0DBDqp8COFwdzjQ0btVr8+6stOFAixbmCKtzWMcLi54lh1SHDde3OrjH44G6TUYsYBvd/vR+n86vx96kC3Nfb8HTiSpnhWHh6cBKmDEvh3s6ejy6V1aKips6lTQzY69pLI9OQOSDRrEy1Oglq6zXwg+HGmW3asevlIbwnikt2X8KHWTnYfq4ID/Vr47Ly51fWo7BKA5lUgn2vDuXFBJ/8nYNvd13CtfJa7lg4X2S4hphd1xgGYz7fi9wSNf46dg339opvcZkaGxu5dTY/3vXWIuhWcHhvSUhIcOnkAD/99BMOHz6MAwcOmL1WUFAApVKJkJAQ3vLo6GgUFFi/K5o9ezbefvtts+VbtmyBn58fb1mjVgZAgm3bt+FsK54WrD8rBSBFPFOCTRv5HeR8tYbXdh04CtlVQ4bszCXD5xbmnsGmytPcexkGCFTIUK0Fvl21AUmBcAm1Fjidb9hdGi4dw6b8Y7zXADmq6hux5s+1kEuBq2rDsgA5sH3LZt66fCokAGTYfOoq1qr42TcxZVcaPjdcxWD7po281+qKDa/tO5GDlDrDY+xDeYbtoqwtNttm4Y2G928/ko021WdcUn4AONC0H9UX5UEeCWzbsol7LdJHhsI6CX78Yws6hRqO0a0nDPuRtOwiNm3M460rVClDeYMEy/74G8lBrim/Vg9cKTOUqe7iUWwyScDoGEAmkaG8Vouf16xHqAqoawTKaw373fkju3DV5L6togYA5Dh+uRR//bXWqZ0IsrKyrL62u9Cw7ZMDdNi/fRPvtUtlhtfyrhdj7dq1AIDt1w3LdNWlZvtRBKTIgRS/bjuMhjzL2UIxrD1v2I8CNebnI3nTOW/jjn0oPWPYj66XGpblnDgIDX83QqyfDPm1Eiz+fTO6hNm/NtiqW6H0DJBTYChTQfZhbDJJChbWAYAcecXV3H5xsRrQ6uQIVjC4cmwXTBsXMU3nqjPXyrlt5gpHSg37RbyvHtuanY981YbXNhw0nl/2FhmWRSo02JS1gff+aD/Dzr/j2Dkk1Z51QekN9p5u2o/U17BpIz8rGNBoeG3P4ePwLzRcL47lGJaVXz2PTRtzeO8PUshQpZXgu9Ub0c5F1zUdA+y5YNiPJAVnsGmj8VyuZwAJZGAgwZr1mxCkBCobAEAOKRjs374Jpk2YJU370e7zxfjzr7WQivEM3YKjTftRrK8eu7bwj62KfMNrR7MvYi0MTxcPXjJsA0mN+XUtWSVFLqT4Y9cJ+BUcQ0uda7rW1tTUmB1TYoSPDgey8+bNw6uvvoovv/wS7dq1c36JTFy5cgXPP/88srKy4OPj47T1zpw5EzNmzOB+r6qqQkJCAoYNG4bwcH5bu7eObkFtnRa33DIYqVEBLf7Mj7N3AqjFuGH90D85jPfaft0ZHCm9gth2acgYngoAmHN6O4B6jBo6AD0SQnjvX1N+BJuzixGY2AUZ/dvCFQ5cLAcOHkCbEB9MGDeY9xrDMHjryN/Q6hj0GTQMcSG+2Hm+FDh+CP4K4LbbboPCpBdCep0WX5zZgjKNBIOHj3RK43IhyvZdBk6fRbd2UcjI4GdYNUeuY+2Vk5AFRiAjwzAyx98rjgMFBbi5a0dkpLfjvZ85UYB1vxyH1jcMGRl9XVJ+AHjv5DYAGowe0heFp/fx6nZj9XH8dbIAAQkdkTE4CQzD4KUDmwDo8dCdg5EU4c9b14riQ9h5vhTRad2Q0ds1GYRzhdVg9u1BoI8cD4y9zewx0+yTW1Fc04Ae/QbhprggnLpeBRzYizB/Be4ePZL33nqtDh+f3AR1owS9b7kVMUGtP0dotVpkZWWZ7bOmjq7LBnIvYeBNScgYxW/PF3O5At9k7wej9ENGxi0AgOPrs4FLl9CzYxIy7uC/v/rgVez5/TTqfCKRkcHP1orps093AVDjnqG9MawD/6lIVs1xnD9RgPiUTtx+/8rBvwHocddtw9AmlH9Hv7HmOP46UYDQdh2RYaPdvpC6FepaRR0a9u6AQibBQ+Pu4GUzNY16zD72Nxr0EvQbMhwRASpsyS4GTh5Bm8ggZGQM4K2rtqER/zu+GepGCQYMHYFQP9c8ncjdcgE4dwG90uKRkcEfgz08rwy//99BlOn9kJFhON8e+usscOEy0pvtd1qtFsd//hsAoFGGICPD8pNIMfzvjOE6NWZYf9zcjt/W/vj6bOwvvoSohGRuv19w3rDf3TG4L9KbtWtfWXwIO86XIjS5KzJuToAr5JWo0bB3F3wVUjx2zyizDo5vH9uCijotut08AJ3jQ3Emvxo4tAdhASrcdedQ3nt1egYLTm+CplGPrgOGIjGMnxQTy+mNOcC5PAzqnICMDH7bVvnpQvx68RjgF4qMDEM7/F2rTwHXr6FX5/bIGJrMe7/2WD7+XnkCWr9wZGTc3OIyhVwoxcLThxAUGIiMjIFmr0/dtrrF67bE4QjigQceQG1tLVJSUuDn52d2Qiorc14bnUOHDqGoqAi9ehkffel0Omzfvh2fffYZNmzYgIaGBlRUVPCysoWFhYiJibGwRgOVSgWVyvwRmEKhMPs+7HVWLpe3+OSradThakUdAKB9bLDZesIDDRfgynodFAoFdHoGRU3tGhPCA83e3zE2CJuzi3GxtK7VFwShLpUbmgqkRJmXBwAiAlTIr6xHRb0eiQoFqjSGdlABcsasXiMUCkQEqFBSo8GVCg26tXFNw/i8UsM2SI02/w5tIww3Kdcr67nXKuoMj0ciAn3N3t8+xtBw/kKxGnK5a3o8V9druf2ifUwQCk/z99nU6EDgZAGuNX2H6not1ybQsB/xm6GkRgVi5/lSXCyrd+F+ZCh/SmQAlErzgCHMX4XimgbUNBj2m+tVDQCAxHB/szIqFAq0i/BHbrEaeaX1SAh3XhrH0rmAlVdqaPaTFh1k9p7IIMO+XF6r5V4rrjE8WosJNj9fdooLMayzRO2ybdCo0+NS07HQOT7E7HNjgg3foURt+A51DTrUaw37UWSwHxQK/mUjNSoQQAEulQrbj2zVrVAXy8oBAO3C/eHrwz+XKxRAXLAvrlXU4XpVA2JDA1CtMZQ/zF9l9tnBCgXign1wvbIeVyo0iArm3/CJ5WKZYRtY2o/ahBnOR2Um+9G1CsM52NL5K9rXkObKK3Hd+aiuQYdrTU3IOgi4rjEMg+tN3yExwvw7dIoLxo7zpcgtceV1zXA+So4MgEpl6XykREWdFlUaw/moqmk/CrewHylg6KB3tqAal8vrkRodLHr5AeP5qJOFbcDuR4VVGvPrWpCP2fs7NF3XWns+kskM5wipVOKSbdmijKyrDB8+HCdOnOAte+SRR9CxY0e88sorSEhIgEKhwKZNm3DPPfcAALKzs3H58mUMGDDA0iodxg2/1Yp1XC6thU7PIEAlR5SFNmRhfoYNXVZruGiX1Gig0zOQSSUW25ylRBp2zgvFNa0olWMuFBk+KznS8kmeDWRLmtrSlakN38Xfyj6cHOmPkhoNLhTXoFubEKeX1xK2vlIjzTPr8U29TK9X1EOvZyCVSlDetD0stR9NivCHRAJU1mlRpm5AeID4PYXZDlKRgSpeu0xWRIChnGzdlxvafMBHYXkoopSmJwzstnUF9rNSLGwDAAj15x8LV5vaiieEWs5upEYGILdYjfNFNRjc3jXtrdntYOlYYLN51fWNhuGQZFKus0tUkKVj2bCO65X1UGsaXdI28Gp5HRp0evgopIgLNr+JZMvJ3jSx20Ipk8Lf1n7kyvNR0zawth+1CTUEslfK6tA7ETaPZcDwHa5X1uNCkRq9E8MsvsfZ2PpKsbQfNZWztkGHeq0OPgoZtx3C/c33o3CVYbQMdYMOhVUaxAQ77wmmNXklajCMoae+pXoNazoWytnzUa2W6+gVa6F8qe64rhWz1zXL+1GYvwK5Jcb9p1RtOCZCrVzYUiIDcLagGheK1Li1owgFtsC4H5l/B7aei6rr0ajTQy6TGo8FC08ekpr2xZKaBlTWahHs17Ig1NXj7jt81szMzBSjHBYFBgaaTXvr7++P8PBwbvljjz2GGTNmICwsDEFBQXjuuecwYMAAqx29HMUNv9WK7WJ6wrJ0p8yetNgDPr/pLjcqUGU2jiBgvIC68oDPLbF94WCDKDaQZb9LgJU9LCUyAPvzyqz2XhfDeTaIstBEhD3xN+j0KK81BKZsIBhi4WD2VcoQH+KLq+V1uFCsdkkga+vCB5juR4Zy2zphma7HHReOlCjL3yGs2bFQWmP431onotSoAGw8Xeiy71Cv1eFKU3Bt6VgI8lVAKjG0ryuvbUBUoA8XEEYFml+8Q/yUCPdXolTdgLwSNTdEjpjYukqKCDB7lAqA6yhYVMU/lkP9FRbPX+7Yj9hj2VpzL3Z/KW0qO3tzZ63ZQEpkAHbklLjsOzAMw537LJ2PgnwMY8jq9AwqarWICZZx28FS0CiXAm1DfZFXWosLxTUuCWRNAyhb1zU2AC9sGrkj3F9psZMye11z5TUh19451Y+fHGD/t3QzYbqe3BLX7EdanR6XmjKylm6swwNUkEslaNQzKK7RIDbY13gsWNiPAlRyxAT5oKCqHhdKatCrbcuGZrQ1aoFheYtWa5Wg4bfYXv3sz7b+udonn3yCu+66C/fccw8GDx6MmJgYpw4Dxk1R24o7DHvZg+YHC9tD2NrFm717LKzSoLqVw2QIZeuuDzCWtaSGvXO1nZF19cWvql6LwqYLs6WLn0ImRZCPIeoubxqKpczGhQNwfWbc3jYIa3bhYP+3dMIyXc+V8jpoLExyIQZHjwV7mTR2W553UVb5YqkhCxXkI+du3kzJpBKE+PFvKIqb9jtLGVnAnfuR5Ys3eyyzmWR7QWByU7Oc8lot916xXbATyLL7S0WtsP3I1eejgqp61DboIJdK0NZCW0qJRGI1iAqzclJ1dYLD3n7U/KbUViBuWI9hW16rqEOtlYk6nM3e+Yg7p6oFXhO4p1yuCcYvl9WiUc/ATymz2EdAJpUgvOk8xSYF2Oub1Zu6piRDa57U2RpH1tbylhIUyIaGhqKoyDB2WkhICEJDQ83+scvFtnXrVl7zBh8fHyxcuBBlZWVQq9VYtWqVzfaxjmv9zF4XbGQCAZMDvlZY9iDYV8FdbFxx91qv1XFjSlrLpLEZSXbMUva7BMgtV5yrD3i2nqICVQiy8Fge4G+HugYd9xjMWiBozCC46MJRJPSkK+zCERWoQoBKDp2eweVS8cfDNWShBF78uGPB9kk31cWPtbltEGU5CwUYhkcCDNvBdLieCGtZHCdcOByRa+fiHdF0LLMXPHtBIPt0AnDddjhfbDuQtRYEWj+WDetxVTaQ3Y/ahvtZnQmKDVjLaxvQqNOjqt6wH1m/oXDPfmTtsbzZNrBzYx3qr+T2MVdsB4ZhjE/prJ1T/YzbADAmaDwmuWHS5M/S0xWAvx0MGX7jExZLjN+h5duAHdnKWubV2W24BTUt2Lx5M8LCDO2Gtmwxn6XpRsZlZFsTyDY9lk+OsP9ImGEYuxcOwBAIFFdrkFtSg+7NRjVwtkultdAzhpmvIq08Qg9vlgFhT14BVjKybHuovBI11x5YTPZOWIBhO1wsrUWZuoHbBnKpBIFW2i0644B3hLE9l5Ug0M+4DXR6htsGIVYufBKJBCmR/jh2tRIXimt4s2mJobBKA3WDDjKpBG3DhD3KMx4Ltk+6JTUNqKhtsPpdncVeVhwwHLcXitWoqG3gjgeZVIJAHzv7UYlr9yNrN9ahzfajcjtBIGDYJ69V1CG3uAY3txO3jWmZuoHbP6weC81uiNjsuPVmNoa6uFRWi4ZGvcVpkp1JyH4UYnIsVNQZyi+RwOpsiOyoJK4+H9m7sa5qai/O3VjbOEZTIv1Rpm7AheIa0ZvZlKkbUFmnhUQCsxFdWKHNMrLsdwi38DQGMK6nVN2AcnWDzWPGGew1+QP4x0JVnZabCMFWMxugdcE4l5G1Fsi2eM2WCQpkhwwZYvHnfwLjFLUti2QZhkGuvYxs0w7VoNND3aCzm4UCDDvb3twyl2Q0TRvEW89CsY+1+Y9g/K3sYXEhvlDKpWho1ONqeS0Sw8XtKXzBTgYH4HdOMM3gWPvOrrz7bjRpC2W9o5Sh/HoGqKrTmrSRtd5gPyUyoCmQdd1+lBjmZzVQMA9AbD+d8FfJERvsg/zKelworhG9o46QAMR4LDRwWagQX4XVjAm3H7kok8Zua2s31mybcHY/Yo9p2wEI28bUdftRfIgv/JSWTzChzZ5OlNnJQkUHqeCvlEHdoMPlMnXTSAziEXRD5Gc8FtjjINhXYXUa3RQXPiHS603a+Fq5mQj2VUAiMSSBKmq1xuuazQRNAA5cLHdJRpbdV+OCfS12hgXMz0f2MrKm56Pckhr09hf5fCQwQQOAl6AJ9JFbfRKQwj2daMV+xLaRtRKyuqWNrKn169dj586d3O8LFy5Ejx498K9//Qvl5eVOLZwnaG1Gtrhaw80mlRhuuee1r1IGH4VhU5SrG0weCVsPQJJdGETZexwMmLeHYk9aAQrLFSeTSrgLqStOWsaMrPXvYNo5wV5HKcD4SPhKWa3obUzZnuYquZR7jNucQiblsn6l6gZBFw6uXZ0Lgih7PYQBYxDFtUkT8HTCle1kbY1YwDI9Fuw90jZdF/t0QkzlArKZpvtRmUkQFWrrhsiFI2DY6rTJCmvWTtneDZFEIuHWd96lyQEB5yOTbWbrfJQU0TQrZNMIGGLKr6pHnVYHhUyCBCvjpcqkEoT4Gh/N23u6Ari2nW+unScTgMmIQmbtlG0H44BrMuNC9iPTBI2Qp73sui6V1kKra9kkLWzizwWjwAFoQSD70ksvcZ26Tpw4gRkzZiAjIwN5eXm8SQZuFNbuKIRi23K1DfODSm59Otkwk8dI9toSAa7tnGCvQTxgGoA08JpHWMvImq7PJd+B6xxiPdNiGoBwDeJtnHQjA1QI9JFDz4DLlorFNAi0ltkD+BkEe21kAdc+1ja2FRcWBDbq9KisY0eOsP8dxA5kGYYRlpE1eRxp75E2ALQJ9YNSJoWmUY/rTeNNi4XtTW0rmwk0C8Y97HzEjVgg5HxU2wC9XmhzLVcmB4Q8Em4KAk0CEFvbILRpBAzAcFMkJjYITAz3t5rZY8sENLupE3AsuzIIFJKgaf6k0dqoBabrE3s/MpyP7O9HpgkaIU97Y4J84KeUoVHP4HJZy65r3KgFLfprxzkcyObl5aFzZ8PsEb/++itGjx6N999/HwsXLsS6deucXkB3a21GVsiOBjTLBgpqS2RY38WSWtGzOELbBQJsO5xGrkzW2sga1ueaA76hUY9LTQekraYFxvaZWkFBoEQiMWbGRQ6ihJx0AWN5S2tMAhCbWeWmx0hFNaJPPc2154qwvw3Kaw3tAtkiWRoCjeWqjKxpT3NrT1cA/iNhe4+0AUPmim1bd17kY4FtimQrgwPw2yoLORbYoPKyC55O2Bt6C+AH4lX1xnaBtvYjVz0hqtE0ckMs2nxCZNJcyxiA2B7X01XBONfJyErzFFao6Y21AzcTucU10It+XRMQBJp09tIJvSFyUUfmUgFtfAGTDmsCr2tSqaTVT+oYu41knRviOhzIKpVK1NYagoK///4bI0eOBACEhYW5ZfgtsbW2jWyugNQ/YDkDYisLFR/iC5Vcigadnhs0XgwMw5hkM+0/Bqtt0OF6pSGr5K+SwVafCVcd8JdK1dyEFNFWhkAC+L2EhWQPANcF48YAxPYNkWkQVSHgpJsY7gepBKjWNHIjTojFkYysaXYyyEZ7LsB1WRwhPc2BZm3SBFw4AGOdiB1ECbkpBfg3pkKOhcimETD0DEQfAUPITR1bVtOsUoBKbvOpmKsmdshr2sYRAUqb53h+E5WmgfjtnI9c1VSICwLtTNtumhwQ0symTagv93TimshPJxxJ0Gh1DK6W1wq6sXZKG1MB2HNFm1Bfi+PysnhNVAQkN4DWn1M9cvgtU+np6ZgxYwbeeecd7N+/H3feeScA4Ny5c2jTxjXztXsTwRlZLgBx5K5J/BNvUbX9nuYAEKiSQ970yJstj92TboSLsgd2JqRg8bJQAoJAwzpdE0Sxj4SFZmTL1MIeI6nkMm4cSzGzgWpNI643ZaGSbWRk/ZQyriMYe6K2tw3YzNyV8lrUa8XLBgoNAk2zOMJviFx/LNjCezoh4FhgR8Aw/Qwx1DXouADHVkbWVymDb9PFnd2PbGXFAf42EPPphJC24kDzNrJNTVSs9JZnuaqpkPAbIpM2sgKeNMplUu5pR66I30HTaDKkpI1jwUchg1Jq2BdyCg3fOdhXYfNGlr2ZuFzW8jamQrTkplRI/xvTdYp1LLu9s9fChQuhUCiwcuVKLFq0CPHx8QCAdevW4Y477nBu6TwAN0VtS5sWCOiYABh3tpIaDdcu0N6J13j3Ld4Bz5a/rY2e5kDTAN5N34Etj63e8oCx/KVqY/ZQDEI6hwCWs1D2hnNyXQAi7IbItGmB0GA82QXBONtmL9xfaTMjI5FIuAsdd0Nkp/wRAUoE+yrAMOJmNIU+XbHUS9j+NnBxJk1gAFKm1nDtfO1tB1fc1BmCTMPNgr3Z9Ng6Z/cjWwEUYPJ0or4RxTXiPZ0Q3EzIZBg0NiMbLjCz7ylNnSxlAwUnB0T8DtyQkiq51YmHWGzzuJym8tjbBqZtTMXsO2Fs3iE0SSas8ynQ+jHS7Y4j26K1WudQINvY2IitW7fi66+/xrFjx/DYY49xr33yySdYsGCBk4vnOVoSx5pmD+xdONhHFZdK1XbHeWO5IogSesIC4HAAwg5VYvgb8S5+QsaQBawFIPbuXI2PhMXK4ggZN5PFfofLZcYe8LYegwGuGbZHSO9aVqiDAYhEIjG2kxX1OwgMAh3s4GK6TjGPg4ZGPfeY3e4j4aZtwI6WAdjfDq4YuUDIMHosNhEg9Hzko5ChTaghGyhmckBIRy+AP1NfmZ3ZmFjsOsUcAaNG08jNkii0qdP1ijrUaw37kd0boijxM/tcEGhjYhMW22GZvY7YC8QNTydceG220VQLMG2iom3R+agl1zV7TQuczaFAVi6X46mnnoJGI25bOk9i7Ozl+MZks1Ahfgq7O39Ys2ymrXHeWK54lCf04g0YLxzcAW8ngDJdryu+g72LH3twV9c3cvPM2zvg24b7QSaVoEbTiCKR2piyAaa9nuaAcT9it4G/Umaz/RTgqkya8P2IvXlgjwUhg4qnuCCjKbhpQVN51Q06bn55oVnxkhoNKmvFmXaavbnxV8oQZScL1fym1EchtTrWJoubWcoFAYig85Ef/5xqLxA3rLfppq7Ec/ajeq0e15r6QVgbiJ/lihEw2PNRRIDK6uQMLPY7sMG7QiaBv539yNMSNOwQkueLqgHYP5ZN1+sJ12b2ODD0p6njLbMmKcIfEglQWaflxs51BDdqgZWbBLc3Lejbty+OHDni3FJ4MC6QbcHfCj1hASYn3WJhd32m6xX7UR4gLJPW/FGevYPFdL1iHfB6vbAhkwDjAN6A8SbE3nYwbWMqVhDl0DbwYzOyhgufoCDQhZk0sY4FsTOyQnuaA4bOaexMdcb2mba/Q4BKzs2VfkGkIOq8gOl1Wc0DECHHMjcChohPJ+xNTWvK7HzkyDlVpIysTs8Imo0JMNyEKpuSGewj6jAbwz4BhhEw2kWI2+a9VU/p/KxPMMNyxXTBjtxYB8j5f2PvZgIwaa4l0n5Ur9XhSjnbxtf2dzAdp17oOdXwdKJp2ukWXReamhZYedXtnb2eeeYZvPDCC/jss8+wZ88eHD9+nPfvRsOOI9uS87JDB7y/sZct4FgQaNo72tmEPgYDjGXWNDY9inTgwiHWSUvokEkAfwBvR7aD2HffjmwDtjOI0OYpgDGTdq2iDnUN4nSWEjJiAcu0x7np77akihyMC+1pDjS1Fzf7DgKeTog8ckFLbiYc2QauGAFDaHt3wNJ3ELINxM0GXiuv46bAjQ+1PLEJSyKRcM2C2O8gLKss7jn1gskNkT3sUzqu/AKuCex1rahag6p6cZ5OCJnkh8W2LqtpmmTCoeuaSDell0oNIygE+cgRISCwDmt2LNhrMge0LlFmzMhaeYO7M7ITJkxAXl4epk6divT0dPTo0QM9e/bk/r/RGDeE45GsQ4/lm52ghJx0/ZRyxDW1MRXjgKltaBTcxhcwP8AFXThEfozEXvjaRdgeuJvVPGvjCZnxlmRAWEKyUGH+Su6CKcZA6jo9w61XWBOV5tvA/n6UGmmY6CJXpLaBQnuas5qXWch2EHsUD8durBXNfrdffrFHwGjU6bn9yNZkCCyz85FDx7JI26DpPJ0U7s9l7W1p/h3sjVoAuOA7tOCGyNrvlgT5KLimL2IE40InEmD5y/nnE3tZcYDf6U6MpxNCpo031XzfF5agafl+ZGwja6VpgZMj2RZNiND8X25uLvf/jYYbR7YlGVkH2nO15KQLiDsWq+nwR0LK0zxTJSgIbDrgL7diOjxbhExNa8o0EFTKpfCz054LEL95hGPtlJttAwE3E2J3TrheUQdNox5KmZTrTGNL8zLby4ACQHxo07jKjXpuWB1nciSDA/AvFHKpBIEq222bTdctVla5JU9XuN+Fno9EvKkzDGfEwEdhfZpmU81vpIVkM9lj+VpFnShDuTnyZALgbwelXGq3fanpusXejxxpbmbtd2vEHLmgqFqDGk2jYUhJO0/pAPNJfeyNWgAA7cINbUyr6htRUuP8p6WOxBYAv94lEtht2wy0buQCxk5vL7e3kY2OjkZiYqLVfzcabvgtB/9Ob5KFEnLAN+9ZLuSkC4h79+1IBgewkIUSEESJPVSJI72cAf4FO0xAey5A3Ed5mkYd195VSDYwyMc4ni/gSAAiXjDOrrNdhJ+gLFRLsuKms2OJ8x2EB4EAv8yh/gL3IxEfa5tOrytkPzJtLw4IuyEyrFu8ETDYbZAcYXuaZpZZFkrAfhTubxzKTYynE63Zj4Sej4yZfXGfrgjJigf5KGC6qewNKclKFrHTnemQkrYmyGD5NbsHFbIf+ShkSGBHwBDz2tyCG6JgXwXkAp5OtqppgZ02ss7mcCAbFRWFzMxMZGVlQa8Xb7BfT9HSjGx+VT3qtDooZBIkhNm/6/NRyHh3254RgBgvHEK05DGSYZpX8b6D0KG3WKY3EI5moa5V1KG2odHBEtp2ubSW62lua1Yylul4voDwGyIxx5JtzcUbELYfAeJOVevI41TA/IZICHbdl0R4OlFco0F1fSOkEthtKw4YBqY3zdp4QkZWyNS0pprXu5AbIrEndnCk4ybAD/yEZjPZdZuOSe4sV8tr0aDTQyWXIk5AVlwqlfCOX4cTNCI8aeS2gZ3pdVkBzZoWCMnIAuI+qWvtDZEQ7LpbMtGMvTaybu/s9d1336G2thZjx45FfHw8pk2bhoMHDzq5WB6khcNvsXd9ieHC2mYCzS5+Dl44xMgG5jp419fax0hifAehQ2+x+NtAWPYg1F/JfVdnfwfTqSCFZGOA1gXjYjzKczgIbHaijbQz8D1LrEDWkZ7mLNOnEUKzUKZPJ5zdPIINCBLC/OwOx8Yy3Y8EH8sidrpzNJBtPtC90BsiMYOoXAePhZZsg0AfBXfT6+zMOHssJ0UIa+ML8M9BQpoJAeI+nRA6vS6r+eHr7usawzAO70ehLbgmRAQoEeQjB8MAF0sd+w7228g6l8OB7Pjx47FixQoUFhbi/fffx+nTp9G/f3+0b98es2bNcnLx3I/LyDr4d44+lgf4O5vwu76mLE5ZLRoanZvFcfSuz7T8UonhMbcQYjWPqKzVoqRphh6h36GNSU9ioRc+w/rZR2HODmQdO2EBze6+Hczs55WooXdyZylH2wWaljlAJUeQr7D9SKwhuBzpac4KbUEAIuU1j3DufmSc4lj4ftSiAMTk6YSzR8BwZOgtAGYZQ3sTg7DECqIM5yN2YpOW3Fg7cj4SJzOe62AQCPCDcSFPJwHj+ehiqRqNTn464ei12b/Z6cfhdr5O3o8Kq0ynjRdWn6ZDhglp8gc0PZ1oYR8c+zN7ubmzFyswMBCPPPIINm7ciOPHj8Pf3x9vv/22M8vmEVo6RW1LAhBfk0xJl/hgQX8THaSCv1IGnZ7B5TLnnbT0esfv+kwPcD0DQe3YTNfv7AP+fLFhAOvYYB/4C+hsY1oWwLFAlmuX5uRMVEtuiHjtMwV+h4QwPyhkEtRpdchvGsTfWdjgviVNVAxtNR3cj5zcU5jLQgnsaQ7wt4HQizcg3rHAXoiEPk4FwLtICn0cGeav5C6UzmzfyDAMch1sJtT8mBf6ZIytI2e3z2RHLIgJ8kGAwPNRS25KARH3I/Z85MB+FGwSOAk9j8UF+8JHIYVWx+BKuXMndnCk0yNgHsgKfaIhVhMVdn2JdqaNN3VTXBD3s9CbUsB4zm5pZt9qIOvuzl6s+vp6/PLLLxg3bhx69eqFsrIyvPTSS84sm0cwZmQduzAae3YKD2SvmczEwk7dao/pXdN5Jz4Ku8braS4sC+WvkqN7G0MAbnrg2CPWUCXsxVtoBgfgn2j9VMJOWABEm1bxQgv2o5Zc/BQyKRLDnd/bubJOy40pKrRdoOkMUvZmkzKVFOEPaVNP4eIa541j6mjHCoB/Uzq6W5zgvxOriYfxOwjfj+7qFsv9LDSbCYgzoH1hlQbVTT3N2QH/xWKahXLm0wlHn0wALcvsAybtM529HzkwhixLY/KkUOhNneHpROuCKEscHVISAGRScGO1ju7uwLHcVEdXy507AoajQwECQGeT63FNvfB+HC29rnFtZF3U3cvhQHbDhg3IzMxEdHQ0nn76aURHR2Pjxo24dOkS5syZI0YZ3UrSwrYFLcmk8T9X+A4gxt03m0VLDPcT1MOR9fOTAzBzVEfMGttF8N+INVTJ+RZkxU3b1VXVOXDAi/Aor1GnR06hIauc5sCFw/RxpND2mYAxE+XMNqbsRSg6SIVAH+FlYQkZ/ozlo5BxF0pnfgdHm9gAQLeEEMibHv216KZOrEyaA99hcPtI+CtlCFTJBQ1TxBIjE3WmoAqAYR8V0tO8NdqG+UEuNTydKHDi0wn2fCT0yQTQ8oxsWpRhXGW23pylJfuR6WQ9QrPihs9w/n5knKlOIbitKADMvbsL/ju6Mz65v7vgvwn3b3kbU1tackNkesw40pG0pdc1btQCFw1b0KI2snV1dfj+++9RUFCAL7/8EoMHDxajbB6Bm9nLgb+prteisIrNQgk/4Ofe2w2xwT745uE+jhTR2D7TiUGUo+PUsXwUMjw5JAW9E0Md+hs26+vMu29HZgFimd5ACM1EA/ybCWeNXHCusAa1DToEquSOtZE17WjkwGOkjrGGgOvktUrhhbQju8AQiDty8TblK/AxHitVhIxmSy7e8SG+2PLiUPzx3KAW3pQ6b5rXeq3OJAsl/OKnkEmx/eVhyJoxBEEO3ISw38GZNxNn8w37EbuPCuXIjRDL8HTCELifdWIgyB5XHWMDBf+NabAltN8EAHRLCIZEAlwpq+P6CbRWfmUdSpuC0iQHmhZ0jBH+fU2J0enO0U6brFvSIjA5PcmhpE5r2pja0tLvMPeebogP8cX029oL/hvT65oj5yN7b3V2gCusoY6JwsJCBAa2bMf0RhJu1ALhf7M/rwyAoXmAkIGHWempEdgzc7gjxQNgDJaPXa3A+pMFFt/jp5RhQEo474745LVKXLXY/ojBikNXATh219caKZEBuFJWh7MF1eiXHO6UdXJjyDp4wP/8RH+sP1WAR9LbCf6bxHA/JIb74VJpLT7bfB7d2oSYvcdHIcXAlAheuya9nsHO8yWotdAxZm9uKQCge0KI4PbGABDW1Ms/UCV3KAPSs62hzEeuVAj+G3t2XTB8h5vbCb+xAYDOsUE4nV+FB25OcOjvUqMCsOlsEbadK0FkoHnzHF+lDAOSw3nbQKdnsC+3FFX1jdDpGnGsVAL56ULIZHLUa3U4crkcgGMBCOBY21hWUoTh6URlnRZl6gaECxyxwZbcYjUYxtDe2JGsHoAWfT4bbG47V4y1J/IhbTqJmtZtVLAf+iSG8oL8ugYd9uSWoKHR/GS7I6fYsG4Hg6Knh6Tgo6xzuK1ztEN/1ycxDBeK1dh9vhS3dnTsby3R6Rkcu2IIZHsmCD8W+KNfCN92QT4KpEYGIKeoBj/suYROFm4Agn0V6J8cxtsGtQ2N2JtbanMb9G0XJrjPAQC8Oqoj/JQy3O/gsSxGp7vsphsTR4PAlkqJDMCRyxX4Ye9Fq+3rUyL9kRZt3K/rtTrsuVDKa5Jh6kzTTZ2jT3vvvznB4W2QGO4HlVyK2gYdTl6rQtc2wvruGIffcs3MXg4HsoGBgdDpdFi9ejXOnDkDAOjcuTPGjh0LmUzcRz7uVNesjcuRy+X4af8V6CxEuMevVgAARnWJNXtNDKbDDj314yGr73stoyOeGJwCAMgprMZdn+60uV6JBBjSPsp5BbXh5nZh2JpdjEVbL+CElYxg33ZhvAPxxNVKLN13iZs/ujl2CCNHg/F+yeEOB9MSiQTjesRj/qYcfL71gtX3TRuRhmkjjHfEi7ZdwP82ZNtcd4+EEIfKEtF0wQsXMJ0l73Oagu+8EjVm/HKUC0BMdW8TjIcGtOMt+/P4dWzNLra4zq1niwAAg9IiHSrLsn/3w8lrVUhPdWw7sBe/v88U4u8zhRbf0ycxFD8+3o/rtLHq8FW8tPK4yTtk+L9zx3h/c0taBDrGOJYNbAkfhQzxIb64Wl6Hh/9vv8UARAJgfM94DEyN4JatP1lg9fsebgrEUyL9HcoOt9Sg1Ah0jAnE2YJqPLP0cLNXjXX7/aN9Mbi9Yb+oqG3A/V/uwblC20FLJwdvJp4emoLuCSHo5cATIgAYlBaBnw9ewe/HrqPCwlisEgB3dovF0A7G86Nez2DRtgsWJ1Ko0+pQo2mEn1KG9tGOdQD2VchQp9Vx7TSF6tk2BDlFNZi/Kcfqe+be2w339zGeU9/96wyW7btsc73jesY7VI7wABXedqCpGYtt6nQ6vwovrjhm8T1KuRSPDUriBabf7MjF2aYnQc2xx8jNSWEOl6clbu0YhZWHrmJvbhn25pZZfI9SJsXOV4chqunG+38bsvHtzjy7627pUy5HKGRSjOgcjb+O5+M/q0+gfbT58aeQSfFoejteMF7bFC9ZO9u4PSN7/vx5ZGRk4Nq1a+jQoQMAYPbs2UhISMBff/2FlJQU55bQzdgMxudbz2NEpyjuQvD66pM4dd32Y6e7ezl2wLdUWlQAJg9sZ/WRcEmNBhdLa3HkcgW3jM26hfgpLGYslXIpHh7QDn1ddMBnDmyHxbvyUFBVj5VN2eDmfj18FcM6RnHtWN9fewZ7mrKW1kQGqgSPQ9pamQPb4XR+Fa9NGKu6vhHZhdXIOl3IBbIVtQ34fMt5AECX+CD4WGj7F+SrwIS+jt1F92kXhnt6tcEtaRH232wi1F+JDtGByC6sxqrD1yy+Z+Whq0iNCsSAFEOAWa5uwPSfj0Krs/7IIthXwWV7hQrxU2KQg+UHgDu6xGDL2SKug5kpPcPg8OUKHLxUjo2nCzGmqePGrvMlAAxtIyMDlCgrL0dYqDFb6KeS4+0xNzlclpZ6cnAy3vj9FE5dr7J6jtmXV4btLw8DYAigXvjlKNQ2hruSSoB/35IsSnmbk0kl+OCebpi74Sw0WmNWiWEYlJWXo07ig4IqDXadL+EC2ZWHrnJBbO/EUIsXwIQwPwxKdeyGSC6Tcp/hiPTUCChlUhRXa6yej7LOFGL/ayO47P4fx6/bvSntnRjq8OPpV+7ogNwStcNZxEcHJSG/st7iMGjs+eijjdkY1yMeSrkUDMMg67Qh0LspLshis57YEF+MdzCQbamUyAD4KAzZQGvbAADUmkbMn9ATAHAmvwrv/nXG5nqTI/0xrofwTlutkdE1FnPv7YaVh65a7DiYXVCNak0jTlytxPBOhkCWfQKUFhVg9YnuoLQIhzL0rXFv7zb463g+jl+txPGrlmOMgso6LH6kLwBDG9xvduQCsD7Ul7Nvpx0OZKdOnYqUlBTs3bsXYWGGIKe0tBSTJk3C1KlT8ddffzm5iO716qiOGPPZLhy5XIGiag2ig3xQXK3hLjAvjmxv8cSUEhkgeAit1pJIJPivjQvt1uwiTF58gPeIhm2/Nq5HvM2/dZUAlRw/Pt4P27KLLbZH/mHPJVyrqMPRKxXcY8KcIsNd9+ODkhARaDlYHZQa4ZIsFGC46fnaSvvm4moNbn7vb5y6XoXSGg3CA1Q4fLkc6gYd2oX7Yc2UQQ41H7BFKZfiIwc6JZhaOLEnNp0psrgN9ueVYfPZIny6OYcLZP88fh1aHYOkCH+rzQAGJIc71MShNYJ8FFg0qbfV119ZeRw/H7zCdaIDjDd1747rggFJIVi7di0yMvpCoXC8c5ozPDSgHZIjAyw+mdDpGfxvQzYul9Wiql6LIB8FrpbXQd2gg1ImxYyRltu/9UsKQ8+2jmUlW6N7QgiWPt6ft0yr1WLt2rWoi0nFq7+d4t1Yn2vaHlNvTcWMkR1cVk5rwvyV+O7RvjjW9HStuW935qG4WoMt2UW4/aYYAMCnmw03paO7x1ns4CeXSnBHlxiHyzI5PcnhvwGAjjFB+OGxfhZf0zTq0Pe9TSis0uBcYTW6xAcju7AaxdUa+CpkWPXMQNE71dnjq5Th+0f7cU8UmrtUqsby/Vd4WfxDlwzvbR8dgLt7tTH7G6kEuP2mGIduJlrr/j4JvKy3qWk/HcHqo9dxtqAawztFN00lbcjoL3iwp8UnMq42tH0k5k/ogfxK846PVXVafL71AvbmlkHTqINKLsOZ/CpcKq2FTCrB8yMsn4+cfU12OJDdtm0bL4gFgPDwcMyZMwfp6elOLZwn6NYmBEkR/sgrUeNCUQ2ig3yw+4Ihg9M5NgjP3prm5hLax97JXywxTHcqk0q4C7kjQ1OJrWNMkNXHt3nFavx88AqOXC7HbZ2jUVHbwI1wMP229g612XKHyEAV97j1wMUy3NEllusAcFN8sNOC2NZKjQpEapTlx7fDOkRh89kinLhaCYZhIJFIkHXG0HTgX33b4t+DXZPxa420aH67u9IaDS6VGpqgdHewCYeY0lMjkJ5qOSP9495LyK+sR3ZBNW5uF8aNl5wc6Y+nhnj+EzF2iL7j1yqg1emhkEm5i3eahUeX7jIgJZy7YWuuTN2Ar7bnIut0IW6/KQY1mkYuOTBrzE0uy5a1lEouQ4foQOy/WIYLxTXoEh/M9e3omxTm9iCW1TcpzOpTwYslhkA2r6QGej0DqVTC3RzdcVOMVxwLnWKDsProdZzONyTGytQNqKzTQiJxrEOdmCQSCcb2sJyFZxgGvxy8ipIaDQ5dKsfAlAju3NonMdRl38Hh2xKVSoXqavP2JzU1NVAqPfvgbanmw4CwB0t/J3VKEltciC9UcikadHpcLTdctNmhYBwZ1smduI5ITXXPXvjiHJjswN3YsfzYsrekN7w7tYvwg1QCVGsauUf37OgAvRJD3Fgy4dg2tOwIH2zHiXbhfg51zHQnNktztunil1Po2IxX7pYc4Q9/pQz1Wj3XntTRyVfcrVfT+YhNCOQ17U8RAUqPD2JZxqHeDGVnA/HODgwX505tQn2hlElRr9XjeqWh0/LRK4aMbA8HmzK5S8dmxzK7LeJDfAVPvOBOEokE/ZMNNxpsZ0YhYw27fYrau+66C0888QT27dsHhmHAMAz27t2Lp556CmPGjHFy8TxD87HU2OEvHGm0704y3tSXhuGh2NEKPCkDYstNcYYsDtucoCWDQrtb88HuWzvWsKup5DJutqfzTfsRO6yTKzoeOEMKO8h6iRo6PWMc2cJKFtoTsT33zzR1aMkpYm9KveM7SKUSkxuKGpSpG1Bea+hQ5SlZKHvY/eV80yQu3ng+4mYjLG5+PvKO7yA3GSbtQrEamkYdd2PEXi88HRtDXCqthVan97ptABjPO7mO7EfuntlrwYIFSElJwYABA+Dj4wMfHx+kp6cjNTUV8+fPd27pPERys4zshRaMT+pupuPZscPxhPkrHR6Ox13YbVBS04CK2gaTaQa948IHmE9c4ehUiZ7A9KaOLX+Yv/dkoeJDfaGUS9HQqMe18jpjJtBFw8w5Q6pJEAiYBLJecmMN8Pcj9niID/F1aCY3d0oMN0yaoG7QIb+y3isDENMZFQ3/e/E5tagGl0proWcM/S2irPSZ8DQxQT7wU8rQqGdwqbS2xeO3u1PzSVyMs5q6bj9y+JlsSEgIfv/9d5w/f54bfqtTp05ITU11euE8BbtT5RarUdegc3iKO09gGkRFBBqCDm95FAkYpr+NDfZpumgYL37edDORavIor1zd0KLBxd0tOdIfm84agqggH8Ppw5sufDKpBMkR/jhbUI0LxTUtmrXL3ZpPmnCBy8h603cwXvzYgf696VhWyKRIivBHTlENcopqvPrGOq9Ejap6LTeLmTdllVOi/IFThv2IndbdVcPMOYNEIkFKU8dOw/nI+26sTc9HOj3DZcVtjd/uts5eer0e//vf/7BmzRo0NDRg+PDheOutt+DrK3z2I2/FbqhrFXU4dd3QDiTUz/HBxd3JdPYvdnxRb7rwAYbtkF9Zj1zTA96LTrptw/whk0pQo2nkhg3zpja+AP+kxU45603bADCU1xjIet9+xGY6iqs1OFdYgxpNI2RSCRLDvfPixwWyXhQEAoYMeE5RDXIKq71yP2oT6gelTApNox47cwwdmCMCVF7TVhzgJ2jiQnx5y7xFSqQ/F8iyzRa9pakWwJ/E5eiVCjTo9FDJpdz2sMRtbWTfe+89vPbaawgICEB8fDzmz5+PKVOmOLk4ninU5BF8VtOAyt53sBgPeLZziLcFsuwFPLugGpebepp703ZQyqVcG1N2vEZvykIBpk1UvDMIBIz70YlrldyQMt4URAX6KBAdZHh0uuGUYSa/duF+vNnKPB3XRrbImBX3pkwgYGwne66wusXThrqTad8J7nzkRccBwH9a6o1N/gDjdziTX93iSXzcyXSK+Y2nDeejpAh/qzOZAc6fEEHwme/777/H559/jg0bNmD16tX4448/sHTpUuj1lqdRu9GwBzh7wLuy/YczsCesUnUDDlw0DLPiLR29WOwBvzm7CI16Bv5KGXdB9xZm+5EXNSsA+E8nTjeNpexNJ13A+B3+btoG4f5KhPh5z9MVwPgd2CmpvaWjFysx3DgCxr6mpxPeFkSxTbO2nStGQ6MeSrkU8aHe9YSSvY5tbLoh8rYgkC1/UbUGR5vGg/a2/Yit881nCqFngEAfucsm8XEWNoPsrgSN4ED28uXLyMjI4H4fMWIEJBIJrl+/LkrBPA27obyxgw5gaGMa19SGiO0h7E1tZAH+3TdgyOB4S1soFvsdajSNht+9bBuE+Su52VryvPAxGGDcBuxMWN52LAPGMrPjT3pTRy/AMAJGQtPTCXY72GpT54nYJ1qFVYah6JLtZKE8kbcfC4E+Cq5jF/dY3su+AxuMm24Db72ucfGRnQSN25oWNDY2wsfHh7dMoVBAqzWfh/pG1Dzr5G0HPMAPmgJ9vKdnJ6t5Ftzb7rwBS9/B+/Yj0wuFUiblHit5C7Nt4GUZZcD8O3jbTSnA3/cDVXJu6mlvkRThD9O41due0gHm+75XfgeT/UgqATckl7doF+7Pe9TujdcEs/jI3vnIXZ29GIbB5MmToVIZTzb19fV46qmn4O9v/BKrVq1yagE9RfOdy9syaYAhY7CjqVF/WpT33fWxQ5XUemn2ADAfr9Qbv0NKpD83FWS7CD+XTvfoDKYjYADeug34ZfbOQNYfm88afk72wvORj0KGxHB/7snEjbAfeVu/CcAQRLGdZ9uG+XnMrGRC+ShkSAj1w+Wm9rHefjNh6ffmnH2kCw5kMzMzzZZNmjTJqYXxZKYbJkAlR4KXZaEAfvDd3svaxwKGgdSTI/1x8prhcaq3PUICYDYHu7e18QX4x4InzAXeEqaBbA8PmppWqOY30t4YRPVsGwogD4D3tRVnpUQGeHUgy3u6Ipci3kZPc09l2rTJG7cBYLgRZQNZb/wOnZpNLW9vSEln37MKDmQXL17s3E/2MqaPT70xCwUAXeMNs53IpRI8kp7k5tK0zLge8Vwg642PhJtPO+htWSiAf6LtGOOdgaxOz3A/904MdWNJWiY2yAchfgpU1GrRPjrAK6azbO7WjlHczwqZ9x0HgKFt8t9eOpINYEjKsIJ8FF55PjLNYI7tGe/GkrTck4OTsflsEaQS82SHNwj24w/ZZm9ISYmTc7LeM4Clm5kGrv2Twt1Ykpbr2TYUPzzWF6lRAYgN9r47bwCY1D8Rvx+9jnqtzus6GbE6RAciu7AaEQHe1VOeZZoN7BDjndvg5Ts6IvP/9uOdcV288uItlUqw4skBOHSpHOmpEe4uTov4KGSYPqI9Pt963mtvrE0fxXvjI2FTN7fzvhs6AOiVGIqYIB+kRQfgrq6x7i5Oi/RLDseWF4eiuFrDdYL0NkM7RGJrdrFbPpsCWQd8+VBvbDhVgOm3tXd3UVrslrRIdxehVXwUMqyekg6pxDuzmQDwTWYfvL/2DJ67Nc3dRWkR02Y13pqRTU+NwLl3R0HqZb3MTaVFB3rdEHrNTR2eiqnDU732WL4pzvCUKzHcz6smNjG1/N/9sXTfJbwztou7i9IiQT4K7H71VgDw6uM5KcLfq2Z5bO7D+7rjv2tOYVL/RLvvdVvTAgLcflMMbr8pxt3F+MfztiFumksI88OiSb3dXYwWk8ukWPHUANRoGm3O3uLpvPmid6Pw1gCW1SEmEJ9P7OV1PeVNDUgJx4AU73zKyKJj2f0iAlT47F+9BL3XbZ29CCGEdXO7MHcXgRCPkOGlj7MJcRe3zexFCCGEEEJI6zg3kvXoQHb27Nm4+eabERgYiKioKIwbNw7Z2dm899TX12PKlCkIDw9HQEAA7rnnHhQWFrqpxIQQQgghxJp/VEZ227ZtmDJlCvbu3YusrCxotVqMHDkSarWae8/06dPxxx9/YMWKFdi2bRuuX7+Ou+++242lJoQQQgghruDRbWTXr1/P+33JkiWIiorCoUOHMHjwYFRWVuLbb7/FsmXLcOuthl6LixcvRqdOnbB3717079/fHcUmhBBCCCEWOLuzl0dnZJurrKwEAISFGTqaHDp0CFqtFiNGjODe07FjR7Rt2xZ79uxxSxkJIYQQQohl/9jht/R6PaZNm4b09HR06WIY766goABKpRIhISG890ZHR6OgoMDqujQaDTQaDfd7VZVhpiitVgutVuv8wv9DsXVJdep8VLfioHoVD9WtOKhexUN16x28JpCdMmUKTp48iZ07d7Z6XbNnz8bbb79ttnzLli3w8/Pe8QA9VVZWlruLcMOiuhUH1at4qG7FQfUqHqpb56qp0dh/kwO8IpB99tln8eeff2L79u1o06YNtzwmJgYNDQ2oqKjgZWULCwsRE2N94oKZM2dixowZ3O9VVVVISEjAsGHDEB7u3QNDexKtVousrCzcdtttUCgU9v+ACEZ1Kw6qV/FQ3YqD6lU8VLfiWHB6o1PX59GBLMMweO655/Dbb79h69atSEriz8fdu3dvKBQKbNq0Cffccw8AIDs7G5cvX8aAAQOsrlelUkGlUpktVygUtLOKgOpVPFS34qB6FQ/VrTioXsVDdetcEid39/LoQHbKlClYtmwZfv/9dwQGBnLtXoODg+Hr64vg4GA89thjmDFjBsLCwhAUFITnnnsOAwYMoBELCCGEEEI8jZN7e3l0ILto0SIAwNChQ3nLFy9ejMmTJwMAPvnkE0ilUtxzzz3QaDS4/fbb8fnnn7u4pIQQQgghxB5nD7/l0YEswzB23+Pj44OFCxdi4cKFLigRIYQQQghpsX/SzF6EEEIIIeTG8Y+aopYQQgghhNw4nN3ZiwJZQgghhBDilSiQJYQQQgghLvHOmE5OXR8FsoQQQgghxCVSIgOcuj4KZAkhhBBCiFeiQJYQQgghhHglCmQJIYQQQohXokCWEEIIIYR4JQpkCSGEEEKIV6JAlhBCCCGEeCUKZAkhhBBCiFeiQJYQQgghhHglubsL4AkYhgEAVFdXQ6FQuLk0Nw6tVova2lpUVVVRvToZ1a04qF7FQ3UrDqpX8VDdiqO6uhqAMfZqLQpkAZSWlgIAkpKS3FwSQgghhJAbX2lpKYKDg1u9HgpkAYSFhQEALl++7JRKJQZVVVVISEjAlStXEBQU5O7i3FCobsVB9SoeqltxUL2Kh+pWHJWVlWjbti0Xe7UWBbIApFJDU+Hg4GDaWUUQFBRE9SoSqltxUL2Kh+pWHFSv4qG6FQcbe7V6PU5ZCyGEEEIIIS5GgSwhhBBCCPFKFMgCUKlUeOutt6BSqdxdlBsK1at4qG7FQfUqHqpbcVC9iofqVhzOrlcJ46zxDwghhBBCCHEhysgSQgghhBCvRIEsIYQQQgjxShTIEkIIIYQQr/SPD2QXLlyIdu3awcfHB/369cP+/fvdXSSvs337dowePRpxcXGQSCRYvXo173WGYfDmm28iNjYWvr6+GDFiBHJyctxTWC8ye/Zs3HzzzQgMDERUVBTGjRuH7Oxs3nvq6+sxZcoUhIeHIyAgAPfccw8KCwvdVGLvsWjRInTr1o0bH3LAgAFYt24d9zrVq3PMmTMHEokE06ZN45ZR3bbMf//7X0gkEt6/jh07cq9TvbbctWvXMGnSJISHh8PX1xddu3bFwYMHudfpGtYy7dq1M9tnJRIJpkyZAsB5++w/OpD9+eefMWPGDLz11ls4fPgwunfvjttvvx1FRUXuLppXUavV6N69OxYuXGjx9blz52LBggX44osvsG/fPvj7++P2229HfX29i0vqXbZt24YpU6Zg7969yMrKglarxciRI6FWq7n3TJ8+HX/88QdWrFiBbdu24fr167j77rvdWGrv0KZNG8yZMweHDh3CwYMHceutt2Ls2LE4deoUAKpXZzhw4AC+/PJLdOvWjbec6rblbrrpJuTn53P/du7cyb1G9doy5eXlSE9Ph0KhwLp163D69Gl89NFHCA0N5d5D17CWOXDgAG9/zcrKAgDcd999AJy4zzL/YH379mWmTJnC/a7T6Zi4uDhm9uzZbiyVdwPA/Pbbb9zver2eiYmJYf73v/9xyyoqKhiVSsUsX77cDSX0XkVFRQwAZtu2bQzDGOpRoVAwK1as4N5z5swZBgCzZ88edxXTa4WGhjLffPMN1asTVFdXM2lpaUxWVhYzZMgQ5vnnn2cYhvbZ1njrrbeY7t27W3yN6rXlXnnlFWbQoEFWX6drmPM8//zzTEpKCqPX6526z/5jM7INDQ04dOgQRowYwS2TSqUYMWIE9uzZ48aS3Vjy8vJQUFDAq+fg4GD069eP6tlBlZWVAMDNT33o0CFotVpe3Xbs2BFt27alunWATqfDTz/9BLVajQEDBlC9OsGUKVNw55138uoQoH22tXJychAXF4fk5GRMnDgRly9fBkD12hpr1qxBnz59cN999yEqKgo9e/bE119/zb1O1zDnaGhowI8//ohHH30UEonEqfvsPzaQLSkpgU6nQ3R0NG95dHQ0CgoK3FSqGw9bl1TPraPX6zFt2jSkp6ejS5cuAAx1q1QqERISwnsv1a0wJ06cQEBAAFQqFZ566in89ttv6Ny5M9VrK/300084fPgwZs+ebfYa1W3L9evXD0uWLMH69euxaNEi5OXl4ZZbbkF1dTXVayvk5uZi0aJFSEtLw4YNG/D0009j6tSp+O677wDQNcxZVq9ejYqKCkyePBmAc88FcieVkRAioilTpuDkyZO8NnGkdTp06ICjR4+isrISK1euRGZmJrZt2+buYnm1K1eu4Pnnn0dWVhZ8fHzcXZwbyqhRo7ifu3Xrhn79+iExMRG//PILfH193Vgy76bX69GnTx+8//77AICePXvi5MmT+OKLL5CZmenm0t04vv32W4waNQpxcXFOX/c/NiMbEREBmUxm1kOusLAQMTExbirVjYetS6rnlnv22Wfx559/YsuWLWjTpg23PCYmBg0NDaioqOC9n+pWGKVSidTUVPTu3RuzZ89G9+7dMX/+fKrXVjh06BCKiorQq1cvyOVyyOVybNu2DQsWLIBcLkd0dDTVrZOEhISgffv2OH/+PO2zrRAbG4vOnTvzlnXq1IlrtkHXsNa7dOkS/v77bzz++OPcMmfus//YQFapVKJ3797YtGkTt0yv12PTpk0YMGCAG0t2Y0lKSkJMTAyvnquqqrBv3z6qZzsYhsGzzz6L3377DZs3b0ZSUhLv9d69e0OhUPDqNjs7G5cvX6a6bQG9Xg+NRkP12grDhw/HiRMncPToUe5fnz59MHHiRO5nqlvnqKmpwYULFxAbG0v7bCukp6ebDWt47tw5JCYmAqBrmDMsXrwYUVFRuPPOO7llTt1nndwpzav89NNPjEqlYpYsWcKcPn2aeeKJJ5iQkBCmoKDA3UXzKtXV1cyRI0eYI0eOMACYjz/+mDly5Ahz6dIlhmEYZs6cOUxISAjz+++/M8ePH2fGjh3LJCUlMXV1dW4uuWd7+umnmeDgYGbr1q1Mfn4+96+2tpZ7z1NPPcW0bduW2bx5M3Pw4EFmwIABzIABA9xYau/w6quvMtu2bWPy8vKY48ePM6+++iojkUiYjRs3MgxD9epMpqMWMAzVbUu98MILzNatW5m8vDxm165dzIgRI5iIiAimqKiIYRiq15bav38/I5fLmffee4/Jyclhli5dyvj5+TE//vgj9x66hrWcTqdj2rZty7zyyitmrzlrn/1HB7IMwzCffvop07ZtW0apVDJ9+/Zl9u7d6+4ieZ0tW7YwAMz+ZWZmMgxjGL7kjTfeYKKjoxmVSsUMHz6cyc7Odm+hvYClOgXALF68mHtPXV0d88wzzzChoaGMn58fM378eCY/P999hfYSjz76KJOYmMgolUomMjKSGT58OBfEMgzVqzM1D2SpblvmgQceYGJjYxmlUsnEx8czDzzwAHP+/HnudarXlvvjjz+YLl26MCqViunYsSPz1Vdf8V6na1jLbdiwgQFgsb6ctc9KGIZhWpExJoQQQgghxC3+sW1kCSGEEEKId6NAlhBCCCGEeCUKZAkhhBBCiFeiQJYQQgghhHglCmQJIYQQQohXokCWEEIIIYR4JQpkCSGEEEKIV6JAlhBCCCGEeCUKZAkh/yiTJ0/GuHHjHPqbJUuWICQkxKnluHjxIiQSCY4ePerU9Tq7DFu3boVEIkFFRUWrP++hhx7C+++/3+r1tET//v3x66+/uuWzCSHioUCWEELcICEhAfn5+ejSpcs/ogzHjh3D2rVrMXXqVNE/y5LXX38dr776KvR6vVs+nxAiDgpkCSHEDWQyGWJiYiCXy/8RZfj0009x3333ISAgQPTPsmTUqFGorq7GunXr3PL5hBBxUCBLCHG777//HuHh4dBoNLzl48aNw0MPPWT1706cOIFbb70Vvr6+CA8PxxNPPIGamhrudZ1OhxkzZiAkJATh4eF4+eWXwTCM3fIsWbIEbdu2hZ+fH8aPH4/S0lKz9yxatAgpKSlQKpXo0KEDfvjhB97rEokE33zzDcaPHw8/Pz+kpaVhzZo13OuWHuufPHkSo0aNQkBAAKKjo/HQQw+hpKSEe726uhoTJ06Ev78/YmNj8cknn2Do0KGYNm2a1e/Srl07SCQSs3/WyrB27Vq0b98evr6+GDZsGC5evMhbX2lpKR588EHEx8fDz88PXbt2xfLly23Wp06nw8qVKzF69Gizsr377rt4+OGHERAQgMTERKxZswbFxcUYO3YsAgIC0K1bNxw8eJD7G7aZx59//okOHTrAz88P9957L2pra/Hdd9+hXbt2CA0NxdSpU6HT6bi/k8lkyMjIwE8//WSzrIQQL8MQQoib1dbWMsHBwcwvv/zCLSssLGTkcjmzefNmi39TU1PDxMbGMnfffTdz4sQJZtOmTUxSUhKTmZnJveeDDz5gQkNDmV9//ZU5ffo089hjjzGBgYHM2LFjrZZl7969jFQqZT744AMmOzubmT9/PhMSEsIEBwdz71m1ahWjUCiYhQsXMtnZ2cxHH33EyGQyXlkBMG3atGGWLVvG5OTkMFOnTmUCAgKY0tJShmEYJi8vjwHAHDlyhGEYhikvL2ciIyOZmTNnMmfOnGEOHz7M3HbbbcywYcO4dT7++ONMYmIi8/fffzMnTpxgxo8fzwQGBjLPP/+81e9TVFTE5OfnM/n5+czVq1eZ/v37M7fccovFMly+fJlRqVTMjBkzmLNnzzI//vgjEx0dzQBgysvLGYZhmKtXrzL/+9//mCNHjjAXLlxgFixYwMhkMmbfvn1Wy3D48GEGAFNQUMBbnpiYyISFhTFffPEFc+7cOebpp59mgoKCmDvuuIP55ZdfmOzsbGbcuHFMp06dGL1ezzAMwyxevJhRKBTMbbfdxhw+fJjZtm0bEx4ezowcOZK5//77mVOnTjF//PEHo1QqmZ9++on3eYsWLWISExOtlpMQ4n0okCWEeISnn36aGTVqFPf7Rx99xCQnJ3MBTHNfffUVExoaytTU1HDL/vrrL0YqlXIBU2xsLDN37lzuda1Wy7Rp08ZmIPvggw8yGRkZvGUPPPAAL5AdOHAg8+9//5v3nvvuu4/3dwCY119/nfu9pqaGAcCsW7eOYRjzIPKdd95hRo4cyVvnlStXGABMdnY2U1VVxSgUCmbFihXc6xUVFYyfn5/NQNbU1KlTmcTERKaoqMhiGWbOnMl07tyZ9zevvPIKL5C15M4772ReeOEFq6//9ttvjEwmM9uWiYmJzKRJk7jf8/PzGQDMG2+8wS3bs2cPA4DJz89nGMYQyAJgzp8/z73nySefZPz8/Jjq6mpu2e233848+eSTvM/7/fffGalUyuh0OqtlJYR4F2paQAjxCP/+97+xceNGXLt2DYDhEfLkyZO5x+DNnTlzBt27d4e/vz+3LD09HXq9HtnZ2aisrER+fj769evHvS6Xy9GnTx+b5Thz5gzvbwBgwIABZu9JT0/nLUtPT8eZM2d4y7p168b97O/vj6CgIBQVFVn83GPHjmHLli0ICAjg/nXs2BEAcOHCBeTm5kKr1aJv377c3wQHB6NDhw42vw/rq6++wrfffos1a9YgMjLS4nuEfHedTod33nkHXbt2RVhYGAICArBhwwZcvnzZ6mfX1dVBpVJZ3JamdRQdHQ0A6Nq1q9ky03rz8/NDSkoK7z3t2rXjtb+Njo42q2tfX1/o9XqzJiyEEO/lvl4GhBBiomfPnujevTu+//57jBw5EqdOncJff/3l7mK1ikKh4P0ukUis9pqvqanB6NGj8cEHH5i9Fhsbi/Pnz7e4HFu2bMFzzz2H5cuX8wLHlvjf//6H+fPnY968eejatSv8/f0xbdo0NDQ0WP2biIgI1NbWoqGhAUqlkveaaR2xga6lZab1ZqlehdR1WVkZ/P394evrK+SrEkK8AGVkCSEe4/HHH8eSJUuwePFijBgxAgkJCVbf26lTJxw7dgxqtZpbtmvXLkilUnTo0AHBwcGIjY3Fvn37uNcbGxtx6NAhm2Xo1KkT728AYO/evWbv2bVrF2/Zrl270LlzZ7vf0ZpevXrh1KlTaNeuHVJTU3n//P39kZycDIVCgQMHDnB/U1lZiXPnztlc7/nz53Hvvffitddew913323zvZ06dcL+/ft5y5p/9127dmHs2LGYNGkSunfvjuTkZLtl6NGjBwDg9OnTNt8ntpMnT6Jnz55uLQMhxLkokCWEeIx//etfuHr1Kr7++ms8+uijNt87ceJE+Pj4IDMzEydPnuSyjg899BD3OPr555/HnDlzsHr1apw9exbPPPOM3YH9p06divXr1+PDDz9ETk4OPvvsM6xfv573npdeeglLlizBokWLkJOTg48//hirVq3Ciy++2OLvPmXKFJSVleHBBx/EgQMHcOHCBWzYsAGPPPIIdDodAgMDkZmZiZdeeglbtmzBqVOn8Nhjj0EqlVptflFXV4fRo0ejZ8+eeOKJJ1BQUMD9s+Spp55CTk4OXnrpJWRnZ2PZsmVYsmQJ7z1paWnIysrC7t27cebMGTz55JMoLCy0+d0iIyPRq1cv7Ny5s0V14yw7duzAyJEj3VoGQohzUSBLCPEYwcHBuOeeexAQEGB39i0/Pz9s2LABZWVluPnmm3Hvvfdi+PDh+Oyzz7j3vPDCC3jooYeQmZmJAQMGIDAwEOPHj7e53v79++Prr7/G/Pnz0b17d2zcuBGvv/467z3jxo3D/Pnz8eGHH+Kmm27Cl19+icWLF2Po0KEt/eqIi4vDrl27oNPpMHLkSHTt2hXTpk1DSEgIpFLDqfrjjz/GgAEDcNddd2HEiBFIT09Hp06d4OPjY3GdhYWFOHv2LDZt2oS4uDjExsZy/yxp27Ytfv31V6xevRrdu3fHF198YTYT1+uvv45evXrh9ttvx9ChQxETEyNoprTHH38cS5cudaxSnOjatWvYvXs3HnnkEbeVgRDifBKGETCoIiGEuMjw4cNx0003YcGCBe4uiqiys7PRsWNH5OTkIDU1tUXrUKvViI+Px0cffYTHHnvMySV0rrq6OnTo0AE///yzWQcyV3jllVdQXl6Or776yuWfTQgRD3X2IoR4hPLycmzduhVbt27F559/7u7iiKqsrAwrV65EUFCQzXbAzR05cgRnz55F3759UVlZiVmzZgEAxo4dK1ZRncbX1xfff/89b4IHV4qKisKMGTPc8tmEEPFQIEsI8Qg9e/ZEeXk5PvjgA8FDSnmrxx57DIcOHcKiRYugUqkc+tsPP/wQ2dnZUCqV6N27N3bs2IGIiAiRSupcrWl60VovvPCC2z6bECIealpACCGEEEK8EnX2IoQQQgghXokCWUIIIYQQ4pUokCWEEEIIIV6JAllCCCGEEOKVKJAlhBBCCCFeiQJZQgghhBDilSiQJYQQQgghXokCWUIIIYQQ4pUokCWEEEIIIV7p/wFD8o5ih+7XQQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAFUCAYAAADYjN+CAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAa99JREFUeJzt3XlcVNX7B/DPDAyr7LKIAuKKuCKoIO6iprj7rSxUXNIytZSy0tRSU8tfqWmoaYpaoqaVlTsq7qiI+76huAEKCgICA3N/fyCXRkAZmXGY6+f9evGquffOvc+dM848HJ5zjkwQBAFERERERAZGru8AiIiIiIheBhNZIiIiIjJITGSJiIiIyCAxkSUiIiIig8REloiIiIgMEhNZIiIiIjJITGSJiIiIyCAxkSUiIiIig8REloiIiIgMEhNZInrt7dmzBzKZDHv27BG3DR48GNWrV9fZNdu1a4d27dqJj2/cuAGZTIYVK1bo7JpERFLDRJaIKpyePXvCwsICjx8/LvWYkJAQmJiYICUl5RVGRkREFYlMEARB30EQEf3XunXr0L9/f6xcuRKDBg0qtj8rKwtOTk7o0KED/vnnn3JfT6VSITc3FyYmJpDLC36/VyqVUKlUMDU1Lff5S5KbmwsAMDExAQAIgoCcnBwoFAoYGRnp5JpERFLDHlkiqnB69uwJKysrREZGlrj/77//RmZmJkJCQsp1nezsbKhUKsjlcpiZmYlJLAAoFAqdJbFAQQJbmMQCgEwmg5mZWYVJYrOysvQdAhHRCzGRJaIKx9zcHH379sWuXbuQnJxcbH9kZCSsrKzQs2dPpKam4tNPP0XDhg1RqVIlWFtbo2vXrjh16pTacwrrYNeuXYtJkyahatWqsLCwQHp6eplrZL///nu0bNkSDg4OMDc3h6+vLzZs2FDiPfz2229o3rw5LCwsYGdnhzZt2mDHjh3i/rLUyJ4+fRqDBw9GjRo1YGZmBhcXFwwdOrRM5RSF97Ru3TpMnDgRLi4usLS0RM+ePXHr1i21Y9u1a4cGDRogLi4Obdq0gYWFBSZOnAgAyMnJwVdffYVatWrB1NQUbm5u+Oyzz5CTk6N2DplMhtGjR2P9+vXw9vaGubk5AgICcObMGQDAzz//jFq1asHMzAzt2rXDjRs31J6/f/9+vPnmm3B3dxevM27cODx58uS59ykIAtq3bw9HR0e190pubi4aNmyImjVrIjMz84WvFxEZJmN9B0BEVJKQkBCsXLkSv//+O0aPHi1uT01Nxfbt2/HOO+/A3Nwc586dw8aNG/Hmm2/C09MTSUlJ+Pnnn9G2bVucP38erq6uauedPn06TExM8OmnnyInJ0etV/RFfvzxR/Ts2RMhISHIzc3F2rVr8eabb2LTpk0IDg4Wj5s6dSq+/vprtGzZEtOmTYOJiQmOHDmC3bt3o3PnzmW+XlRUFK5fv44hQ4bAxcUF586dw5IlS3Du3DkcPnwYMpnsheeYMWMGZDIZPv/8cyQnJ2PevHkICgrCyZMnYW5uLh6XkpKCrl27on///hgwYACcnZ2hUqnQs2dPHDhwACNGjEC9evVw5swZzJ07F5cvX8bGjRvVrrV//378888/GDVqFABg1qxZ6N69Oz777DMsXLgQH374IR4+fIjZs2dj6NCh2L17t/jc9evXIysrCyNHjoSDgwOOHj2KBQsW4Pbt21i/fn2p9yeTybB8+XI0atQIH3zwAf78808AwFdffYVz585hz549sLS0LPNrTkQGRiAiqoDy8vKEKlWqCAEBAWrbFy9eLAAQtm/fLgiCIGRnZwv5+flqx8THxwumpqbCtGnTxG3R0dECAKFGjRpCVlaW2vGF+6Kjo8VtoaGhgoeHh9pxzz4vNzdXaNCggdChQwdx25UrVwS5XC706dOnWFwqlUr8/7Zt2wpt27ZVixmAEBERUer1BEEQ1qxZIwAQ9u3bV2xfSfdUtWpVIT09Xdz++++/CwCEH3/8US0WAMLixYvVzvHrr78Kcrlc2L9/v9r2wjY4ePCguA2AYGpqKsTHx4vbfv75ZwGA4OLiohbDhAkTBABqx5Z0r7NmzRJkMplw8+bN597rf6/122+/CYcPHxaMjIyEsWPHvvB5RGTYWFpARBWSkZER+vfvj5iYGLU/Q0dGRsLZ2RkdO3YEAJiamoq1rfn5+UhJSUGlSpVQt25dHD9+vNh5Q0ND1XoiNfHf5z18+BBpaWlo3bq12nU2btwIlUqFKVOmqNXcAihTD2pp18vOzsaDBw/g7+8PACXeW0kGDRoEKysr8fH//vc/VKlSBVu2bFE7ztTUFEOGDFHbtn79etSrVw9eXl548OCB+NOhQwcAQHR0tNrxHTt2VCvHaNGiBQCgX79+ajEUbr9+/XqJ95qZmYkHDx6gZcuWEAQBJ06ceOF9jhgxAl26dMGYMWMwcOBA1KxZEzNnznzh84jIsDGRJaIKq3AwV+Ggr9u3b2P//v3o37+/OChKpVJh7ty5qF27NkxNTVG5cmU4Ojri9OnTSEtLK3ZOT0/Pl45n06ZN8Pf3h5mZGezt7eHo6IhFixapXefatWuQy+Xw9vZ+6esUSk1NxccffwxnZ2eYm5vD0dFRjL+keytJ7dq11R7LZDLUqlWrWI1q1apVi5VZXLlyBefOnYOjo6PaT506dQCgWP2yu7u72mMbGxsAgJubW4nbHz58KG5LSEjA4MGDYW9vj0qVKsHR0RFt27bV6F6XLVuGrKwsXLlyBStWrHjpX1iIyHCwRpaIKixfX194eXlhzZo1mDhxItasWQNBENRmK5g5cyYmT56MoUOHYvr06bC3t4dcLsfYsWOhUqmKnfNlk5v9+/ejZ8+eaNOmDRYuXIgqVapAoVAgIiKi1NkVyuutt97CoUOHMH78eDRp0gSVKlWCSqXCG2+8UeK9lUdJr4tKpULDhg0xZ86cEp/zbIJa2owLpW0Xns7+mJ+fj06dOiE1NRWff/45vLy8YGlpiTt37mDw4MFlvtc9e/aIg9DOnDmDgICAMj2PiAwXE1kiqtBCQkIwefJknD59GpGRkahduzaaNWsm7t+wYQPat2+PZcuWqT3v0aNHqFy5stbi+OOPP2BmZobt27erTcsVERGhdlzNmjWhUqlw/vx5NGnS5KWv9/DhQ+zatQtTp07FlClTxO1XrlzR6DzPHi8IAq5evYpGjRq98Lk1a9bEqVOn0LFjR43LIjRx5swZXL58udi8wVFRUWU+x7179zBmzBh07txZHMzXpUsXeHh46CJkIqogWFpARBVaYe/rlClTcPLkyWJzxxoZGYk9e4XWr1+PO3fuaDUOIyMjyGQy5Ofni9tu3LhRbOR+7969IZfLMW3atGI9ic/G+aLrlfScefPmaRT3qlWr1FZI27BhA+7du4euXbu+8LlvvfUW7ty5g6VLlxbb9+TJE61Na1XSvQqCgB9//LHM5xg+fDhUKhWWLVuGJUuWwNjYGMOGDdPoNSciw8MeWSKq0Dw9PdGyZUv8/fffAFAske3evTumTZuGIUOGoGXLljhz5gxWr16NGjVqaDWO4OBgzJkzB2+88QbeffddJCcnIzw8HLVq1cLp06fF42rVqoUvv/wS06dPR+vWrdG3b1+YmpoiNjYWrq6umDVrVpmuZ21tjTZt2mD27NlQKpWoWrUqduzYgfj4eI3itre3R6tWrTBkyBAkJSVh3rx5qFWrFoYPH/7C5w4cOBC///47PvjgA0RHRyMwMBD5+fm4ePEifv/9d2zfvh1+fn4axVMSLy8v1KxZE59++inu3LkDa2tr/PHHH2o1tM8TERGBzZs3Y8WKFahWrRoAYMGCBRgwYAAWLVqEDz/8sNwxElHFxESWiCq8kJAQHDp0CM2bN0etWrXU9k2cOBGZmZmIjIzEunXr0LRpU2zevBlffPGFVmPo0KEDli1bhm+//RZjx46Fp6cnvvvuO9y4cUMtkQWAadOmwdPTEwsWLMCXX34JCwsLNGrUCAMHDtTompGRkRgzZgzCw8MhCAI6d+6MrVu3Fpsb93kmTpyI06dPY9asWXj8+DE6duyIhQsXwsLC4oXPlcvl2LhxI+bOnYtVq1bhr7/+goWFBWrUqIGPP/5YHPRVXgqFAv/++y8++ugjzJo1C2ZmZujTpw9Gjx6Nxo0bP/e5t2/fxrhx49CjRw+EhoaK20NCQvDHH3/gs88+Q9euXcs1yI+IKi6ZwL+7EBEVM3DgQMTExODq1auv5HrXrl1DrVq18Ouvv2LAgAHlPt+ePXvQvn17rF+/Hv/73/+0ECERUcXDGlkiohLcu3dPq4PFynI9AK/0mkREho6lBURE/3H69Gls3LgR+/btw/jx41/JNZcvX47ly5fDwsJCXPCAiIhejD2yRET/8eeff+LHH39E//79MWHChFdyzREjRiA1NRXr16+Hra3tK7kmEZEUsEaWiIiIiAwSe2SJiIiIyCAxkSUiIiIig8TBXihYT/zu3buwsrLS6TKMRERERK8zQRDw+PFjuLq6Qi4vf38qE1kAd+/ehZubm77DICIiInot3Lp1S1yJrzyYyAKwsrICAMTHx8Pe3l7P0ZAuKJVK7NixA507d4ZCodB3OKQDbGPpYxtLH9tY+lJTU+Hp6SnmXuXFRBYQywmsrKxgbW2t52hIF5RKJSwsLGBtbc0PR4liG0sf21j62MbSp1QqAUBrpZwc7EVEREREBomJLBEREREZJCayRERERGSQmMgSERERkUFiIktEREREBkmviWz16tUhk8mK/YwaNQoAkJ2djVGjRsHBwQGVKlVCv379kJSUpHaOhIQEBAcHw8LCAk5OThg/fjzy8vL0cTtERERE9ArpNZGNjY3FvXv3xJ+oqCgAwJtvvgkAGDduHP7991+sX78ee/fuxd27d9G3b1/x+fn5+QgODkZubi4OHTqElStXYsWKFZgyZYpe7oeIiIiIXh29ziPr6Oio9vjbb79FzZo10bZtW6SlpWHZsmWIjIxEhw4dAAARERGoV68eDh8+DH9/f+zYsQPnz5/Hzp074ezsjCZNmmD69On4/PPP8fXXX8PExESjeBJSM5EumGnt/vShkqkxHK1M9R0GERERadHdR0+Qk6fSdxjl9uhhplbPV2EWRMjNzcVvv/2GsLAwyGQyxMXFQalUIigoSDzGy8sL7u7uiImJgb+/P2JiYtCwYUM4OzuLx3Tp0gUjR47EuXPn4OPjU+K1cnJykJOTIz5OT08HAPRaeARyUwsd3eGrIZMBP4f4oH1dxxcf/BopnIC58L8kPWxj6WMbSx/buGQRh25i5tZL+g5DK1Q5WVo9X4VJZDdu3IhHjx5h8ODBAIDExESYmJjA1tZW7ThnZ2ckJiaKx/w3iS3cX7ivNLNmzcLUqVOLbTczEmBkJJTjLvQrVwXkCzL8vfcYnlwz3PvQpcLyFZIutrH0sY2lj22sbvsVOQA5jGUCFAY+TD9fy3lWhUlkly1bhq5du8LV1VXn15owYQLCwsLEx+np6XBzc8O+T9vAwcFB59fXlYkbz2F93B3UrVsX3drW0Hc4FYpSqURUVBQ6derEZQ8lim0sfWxj6WMbl2zX+jOIe3AP47vUxdDA6voOp1xSUlJQ5Qftna9CJLI3b97Ezp078eeff4rbXFxckJubi0ePHqn1yiYlJcHFxUU85ujRo2rnKpzVoPCYkpiamsLUtHgdqUKhMOh/OEbygl/T5HK5Qd+HLhl6G9OLsY2lj20sfWxjdTK5DABgZGRk8K+LtuOvEB3UERERcHJyQnBwsLjN19cXCoUCu3btErddunQJCQkJCAgIAAAEBATgzJkzSE5OFo+JioqCtbU1vL29X90NVDACqwqIiIgkg9/rpdN7j6xKpUJERARCQ0NhbFwUjo2NDYYNG4awsDDY29vD2toaY8aMQUBAAPz9/QEAnTt3hre3NwYOHIjZs2cjMTERkyZNwqhRo0rscZU6WcEvbOD7nYiISDoKv9dlhV/0JNJ7Irtz504kJCRg6NChxfbNnTsXcrkc/fr1Q05ODrp06YKFCxeK+42MjLBp0yaMHDkSAQEBsLS0RGhoKKZNm/Yqb6ECKXiD8zc3IiIi6RCefrEzjS1O74ls586dxQZ6lpmZGcLDwxEeHl7q8z08PLBlyxZdhWdQinpkmckSERFJRVGPrF7DqJAqRI0saUfh+5s9skRERBLy9HudeWxxTGQlhDWyRERE0lP4l1bWyBbHRFZCZIW/q7FLloiISDIKv9aZxxbHRFZC2CNLREQkPQJLC0rFRFZCWCNLREQkPeIgbnbJFsNEVkIKa2c4awEREZF0sEe2dExkJYg9skRERNLB6bdKx0RWQlgjS0REJD1FPbLMZJ/FRFZCZFzZi4iISIIKp9/ScxgVEBNZCeHKXkRERNLDGtnSMZGVEPENzjyWiIhIMlgjWzomshLCGlkiIiLpEZ52ybJGtjgmshIiTr/FIlkiIiLJEL/VmccWw0RWQvj+JiIiki5+zxfHRFaC2CFLREQkHfxeL52xJgdfuHABa9euxf79+3Hz5k1kZWXB0dERPj4+6NKlC/r16wdTU1NdxUovwhpZIiIiySka7MU+2WeVqUf2+PHjCAoKgo+PDw4cOIAWLVpg7NixmD59OgYMGABBEPDll1/C1dUV3333HXJycnQdN5WA88gSERFJT9FgL3pWmXpk+/Xrh/Hjx2PDhg2wtbUt9biYmBj8+OOP+OGHHzBx4kRtxUhlxHlkiYiIpIsdssWVKZG9fPkyFArFC48LCAhAQEAAlEpluQMjzRW+v9kjS0REJB3igghMZIspU2lBWZLY8hxP2sE3OBERkfQU/qWV88gWV+ZZC1auXImAgADExsYCALp166azoOjlFNXIskuWiIhIKtgjW7oyJ7KzZ8/G999/jwkTJuD8+fN4+PChLuOil8CVvYiIiKSH/VOlK/P0W87OzggMDERkZCTeffddZGZm6jIuegmskSUiIpIesbSAXbLFlLlH1tTUFCqVCk5OTvjmm29w8eJFXcZFL6NwiVr2yRIREUmGWFqg3zAqpDInshs2bIBcXnC4v78/7ty5o7Og6OWwR5aIiEh6ihZE0GsYFVKZSwssLS3VHjs6OiIjIwMqlUptu7W1tXYiI42xRpaIiEiCxB5ZZrLPKnOPbKH4+HgEBwfD0tISNjY2sLOzg52dHWxtbWFnZ6dxAHfu3MGAAQPg4OAAc3NzNGzYEMeOHRP3C4KAKVOmoEqVKjA3N0dQUBCuXLmido7U1FSEhITA2toatra2GDZsGDIyMjSOxdBxZS8iIiLpKaqR1XMgFVCZe2QLFS5Ju3z5cjg7O5er8Pjhw4cIDAxE+/btsXXrVjg6OuLKlStqCfHs2bMxf/58rFy5Ep6enpg8eTK6dOmC8+fPw8zMDAAQEhKCe/fuISoqCkqlEkOGDMGIESMQGRn50rEZoqKmYCZLREQkFayRLZ3GieypU6cQFxeHunXrlvvi3333Hdzc3BARESFu8/T0FP9fEATMmzcPkyZNQq9evQAAq1atgrOzMzZu3Ij+/fvjwoUL2LZtG2JjY+Hn5wcAWLBgAbp164bvv/8erq6u5Y7TULBGloiISHpYI1s6jUsLmjVrhlu3bmnl4v/88w/8/Pzw5ptvwsnJCT4+Pli6dKm4Pz4+HomJiQgKChK32djYoEWLFoiJiQEAxMTEwNbWVkxiASAoKAhyuRxHjhzRSpyGQqyRZSJLREQkGUULHTGTfZbGPbK//PILPvjgA9y5cwcNGjQothxto0aNynyu69evY9GiRQgLC8PEiRMRGxuLjz76CCYmJggNDUViYiKAgjls/8vZ2Vncl5iYCCcnJ/WbMjaGvb29eMyzcnJykJOTIz5OT08HACiVSiiVyjLHX9EUDrzLV6kM+j50ofD14OsiXWxj6WMbSx/buGSqp4msKj/f4F8bbcevcSJ7//59XLt2DUOGDBG3yWQyCIIAmUyG/Pz8Mp9LpVLBz88PM2fOBAD4+Pjg7NmzWLx4MUJDQzUNrcxmzZqFqVOnFtseHR0NCwsLnV1X1y7fkQEwwq1bt7Bly019h1MhRUVF6TsE0jG2sfSxjaWPbazu4UMjADIcPx4H5Q3D/rNrVlaWVs+ncSI7dOhQ+Pj4YM2aNeUe7FWlShV4e3urbatXrx7++OMPAICLiwsAICkpCVWqVBGPSUpKQpMmTcRjkpOT1c6Rl5eH1NRU8fnPmjBhAsLCwsTH6enpcHNzQ/v27eHg4PDS96Nvt/bFY1PCFVRzq4Zu3RroO5wKRalUIioqCp06dSr2VwSSBrax9LGNpY9tXLLlt47gZkYa/Hx90bGe04ufUIGlpKRo9XwaJ7I3b97EP//8g1q1apX74oGBgbh06ZLatsuXL8PDwwNAwcAvFxcX7Nq1S0xc09PTceTIEYwcORIAEBAQgEePHiEuLg6+vr4AgN27d0OlUqFFixYlXtfU1BSmpqbFtisUCoP+hyM3Kih5lsnkBn0fumTobUwvxjaWPrax9LGNn/G009DI2NjgXxdtx6/xYK8OHTrg1KlTWrn4uHHjcPjwYcycORNXr15FZGQklixZglGjRgEoKFkYO3YsvvnmG/zzzz84c+YMBg0aBFdXV/Tu3RtAQQ/uG2+8geHDh+Po0aM4ePAgRo8ejf79+79WMxYAnEeWiIhIkp5+sXOoV3Ea98j26NED48aNw5kzZ9CwYcNimXXPnj3LfK5mzZrhr7/+woQJEzBt2jR4enpi3rx5CAkJEY/57LPPkJmZiREjRuDRo0do1aoVtm3bJs4hCwCrV6/G6NGj0bFjR8jlcvTr1w/z58/X9NYMXtHKXsxkiYiIpILTb5VO40T2gw8+AABMmzat2D5NB3sBQPfu3dG9e/dS98tkMkybNq3E6xWyt7d/7RY/KAnXQyAiIpIecUEEJrLFaJzIFk7xRBVPUY8sERERSYW4RC2LC4rRuEaWKq6iGlmmskRERFLB9RBKp3GPLADExsYiOjoaycnJxXpo58yZo5XASHPskSUiIpIesbRAv2FUSBonsjNnzsSkSZNQt27dYvPIlmdOWdIedsgSERFJR9FgL+ZZz9I4kf3xxx+xfPlyDB48WAfhUHkUvsGZxxIREUmHwOm3SqVxjaxcLkdgYKAuYqFyKnyDs0aWiIhIetghW5zGiey4ceMQHh6ui1ionFgjS0REJD1FNbLMZJ+lcWnBp59+iuDgYNSsWRPe3t7FFkT4888/tRYcaYbzyBIREUmPOP0W89hiNE5kP/roI0RHR6N9+/ZwcHBg4XEFUlQjy0yWiIhIKjhrQek0TmRXrlyJP/74A8HBwbqIh8pBLC1gHktERCQZ4tc6M9liNK6Rtbe3R82aNXURC5VT0WAvvYZBREREWlQ0awEz2WdpnMh+/fXX+Oqrr5CVlaWLeKg8WFpAREQkOUXzyOo1jApJ49KC+fPn49q1a3B2dkb16tWLDfY6fvy41oIjzbBHloiISIJYI1sqjRPZ3r176yAM0gZOv0VERCQ9XNmrdBonsl999ZUu4iAtYO0MERGRdDGPLa5MNbJcKcqwsLmIiIikg3lY6cqUyNavXx9r165Fbm7uc4+7cuUKRo4ciW+//VYrwZFmZFwRgYiISHLE0gK9RlExlam0YMGCBfj888/x4YcfolOnTvDz84OrqyvMzMzw8OFDnD9/HgcOHMC5c+cwevRojBw5UtdxUwk42IuIiEh6xAURmMkWU6ZEtmPHjjh27BgOHDiAdevWYfXq1bh58yaePHmCypUrw8fHB4MGDUJISAjs7Ox0HTOVgoO9iIiIpEdgn2ypNBrs1apVK7Rq1UpXsVA5FQ72Yi0NERGRdLBHtnQaL4hAFRh7ZImIiCRH4DyypWIiKyGskSUiIpIuziNbHBNZCZGJS9QSERGRVBSWDDKNLY6JrIQU9cgylSUiIpKKopW99BpGhcREVkL4BiciIpKeohpZftE/S+Mlav8rOzu72CIJ1tbW5QqIXp44/RY7ZImIiCSjcPotdlgVp3GPbFZWFkaPHg0nJydYWlrCzs5O7Yf0R5x+i1WyREREksEOqtJpnMiOHz8eu3fvxqJFi2BqaopffvkFU6dOhaurK1atWqXRub7++mvIZDK1Hy8vL3F/dnY2Ro0aBQcHB1SqVAn9+vVDUlKS2jkSEhIQHBwMCwsLODk5Yfz48cjLy9P0tiSBPbJERETSwxrZ0mlcWvDvv/9i1apVaNeuHYYMGYLWrVujVq1a8PDwwOrVqxESEqLR+erXr4+dO3cWBWRcFNK4ceOwefNmrF+/HjY2Nhg9ejT69u2LgwcPAgDy8/MRHBwMFxcXHDp0CPfu3cOgQYOgUCgwc+ZMTW9NMpjIEhERSQdrZEuncY9samoqatSoAaCgHjY1NRVAwapf+/bt0zgAY2NjuLi4iD+VK1cGAKSlpWHZsmWYM2cOOnToAF9fX0RERODQoUM4fPgwAGDHjh04f/48fvvtNzRp0gRdu3bF9OnTER4eXqx293VQNP0WM1kiIiLpYI1saTROZGvUqIH4+HgAgJeXF37//XcABT21tra2Ggdw5coVuLq6okaNGggJCUFCQgIAIC4uDkqlEkFBQeKxXl5ecHd3R0xMDAAgJiYGDRs2hLOzs3hMly5dkJ6ejnPnzmkci6HjgghERETSwyVqS6dxacGQIUNw6tQptG3bFl988QV69OiBn376CUqlEnPmzNHoXC1atMCKFStQt25d3Lt3D1OnTkXr1q1x9uxZJCYmwsTEpFhy7OzsjMTERABAYmKiWhJbuL9wX2lycnKQk5MjPk5PTwcAKJVKKJVKje6hIlHl5xf8VxAM+j50ofD14OsiXWxj6WMbSx/buGSqp5lsfl6ewb822o5f40R23Lhx4v8HBQXh4sWLiIuLQ61atdCoUSONztW1a1fx/xs1aoQWLVrAw8MDv//+O8zNzTUNrcxmzZqFqVOnFtseHR0NCwsLnV1X106kyAAYITUlFVu2bNF3OBVSVFSUvkMgHWMbSx/bWPrYxupyc40AyLB//35cNdw0BUDB7FfapHEiGx0djfbt24uPPTw84OHhAQAIDw/HqFGjXjoYW1tb1KlTB1evXkWnTp2Qm5uLR48eqfXKJiUlwcXFBQDg4uKCo0ePqp2jcFaDwmNKMmHCBISFhYmP09PT4ebmhvbt28PBweGl49c32dlErLh8Gnb2dujWrbm+w6lQlEoloqKi0KlTJygUCn2HQzrANpY+trH0sY1L9vWpaGTmKdGmTRvUdqqk73DKJSUlRavn0ziR7du3L3bu3AlfX1+17T/++CMmT55crkQ2IyMD165dw8CBA+Hr6wuFQoFdu3ahX79+AIBLly4hISEBAQEBAICAgADMmDEDycnJcHJyAlDwW5y1tTW8vb1LvY6pqSlMTU2LbVcoFAb9D6dwxgeZTGbQ96FLht7G9GJsY+ljG0sf21hd4dAXhbGxwb8u2o5f48Fe//d//4euXbvi4sWL4rYffvgBU6ZMwebNmzU616effoq9e/fixo0bOHToEPr06QMjIyO88847sLGxwbBhwxAWFobo6GjExcVhyJAhCAgIgL+/PwCgc+fO8Pb2xsCBA3Hq1Cls374dkyZNwqhRo0pMVKWOg72IiIikh4O9Sqdxj+x7772H1NRUBAUF4cCBA1i3bh1mzpyJLVu2IDAwUKNz3b59G++88w5SUlLg6OiIVq1a4fDhw3B0dAQAzJ07F3K5HP369UNOTg66dOmChQsXis83MjLCpk2bMHLkSAQEBMDS0hKhoaGYNm2aprclCeKCCPoNg4iIiLRIEHuomMk+S+NEFgA+++wzpKSkwM/PD/n5+di+fbvYS6qJtWvXPne/mZkZwsPDER4eXuoxHh4eHNgkejqPLLtkiYiIJIMre5WuTIns/Pnzi22rWrUqLCws0KZNGxw9elQcdPXRRx9pN0IqM/bIEhERSZC4shc9q0yJ7Ny5c0vcbmRkhIMHD4pLxspkMiayesQaWSIiIukp6pFlKvusMiWyhSt5UcVWtEQtERERSUVhySDT2OI0nrWgUG5uLi5duoS8vDxtxkPlIL7B2SVLREQkGayRLZ3GiWxWVhaGDRsGCwsL1K9fHwkJCQCAMWPG4Ntvv9V6gFR2rJElIiKSHnH6LfbJFqNxIjthwgScOnUKe/bsgZmZmbg9KCgI69at02pwpBkxkWUmS0REJBnC0y4q9sgWp/H0Wxs3bsS6devg7++vVnRcv359XLt2TavBkWYKf1MT2CdLREQkGeygKp3GPbL3798Xl4P9r8zMTI6m0zf2yBIREUkOa2RLp3Ei6+fnp7YUbWHy+ssvvyAgIEB7kZHGOP0WERGRBIlL1DKTfZbGpQUzZ85E165dcf78eeTl5eHHH3/E+fPncejQIezdu1cXMVIZcfotIiIi6RFrZPUcR0WkcY9sq1atcPLkSeTl5aFhw4bYsWMHnJycEBMTA19fX13ESGVU1CPLVJaIiEgqxFkLmMkWo3GPLADUrFkTS5cu1XYsVE58gxMREUmPWCPLPtliypTIpqenw9raWvz/57GwsICx8Uvlx1RO4qwF7JAlIiKSDHFlL+axxZSptMDOzg7JyckAAFtbW9jZ2ZX6Y2Zmhnr16iE6OlqngVNxRQsiMJMlIiKSiqIeWXpWmbpOd+/eDXt7ewB4YYKak5ODjRs3YuTIkbh48WL5I6Qy4xuciIhIwvhFX0yZEtm2bduW+P+ladKkCY4ePfryUVG5sLSAiIhIOvi9XjqNZy04fvw4zpw5Iz7++++/0bt3b0ycOBG5ubkAACcnJxw7dkx7UVLZiKUFREREJDUc7FWcxons+++/j8uXLwMArl+/jv79+8PCwgLr16/HZ599pvUAqeyKBnsxlSUiIpKC/36nc7BXcRonspcvX0aTJk0AAOvXr0ebNm0QGRmJFStW4I8//tB2fKQBGXtkiYiIJOW/fVPMY4vTOJEVBAEqlQoAsHPnTnTr1g0A4ObmhgcPHmg3OtKI+AZnJktERCQJ//1K5xK1xWmcyPr5+eGbb77Br7/+ir179yI4OBgAEB8fD2dnZ60HSGXHJWqJiIikRa20QI9xVFQaJ7Lz5s3D8ePHMXr0aHz55ZeoVasWAGDDhg1o2bKl1gOkshNLC1gjS0REJAnqPbJ6C6PC0ngJrkaNGqnNWlDo//7v/2BkZKSVoOjlFL6/mcYSERFJg3qNLDPZZ2ncIwsAjx49wi+//IIJEyYgNTUVAHD+/Hlx9S/Sj6IeWf3GQURERNqhtlon89hiNO6RPX36NDp27AhbW1vcuHEDw4cPh729Pf78808kJCRg1apVuoiTyqSwRpaZLBERkRSo9cgykS1G4x7ZsLAwDBkyBFeuXIGZmZm4vVu3bti3b59WgyPNsEeWiIhIupjHFqdxIhsbG4v333+/2PaqVasiMTFRK0HRyxFrZJnIEhERSYJ6jyxT2WdpnMiampoiPT292PbLly/D0dHxpQP59ttvIZPJMHbsWHFbdnY2Ro0aBQcHB1SqVAn9+vVDUlKS2vMSEhIQHBwMCwsLODk5Yfz48cjLy3vpOAwZ3+BERETS8t9yQX7LF6dxItuzZ09MmzYNSqUSQEHylJCQgM8//xz9+vV7qSBiY2Px888/o1GjRmrbx40bh3///Rfr16/H3r17cffuXfTt21fcn5+fj+DgYOTm5uLQoUNYuXIlVqxYgSlTprxUHIauqEeWXbJERERSwBrZ59M4kf3hhx+QkZEBJycnPHnyBG3btkWtWrVgZWWFGTNmaBxARkYGQkJCsHTpUtjZ2Ynb09LSsGzZMsyZMwcdOnSAr68vIiIicOjQIRw+fBgAsGPHDpw/fx6//fYbmjRpgq5du2L69OkIDw9Hbm6uxrEYOi5RS0REJC1q88iyT7YYjWctsLGxQVRUFA4ePIhTp04hIyMDTZs2RVBQ0EsFMGrUKAQHByMoKAjffPONuD0uLg5KpVLtvF5eXnB3d0dMTAz8/f0RExODhg0bqq0o1qVLF4wcORLnzp2Dj49PidfMyclBTk6O+LiwVEKpVIo9zYYoPy8fAKASBIO+D10ofD34ukgX21j62MbSxzYuLje3qFwyL08JpUylx2jKT9ttq1Eiq1QqYW5ujpMnTyIwMBCBgYHluvjatWtx/PhxxMbGFtuXmJgIExMT2Nraqm13dnYWB5UlJiYWWxa38PHzBp7NmjULU6dOLbY9OjoaFhYWmt5GhXErAwCMkf0kG1u2bNF3OBVSVFSUvkMgHWMbSx/bWPrYxkWe5AGF6dr27duheKkVACqOrKwsrZ5Po0RWoVDA3d0d+fn55b7wrVu38PHHHyMqKkptGq9XYcKECQgLCxMfp6enw83NDe3bt4eDg8MrjUWbzt1Nx/dnDsPUzAzdurXVdzgVilKpRFRUFDp16gSFQqHvcEgH2MbSxzaWPrZxcelPlPgiNhoA8MYbb8DU2LAz2ZSUFK2eT+PSgi+//BITJ07Er7/+Cnt7+5e+cFxcHJKTk9G0aVNxW35+Pvbt24effvoJ27dvR25uLh49eqTWK5uUlAQXFxcAgIuLC44ePap23sJZDQqPKYmpqSlMTU2LbVcoFAb9D0ehMP7P/xvufeiSobcxvRjbWPrYxtLHNi5i/J+JmEwUCigMPJHVdrtqnMj+9NNPuHr1KlxdXeHh4QFLS0u1/cePHy/TeTp27IgzZ86obRsyZAi8vLzw+eefw83NDQqFArt27RJnQ7h06RISEhIQEBAAAAgICMCMGTOQnJwMJycnAAV/jrC2toa3t7emtyYZHOxFREQkEfxSfy6NE9nevXtr5cJWVlZo0KCB2jZLS0s4ODiI24cNG4awsDDY29vD2toaY8aMQUBAAPz9/QEAnTt3hre3NwYOHIjZs2cjMTERkyZNwqhRo0rscZW6wtGMnH2LiIhIGtTmkeWkBcVonMh+9dVXuoijRHPnzoVcLke/fv2Qk5ODLl26YOHCheJ+IyMjbNq0CSNHjkRAQAAsLS0RGhqKadOmvbIYK5KiNzgzWSIiIilQm0dWf2FUWBonsoWOHTuGCxcuAAC8vb3h6+tb7mD27Nmj9tjMzAzh4eEIDw8v9TkeHh4cof+UOI8s81giIiJJUJtHll2yxWicyN6+fRvvvPMODh48KA7CevToEVq2bIm1a9eiWrVq2o6RykgsLdBzHERERKQd/12tk2lscRoPfXvvvfegVCpx4cIFpKamIjU1FRcuXIBKpcJ7772nixipjIp6ZJnKEhERSYF6j6zewqiwNO6R3bt3Lw4dOoS6deuK2+rWrYsFCxagdevWWg2ONFP4/mYaS0REJA1qNbLMZIvRuEfWzc2txOXF8vPz4erqqpWg6OWwRpaIiEhaBHZPPZfGiez//d//YcyYMTh27Ji47dixY/j444/x/fffazU40lTh9Ft80xMREUnC0690dsaWTOPSgsGDByMrKwstWrSAsXHB0/Py8mBsbIyhQ4di6NCh4rGpqanai5ReSOyR1W8YREREpCWF3+nMY0umcSI7b948HYRB2sBpZImIiKRFEHtkmcqWRONENjQ0VBdxkBYUvsmZxxIREUlDYY0s09iSaVwjSxWXOGsBa2SJiIgkQWCN7HMxkZUQ1sgSERFJS1GNLDPZkjCRlRBxZS9mskRERJIg/pWVeWyJmMhKSFGPLDNZIiIiKWAe+3xlTmT379+P3NzcUvdnZ2dj1apVWgmKyoc9skRERNLCGtmSlTmRbdu2Ldq0aYN79+6VuD8tLQ1DhgzRWmCkOdbIEhERSUtRjywz2ZJoVFqQlZUFPz8/HDlyRFfxUDlwjjkiIiJp4ld8ycqcyMpkMmzevBndunVDu3btEBERocu4qDzYJUtERCQJHPfyfGVeEEEQBJiammLp0qXw8fHBBx98gJMnT2Lu3LmQyzlmrCIQ55Hlm56IiEgSONjr+V4qA/3www8RFRWFtWvXonPnznj48KG246KXINbIMo8lIiKSBHEeWdYWlOilu1LbtGmD2NhYPHz4EM2aNcPp06e1GRe9BHEeWT3HQURERNpROI8s09iSlasmwN3dHQcPHkSLFi3QvXt3bcVEL6moR5apLBERkRSI3+jMZEtU5hrZtm3bwsTEpNh2MzMzrF69Gk2aNMGiRYu0GhxppqhGloiIiKSANbLPV+Ye2blz58LW1rbU/ePHj8f169e1ERO9LNbIEhERSczT0gLWyJaozIlsixYtMHPmTKhUKl3GQ+XAyZKJiIikReyR5Vd8icqcyP71119YuHAhWrZsiStXrugyJnpJ/32Ts06WiIjI8ImzFug1ioqrzIlst27dcO7cOXh5ecHHxwcLFizQZVz0Ev77JmceS0REZPiKemSZypZEo1kLbGxssGLFCqxYsQLjxo2DjY0N7O3t1X5If/77JmceS0REZPgKFzliGluyMs9aUCg2NhaTJ09G7dq18emnn8LYWONTkI6o98gK4NueiIjIsLFG9vnK3CObl5eHL7/8Eq1atULXrl1x4sQJDBs2DKGhoWo/mli0aBEaNWoEa2trWFtbIyAgAFu3bhX3Z2dnY9SoUXBwcEClSpXQr18/JCUlqZ0jISEBwcHBsLCwgJOTE8aPH4+8vDyN4pAKtRpZ/YVBREREWiJwItnnKnN3atOmTZGRkYHt27ejXbt2Wrl4tWrV8O2336J27doQBAErV65Er169cOLECdSvXx/jxo3D5s2bsX79etjY2GD06NHo27cvDh48CADIz89HcHAwXFxccOjQIdy7dw+DBg2CQqHAzJkztRKjIfnvrAWskSUiIjJ8YmkB89gSlblHtnnz5jh16pTWklgA6NGjB7p164batWujTp06mDFjBipVqoTDhw8jLS0Ny5Ytw5w5c9ChQwf4+voiIiIChw4dwuHDhwEAO3bswPnz5/Hbb7+hSZMm6Nq1K6ZPn47w8HDk5uZqLU6DodYjy0yWiIjI0HFBhOcrc4/sL7/8oss4kJ+fj/Xr1yMzMxMBAQGIi4uDUqlEUFCQeIyXlxfc3d0RExMDf39/xMTEoGHDhnB2dhaP6dKlC0aOHIlz587Bx8enxGvl5OQgJydHfJyeng4AUCqVUCqVOrpD3cvPK4pdmauEXOCcv4UK29WQ25eej20sfWxj6WMbF1dYLimDNF4Xbd+D3kdqnTlzBgEBAcjOzkalSpXw119/wdvbGydPnoSJiUmx1cScnZ2RmJgIAEhMTFRLYgv3F+4rzaxZszB16tRi26Ojo2FhYVHOO9Kf7DygsEm3btsOEyO9hlMhRUVF6TsE0jG2sfSxjaWPbVzkVgYAGCM7JxtbtmzRdzjllpWVpdXz6T2RrVu3Lk6ePIm0tDRs2LABoaGh2Lt3r06vOWHCBISFhYmP09PT4ebmhvbt28PBwUGn19aljJw8fB67GwDwxhtdYKZgJltIqVQiKioKnTp1gkKh0Hc4pANsY+ljG0sf27i4s3fS8f2ZwzA3M0O3bm31HU65paSkaPV8ek9kTUxMUKtWLQCAr68vYmNj8eOPP+Ltt99Gbm4uHj16pNYrm5SUBBcXFwCAi4sLjh49qna+wlkNCo8piampKUxNTYttVygUBv0Px0RVVEFjbKyAgolsMYbexvRibGPpYxtLH9u4iJFxwXe5XCaTxGui7XvQaEGEV0GlUiEnJwe+vr5QKBTYtWuXuO/SpUtISEhAQEAAACAgIABnzpxBcnKyeExUVBSsra3h7e39ymOvSDjYi4iIyPBxFqLne6ke2czMTOzduxcJCQnFZgf46KOPynyeCRMmoGvXrnB3d8fjx48RGRmJPXv2YPv27bCxscGwYcMQFhYGe3t7WFtbY8yYMQgICIC/vz8AoHPnzvD29sbAgQMxe/ZsJCYmYtKkSRg1alSJPa5SpzaPLN/4REREBq/w65xL1JZM40T2xIkT6NatG7KyspCZmQl7e3s8ePBAXJBAk0Q2OTkZgwYNwr1792BjY4NGjRph+/bt6NSpEwBg7ty5kMvl6NevH3JyctClSxcsXLhQfL6RkRE2bdqEkSNHIiAgAJaWlggNDcW0adM0vS1JUJtHVo9xEBERkXYI7Jl6Lo0T2XHjxqFHjx5YvHgxbGxscPjwYSgUCgwYMAAff/yxRudatmzZc/ebmZkhPDwc4eHhpR7j4eEhiVF82qDeI8s3PhERkaEr6pHVaxgVlsY1sidPnsQnn3wCuVwOIyMj5OTkwM3NDbNnz8bEiRN1ESO9BKaxREREhk9cEIGJbIk0TmQVCgXk8oKnOTk5ISEhAQBgY2ODW7duaTc60ghrZImIiKTm6RK1XNurRBqXFvj4+CA2Nha1a9dG27ZtMWXKFDx48AC//vorGjRooIsYqYxk6mvUEhERkYFjj+zzadwjO3PmTFSpUgUAMGPGDNjZ2WHkyJG4f/8+lixZovUAqezUemSZyRIRERk8sUZWr1FUXBr3yPr5+Yn/7+TkhG3btmk1IHp5/32Ts7SAiIjI8BX1yDKVLUmFWxCBXt5/3+TMY4mIiAxf4SxETGNLpnEim5SUhIEDB8LV1RXGxsYwMjJS+yH9Ue+RZSpLRERk6MRvc2ayJdK4tGDw4MFISEjA5MmTUaVKFXZ1VyAyjvUiIiKSFLG0QL9hVFgaJ7IHDhzA/v370aRJEx2EQ+WhVlrATJaIiMjgFQ7eZsdhyTQuLXBzc+OfrQ0AZy0gIiKSAPbIPpfGiey8efPwxRdf4MaNGzoIh8pL/IWNeSwREZHB4xK1z6dxacHbb7+NrKws1KxZExYWFlAoFGr7U1NTtRYcaU6Ggjc981giIiLDV1Qjy0y2JBonsvPmzdNBGKQtMpkMEATWyBIREUlAUY2sngOpoDROZENDQ3URB2kJ3+dERET0uihTIpueng5ra2vx/5+n8DjSLw72IiIiMnz8C+vzlSmRtbOzw7179+Dk5ARbW9sSp4AQBAEymQz5+flaD5LKrrBp+MYnIiIyfEWDvfg315KUKZHdvXs37O3tAQDR0dE6DYjKR/Z0uBfzWCIiIsPHJWqfr0yJbNu2bUv8f6qAxB5ZprJERESGjtNvPZ/G88hu27YNBw4cEB+Hh4ejSZMmePfdd/Hw4UOtBkeaE6eRZR5LRERk+Aqn32IiWyKNE9nx48eLA77OnDmDsLAwdOvWDfHx8QgLC9N6gKQZvtGJiIikQ5x+i8UFJdJ4+q34+Hh4e3sDAP744w/06NEDM2fOxPHjx9GtWzetB0iaKXyjs0eWiIjI8AnskX0ujXtkTUxMkJWVBQDYuXMnOnfuDACwt7d/4dRcpHvirAUc7kVERGTwilb2opJo3CMbGBiIsLAwBAYG4ujRo1i3bh0A4PLly6hWrZrWAyTNsEaWiIhIOsSvc3bJlkjjHtnw8HAoFAps2LABixYtQtWqVQEAW7duxRtvvKH1AEkzhfPMMY8lIiIyfJx+6/k06pHNy8vDnj17sHTpUri4uKjtmzt3rlYDo5dT1CPLVJaIiMjQcfqt59OoR9bY2BgffPABcnJydBUPlZdYI0tERESGjjWyz6dxaUHz5s1x4sQJrVx81qxZaNasGaysrODk5ITevXvj0qVLasdkZ2dj1KhRcHBwQKVKldCvXz8kJSWpHZOQkIDg4GBYWFjAyckJ48ePR15enlZiNDSskSUiIpKSp6UF7JItkcaDvT788EN88sknuH37Nnx9fWFpaam2v1GjRmU+1969ezFq1Cg0a9YMeXl5mDhxIjp37ozz58+L5x03bhw2b96M9evXw8bGBqNHj0bfvn1x8OBBAEB+fj6Cg4Ph4uKCQ4cO4d69exg0aBAUCgVmzpyp6e0ZvKI3OjNZIiIiQ8ce2efTOJHt378/AOCjjz4St8lkMgiCAJlMhvz8/DKfa9u2bWqPV6xYAScnJ8TFxaFNmzZIS0vDsmXLEBkZiQ4dOgAAIiIiUK9ePRw+fBj+/v7YsWMHzp8/j507d8LZ2RlNmjTB9OnT8fnnn+Prr7+GiYmJprdo0MTpt5jHEhERGTzWyD7fSy2IoCtpaWkACuakBYC4uDgolUoEBQWJx3h5ecHd3R0xMTHw9/dHTEwMGjZsCGdnZ/GYLl26YOTIkTh37hx8fHx0Fm9FxP5YIiIi6SjqkWUmWxKNE1lnZ2eYmZlpPRCVSoWxY8ciMDAQDRo0AAAkJibCxMQEtra2xWJITEwUj/lvElu4v3BfSXJyctQGrBUu5KBUKqFUKrVyP/ompXvRhsLXgq+JdLGNpY9tLH1s4+IKx/wIECTxumj7HjROZJ2cnNCnTx8MGDAAHTt2hFyu8XixEo0aNQpnz57FgQMHtHK+55k1axamTp1abHt0dDQsLCx0fn1dUuYaAZBh3779uGr5wsNfO1FRUfoOgXSMbSx9bGPpYxsXOf5ABsAID1NTsWXLFn2HU26Fq8Nqi8aJ7MqVKxEZGYlevXrBxsYGb7/9NgYMGAA/P7+XDmL06NHYtGkT9u3bp7Y6mIuLC3Jzc/Ho0SO1XtmkpCRxHlsXFxccPXpU7XyFsxo8O9dtoQkTJiAsLEx8nJ6eDjc3N7Rv3x4ODg4vfR8VwbTTe5CRl4vWrVujrouVvsOpMJRKJaKiotCpUycoFAp9h0M6wDaWPrax9LGNixPOJGLlldNwcLBHt27N9B1OuaWkpGj1fBonsn369EGfPn3w+PFjbNiwAWvWrIG/vz9q1KiBAQMGYMqUKWU+lyAIGDNmDP766y/s2bMHnp6eavt9fX2hUCiwa9cu9OvXDwBw6dIlJCQkICAgAAAQEBCAGTNmIDk5GU5OTgAKfpOztraGt7d3idc1NTWFqalpse0KhcLg/+EUFoMbGRsb/L3oghTamJ6PbSx9bGPpYxsXkRsZASgYWC+F10Tb9/DSdQFWVlYYMmQIduzYgdOnT8PS0rLEP9c/z6hRo/Dbb78hMjISVlZWSExMRGJiIp48eQIAsLGxwbBhwxAWFobo6GjExcVhyJAhCAgIgL+/PwCgc+fO8Pb2xsCBA3Hq1Cls374dkyZNwqhRo0pMVqXv6RK1HO1FRERk8IqWqOVgr5K8dCKbnZ2N33//Hb1790bTpk2RmpqK8ePHa3SORYsWIS0tDe3atUOVKlXEn3Xr1onHzJ07F927d0e/fv3Qpk0buLi44M8//xT3GxkZYdOmTTAyMkJAQAAGDBiAQYMGYdq0aS97awZNnH6L8xYQERFJBqffKpnGpQXbt29HZGQkNm7cCGNjY/zvf//Djh070KZNG40vLpSh29DMzAzh4eEIDw8v9RgPDw9JFEBrA1f2IiIikg5x+i0msiV6qRrZ7t27Y9WqVejWrZsk6jWkhG90IiIi6Sj8CytLC0qmcSKblJQEKyuOhq+oZKyRJSIikgz2yD6fxomslZUV8vPzsXHjRly4cAEA4O3tjV69esHo6cg60h/WyBIREUkHO6aeT+NE9urVq+jWrRvu3LmDunXrAihYYMDNzQ2bN29GzZo1tR4klR1rZImIiKSj8Otcxi7ZEmk8a8FHH32EmjVr4tatWzh+/DiOHz+OhIQEeHp64qOPPtJFjKSBwjc681iiiunGg0ykZVWsZSYT07KRlJ6t7zCIqARF029RSTTukd27dy8OHz4Me3t7cZuDgwO+/fZbBAYGajU4enllmRGCiHTnVmoWIo8moI9PVdRxtkLczYf4ee817DifBHtLE6wc0hwNq9noO0zsOJeI0WtOAALQq4krRrariRqOlXD4egoOXX2AYa1qwMaCg3qJ9KWoR1avYVRYGieypqamePz4cbHtGRkZMDEx0UpQ9PKKamSJSBcSUrJgqpDD2doMgiDg9O00LD8Yj7N30jC4ZXXYWZpg9eEExFwvWIZx0Z5rMFPIka1UiedIzczF2HUnsG1sGyiMXno673JLycjBJ+tPITevILb1cbexPu42TI3lyHm6bf7uq+jawAV9fKriSnIG1sXeQgcvJwwK8EANx0oAgPgHmahkagxHq9dxERoiHSsc7KXfKCosjRPZ7t27Y8SIEVi2bBmaN28OADhy5Ag++OAD9OzZU+sBkmbERJaZLFG5JKZlI+JQPDp7u8DXww5n76Rh0Z5r2Hr2HoyN5Ojo5YQHGTmIvfFQfM7kv8+VeK7CJLZVrcro7VMVM7dcwLX7mfjt8E0MCfQs8Tmvwpyoy3icnQcvFysMCayOlYdu4vy9dDGJLbT1bCK2nk0UH684dAMrY26gbR1HyADsuXwfJkZy9G1aFR+2qwU3ewvsOJeIs3fSMKJtTVQy1firhoieEqffYpdsiTT+dJk/fz5CQ0MREBAgziGbl5eHnj174scff9R6gKSZwum3Yq49wNJ91xF9KRkyGdDJ2wXdGrjg9J00rDmagKycfHhVscKggOrIVuZj+cF43E59AjtLBQYFVIe7vQU2xN1GzLUUGBvJENywCjrWc8bh6yn4I+42cvJUaOJmi3dbuCMlMxcRB+ORnJ4DJ2tTDAn0hIOlCSKPJuBkwiOYGsvRz7ca/Gs4IPpiMv49fRd5+QL8azrgTd9quPUwCysP3cDDTCWq2ZtjSKAnzBVG+DXmBi7cewwLUyP0b+aOJm422HwmEVHnEyEIQPu6TujZxBUXEx9j9eGbeJydh1pOlbDufX9Ymen3T6GCIODnfdexMPoqbC1MMDSwOmwsFPjtcALO3E6DmUKON/3c0Ky6PXacT8TWM4nIFwS0qlUZ/ZpWw/X7GVh1+CbSspTwcLDAkEBPGBvJsPLQDVxJykAlM2O829wd9V2t8e/pu9h1IRkAEFTPGd0bVcHZu2mIPJKAzJx81HGphEEB1ZGbp8KKQzeQkJIFWwsFQltWh4eDBf6Iu42D11JgLJehW8MqCKrnjCPxKdgQdxs5ShUau9kgpIUHHmblYvnBeCSl5cDRyhRDAqvD0coUa44m4PjNgnbu7VMVgbUqY+/lZPxz8i6U+QJa1LDHW35uuPPoCVYcvIHUzFxUtTPH0MDqsDAxxqrDN3HhbjrMTYzQv5kbfNxtsfVsIrafS4RKANrWcUQfn6q4lPgYq4/cRPqTPNRwtMTgltUBFCRV1+9nwsrMGM3s5JCdTcSmM0nYc/k+5DKgS30XdG3gghMJj7Du2C1k5eSjnqs1Bvl7ICs3DxEHb+D2wyewtzRBaMvqqGZnjt+P3cL+Kw8AAD/vvQ6FkQzK/KLfDnPzVGqJnZeLFfJVAixMCmZucbQyw/tta8DPww730rKRrxJgaiyHk7UZACBbmY9JG89i3s4r6N2kKuwsX/1fsy7cS8eaowkAgKk966NFDQe85eeGu2nZUKkEmCrksLMwwe6Lyfg15iYeZysBmQyPs5VQqQTcSMnCnkv3xfPl5Kmw5ugtrDl6C3IZoHr6cs3ffRU9G7uiW0MXnLj1COtin7ZBFSsMDKiOJ8p8RByIF9tgUEsPuNlZ4Pdjt3DkeioURjJ0b+SK9l5OOHAlGRuOGeHTo1Fo6m6Hd1u44/7jHEQcvIH7jws+f4YGesLe0gSRRxJw8tYjmCrk6Ne04PNn14UkbD5zD3n5AlrWcsD/fKvhZkrB58+jLCXcnn7+mBrL8evhm7h47zEsTY3wTnN3NKxqg81n7mHnhSQIAtDBywk9Grviwr10rD6SgIynnz+DW1ZHviAg4mA8bjzIgrW5AoMCPFDTsRL+OnEb+648gJFMhq4NXNC5vjOO3XiI34/dQrZShQZVrTHA3wPpT5SIOHQD9x5lo3IlEwwOrA4XG3Osi01AbPxDmBjL0auJK1rXdsT+K/fx98m7yM1ToZmnHd5u5o7EtIJ/aw8yclHF1gxDAz1hZWaM3w7fxNk76TBTyPGWnxv8qtthx7kkbD1b8PnTpnZl9PGphmv3M7Aq5iZkMmBKd2/0aOz6yt+fz7rxIBMhvxzB/cfqnz+RRxJw4un3TN+mVRFQszKiLyZj0+mCz58Sv2fszDGkVfHvmbebucHHzRZbziRix9PvmbZ1HNHbpyouJj5G5H8+f4YEVodKAFYcvIH4B5mwNjfGAH8P1Haywl8n7mDflYLPnzfqu+CNBi44nlDw3n+Smw9vV2sM9PdA5tPPnzsPn8ChkgkGt6yOKrbmWP+f937PJlVhLC/4XmcaWzKZ8JLFlFevXhWn36pXrx5q1aql1cBepfT0dNjY2ODBgwdwcHDQdzjl0uGHPbh+P1PfYejV+21qYEK3emrblEoltmzZ8soW8fjrxG2MW3dK59ehV6u5pz0G+ntAma9CSkYuAKCphy18Pexf8Ex1efkqdF9wABcTH6N/MzfM6tvwlfa25OWrEPLLERyJT0W3hi5YGOKr0fMFQcCuC8mIf1DwWeNqa46MHCWWHYjH5aQMXYRMeiKXAX99GIjGbrav5HqlfVYPWxGLXReTX0kMFVVnb2csGeSn7zDKLSUlBZUrV0ZaWhqsra3Lfb4y98iqVCr83//9H/755x/k5uaiY8eO+Oqrr2Bubl7uIEh7RrWrhTVHEyAAqGRqLH7pRh5NQFZuPuSygl67ljUrY8n+67j76AkAoI5zJQxu6Ym/T97BkfhUAICtuQJDAj2RlJ6NDXG3kZuvgpFchh6NqsDb1RpL98XjfkYOAKBhVRu828Ida44m4PTtNABA5UomGNGmBs7fe4xNp+4iTyXAxEiO//lWg4uNGZYfiMejJwWjt5t72qN3k6pYcajoi9DV1hwjWtfAoWsPsPNCElQCYGFihHebu0NhVNBjkpGTBxkKfmv2qGyJj9acwPKD8XinuTuqV7Z8tS/+U5k5efh260UAwDvN3aEwkuHc3XQAgLO1KYa3roGTtx4V9IKoBLF3xNbCBCsOxiM9Ow8AEFjTAd0aVcHyA/G49vSXEzc7c7zXugb2Xr6PPZeSoRIAS1NjDGjhDpUArD5yU2zn9l5OaFPbEUv3X8fthwXtXMuxEoa0qo5Np+6JNZw25goMCayOBxk5WH+soLfdSF7QC9+gqg1+2X8dyY8L2rmBqzVC/D2wLvYWTt56BABwsDTB8DY1cCUpA3+fvCO2c9+mVVHVzhzLD8Tj4dNR+n7V7dDXpxpWxtzApcSCWvsqNmYY0aYGjsanYse5JOQLAswVBb1g5iZyrIop6G2XAWhd2xGdvJ2x7EA8bqQUvCYeDhZ4r1UNbDt7F//GXoWdnR2szBQIbemBJ7kqrDmagCfKfBjJZOjk7YzmnvZYuv867qUVjNKv62KF0IDq+OvEHcTeKHjv21koMLSVJ/w9HZCalQtlvgrGcrnWakCNjeSY0t0b7/5yBGtjb6GqrTnGdKytlXOXxSfrT+FIfCpMjOWY0LXei5/wDJlMhiBv52Lb3/JzQ1J6DgQIsFAYw9zECDsvJBX8Fejp+7KTtzP8azhgyb6iNqjjbIXBLUtog0BP3E3Lxh+Fnz8ywEP2AH07+mNFTAIePP1lonE1W/Rv7obIIwk4c6fg88exkimGt/HE+bvp+Pf0PbFX/E2/anCsZIaIg0WfP/417NGzcVVEHIzHleSCz5+qtuYY0aYGDlx9gF3/+fwJaeEOI3nB50/m08+fdnUd0d7LCb/sj0dCahYAoEZlSwxt5YmtZxNx8GpB7761mTFCW1ZH2hOl2AtrJJPhjQYu8HG3xS/745H4dPYI7yrWGBjggfXHbuF4wiMAgL2lCYa18sTNlEz8deIOlPkCFEYy9PGpCg8HSyw7EI/UzILXxNfDDv/zrYZfYwrKRQDAxdoMw9vUwPGbD7HtaS+smUKOt5u5w9rMGCsP3UD6039r/jUccP5eOnZfTMa0Teex4YMAvf1pe9/l+9h1MRnGchl+e68FdpxLwqnbBa9J5UomGN66Bi4mPsa///me6edbDVVsCtq58POn6HvmBi4nFXz+uNqaY3hrTxy+noKo80Xt/E5zd5gaF3z+FH7PtKnjiI71nLBsfzxuPm3n6g6WeK+1J7Y9bWcBgJWZMUIDqiMzNw9rj94SP38613dGs+r2WLL/OhKfvve9XKwQ2rI6/jh+G8eelinZWRS0862HWfjr+B3k5qugMJKJf4UidWXukZ0+fTq+/vprBAUFwdzcHNu3b8c777yD5cuX6zpGnZNSj+zrTBAEhEbEYt/l++jk7Yyl//nN9VX2yP6w4xIW7L4KN3tzRI1rCzMFFwp5FV51r7s2LNl3DTO3XISJkRybP2qF2s66XzVx14UkDFt5DEZyGRaFNEXn+i46v6a2GGIbG7LEtGy0/34Pnijz8WP/JujVpKrOr/lsG+flq9D1x/24kpyBYa08Mbm7t85jIN3Sdo9smYfLrlq1CgsXLsT27duxceNG/Pvvv1i9ejVUKtWLn0z0CshkMkwOrgcjuQxR55PEXpBX6fbDLCzZdx0A8GW3ekxi6bmGt66B1rUrIzdfhf5LDut8LtdTtx5h5OrjAICB/h4GlcTSq+diY4YP2xUscvTd1ot4kpv/ymNYfSQBV5IzYG9pgo9e4V8tyHCUOZFNSEhAt27dxMdBQUGQyWS4e/euTgIjehm1na0w0N8DAPD1P+de+Qfvt1svIidPBf8a9ujCJIFeQCaTYc5bTVDHuRJSMnMxe9slnV1LpRIw5Z9zyM1ToXXtyvj8DS+dXYukY3ibGqhqa467adniL+mvSmJaNubuvAwACOtUBzbm7IWn4sqcyObl5cHMzExtm0KhgFJZsVaoIRobVBu2FgpcSc7A0BWxUKlezVxkG0/cwabT9yCTAZO7e3OqFCoTRytTzP5fYwDAH8dv49TT2mNt23jyDk7degRLEyP88FZjmJvwrwX0YmYKI3zRteCXnkV7r4o1zLqWmZOHt5fE4FGWEl4uVujfzO2VXJcMT5kTWUEQMHjwYPTt21f8yc7OxgcffKC2jUjfbC1MsCzUD+YKI8RcT8Ha2Fs6v+ayA/EYu+4kACA0oDrqu+p/xSYyHE3cbNHXp6D+cNqm81pfmS8zJw/fbSsYgDiqQy04WZm94BlERbo3qoJWtSojW1kw28XO80k6v+a8XVdxMyULVWzM8PNAXxjrceEQqtjK/M4IDQ2Fk5MTbGxsxJ8BAwbA1dVVbRtRReDrYY8xHQumhPty4xnsuXz/Bc94eVeTMzBrS8FUdO+18sQUDkagl/DZG14wVxgh7uZD/HNKuyVbi/deQ1J6DtzszTFUjwswkGGSyWRYOsgPnbydkZunwud/nEZ6tu7+GrvnngwrYormOPZw0M8MNGQYyjz9VkREhC7jINK6Ea0LpoT668QdTN98ER/raJzAjM3nkacS0NHLCZOYxNJLKhxY80PUZXy79SJa13aEvRYWSria/JgDEKnczE2MsDCkKbrM24fr9zPx0+6rmNhN86nbXiT5cQ42JxT0sYV1qsMBifRC7KsnyTI2kuOb3g3gaGWKhNQn2HtP+zWrey4lI/rSfSiMZPgyWPsf6vR6Gd6mBqrZmeNeWjbeXXoYuXnlmxUm+XE23v75MHLyVAio4cABiFQuCiM5JgcX/LIecTBeXBBDm36IuoJclQxN3GwwpoPhLrRErw4TWZI0S1NjfNalLgBg+x05HjxdwEEblPkqTN90HkBBXWwNx0paOze9nswURogY3Az2lia4mPgYi/Zce+lzqVQCpm+6gJTMXNR2qoT57/hwACKVW3svJ7St4whlvoAZmy9o9dynbz/CnycKymq+7FqX71cqEyayJHn9mlZDw6rWyMmXYe7Oq1o772+Hb+La/UzYW5q80lWZSNpqO1vhi6dTY83deRkb4m6/1Hlmb7+Ef5/W2n7br6HWViUjmty9YL7unReScOCKdubrFgQB0/4t6Bjwq6xCk1e0JC4ZPiayJHlyuQxfdi3olV1//A6Oxpd/+piHmbmYt/MKAOCTzpzfkLTrTb9qGN66YFDWrC0XNB5YczU5A7/sL6iL/bZvQ/h62Gs9Rnp91XIqmq97+qbzyMsv/8JIvx+7hWM3H8JcIUcPdy60RGXHRJZeC74edmjqoIIgAKHLj+La/YyXPle2Mh/jN5xG2pPC+Q3dtRgpUcEo8c/e8EJNR0ukZOZiwa4rGj3/m6cDEIPqOaF/c74/SfsK5+u+lPQYM7dcLNd83Xsv38cXf54BALzfpgZs+ccD0gATWXptvF1TBV93WzxR5mPyxrMvNZAmW5lfMI/ihSSYGMkxrVcDGMlZx0XapzCSi7NgrDh0o8wDa6IvJWOPOACRs2iQbthamODLp7MWLD8Yj7DfT77U/MdpWUp89fdZCALQx6cq3m9dXcuRktQxkaXXhpkRMKtPfZgYyXHoWgo+/+O0xuf4Zf91xN18CGszY6wa1hzNPfknW9Kd9nU1G1ijzFfhm/8MQPSszPk3SXfe9HPDnLcaw1guw8aTd7H9XKJGz89XCRi0/AhupGShciVTTOtVnwsfkMb4jqHXimdlSywe2BQyGfDXiTsaLbeYlJ6NhU9HkU/v3QD+NRx0FSaRSJOBNRyASK9a36bV8EHbmgCAGVsuICcvv8zP/f3YLZy6nQYrU2P8Oqw5rMw41oA0x0SWXjsdvJzFdbun/Xu+zLVd3227iKzcfPi426JnY1ddhkgk+u/AmmmbzpU6sIYDEElfRrarCScrU9xKfYLlB26U6Tnp2Up8v/0SAGBspzqoV8VahxGSlOk1kd23bx969OgBV1dXyGQybNy4UW2/IAiYMmUKqlSpAnNzcwQFBeHKFfVBD6mpqQgJCYG1tTVsbW0xbNgwZGS8/EAeej180rkurEyNceZOGjYcf/H0RqduPcKfx+8AAL7qUZ/zG9IrVTiw5nJSBtYcTSjxmLk7L3MAIumFpakxPns6ZdxPu68g+XH2C5/z0+6rSMnMRQ1HSwwK8NB1iCRhek1kMzMz0bhxY4SHh5e4f/bs2Zg/fz4WL16MI0eOwNLSEl26dEF2dtE/kpCQEJw7dw5RUVHYtGkT9u3bhxEjRryqWyADVbmSKcZ0LFg15v+2X0JGTl6pxwqCgGlP6w77+lTl/Ib0ytlamCCsUx0AwOxtl3A84aHa/s2n7+G3wzcBAFN6eHMAIr1yfX2qonE1G2Tm5os9raW58SATEQfjAQCTg72hYF0slYNe3z1du3bFN998gz59+hTbJwgC5s2bh0mTJqFXr15o1KgRVq1ahbt374o9txcuXMC2bdvwyy+/oEWLFmjVqhUWLFiAtWvX4u7du6/4bsjQhLasDg8HC9x/nINZWy6UOuL2n1N3EXfzIcwVRmKvA9Gr9m5zd/h62OFxTh5G/haHzKe/fCWkZGHcupNQCQWLf7SsWVnPkdLrSC6XYUqPglky1sfdxtk7aSUel5OXj0kbz0KZL6BNHUe0q+v4KsMkCTLWdwCliY+PR2JiIoKCgsRtNjY2aNGiBWJiYtC/f3/ExMTA1tYWfn5+4jFBQUGQy+U4cuRIiQkyAOTk5CAnp2ip0vT0dACAUqmEUqnZxONkGArb9b/tKwcw4Y06+GD1Saw+kgBXG1OMeDoJfaFzd9PF1Wbeb+MJBwsjvkcqqJLaWGqWDfRB9/AY3H74BOG7r2BcUC18s/kccvNV8Pe0w4xe9SR9/69DGxuyRq5W6N7QBZvOJGLs2hNYHuqLKjZmasdM+PMsDlx9AIWRDF90qY28PPW/hrGNpU/bbVthE9nExIJpPJydndW2Ozs7i/sSExPh5OSktt/Y2Bj29vbiMSWZNWsWpk6dWmx7dHQ0LCwsyhs6VWBRUVHFtvX2kGHjTSP8uPMy5EkX4Pr0LXDjMRB+3gi5KhmqWgio+vgitmy5+IojJk2V1MZS0tlRhuUPjbB03zWk3b6CHdeMIIOAttb3sX3bVn2H90pIvY0NWTMFsE9hhKv3M9Hjx70Y2zAf9k8XODj3UIY/Lxa8X4fUzseVY/tQ2lIfbGPpysrK0ur5Kmwiq0sTJkxAWFiY+Dg9PR1ubm5o3749HBw4pZIUKZVKREVFoVOnTlAo1EdzdxUE3PolFnEJj7Dkijm2fxwIazMFei+MQa4qAwE17BH+TmNODVPBPa+NpaSrIOBcxDEciX+I1deMABSUHbzXo56eI9O916WNDV3b9k8wbNVxXLufiaM5VTG/T2NcTHyMTxcfBiDgf77VML53/RKfyzaWvpSUFK2er8Imsi4uLgCApKQkVKlSRdyelJSEJk2aiMckJyerPS8vLw+pqani80tiamoKU9Pia+ApFAr+w5G40tp4aWgzvLn4EK7dz8RPe+JR18UKF5MyYG1mjIUhvrCzNNFDtPQyXod/x1/1aIDgBfshCIC1mTE+6eIl+Xv+r9ehjQ1ZdUcFfnq3KYLn78fWc0k4fisd83ZegTJfQOvalTG9d0MoFEbPPQfbWLq03a4Vdqigp6cnXFxcsGvXLnFbeno6jhw5goCAAABAQEAAHj16hLi4OPGY3bt3Q6VSoUWLFq88ZjJc9pYmmN6rAQBgVcxNfPnXWQDA2KA6TGKpwvF2tcaikKYY1soTv4Q2gz3fo1TB1Ktijf7NC6aBe3vJYcRcT4GJsRwz+zSE2QuSWCJN6LVHNiMjA1evXhUfx8fH4+TJk7C3t4e7uzvGjh2Lb775BrVr14anpycmT54MV1dX9O7dGwBQr149vPHGGxg+fDgWL14MpVKJ0aNHo3///nB15YT1pJmWtSqjs7czdpxPAgDUdLTEQM5vSBXUGw2q4I0GVV58IJGefNKpDv4+cQeZuQWrfQ1v7Qk3e45DIe3Sa4/ssWPH4OPjAx8fHwBAWFgYfHx8MGXKFADAZ599hjFjxmDEiBFo1qwZMjIysG3bNpiZFY2CXL16Nby8vNCxY0d069YNrVq1wpIlS/RyP2T4vunTAN5VrGFiJMfXPetzfkMiopfkUMkUE7oV1G63r+uIMR24bDJpn157ZNu1a1fq3J0AIJPJMG3aNEybNq3UY+zt7REZGamL8Og15GRlhk1jWuFhVi4cKhWvoyYiorIb4O+BLvVdULmSCVdEJJ2osIO9iPRFLpcxiSUi0hJHK36eku7w76ZEREREZJCYyBIRERGRQWIiS0REREQGiYksERERERkkJrJEREREZJCYyBIRERGRQWIiS0REREQGiYksERERERkkLogAiKuLPX78GAqFQs/RkC4olUpkZWUhPT2dbSxRbGPpYxtLH9tY+h4/fgwAz13ZVRNMZAGkpKQAADw9PfUcCREREZH0paSkwMbGptznYSILwN7eHgCQkJCglReVKp709HS4ubnh1q1bsLa21nc4pANsY+ljG0sf21j60tLS4O7uLuZe5cVEFoBcXlAqbGNjw384Emdtbc02lji2sfSxjaWPbSx9hblXuc+jlbMQEREREb1iTGSJiIiIyCAxkQVgamqKr776CqampvoOhXSEbSx9bGPpYxtLH9tY+rTdxjJBW/MfEBERERG9QuyRJSIiIiKDxESWiIiIiAwSE1kiIiIiMkivfSIbHh6O6tWrw8zMDC1atMDRo0f1HRJpyaxZs9CsWTNYWVnByckJvXv3xqVLl/QdFunQt99+C5lMhrFjx+o7FNKyO3fuYMCAAXBwcIC5uTkaNmyIY8eO6Tss0pL8/HxMnjwZnp6eMDc3R82aNTF9+nStLWNKr96+ffvQo0cPuLq6QiaTYePGjWr7BUHAlClTUKVKFZibmyMoKAhXrlzR+DqvdSK7bt06hIWF4auvvsLx48fRuHFjdOnSBcnJyfoOjbRg7969GDVqFA4fPoyoqCgolUp07twZmZmZ+g6NdCA2NhY///wzGjVqpO9QSMsePnyIwMBAKBQKbN26FefPn8cPP/wAOzs7fYdGWvLdd99h0aJF+Omnn3DhwgV89913mD17NhYsWKDv0OglZWZmonHjxggPDy9x/+zZszF//nwsXrwYR44cgaWlJbp06YLs7GyNrvNaz1rQokULNGvWDD/99BMAQKVSwc3NDWPGjMEXX3yh5+hI2+7fvw8nJyfs3bsXbdq00Xc4pEUZGRlo2rQpFi5ciG+++QZNmjTBvHnz9B0WackXX3yBgwcPYv/+/foOhXSke/fucHZ2xrJly8Rt/fr1g7m5OX777Tc9RkbaIJPJ8Ndff6F3794ACnpjXV1d8cknn+DTTz8FULB0rbOzM1asWIH+/fuX+dyvbY9sbm4u4uLiEBQUJG6Ty+UICgpCTEyMHiMjXUlLSwMAra3vTBXHqFGjEBwcrPbvmaTjn3/+gZ+fH9588004OTnBx8cHS5cu1XdYpEUtW7bErl27cPnyZQDAqVOncODAAXTt2lXPkZEuxMfHIzExUe0z28bGBi1atNA4BzPWdnCG4sGDB8jPz4ezs7PadmdnZ1y8eFFPUZGuqFQqjB07FoGBgWjQoIG+wyEtWrt2LY4fP47Y2Fh9h0I6cv36dSxatAhhYWGYOHEiYmNj8dFHH8HExAShoaH6Do+04IsvvkB6ejq8vLxgZGSE/Px8zJgxAyEhIfoOjXQgMTERAErMwQr3ldVrm8jS62XUqFE4e/YsDhw4oO9QSItu3bqFjz/+GFFRUTAzM9N3OKQjKpUKfn5+mDlzJgDAx8cHZ8+exeLFi5nISsTvv/+O1atXIzIyEvXr18fJkycxduxYuLq6so3puV7b0oLKlSvDyMgISUlJatuTkpLg4uKip6hIF0aPHo1NmzYhOjoa1apV03c4pEVxcXFITk5G06ZNYWxsDGNjY+zduxfz58+HsbEx8vPz9R0iaUGVKlXg7e2ttq1evXpISEjQU0SkbePHj8cXX3yB/v37o2HDhhg4cCDGjRuHWbNm6Ts00oHCPEsbOdhrm8iamJjA19cXu3btErepVCrs2rULAQEBeoyMtEUQBIwePRp//fUXdu/eDU9PT32HRFrWsWNHnDlzBidPnhR//Pz8EBISgpMnT8LIyEjfIZIWBAYGFps67/Lly/Dw8NBTRKRtWVlZkMvVUxIjIyOoVCo9RUS65OnpCRcXF7UcLD09HUeOHNE4B3utSwvCwsIQGhoKPz8/NG/eHPPmzUNmZiaGDBmi79BIC0aNGoXIyEj8/fffsLKyEutubGxsYG5urufoSBusrKyK1TxbWlrCwcGBtdASMm7cOLRs2RIzZ87EW2+9haNHj2LJkiVYsmSJvkMjLenRowdmzJgBd3d31K9fHydOnMCcOXMwdOhQfYdGLykjIwNXr14VH8fHx+PkyZOwt7eHu7s7xo4di2+++Qa1a9eGp6cnJk+eDFdXV3FmgzITXnMLFiwQ3N3dBRMTE6F58+bC4cOH9R0SaQmAEn8iIiL0HRrpUNu2bYWPP/5Y32GQlv37779CgwYNBFNTU8HLy0tYsmSJvkMiLUpPTxc+/vhjwd3dXTAzMxNq1KghfPnll0JOTo6+Q6OXFB0dXeJ3cGhoqCAIgqBSqYTJkycLzs7OgqmpqdCxY0fh0qVLGl/ntZ5HloiIiIgM12tbI0tEREREho2JLBEREREZJCayRERERGSQmMgSERERkUFiIktEREREBomJLBEREREZJCayRERERGSQmMgSERERkUFiIktEr53Bgwc/dxnEFStWwNbWVnz89ddfo0mTJqU+NlTt2rXD2LFjn3tM9erVMW/evHJfa9euXahXrx7y8/PLfS5NLV68GD169Hjl1yUi3WMiS0T0Ap9++il27dpV6mND9eeff2L69Omv5FqfffYZJk2aBCMjo1dyvf8aOnQojh8/jv3797/yaxORbjGRJSJ6gUqVKsHBwaHUx4bK3t4eVlZWOr/OgQMHcO3aNfTr10/n1yqJiYkJ3n33XcyfP18v1yci3WEiS0QVwv379+Hi4oKZM2eK2w4dOgQTE5Pn9n6eOXMGHTp0gLm5ORwcHDBixAhkZGSI+/Pz8xEWFgZbW1s4ODjgs88+gyAIGsVWltKCX375BfXq1YOZmRm8vLywcOFCcV/Lli3x+eefF7tfhUKBffv2AQAePnyIQYMGwc7ODhYWFujatSuuXLmi9pylS5fCzc0NFhYW6NOnD+bMmaNWAlFS3DKZrNjPihUrABQvLUhOTkaPHj1gbm4OT09PrF69utg558yZg4YNG8LS0hJubm748MMP1V7vkqxduxadOnWCmZmZWmxNmjTB8uXL4e7ujkqVKuHDDz9Efn4+Zs+eDRcXFzg5OWHGjBlq55LJZPj555/RvXt3WFhYoF69eoiJicHVq1fRrl07WFpaomXLlrh27Zra83r06IF//vkHT548eW6sRGRYmMgSUYXg6OiI5cuX4+uvv8axY8fw+PFjDBw4EKNHj0bHjh1LfE5mZia6dOkCOzs7xMbGYv369di5cydGjx4tHvPDDz9gxYoVWL58OQ4cOIDU1FT89ddfWo199erVmDJlCmbMmIELFy5g5syZmDx5MlauXAkACAkJwdq1a9US6HXr1sHV1RWtW7cGUFC3e+zYMfzzzz+IiYmBIAjo1q0blEolAODgwYP44IMP8PHHH+PkyZPo1KlTsSTvWZ9++inu3bsn/nz//fewsLCAn59ficcPHjwYt27dQnR0NDZs2ICFCxciOTlZ7Ri5XI758+fj3LlzWLlyJXbv3o3PPvvsuXHs37+/xGteu3YNW7duxbZt27BmzRosW7YMwcHBuH37Nvbu3YvvvvsOkyZNwpEjR9SeN336dAwaNAgnT56El5cX3n33Xbz//vuYMGECjh07BkEQ1N4DAODn54e8vLxi5yIiAycQEVUgH374oVCnTh3h3XffFRo2bChkZ2eXeuySJUsEOzs7ISMjQ9y2efNmQS6XC4mJiYIgCEKVKlWE2bNni/uVSqVQrVo1oVevXqWeNyIiQrCxsREff/XVV0Ljxo1LfVyzZk0hMjJS7RzTp08XAgICBEEQhOTkZMHY2FjYt2+fuD8gIED4/PPPBUEQhMuXLwsAhIMHD4r7Hzx4IJibmwu///67IAiC8PbbbwvBwcFq1wgJCVGL83liYmIEMzMzYd26deK2tm3bCh9//LEgCIJw6dIlAYBw9OhRcf+FCxcEAMLcuXNLPe/69esFBweH517bxsZGWLVqldq2r776SrCwsBDS09PFbV26dBGqV68u5Ofni9vq1q0rzJo1S3wMQJg0aZLafQEQli1bJm5bs2aNYGZmViwOOzs7YcWKFc+NlYgMC3tkiahC+f7775GXl4f169dj9erVMDU1LfXYCxcuoHHjxrC0tBS3BQYGQqVS4dKlS0hLS8O9e/fQokULcb+xsXGpPZIvIzMzE9euXcOwYcNQqVIl8eebb74R/7zt6OiIzp07i3+qj4+PR0xMDEJCQsT7MDY2VovTwcEBdevWxYULFwAAly5dQvPmzdWu/ezj0iQkJKB379749NNP8dZbb5V4TGEMvr6+4jYvL69ipQs7d+5Ex44dUbVqVVhZWWHgwIFISUlBVlZWqdd/8uSJWllBoerVq6vV6Do7O8Pb2xtyuVxt27O9wo0aNVLbDwANGzZU25adnY309HS155mbmz83TiIyPExkiahCuXbtGu7evQuVSoUbN27oO5wXKqwPXbp0KU6ePCn+nD17FocPHxaPCwkJwYYNG6BUKhEZGYmGDRuqJV+6kpmZiZ49eyIgIADTpk0r17lu3LiB7t27o1GjRvjjjz8QFxeH8PBwAEBubm6pz6tcuTIePnxYbLtCoVB7LJPJStymUqlKfZ5MJit127PPS01NhaOjY6lxEpHhYSJLRBVGbm4uBgwYgLfffhvTp0/He++9V6w37r/q1auHU6dOITMzU9x28OBByOVy1K1bFzY2NqhSpYpaXWReXh7i4uK0FrOzszNcXV1x/fp11KpVS+3H09NTPK5Xr17Izs7Gtm3bEBkZKfbGFt7Hs/WbKSkpuHTpEry9vQEAdevWRWxsrNq1n338LEEQMGDAAKhUKvz6669iglcSLy+vYq/NpUuX8OjRI/FxXFwcVCoVfvjhB/j7+6NOnTq4e/fu818gAD4+Pjh//vwLj9Ola9euITs7Gz4+PnqNg4i0i4ksEVUYX375JdLS0jB//nx8/vnnqFOnDoYOHVrq8SEhITAzM0NoaCjOnj2L6OhojBkzBgMHDhT/5Pzxxx/j22+/xcaNG3Hx4kV8+OGHasmZNkydOhWzZs3C/PnzcfnyZZw5cwYRERGYM2eOeIylpSV69+6NyZMn48KFC3jnnXfEfbVr10avXr0wfPhwHDhwAKdOncKAAQNQtWpV9OrVCwAwZswYbNmyBXPmzMGVK1fw888/Y+vWrc9NTr/++mvs3LkTP//8MzIyMpCYmIjExMQSR+7XrVsXb7zxBt5//30cOXIEcXFxeO+992Bubi4eU6tWLSiVSixYsADXr1/Hr7/+isWLF7/w9enSpQsOHDhQptdSV/bv348aNWqgZs2aeo2DiLSLiSwRVQh79uzBvHnz8Ouvv8La2hpyuRy//vor9u/fj0WLFpX4HAsLC2zfvh2pqalo1qwZ/ve//6Fjx4746aefxGM++eQTDBw4EKGhoQgICICVlRX69Omj1djfe+89/PLLL4iIiEDDhg3Rtm1brFixQq1HFihIvE+dOoXWrVvD3d1dbV9ERAR8fX3RvXt3BAQEQBAEbNmyRfyTeWBgIBYvXow5c+agcePG2LZtG8aNG1di7WmhvXv3IiMjAy1btkSVKlXEn3Xr1pV4fEREBFxdXdG2bVv07dsXI0aMgJOTk7i/cePGmDNnDr777js0aNAAq1evxqxZs174+oSEhODcuXO4dOnSC4/VlTVr1mD48OF6uz4R6YZMEDScUJGI6DU3YcIE7N+/X++9jMOHD8fFixcNYsWq8ePHIz09HT///PMrv/a5c+fQoUMHXL58GTY2Nq/8+kSkO+yRJSIqI0EQcO3aNezatQv169d/5df//vvvcerUKVy9ehULFizAypUrERoa+srjeBlffvklPDw8ig3AehXu3buHVatWMYklkiD2yBIRldGjR4/g7OyMZs2aYfXq1fDw8Hil13/rrbewZ88ePH78GDVq1MCYMWPwwQcfvNIYiIgqEiayRERERGSQWFpARERERAaJiSwRERERGSQmskRERERkkJjIEhEREZFBYiJLRERERAaJiSwRERERGSQmskRERERkkJjIEhEREZFBYiJLRERERAbp/wHWJit8k1qHFwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "==== Grid ispuna 20.0% ====\n", + "XY ukupna povrsina = 245.4207 mm²\n", + " Povrsina ljuski = 132.4033 mm²\n", + " Povrsina ispune = 113.0174 mm²\n", + "-- Presjeci kroz Z (uzorak konstantan po Z) --\n", + "Duzina po X @ y=1.000 mm: 2.8786 mm\n", + "Duzina po Y @ x=-2.000 mm: 15.9449 mm\n", + "Povrsina XZ @ y=1.000: 28.7860 mm² (Z=10.000 mm)\n", + "Povrsina YZ @ x=-2.000: 159.4493 mm² (Z=10.000 mm)\n", + "\n", + "A_xz(y=1mm) = 28.785982478097694 mm^2\n", + "A_yz(x=-2mm) = 159.44931163954337 mm^2\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# ------------------------------\n", + "# Geometrijske pomocne funkcije\n", + "# ------------------------------\n", + "\n", + "def _udaljenost_mod(u, razmak):\n", + " \"\"\"Najmanja udaljenost do najblize paralelne linije s periodom 'razmak'.\"\"\"\n", + " r = np.mod(u, razmak)\n", + " return np.minimum(r, razmak - r)\n", + "\n", + "def _pravocrtna_maska(XX, YY, razmak, sirina_linije, kut_stupnjevi=0.0, faza=0.0):\n", + " \"\"\"\n", + " Generira pravocrtni uzorak (paralelne linije) kao booleovu masku.\n", + " XX, YY: mreza koordinata; razmak: period linija; sirina_linije: debljina trake.\n", + " kut_stupnjevi: orijentacija linija; faza: pomak uzorka.\n", + " \"\"\"\n", + " th = np.deg2rad(kut_stupnjevi)\n", + " u = XX * np.cos(th) + YY * np.sin(th)\n", + " dist = _udaljenost_mod(u + faza, razmak)\n", + " return dist <= (sirina_linije / 2.0)\n", + "\n", + "def _razmak_za_gustocu_mreze(sirina_linije, f):\n", + " \"\"\"\n", + " Za zadani udio ispune f (0..1) vrati razmak linija koji daje istu gustocu\n", + " kod 'grid' (dvije orijentacije pod 90°). Za cistu pravocrtnu (jedna orijentacija)\n", + " koristi se sirina_linije / f (vidi dolje).\n", + " \"\"\"\n", + " f = float(np.clip(f, 0.0, 1.0))\n", + " if f <= 0.0:\n", + " return np.inf\n", + " if f >= 1.0:\n", + " return sirina_linije\n", + " r = 1.0 - np.sqrt(1.0 - f)\n", + " return sirina_linije / r\n", + "\n", + "# ------------------------------\n", + "# Povrsina i momenti na raster maski\n", + "# ------------------------------\n", + "\n", + "def izracun_povrsine_i_momenata(XX, YY, maska):\n", + " \"\"\"\n", + " Racuna povrsinu A, te geometrijske momente inercije oko tezista (I_x, I_y, I_xy)\n", + " na raster reprezentaciji (True piksli su 'materijal').\n", + " \"\"\"\n", + " x_vals = XX[maska]\n", + " y_vals = YY[maska]\n", + "\n", + " if x_vals.size == 0:\n", + " return {\"A\": 0.0, \"x_c\": 0.0, \"y_c\": 0.0, \"I_x\": 0.0, \"I_y\": 0.0, \"I_xy\": 0.0, \"J\": 0.0}\n", + "\n", + " dx = XX[0, 1] - XX[0, 0]\n", + " dy = YY[1, 0] - YY[0, 0]\n", + " dA = dx * dy\n", + "\n", + " A = x_vals.size * dA\n", + " x_c = float(np.mean(x_vals))\n", + " y_c = float(np.mean(y_vals))\n", + "\n", + " x_p = x_vals - x_c\n", + " y_p = y_vals - y_c\n", + "\n", + " I_x = float(np.sum(y_p**2) * dA)\n", + " I_y = float(np.sum(x_p**2) * dA)\n", + " I_xy = float(np.sum(x_p * y_p) * dA)\n", + " J = I_x + I_y\n", + "\n", + " return {\"A\": A, \"x_c\": x_c, \"y_c\": y_c, \"I_x\": I_x, \"I_y\": I_y, \"I_xy\": I_xy, \"J\": J}\n", + "\n", + "# ------------------------------\n", + "# Glavno: Prusa-stil pravocrtni/grid s ljuskama (perimetrima)\n", + "# ------------------------------\n", + "\n", + "def prusa_mreza_ili_pravocrtna(\n", + " sirina, visina,\n", + " udio_ispune,\n", + " sirina_linije=0.42,\n", + " slojevi_ljuske=2,\n", + " osnovni_kut_ispune_stupnjevi=45.0,\n", + " mreza=True,\n", + " z_visina=0.0, # opcionalna faza po Z\n", + " faza_po_mm=0.0,\n", + " # Poprecni presjeci kroz Z\n", + " z_visina_objekta=None, # mm (ako je postavljeno -> povrsine u mm²; inace duzine u mm)\n", + " y_ravnina=0.0, # mm, ravnina paralelna s XZ na y = y_ravnina\n", + " x_ravnina=0.0, # mm, ravnina paralelna s YZ na x = x_ravnina\n", + " N=800,\n", + " graficki_prikaz=True,\n", + " detaljno=True\n", + "):\n", + " # ----- Raster mreza (centar u ishodištu)\n", + " xs = np.linspace(-sirina/2, sirina/2, N)\n", + " ys = np.linspace(-visina/2, visina/2, N)\n", + " XX, YY = np.meshgrid(xs, ys)\n", + "\n", + " # ----- Ljuske (perimetri)\n", + " shell_mask = np.zeros_like(XX, dtype=bool)\n", + " for i in range(slojevi_ljuske):\n", + " off = (i + 0.5) * sirina_linije\n", + " shell_mask |= np.abs(XX - (-sirina/2 + off)) <= (sirina_linije / 2)\n", + " shell_mask |= np.abs(XX - ( +sirina/2 - off)) <= (sirina_linije / 2)\n", + " shell_mask |= np.abs(YY - (-visina/2 + off)) <= (sirina_linije / 2)\n", + " shell_mask |= np.abs(YY - ( +visina/2 - off)) <= (sirina_linije / 2)\n", + "\n", + " # ----- Unutarnji pravokutnik (podrucje ispune)\n", + " unutarnji_pomak = slojevi_ljuske * sirina_linije\n", + " unutarnji_pravokutnik = (\n", + " (np.abs(XX) <= (sirina/2 - unutarnji_pomak)) &\n", + " (np.abs(YY) <= (visina/2 - unutarnji_pomak))\n", + " )\n", + "\n", + " # ----- Ispuna\n", + " if udio_ispune <= 0.0:\n", + " infill_mask = np.zeros_like(XX, dtype=bool)\n", + " elif udio_ispune >= 1.0:\n", + " razmak = sirina_linije\n", + " maske = []\n", + " kutevi = [osnovni_kut_ispune_stupnjevi] + ([osnovni_kut_ispune_stupnjevi + 90] if mreza else [])\n", + " faza = faza_po_mm * z_visina\n", + " for a in kutevi:\n", + " maske.append(_pravocrtna_maska(XX, YY, razmak, sirina_linije, kut_stupnjevi=a, faza=faza))\n", + " infill_mask = np.logical_or.reduce(maske) & unutarnji_pravokutnik\n", + " else:\n", + " razmak = _razmak_za_gustocu_mreze(sirina_linije, udio_ispune) if mreza \\\n", + " else sirina_linije / udio_ispune\n", + " maske = []\n", + " kutevi = [osnovni_kut_ispune_stupnjevi] + ([osnovni_kut_ispune_stupnjevi + 90] if mreza else [])\n", + " faza = faza_po_mm * z_visina\n", + " for a in kutevi:\n", + " maske.append(_pravocrtna_maska(XX, YY, razmak, sirina_linije, kut_stupnjevi=a, faza=faza))\n", + " infill_mask = np.logical_or.reduce(maske) & unutarnji_pravokutnik\n", + "\n", + " # ----- Konacna maska (materijal prisutan)\n", + " konacna_maska = shell_mask | infill_mask\n", + "\n", + " # ----- Graficki pregled XY\n", + " if graficki_prikaz:\n", + " plt.figure(figsize=(6, 6))\n", + " img = np.where(konacna_maska, 1.0, np.nan)\n", + " plt.imshow(img, origin='lower',\n", + " extent=[-sirina/2, sirina/2, -visina/2, visina/2],\n", + " interpolation='nearest')\n", + " naslov = \"Grid\" if mreza else \"Pravocrtna\"\n", + " plt.title(f\"{naslov} @ {udio_ispune*100:.1f}% | ljuske={slojevi_ljuske}×{sirina_linije:.2f} kut={osnovni_kut_ispune_stupnjevi:.0f}°\")\n", + " plt.xlabel(\"X (mm)\")\n", + " plt.ylabel(\"Y (mm)\")\n", + " plt.gca().set_aspect('equal', 'box')\n", + " plt.grid(True)\n", + " # vodilice\n", + " plt.hlines(y_ravnina, -sirina/2, sirina/2, linestyles='--')\n", + " plt.vlines(x_ravnina, -visina/2, visina/2, linestyles='--')\n", + " plt.show()\n", + "\n", + " # ----- XY brojke\n", + " total = izracun_povrsine_i_momenata(XX, YY, konacna_maska)\n", + " ljuske = izracun_povrsine_i_momenata(XX, YY, shell_mask)\n", + " A_ispuna = total[\"A\"] - ljuske[\"A\"]\n", + "\n", + " # ----- Presjeci paralelni s XZ i YZ kroz zadane ravnine\n", + " dx = XX[0, 1] - XX[0, 0]\n", + " dy = YY[1, 0] - YY[0, 0]\n", + " ys_centered = YY[:, 0]\n", + " xs_centered = XX[0, :]\n", + " row = int(np.argmin(np.abs(ys_centered - y_ravnina)))\n", + " col = int(np.argmin(np.abs(xs_centered - x_ravnina)))\n", + "\n", + " duzina_x_na_y = float(np.count_nonzero(konacna_maska[row, :]) * dx)\n", + " duzina_y_na_x = float(np.count_nonzero(konacna_maska[:, col]) * dy)\n", + "\n", + " povrsina_xz_na_y = None\n", + " povrsina_yz_na_x = None\n", + " if z_visina_objekta is not None and z_visina_objekta > 0:\n", + " povrsina_xz_na_y = duzina_x_na_y * z_visina_objekta\n", + " povrsina_yz_na_x = duzina_y_na_x * z_visina_objekta\n", + "\n", + " # ----- Krivulje varijacije preko cijele visine/sirine\n", + " duzina_x_vs_y = np.count_nonzero(konacna_maska, axis=1) * dx\n", + " duzina_y_vs_x = np.count_nonzero(konacna_maska, axis=0) * dy\n", + "\n", + " if z_visina_objekta is not None and z_visina_objekta > 0:\n", + " povrsina_xz_vs_y = duzina_x_vs_y * z_visina_objekta\n", + " povrsina_yz_vs_x = duzina_y_vs_x * z_visina_objekta\n", + " y_oznaka = \"Povrsina XZ presjeka (mm²)\"\n", + " x_oznaka = \"Povrsina YZ presjeka (mm²)\"\n", + " else:\n", + " povrsina_xz_vs_y = duzina_x_vs_y\n", + " povrsina_yz_vs_x = duzina_y_vs_x\n", + " y_oznaka = \"Duzina po X (mm) [postavi z_visina_objekta za povrsinu]\"\n", + " x_oznaka = \"Duzina po Y (mm) [postavi z_visina_objekta za povrsinu]\"\n", + "\n", + " # osi od 0 (lijevi/donji zid) do sirina/visina\n", + " y_os_0_do_H = ys_centered + visina/2.0\n", + " x_os_0_do_W = xs_centered + sirina/2.0\n", + "\n", + " if graficki_prikaz:\n", + " # --- Povrsina naspram y (XZ presjek kako y varira)\n", + " plt.figure(figsize=(7, 3.5))\n", + " plt.plot(y_os_0_do_H, povrsina_xz_vs_y)\n", + " plt.xlabel(\"y od donjeg zida (mm)\")\n", + " plt.ylabel(y_oznaka)\n", + " plt.title(\"Varijacija prema y\")\n", + " plt.grid(True)\n", + " plt.xlim(0, visina)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + " # --- Povrsina naspram x (YZ presjek kako x varira)\n", + " plt.figure(figsize=(7, 3.5))\n", + " plt.plot(x_os_0_do_W, povrsina_yz_vs_x)\n", + " plt.xlabel(\"x od lijevog zida (mm)\")\n", + " plt.ylabel(x_oznaka)\n", + " plt.title(\"Varijacija prema x\")\n", + " plt.grid(True)\n", + " plt.xlim(0, sirina)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + " if detaljno:\n", + " print(f\"==== {('Grid' if mreza else 'Pravocrtna')} ispuna {udio_ispune*100:.1f}% ====\")\n", + " print(f\"XY ukupna povrsina = {total['A']:.4f} mm²\")\n", + " print(f\" Povrsina ljuski = {ljuske['A']:.4f} mm²\")\n", + " print(f\" Povrsina ispune = {A_ispuna:.4f} mm²\")\n", + " # print(f\"I_x = {total['I_x']:.4f}\")\n", + " # print(f\"I_y = {total['I_y']:.4f}\")\n", + " # print(f\"I_xy = {total['I_xy']:.4f}\")\n", + " # print(f\"Polarni moment, J = {total['J']:.4f}\")\n", + " print(f\"-- Presjeci kroz Z (uzorak konstantan po Z) --\")\n", + " print(f\"Duzina po X @ y={y_ravnina:.3f} mm: {duzina_x_na_y:.4f} mm\")\n", + " print(f\"Duzina po Y @ x={x_ravnina:.3f} mm: {duzina_y_na_x:.4f} mm\")\n", + " if povrsina_xz_na_y is not None:\n", + " print(f\"Povrsina XZ @ y={y_ravnina:.3f}: {povrsina_xz_na_y:.4f} mm² (Z={z_visina_objekta:.3f} mm)\")\n", + " if povrsina_yz_na_x is not None:\n", + " print(f\"Povrsina YZ @ x={x_ravnina:.3f}: {povrsina_yz_na_x:.4f} mm² (Z={z_visina_objekta:.3f} mm)\")\n", + " print()\n", + "\n", + " return {\n", + " \"maska\": konacna_maska,\n", + " \"XX\": XX, \"YY\": YY,\n", + " \"dx\": dx, \"dy\": dy,\n", + " \"povrsina_ukupno_xy\": total[\"A\"],\n", + " \"povrsina_ljuske_xy\": ljuske[\"A\"],\n", + " \"povrsina_ispune_xy\": A_ispuna,\n", + " \"momenti_xy\": total,\n", + " \"duzina_x_na_y\": duzina_x_na_y,\n", + " \"duzina_y_na_x\": duzina_y_na_x,\n", + " \"povrsina_xz_na_y\": povrsina_xz_na_y,\n", + " \"povrsina_yz_na_x\": povrsina_yz_na_x,\n", + " # pune krivulje varijacije i njihove osi (0→sirina/visina)\n", + " \"y_os_mm\": y_os_0_do_H,\n", + " \"x_os_mm\": x_os_0_do_W,\n", + " \"povrsina_xz_vs_y\": povrsina_xz_vs_y,\n", + " \"povrsina_yz_vs_x\": povrsina_yz_vs_x,\n", + " }\n", + "\n", + "# ------------------------------\n", + "# Demo\n", + "# ------------------------------\n", + "if __name__ == \"__main__\":\n", + " W, H = 10.0, 70.0\n", + " Z = 10.0 # visina objekta u Z\n", + " res = prusa_mreza_ili_pravocrtna(\n", + " sirina=W, visina=H,\n", + " udio_ispune=0.2,\n", + " sirina_linije=0.42,\n", + " slojevi_ljuske=2,\n", + " osnovni_kut_ispune_stupnjevi=45.0,\n", + " mreza=True,\n", + " z_visina_objekta=Z, # postavi Z za prave povrsine\n", + " y_ravnina=+1.0, # XZ presjek na y = +1 mm\n", + " x_ravnina=-2.0, # YZ presjek na x = -2 mm (cent. koord.)\n", + " N=800,\n", + " graficki_prikaz=True, detaljno=True\n", + " )\n", + "\n", + " print(\"A_xz(y=1mm) =\", res[\"povrsina_xz_na_y\"], \"mm^2\")\n", + " print(\"A_yz(x=-2mm) =\", res[\"povrsina_yz_na_x\"], \"mm^2\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "60473fab-724f-43a9-919b-09c571734009", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2363b1b8-e9f0-47f5-b74b-4827e3ab6f91", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/software/GYROID.ipynb b/software/GYROID.ipynb index 2d4b2ef..6fb9e64 100644 --- a/software/GYROID.ipynb +++ b/software/GYROID.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 34, + "execution_count": 2, "id": "d5e79bb2-9fc5-4a71-82e2-14ce475e7a5d", "metadata": {}, "outputs": [ @@ -358,7 +358,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 3, "id": "8e7aaee9-297a-4965-aa76-aaddb440b105", "metadata": {}, "outputs": [ diff --git a/software/Untitled.ipynb b/software/Untitled.ipynb deleted file mode 100644 index 09c5fd4..0000000 --- a/software/Untitled.ipynb +++ /dev/null @@ -1,439 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "206a681f-a3b4-430d-8e88-d4b11a9f32d0", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAI4CAYAAACIt/jIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAastJREFUeJzt3XlcVNX/P/DXgMMAIuCC4IK4Ji6ZW5KUW65pqaW4paISlqLlkillKlq5ZGqZS/Yx9KOSiZr6MZcw9yB3c0n9uS+kaCqggjAw5/eH35kYZoAZmO3eeT0fDx46d86955y59577vueee69CCCFAREREJDMu9i4AERERkTUwyCEiIiJZYpBDREREssQgh4iIiGSJQQ4RERHJEoMcIiIikiUGOURERCRLDHKIiIhIlhjkEBERkSwxyCFZunbtGhQKBVasWKGbNm3aNCgUimItr23btmjbtq1lCmdnJfkdHFVJ18+qVasQHBwMpVIJX19fo8u09DalNWfOHAQHB0Oj0ZRoOWQfS5cuRbVq1ZCVlWXvopARDHLIZlasWAGFQqH7K1WqFKpUqYIhQ4YgOTnZ3sUjJ3X+/HkMGTIEtWrVwvfff49ly5bZLO/09HTMnj0bEydOhIuL4zXHiYmJeOWVV+Dp6YmAgAC8//77ePz4scnzL1++HPXq1YO7uzvq1KmDhQsXGk2XnJyMPn36wNfXF97e3ujRoweuXLliqWpY1ZAhQ5CdnY3vvvvO3kUhI0rZuwDkfKZPn44aNWrg6dOn+OOPP7BixQocPHgQZ86cgbu7u9XynTx5MiZNmmS15ZP9/Prrr8Wed+/evdBoNPj6669Ru3ZtiyzTVD/88ANycnLQv39/q+dlrpMnT6J9+/aoV68e5s2bh1u3bmHu3Lm4ePEitm/fXuT83333Hd577z306tUL48aNw4EDB/D+++8jIyMDEydO1KV7/Pgx2rVrh7S0NHz88cdQKpWYP38+2rRpg5MnT6J8+fLWrGaJubu7Izw8HPPmzcPo0aNl10sqdQxyyOZee+01NG/eHADwzjvvoEKFCpg9eza2bNmCPn36WC3fUqVKoVQpbvK2oNFokJ2dbdWgNS83N7diz3v37l0A0F2mssQyTRUbG4vu3bvb7Hcyx8cff4yyZcti79698Pb2BgBUr14dkZGR+PXXX9GpU6cC583MzMQnn3yCbt26Yf369QCAyMhIaDQazJgxA8OHD0fZsmUBAIsXL8bFixdx+PBhvPjiiwCetRENGzbEV199hS+++MLKNS25Pn36YM6cOdizZw9effVVexeH8nC8/lFyOq1atQIAXL58WTctOzsbU6ZMQbNmzeDj44PSpUujVatW2LNnj8H8qampGDJkCHx8fODr64vw8HCkpqYapDM2fiI2NhavvvoqKlasCJVKhfr162PJkiUlqs/q1avRrFkzeHh4oFy5cujXrx9u3rxpkG7ZsmWoVasWPDw80KJFCxw4cMBgHIj2Et+1a9f05t27dy8UCgX27t2rm3bgwAGEhYWhWrVqUKlUCAwMxNixY5GZmVnsusydOxehoaEoX748PDw80KxZM91BKy+FQoFRo0ZhzZo1aNCgAVQqFXbs2AHg2aWIYcOGwd/fHyqVCg0aNMAPP/ygN78569uY/L+b9vdZt24dPv/8c1StWhXu7u5o3749Ll26pEtXvXp1TJ06FQDg5+cHhUKBadOmGV2mpV29ehWnTp1Chw4dDOqS97Ju3r+844GsKT09HQkJCRg4cKAuwAGAwYMHw8vLC+vWrSt0/j179uD+/fsYOXKk3vSoqCg8efIEv/zyi27a+vXr8eKLL+oCHAAIDg5G+/bti8wH+Hfbi4+PR/369eHh4YGWLVvi9OnTAJ71KNWuXRvu7u5o27atwb7Utm1bNGzYEKdOnUKbNm3g6emJ2rVr67bzffv2ISQkBB4eHqhbty527dplUIZmzZqhXLly2Lx5c5HlJdviaS3ZnbbR0Z7ZAc8a2f/85z/o378/IiMj8ejRIyxfvhydO3fG4cOH0bhxYwCAEAI9evTAwYMH8d5776FevXr4+eefER4eblLeS5YsQYMGDdC9e3eUKlUK//vf/zBy5EhoNBpERUWZXZfPP/8cn376Kfr06YN33nkH9+7dw8KFC9G6dWucOHFC11uwfPlyvPvuuwgNDcWYMWNw5coVdO/eHeXKlUNgYKDZ+QJAfHw8MjIyMGLECJQvXx6HDx/GwoULcevWLcTHxxdrmV9//TW6d++Ot99+G9nZ2Vi7di3CwsKwdetWdOvWTS/t7t27sW7dOowaNQoVKlRA9erVkZKSgpdeekl3IPLz88P27dsRERGB9PR0jBkzBoDp69tcs2bNgouLCz788EOkpaVhzpw5ePvtt3Ho0CEAwIIFC/Df//4XP//8M5YsWQIvLy80atSoWHmZKzExEQDQtGlTvemffPIJ3nnnHb1pq1evxs6dO1GxYsVCl/nw4UPk5uYWmbenpyc8PT0L/P706dPIycnR9bhqubm5oXHjxjhx4kShy9d+n3/+Zs2awcXFBSdOnMDAgQOh0Whw6tQpDBs2zGAZLVq0wK+//opHjx6hTJkyheZ34MABbNmyRbfPzpw5E6+//jo++ugjLF68GCNHjsTDhw8xZ84cDBs2DLt379ab/+HDh3j99dfRr18/hIWFYcmSJejXrx/WrFmDMWPG4L333sOAAQPw5Zdfonfv3rh586ZBmZo2bYrff/+90HKSHQgiG4mNjRUAxK5du8S9e/fEzZs3xfr164Wfn59QqVTi5s2burQ5OTkiKytLb/6HDx8Kf39/MWzYMN20TZs2CQBizpw5evO2atVKABCxsbG66VOnThX5N/mMjAyDcnbu3FnUrFlTb1qbNm1EmzZtCq3ftWvXhKurq/j888/1pp8+fVqUKlVKNz07O1tUrFhRNG7cWK+Oy5YtEwD08tH+ZlevXtVb5p49ewQAsWfPnkLrMnPmTKFQKMT169d104z9DgXJv8zs7GzRsGFD8eqrr+pNByBcXFzE2bNn9aZHRESISpUqiX/++Udver9+/YSPj49u+aau74LkXz/a36devXp6y/36668FAHH69GndNO3vce/evUKXefXqVZO2KVNNnjxZABCPHj0qNN3vv/8ulEqlSb9DUFCQAFDk39SpUwtdTnx8vAAg9u/fb/BdWFiYCAgIKHT+qKgo4erqavQ7Pz8/0a9fPyGEEPfu3RMAxPTp0w3SLVq0SAAQ58+fLzQvAEKlUuntI999950AIAICAkR6erpuenR0tMH+1KZNGwFAxMXF6aadP39et03/8ccfuuk7d+402Aa0hg8fLjw8PAotK9kee3LI5vJ3z1evXh2rV69G1apVddNcXV3h6uoK4Nn4jtTUVGg0GjRv3hzHjx/Xpdu2bRtKlSqFESNG6M07evRoHDhwoMiyeHh46P6flpYGtVqNNm3aYOfOnUhLS4OPj4/J9dq4cSM0Gg369OmDf/75Rzc9ICAAderUwZ49e/Dxxx/j6NGjuHv3LqZPn6437mPIkCGYMGGCyfkVVpcnT54gMzMToaGhEELgxIkTqFatWomWqe0laNWqFX788UeDtG3atEH9+vV1n4UQ2LBhA/r06QMhhN5v0rlzZ6xduxbHjx/Hyy+/bPL6NtfQoUP1fmPtpdErV66gYcOGxV6uJdy/fx+lSpWCl5dXgWnu3LmD3r17o3Hjxli8eHGRy1yzZo1Jlydr1qxZ6PfaZahUKoPv3N3di8wjMzOzwDFNeecvKp+8aQrTvn17VK9eXfc5JCQEANCrVy+9Hhft9CtXruil9/LyQr9+/XSf69atC19fX1SpUkU3T/758ytbtiwyMzORkZFRaC8Z2RaDHLK5RYsW4bnnnkNaWhp++OEH7N+/32gjt3LlSnz11Vc4f/481Gq1bnqNGjV0/79+/ToqVapkcKCoW7euSWX5/fffMXXqVCQlJSEjI0PvO3ODnIsXL0IIgTp16hj9XqlU6soMwCCdUqks8uBTmBs3bmDKlCnYsmULHj58qPddWlpagfM9ePAA2dnZus8eHh66em/duhWfffYZTp48qfccEGN3kORdLwBw7949pKamYtmyZQXelq0d9AuYtr7NlT+w014Szf/7OKKcnBz06dMHubm52Lhxo9F9JL+XX37ZInlrg1tjz355+vSpXvBb0Px5t6mC5i8qn7xpCpN/PWu33/yXfrXT86//qlWrGmzTPj4+Js8PPAvqAeP7BtkPgxyyuRYtWuiu1ffs2ROvvPIKBgwYgAsXLuiCldWrV2PIkCHo2bMnJkyYgIoVK8LV1RUzZ87UG6BcEpcvX0b79u0RHByMefPmITAwEG5ubti2bRvmz59v9sPZNBoNFAoFtm/fruuVyKuwM/aCFNRg5h93kZubi44dO+LBgweYOHEigoODUbp0aSQnJ2PIkCGF1uWtt97Cvn37dJ/Dw8OxYsUKHDhwAN27d0fr1q2xePFiVKpUCUqlErGxsYiLizNYTv6DkTbPgQMHFjhGSjv+xVrr29h6AP49INlT+fLlkZOTU+CYkwkTJiApKQm7du3S6+UszL1790wak+Pl5VXo9lipUiUAwO3btw2+u337NipXrlzo8itVqoTc3FzcvXtXbxxRdnY27t+/r5u/XLlyUKlUBeYDoMi8gILXs6nrv6TzA88CH09PT5OCMrIdBjlkV9oDWbt27fDtt9/qnmOzfv161KxZExs3btQ70GvvhNEKCgrCb7/9hsePH+s12hcuXCgy7//973/IysrCli1b9M4ETb2jJ79atWpBCIEaNWrgueeeKzBdUFAQgGc9P3lvN1Wr1bh69SpeeOEF3TRtz0P+u8W0vUFap0+fxv/7f/8PK1euxODBg3XTExISiiz3V199pXdmqj2obNiwAe7u7ti5c6deL0JsbGyRywSe3a1UpkwZ5ObmGlyizM/U9S0nwcHBAJ7dZZV/sPPatWuxYMECLFiwAG3atDF5mS+++KLBtmHM1KlTdXeRGdOwYUOUKlUKR48e1XusQ3Z2Nk6ePFnkox60A8WPHj2Krl276qYfPXoUGo1G972Liwuef/55HD161GAZhw4dQs2aNYscdOworl69inr16tm7GJQPbyEnu2vbti1atGiBBQsW6LqotWdQec+YDh06hKSkJL15u3btipycHL3bvnNzcwt8smpexvJIS0sz+SCe31tvvQVXV1fExMQYnOkJIXD//n0Az+448fPzw9KlS/W69FesWGEQzNSqVQsAsH//ft203Nxcg8s/xuoihMDXX39dZLmbNWuGDh066P6042pcXV2hUCj0egauXbuGTZs2FblM7fy9evXChg0bcObMGYPv7927V2j5ja1vOWnZsiUAGBzgz5w5g3feeQcDBw7EBx98YNYy16xZg4SEhCL/8gbCxvj4+KBDhw5YvXo1Hj16pJu+atUqPH78GGFhYbppGRkZOH/+vN6Yq1dffRXlypUzeBzDkiVL4OnpqXdnXu/evXHkyBG93+HChQvYvXu3Xj6O7vjx4wgNDbV3MSgf9uSQQ5gwYQLCwsKwYsUKvPfee3j99dexceNGvPnmm+jWrRuuXr2KpUuXon79+nqPlX/jjTfw8ssvY9KkSbh27Rrq16+PjRs3FjoGRatTp05wc3PDG2+8gXfffRePHz/G999/j4oVKxrtPi9KrVq18NlnnyE6OhrXrl1Dz549UaZMGVy9ehU///wzhg8fjg8//BBKpRKfffYZ3n33Xbz66qvo27cvrl69itjYWIMxOQ0aNMBLL72E6OhoPHjwAOXKlcPatWuRk5Ojly44OBi1atXChx9+iOTkZHh7e2PDhg0lGnvSrVs3zJs3D126dMGAAQNw9+5dLFq0CLVr18apU6dMWsasWbOwZ88ehISEIDIyEvXr18eDBw9w/Phx7Nq1Cw8ePAAAk9e3nNSsWRMNGzbErl279G6hHjp0KACgdevWWL16td48oaGhhY7bstSYHODZ4xBCQ0PRpk0bDB8+HLdu3cJXX32FTp06oUuXLrp0hw8fRrt27fR6hzw8PDBjxgxERUUhLCwMnTt3xoEDB7B69Wp8/vnnKFeunG7+kSNH4vvvv0e3bt10+8e8efPg7++P8ePHW6w+1nTs2DE8ePAAPXr0sHdRKD/b39BFzkp7O/SRI0cMvsvNzRW1atUStWrVEjk5OUKj0YgvvvhCBAUFCZVKJZo0aSK2bt0qwsPDRVBQkN689+/fF4MGDRLe3t7Cx8dHDBo0SJw4ccKk2323bNkiGjVqJNzd3UX16tXF7NmzxQ8//GD0NtOibiHX2rBhg3jllVdE6dKlRenSpUVwcLCIiooSFy5c0Eu3ePFiUaNGDaFSqUTz5s3F/v37jeZz+fJl0aFDB6FSqYS/v7/4+OOPRUJCgsEt5H/99Zfo0KGD8PLyEhUqVBCRkZHizz//LNFtz8uXLxd16tQRKpVKBAcHi9jYWKPzAxBRUVFGl5GSkiKioqJEYGCgUCqVIiAgQLRv314sW7ZMl8ac9W1MQbeQx8fH66Ur7DZwW99CLoQQ8+bNE15eXnq36hd2G7ixW5et6cCBAyI0NFS4u7sLPz8/ERUVpXdLthD//tbGbktftmyZqFu3rnBzcxO1atUS8+fPFxqNxiDdzZs3Re/evYW3t7fw8vISr7/+urh48aJJZTS27WnX1Zdffmm0rHm3izZt2ogGDRoYLDcoKEh069bNpPwmTpwoqlWrZrRuZF8KIRxgBB4RAYDuCbt5n2RM8pWWloaaNWtizpw5iIiIsHdxqBiysrJQvXp1TJo0yezLi2R9HJNDRGQnPj4++Oijj/Dll1+afTcfOYbY2FgolUq899579i4KGcGeHCIHwp4cIiLLYU8OERERyRJ7coiIiEiW2JNDREREssQgh4iIiGSJQQ4RyV5KSgp69+6N8uXLQ6FQYMGCBQWmVSgUhb7ygIikg0EOkQyNHTsWTZs2Rbly5eDp6Yl69eph2rRpRp8enJWVhYkTJ6Jy5crw8PBASEiISe+80kpOTkafPn3g6+sLb29v9OjRA1euXDHIY/To0fDz80PVqlXx2WefGSzn1q1b8PLywu+//25+hYswduxY7Ny5E9HR0Vi1apXeE3tJX9u2bdGwYUN7F8OoIUOGFOtFt+S8+FoHIhk6cuQIWrVqhaFDh8Ld3R0nTpzArFmzsGvXLuzfvx8uLv+e3wwZMgTr16/HmDFjUKdOHaxYsQJdu3bFnj178MorrxSaz+PHj9GuXTukpaXh448/hlKpxPz589GmTRucPHkS5cuXBwB8+eWX+O9//4tPPvkEjx49wvTp01GrVi30799ft6wJEyage/fuFn01gdbu3bvRo0cPfPjhh0WmzczMRKlSbBqJZMGej1smcmSPHz+2dxEsau7cuQKASEpK0k07dOiQwePvMzMzRa1atUTLli2LXObs2bMFAHH48GHdtHPnzglXV1cRHR2tmxYSEiJiYmJ0n8PDw0W/fv10nw8cOCBKly4tbt68Wez6FUahUBT42gmpyczMFLm5uVZbfkGvOXAE4eHhonTp0vYuBkkIL1eRrF2/fh0jR45E3bp14eHhgfLlyyMsLAzXrl3TS7dixQooFArs27cPI0eORMWKFVG1alXd99u3b0erVq1QunRplClTBt26dcPZs2f1lnHq1CkMGTIENWvWhLu7OwICAjBs2DDd28ftrXr16gCg96bz9evXw9XVFcOHD9dNc3d3R0REBJKSknDz5s1Cl7l+/Xq8+OKLePHFF3XTgoOD0b59e6xbt043LTMzE2XLltV9LleuHDIyMgAAGo0GH3zwAT766CO939wUV65cQVhYmO6y3EsvvYRffvlF9712vQohsGjRIigUCigUikKXmX9MzrRp06BQKHDp0iUMGTIEvr6+8PHxwdChQ3V1yDvvqFGjsGnTJjRs2BAqlQoNGjTAjh07DPJJTk7GsGHD4O/vr0v3ww8/6KXZu3cvFAoF1q5di8mTJ6NKlSrw9PREeno6AODy5cu4fPmyWb+ZuWJjY6FQKAzK9sUXX0ChUGDbtm1Wzb8w4eHhqFChAtRqtcF3nTp1Qt26de1QKnIk7JMlWTty5AgSExPRr18/VK1aFdeuXcOSJUvQtm1b/PXXX/D09NRLP3LkSPj5+WHKlCl48uQJAGDVqlUIDw9H586dMXv2bGRkZGDJkiV45ZVXcOLECV3wkJCQgCtXrmDo0KEICAjA2bNnsWzZMpw9exZ//PFHkQfXf/75x6Q6lSlTBiqVqsh0OTk5SE1NRXZ2Ns6cOYPJkyejTJkyaNGihS7NiRMn8Nxzz8Hb21tvXm2akydPIjAw0OjyNRoNTp06pfcG7bzz//rrr3j06BHKlCmDF198EcuWLUPbtm3x+PFj/Pjjjxg1ahQAYPny5fjnn38wYcIEk+qvlZKSgtDQUGRkZOD9999H+fLlsXLlSnTv3h3r16/Hm2++idatW2PVqlUYNGgQOnbsiMGDB5uVR159+vRBjRo1MHPmTBw/fhz/+c9/ULFiRcyePVsv3cGDB7Fx40aMHDkSZcqUwTfffINevXrhxo0bust3KSkpeOmll3RBkZ+fH7Zv346IiAikp6djzJgxesucMWMG3Nzc8OGHHyIrKwtubm4AgPbt2wOAQdBuSUOHDsXGjRsxbtw4dOzYEYGBgTh9+jRiYmIQERGBrl27mrSc1NRU3LlzB1WrVjU6riY5ORlVqlQxq2yDBg3Cf//7X+zcuROvv/66bvqdO3ewe/duTJ061azlkQzZuyuJyJryvt1ZKykpSQAQ//3vf3XTtG9If+WVV0ROTo5u+qNHj4Svr6+IjIzUW8adO3eEj4+P3nRjef34448CgNi/f3+RZUUBb57O/2fqm6i19dT+1a1bV++t5UII0aBBA/Hqq68azHv27FkBQCxdurTA5d+7d08AENOnTzf4btGiRQKAOH/+vBDi2VumGzRooCtLq1atxKNHj0Rqaqrw8/MTa9euNalOeY0ZM0YAEAcOHNBNe/TokahRo4aoXr263iUdFPKW9PyQ743a2jeNDxs2TC/dm2++KcqXL28wr5ubm7h06ZJumvZN8AsXLtRNi4iIEJUqVRL//POP3vz9+vUTPj4+um1J+9bsmjVrGt2+goKCTHpLuzmMXa66ffu2KFeunOjYsaPIysoSTZo0EdWqVRNpaWlFLu/mzZuiV69ewsXFRQAQSqVSdOnSRaxcuVJcvnxZ/PXXX+KTTz4RL7/8cpHLyn+5Kjc3V1StWlX07dtXL928efOEQqEQV65cMbHWJFfsySFZ8/Dw0P1frVYjPT0dtWvXhq+vL44fP45BgwbppY+MjISrq6vuc0JCAlJTU9G/f3+9nhZXV1eEhIRgz549RvN6+vQpHj9+jJdeegkAcPz4cbRq1arQspp6R1ODBg1MSle/fn0kJCTgyZMnSExMxK5duwzursrMzDTaK+Tu7q77viDa70yZv2rVqjhx4gTOnj0LNzc3BAcHw8XFBePGjUPdunXRt29fHDx4EOPHj8fff/+NN998E3PnztX1WBizbds2tGjRQm9wtJeXF4YPH47o6Gj89ddfFr1LKP8LGFu1aoWff/4Z6enpej1hHTp0QK1atXSfGzVqBG9vb90dZ0IIbNiwAX369IEQQm+76ty5M9auXYvjx4/rDcAODw/X2760rNmDk1dAQAAWLVqE/v37o1WrVjh58iQSEhIMegCNiYmJwZMnT7BhwwZUrFgRx48fx7p16zBkyBCI/3vgfq1atbBo0SKzy+Xi4oK3334b33zzja7XEADWrFmD0NBQ1KhRw+xlkrwwyCFZy8zMxMyZMxEbG4vk5GRdowoAaWlpBunzN4oXL14EALz66qtGl5+3kX/w4AFiYmKwdu1a3L17Vy+dsbzy69ChQ5FpzOHt7a1bZo8ePRAXF4cePXrg+PHjeOGFFwA8C8yysrIM5n369Knu+4JovzN1fqVSicaNG+s+nz9/HosXL0ZiYiIePHiAbt26YdKkSWjXrh2GDh2Kzz//HDExMQXmf/36dYSEhBhMr1evnu57SwY51apV0/usHWP08OFDve0gfzpt2ocPHwIA7t27h9TUVCxbtgzLli0zmlf+7ccRDtb9+vXD6tWr8csvv2D48OG6S2VFGTdunG6dAEBoaChGjRqF5ORknDlzBmXLlkWzZs2Qk5NTrHINHjwYs2fPxs8//4zBgwfjwoULOHbsGJYuXVqs5ZG8MMghWRs9ejRiY2MxZswYtGzZEj4+PlAoFOjXrx80Go1B+vwHdW2aVatWISAgwCB93luN+/Tpg8TEREyYMAGNGzeGl5cXNBoNunTpYjSv/O7cuWNSnXx8fAoNPgry1ltvYdCgQVi7dq0uyKlUqRKSk5MN0t6+fRsAULly5QKXV65cOahUKl1ac+cfO3YsBg4ciKZNm2LVqlUoV64coqOjAQAfffRRkUGOreXt4ctL5Hv9X1HptNvCwIEDER4ebjRto0aN9D4XZ31b2v3793H06FEAwF9//QWNRqP3KIKCVKpUCRMnTkRcXBxu376NoKAgdO3aFT179kRoaCiys7Px/fffY8uWLcUaxFy/fn00a9YMq1evxuDBg7F69Wq4ubmhT58+Zi+L5IdBDsna+vXrER4ejq+++ko37enTp3p3GBVGe9mhYsWKhfa0PHz4EL/99htiYmIwZcoU3XRtT5ApKlWqZFK62NhYDBkyxOTlamVlZUGj0ej1KjVu3Bh79uwxuORy6NAh3fcFcXFxwfPPP6878OV16NAh1KxZU3f5IL+tW7ciMTFR9/v8/fffevWvXLmy0eArr6CgIFy4cMFg+vnz53XfOyI/Pz+UKVMGubm5Fu+9s6aoqCg8evQIM2fORHR0NBYsWIBx48YVOd9HH32EP//8E9OnT4e/vz+OHTuGH3/8Ed9++60uTcWKFfHNN98Uu2yDBw/GuHHjcPv2bcTFxaFbt256d/OR82KQQ7Lm6upqcKa9cOFC5ObmmjR/586d4e3tjS+++ALt2rWDUqnU+/7evXvw8/PTnb3nz6uw1wfkZ6kxOampqShdurRBWf/zn/8AAJo3b66b1rt3b8ydOxfLli3TPSgvKysLsbGxCAkJ0buz6saNG8jIyEBwcLDe/JMmTcLRo0d1y71w4QJ2795d4IP3srOzMW7cOEyePBkVK1YEAPj7++PSpUvIyclBqVKlcO7cOaM9Z3l17doVCxYsQFJSElq2bAkAePLkCZYtW4bq1aujfv36hc5vL66urujVqxfi4uJw5swZg0tq2m3Kkaxfvx4//fQTvvnmG4wePRp//vknJk+ejNdffx3PPfdcofNGRkaiefPmursLu3btik8//RRnz57VXa5q3bq1bhxXcfTv3x/jx4/HBx98gCtXruDLL78s9rJIXhjkkKy9/vrrWLVqFXx8fFC/fn0kJSVh165dult5i+Lt7Y0lS5Zg0KBBaNq0Kfr16wc/Pz/cuHEDv/zyC15++WV8++238Pb2RuvWrTFnzhyo1WpUqVIFv/76K65evWpyWS11Vr937168//776N27N+rUqYPs7GwcOHAAGzduRPPmzTFw4EBd2pCQEISFhSE6Ohp3795F7dq1sXLlSly7dg3Lly/XW+7gwYOxb98+vUBu5MiR+P7779GtWzd8+OGHUCqVmDdvHvz9/TF+/Hij5fv6668BAB988IFuWteuXREVFYUBAwYgNDQUM2bMwDvvvFNoPSdNmoQff/wRr732Gt5//32UK1cOK1euxNWrV7FhwwaTLqXYy6xZs7Bnzx6EhIQgMjIS9evXx4MHD3D8+HHs2rULDx48MGk52scXWHMA8t27dzFixAi0a9dOd9v/t99+iz179mDIkCE4ePBgob913mco5dWgQQOTB9EXxc/PD126dEF8fDx8fX3RrVs3iyyXZMBu93UR2cDDhw/F0KFDRYUKFYSXl5fo3LmzOH/+vAgKChLh4eG6dNpbyI8cOWJ0OXv27BGdO3cWPj4+wt3dXdSqVUsMGTJEHD16VJfm1q1b4s033xS+vr7Cx8dHhIWFib///tvglmRru3Tpkhg8eLCoWbOm8PDwEO7u7qJBgwZi6tSpRp/inJmZKT788EMREBAgVCqVePHFF8WOHTsM0rVp00YYazJu3rwpevfuLby9vYWXl5d4/fXXxcWLF42W7c6dO6JMmTJiy5YtBt9t375dBAcHC19fXzF48GDx5MmTIut6+fJl0bt3b+Hr6yvc3d1FixYtxNatWw3SwQK3kN+7d08vnXabuXr1apH55N/ehBAiJSVFREVFicDAQKFUKkVAQIBo3769WLZsmS6N9hby+Ph4o2WtUKGCeOmll0yql6ny30L+1ltviTJlyohr167ppdu8ebMAIGbPnm3R/AtT2BOP161bJwCI4cOH26w85PgUQuTrXyciIof3119/oUGDBti6dSt7LgBs3rwZPXv2xP79+4t8XAM5D8ftzyUiogLt2bMHLVu2ZIDzf77//nvUrFmzyJfKknNhTw4REUnW2rVrcerUKcycORNff/013n//fXsXiRwIgxwiIpIshUIBLy8v9O3bF0uXLtV7dhWRpC5X7d+/H2+88QYqV64MhUKBTZs26X0vhMCUKVNQqVIleHh4oEOHDiY9p2TRokWoXr063N3dERISgsOHD1upBkREZElCCDx69Aj/+c9/GOCQAUkFOU+ePMELL7xQ4DtO5syZg2+++QZLly7FoUOHULp0aXTu3Fn3iHljfvrpJ4wbNw5Tp07VPe6+c+fOBo9VJyIiImmR7OUqhUKBn3/+GT179gTwLJqvXLkyxo8fr3sIWVpaGvz9/bFixQr069fP6HJCQkLw4osv6p6+qdFoEBgYiNGjR2PSpEk2qQsRERFZnmz69q5evYo7d+7oPVDNx8cHISEhSEpKMhrkZGdn49ixY7r35QDPHlXfoUMHJCUlFZhXVlaW3ksJNRoNHjx4gPLly+ue6klERETGaS8zVq5c2aoP7pRNkKN9uaG/v7/edH9//wJffPjPP/8gNzfX6Dza998YM3PmTId6cSAREZEU3bx5E1WrVrXa8mUT5NhSdHS03ovp0tLSUK1aNXTwfQvIktQwJ5Mp3V0xaFEPrIraDPVT0977JEWsp7w4Qz2doY4A6yk7Kg12pW4s8CW+liKbIEf7Mr+UlBS9txmnpKQU+CblChUqwNXVFSkpKXrTU1JSCn05oEqlgkqlMvwiywUoeIyztClc4Onp+X91lPGOx3rKizPU0xnqCLCesvOsQ8DaQzxk0+1Qo0YNBAQE4LffftNNS09Px6FDh3RvKM7Pzc0NzZo105tHo9Hgt99+K3AeIiIikgZJ9eQ8fvwYly5d0n2+evUqTp48iXLlyqFatWoYM2YMPvvsM9SpUwc1atTAp59+isqVK+vuwAKA9u3b480339S9TXfcuHEIDw9H8+bN0aJFCyxYsABPnjzB0KFDbV09IiIisiBJBTlHjx5Fu3btdJ+142LCw8OxYsUKfPTRR3jy5AmGDx+O1NRUvPLKK9ixYwfc3d1181y+fBn//POP7nPfvn1x7949TJkyBXfu3EHjxo2xY8cOg8HIREREJC2SCnLatm2Lwh7ro1AoMH36dEyfPr3ANNeuXTOYNmrUKF3PDhEREcmDbMbkEBEREeXFIIeIiIhkiUEOERERyRKDHCIiIpIlBjlEREQkSwxyiIiISJYY5BAREZEsMcghIiIiWWKQQ0RERLLEIIeIiIhkiUEOERERyRKDHCIiIpIlBjlEREQkSwxyiIiISJYY5BAREZEsMcghIiIiWWKQQ0RERLLEIIeIiIhkiUEOERERyRKDHCIiIpKlUvYuABVPgibepvmp1Wps27YNm1NXQqlU2jRvW2I95cUZ6ukMdQRYT1vp6BJm8zytiT05REREJEsMcoiIiEiWGOQQERGRLDHIISIiIllikENERESyxCCHiIiIZIlBDhEREckSgxwiIiKSJQY5REREJEsMcoiIiEiW+FoHInJ4xX3UvNJDiXfj+qKHbzjUmepiLcPWr1AhIsthTw4RERHJEntyiMhupPAyQFPLyB4fIsfDIIeIrEYKQYylFFVXBkFEtscgh4hKzJmCmeIq6Ddi8ENkPQxyiMhsDGosJ/9vyaCHyHIY5BBRoRjQ2Jax35uBD1HxMMghIh0GNI6JgQ9R8TDIIXJyDGykSbvetM8CIiJDfE4OERERyRJ7coicSP6z/x6+4XYuEVlK/qc683IWEYMcIqfAS1LOR7vOGeyQM2OQQyRDDGpIi7eokzNjkEMkEwxsyBR5txMGPCR3DHKIJI7BDRUXL2mR3MkqyKlevTquX79uMH3kyJFYtGiRwfQVK1Zg6NChetNUKhWePn1qtTISlRSDGrI0XtIiuZJVkHPkyBHk5ubqPp85cwYdO3ZEWFjBBwVvb29cuHBB91mhUFi1jERERGQbsgpy/Pz89D7PmjULtWrVQps2bQqcR6FQICAgwNpFIyox9uCQrfAyFsmFrIKcvLKzs7F69WqMGzeu0N6Zx48fIygoCBqNBk2bNsUXX3yBBg0aFLrsrKwsZGVl6T6np6cDAJTuroDCNs9XVKvVRSeyQn62ztfWHK2eeZ9jo/RQWmy5So9Sev/KlTPU05p17Fp6gO7/m1NXWnz55nC0fdNa7F1PS7YzhVJpgEzrZ6MQQgjrZ2N769atw4ABA3Djxg1UrlzZaJqkpCRcvHgRjRo1QlpaGubOnYv9+/fj7NmzqFq1aoHLnjZtGmJiYgymx8XFwdPT02J1ICIikqOMjAwMGDAAaWlp8Pb2tlo+sg1yOnfuDDc3N/zvf/8zeR61Wo169eqhf//+mDFjRoHpjPXkBAYG4rWyfYEs2/Tk2PqsSq1WIyEhAR07doRSaaNI3w7sXU9bPYFY6VEKw5b3wg8RG6DOzLFJnvbgDPW0Vx3ZBlmHvetps6egqzTY/vAnqwc5suzDvX79Onbt2oWNGzeaNZ9SqUSTJk1w6dKlQtOpVCqoVCqD6eqnucDTXCNzWJ69dnKlUinrBkbL1vW013gbdWaO3qsA5MoZ6mnrOnZVPbuUZetxO2yDrMtm25CNuldkGeTExsaiYsWK6Natm1nz5ebm4vTp0+jatauVSkb0Lw4kJjngwwXJkcnuLeQajQaxsbEIDw9HqVL6MdzgwYMRHR2t+zx9+nT8+uuvuHLlCo4fP46BAwfi+vXreOedd2xdbCIiIrIw2fXk7Nq1Czdu3MCwYcMMvrtx4wZcXP6N6x4+fIjIyEjcuXMHZcuWRbNmzZCYmIj69evbssjkZNiDQ3LFW8/J0cguyOnUqRMKGku9d+9evc/z58/H/PnzbVAqIgY35DwY7JCjkF2QQ+RoGNyQs2KwQ/bGIIfIShjcED3DYIfshUEOkYUxuCEyjsEO2Zrs7q4isicGOERF435CtsKeHKISYoNNZD4+X4dsgT05REREJEvsySEqJvbgEFkGx+qQtbAnh6gYGOAQWR73K7I09uQQmYGNMJF1sVeHLIlBDpEJGNwQ2RaDHbIEXq4iKgIDHCL74f5HJcGeHKICsHElcgwdXcKg9FDi3bi+9i4KSQx7coiIiEiW2JNDZEQP33B7F4H+T0nGZKjVamzbtg2bU1dCqVQWezns1SOSJgY5RGRXUhhYWlQZGQTZTg/fcGx7EmfvYpBEMMghwr8HKV73tw4pBDIlUVj9GABZHl8JQaZikENOjwchy+OB51/5fwtub5bV0SWM2xsViEEOOTUecEqOBxjzGPu9uB2WDAMdKgiDHHJaPLCYjwcS62DgU3IMdMgYBjnkVHjgMB8PHPaR93fndmsajtWh/PicHCIiIpIl9uSQ0+DZsGl4Bux4OHjZfLx8RQB7cshJ8KBQtARNPA8KEsF1ZRru98SeHJI9NnQFK+mTgMm+EjTxuqc6k3Hs0XFu7MkhWWOAYyhBE4/NqSvtXQyysM2pK9nDUwC2A86LPTkkW2zY/sUDn3PhnVmG2KPjnNiTQ7LEhv0ZntkTt4F/sV1wPgxyiIiISJZ4uYpkhWdqvDRFxvES1jPaunM/cQ7sySHZcOaGG+BlCTIdtxW2F86CQQ7JgjM3WDxgUXE5+7bjzO2Gs+DlKpI8Z2yonPnARJbnzJeyeNeVvLEnhyTN2RpkgAEOWZczbl/O2I44CwY5JFnO1jA5+6UFsh1n3NacrT1xFgxyiIiISJY4Jockx5nOuJztbJoci7ON1eHt5fLDnhySFGdoaLXY0JIjcabt0ZnaGbljkEOS4SwNjzOOhyBpcKZt01naG7ljkEOS4CwNjrMcQEjanGU7dZZ2R84Y5JDDc4aGxpnOkEkenGWbdYb2R84Y5JBDk3sD4ywHCpIvZ9iG5d4OyRnvriKHJPdGRe4HBXI+2m1arvsun4wsTezJISIiIllikENkYzwbJDnj9k2OhEEOORy5dncDPACQc5Drdt7RJUzW7ZMccUwOORQ5NiBybfCJCiPnpyVzfI50sCeHHIbcGkKAAQ4RIM/9QI7tlRzJKsiZNm0aFAqF3l9wcHCh88THxyM4OBju7u54/vnnsW3bNhuVlvKSY4Mhx4adqLjkuD/Isd2SG1kFOQDQoEED3L59W/d38ODBAtMmJiaif//+iIiIwIkTJ9CzZ0/07NkTZ86csWGJSY7k2KATlRT3C7I12QU5pUqVQkBAgO6vQoUKBab9+uuv0aVLF0yYMAH16tXDjBkz0LRpU3z77bc2LDERERFZg+wGHl+8eBGVK1eGu7s7WrZsiZkzZ6JatWpG0yYlJWHcuHF60zp37oxNmzYVmkdWVhaysrJ0n9PT0wEASndXQGGbuFGtVtskn/z5WSPfHr7hUHooLb7c4lB6lNL7tzg2p660+foxlzXXpyNxhnpKrY7bsuLQwzfc7PkssW9aQ9fSA7A5daXFlmfv9WmztlilATKtn41CCCGsn41tbN++HY8fP0bdunVx+/ZtxMTEIDk5GWfOnEGZMmUM0ru5uWHlypXo37+/btrixYsRExODlJSUAvOZNm0aYmJiDKbHxcXB09PTMpUhIiKSqYyMDAwYMABpaWnw9va2Wj6OFRKX0Guvvab7f6NGjRASEoKgoCCsW7cOERERFssnOjparwcoPT0dgYGBWBW1GciyTU+OJc8cTKFWq5GQkICOHTtCqSx5pF+cMzlbUHqUwrDlvfBDxAaoM3NMmsfW68ISLL0+HZUz1FMOdTSlPSjOvmkPJW0P7L0+bdY2qzQ2yUZWQU5+vr6+eO6553Dp0iWj3wcEBBj02KSkpCAgIKDQ5apUKqhUKoPp6qe5wNPc4hfYDPZqzJRKpUXyVmc6dte6OjPHpDJKfSClpdano3OGekq5jtuexJl8p5Kp+6a9WGod2Gt92uy3tdE1JNkNPM7r8ePHuHz5MipVqmT0+5YtW+K3337Tm5aQkICWLVvaonhOSy63XUo9wCFyJHLZn+TSvsmFrIKcDz/8EPv27cO1a9eQmJiIN998E66urroxN4MHD0Z0dLQu/QcffIAdO3bgq6++wvnz5zFt2jQcPXoUo0aNslcVZE8uDYBcGmQiRyKX/Uou7ZwcyOpy1a1bt9C/f3/cv38ffn5+eOWVV/DHH3/Az88PAHDjxg24uPwb14WGhiIuLg6TJ0/Gxx9/jDp16mDTpk1o2LChvapAREREFiKrIGft2rWFfr93716DaWFhYQgLY9RtC3I5u5HL2SaRI0rQxMuireD7rRyDrC5XEVkbGy0i6+N+RpbCIIdsQupnZgmaeDa8RDYkh31O6u2eHDDIIauT+o4u9YaWSMqkvv9Jvf2TOgY5RIWQegNLJAfcD6m4GOSQ1XR0CZP0WQwbViLHIcUni2tJvS2UMgY5REZIuUElIqJnGOQQERGRLDHIIatg1ywRkT62i7bHIIcsjjsyEVmL1C8ls320LQY5RP8nQRMv+QaUyBnI4Rk6ZBsMcsiipHqWwgaTSHqkut9KtZ2UIgY55PSk2lASEfdfKhyDHLIYKZ6dsIEkkj4p7sdSbC+liEEOERERyRKDHLIInpUQEZmH7ab1McghpyXFLm4iMo77MxnDIIdKTIpnI2wQieRHivu1FNtPKSll7wIQ2ZIUG0EiMp12H2fwQACDHCoBNiJERCWnbUt5EmZ5vFxFToMNCJHz4P5OAIMcIiIikikGOVQsUrtUxbM6Iucjtf1eau2qFDDIISIiIllikENmk9rZhtTO5ojIcqS2//fwDbd3EWSFQQ7JmtQaOCKyPLYDzotBDpmFZxlERCQVDHJItnj2RkRabA+cE4MckiU2aESUn5TaBfaaWwaDHCIiIpIlBjlEREQkSwxyyCRS6TpN0MRLqkuaiGxLSm2E1B7X4YgY5BAREZEsMcihQnV0CZPM2YRUzs6IyP6k0l5IqQ12RAxySBak0mARkeNguyF/DHKIiIhIlhjkEBERkSwxyKECSeU6MLuciai4pNJ+SKU9djQMcoiIiEiWGOSQUVI5a5DKWRgROS6ptCNSaZcdCYMcIiIikiUGOSRZUjn7IiLHx/ZEnhjkkAF2iRIROSa2z+ZhkENERESyVMreBSAyF7uVicgatG0Le0vkgz05REREJEsMckiPo5/BsBeHiKzN0dsZR2+nHQmDHCIiIpIlWQU5M2fOxIsvvogyZcqgYsWK6NmzJy5cuFDoPCtWrIBCodD7c3d3t1GJHQvPDoiIpIHttWlkFeTs27cPUVFR+OOPP5CQkAC1Wo1OnTrhyZMnhc7n7e2N27dv6/6uX79uoxKTORy9C5mI5IPtjTzI6u6qHTt26H1esWIFKlasiGPHjqF169YFzqdQKBAQEGDt4hEREZENySrIyS8tLQ0AUK5cuULTPX78GEFBQdBoNGjatCm++OILNGjQoMD0WVlZyMrK0n1OT08HACjdXQGFbTrH1Gq1xZep9FAW8l0pvX/twRp1LigPW+RlT6ynfDhDHQH71LOwNtF6eZre1tr6OGBRKg2Qaf1sFEIIYf1sbE+j0aB79+5ITU3FwYMHC0yXlJSEixcvolGjRkhLS8PcuXOxf/9+nD17FlWrVjU6z7Rp0xATE2MwPS4uDp6enharAxERkRxlZGRgwIABSEtLg7e3t9XykW2QM2LECGzfvh0HDx4sMFgxRq1Wo169eujfvz9mzJhhNI2xnpzAwEC8VrYvkGWbnpzNqSsttqwevuFFplF6lMKw5b3wQ8QGqDNzLJa3qSxZ38Ko1WokJCSgY8eOUCptfxZnK6ynfDhDHQH71dOU9tGSitPW2vp4YBEqDbY//MnqQY4sL1eNGjUKW7duxf79+80KcABAqVSiSZMmuHTpUoFpVCoVVCqVwXT101zgaa7Z5S0OS+7k6kzTuzzVmTlmpbcUWzfeSqVS1gcMLdZTPpyhjoDt62mP9u5Zvqa3tfY6HpSIjbpXZHV3lRACo0aNws8//4zdu3ejRo0aZi8jNzcXp0+fRqVKlaxQQioO3uVARPbC9kfaZNWTExUVhbi4OGzevBllypTBnTt3AAA+Pj7w8PAAAAwePBhVqlTBzJkzAQDTp0/HSy+9hNq1ayM1NRVffvklrl+/jnfeecdu9bAlPmuBpMqUbVfpocS7cX3RwzfcpDNUHtBIijq6hHHbLYCsgpwlS5YAANq2bas3PTY2FkOGDAEA3LhxAy4u/3ZgPXz4EJGRkbhz5w7Kli2LZs2aITExEfXr17dVsakQ3HEJsF0wbiwfboOUoInnCaFEySrIMWUM9d69e/U+z58/H/Pnz7dSiYiIiMheZBXkEJF8OMqZc95ysFeHSFoY5BCRQ3GU4MYYbdkY7BBJA4McJ+bIBxMeRJyHI2+HBclfZm6v8ufo43I4+Ng4Wd1CTkTS4sgHDXPIpR5EcsOeHCKyOTkGBbyUReR4GOSQw+FBQp7kGNgYw4HK8qVdn86yLcsBL1cRERGRLDHIcVI8EyFbctbtzVnrTfbB7c0QL1cRkdWw0eVYHSJ7Yk8OEVkFAxx9/D2IbI9BDjkUnu3KAw/oxvF3kQe2U9LBIMcJsaEla+noEsbtqwj8jciauG3pY5BDRBbBxtU8/L2IrI9BDhGVGA/YxcPfjci6GOQQERGRLDHIIYfBwXzSxN6IkuHvJ01sr6SBQQ4RFRsP0JbB35HIOhjkOBk2pmQp3JYsi78nWQq3pX8xyCEiIiJZYpBDDoHXt6WFZ4rWwd9VWthuOT6+u4qITMaDsPXxXVdElsOeHCIiIpIlBjlEREQkSwxyiMgkvFRlW/y9iUqOQQ4RERHJEoMcJ8IzQyoubjv2wd+diovbzjMm3V3VtGlTsxaqUCiwZcsWVKlSpViFIufCu0gcGxtL++roEsZ9xIElaOK5jzgwk4KckydPYvz48fDy8ioyrRACs2bNQlZWVokLR0RERFRcJj8nZ8KECahYsaJJab/66qtiF4iIiIjIEkwKcq5evQo/Pz+TF/rXX3+hcuXKxS4UERERUUmZNPA4KCgICoXC5IUGBgbC1dW12IUiIsfAsQaOgeuBqHiK9VqHp0+f4tSpU7h79y40Go3ed927d7dIwYiIiIhKwuwgZ8eOHRg8eDD++ecfg+8UCgVyc3MtUjAisi/2HjgW3mVFZD6zn5MzevRohIWF4fbt29BoNHp/DHCIiIjIUZgd5KSkpGDcuHHw9/e3RnnIyfDMlKxpc+pKvX+JrIHtmOMy+3JV7969sXfvXtSqVcsa5SEr4GUHMoeUt5f8Bxu1Wl3gd1Ksp7bMPKiSKbi9FCPI+fbbbxEWFoYDBw7g+eefh1Kp1Pv+/ffft1jhiIiIiIrL7CDnxx9/xK+//gp3d3fs3btX79ZyhULBIIeIbKq4Z6l555Nirw4RFc3sIOeTTz5BTEwMJk2aBBcXvt+TiOzDkl3w2mUx2CGSF7OjlOzsbPTt25cBDhHZjbXGGDjz2AUiOTI7UgkPD8dPP/1kjbIQkZ1JoSfD2oGIFAIdKawnIkdg9uWq3NxczJkzBzt37kSjRo0MBh7PmzfPYoUjIiIiKi6zg5zTp0+jSZMmAIAzZ87ofWfO+62IiMxlq16WBE08e0uIZMDsIGfPnj3WKAcRERGRRXH0MBEREcmS2T05T58+xcKFC7Fnzx6jbyE/fvy4xQpHRATYZzAwbysnkj6zg5yIiAj8+uuv6N27N1q0aMFxOEREROSQzA5ytm7dim3btuHll1+2RnksYtGiRfjyyy9x584dvPDCC1i4cCFatGhRYPr4+Hh8+umnuHbtGurUqYPZs2eja9euNiwxERERWZrZY3KqVKmCMmXKWKMsFvHTTz9h3LhxmDp1Ko4fP44XXngBnTt3xt27d42mT0xMRP/+/REREYETJ06gZ8+e6Nmzp8GdY0RERCQtZgc5X331FSZOnIjr169bozwlNm/ePERGRmLo0KGoX78+li5dCk9PT/zwww9G03/99dfo0qULJkyYgHr16mHGjBlo2rQpvv32WxuXnIiMsffD+eydPxEVn9mXq5o3b46nT5+iZs2a8PT0NHgY4IMHDyxWOHNlZ2fj2LFjiI6O1k1zcXFBhw4dkJSUZHSepKQkjBs3Tm9a586dsWnTpgLzycrKQlZWlu5zeno6AEDp7goobHPDmlqtNjmt0kNZdKIil1FK719LMacetqAtj6OVy9IKqqclthVLK8m6sNT6dOTfxdm3WUdhqW3EGm2trY8XJlFpgEzrZ6MQQghzZujQoQNu3LiBiIgI+Pv7Gww8Dg8Pt2gBzfH333+jSpUqSExMRMuWLXXTP/roI+zbtw+HDh0ymMfNzQ0rV65E//79ddMWL16MmJgYpKSkGM1n2rRpiImJMZgeFxcHT09PC9SEiIhIvjIyMjBgwACkpaXB29vbavmYHSomJiYiKSkJL7zwgjXKIwnR0dF6vT/p6ekIDAzEqqjNQJZtenI2p640OW0P35IHnkqPUhi2vBd+iNgAdWZOiZenZU49bEGtViMhIQEdO3Y06KWUk4LqaYltxRqKu51YYn06+m/i7Nuso7DUdmKNttbWxwuTqDRFp7EAs4Oc4OBgZGbaoI+pGCpUqABXV1eDHpiUlBQEBAQYnScgIMCs9ACgUqmgUqkMpquf5gJPc4tRcvOZs5OrMy3XvavOzLHo8hyxsQKelctRy2ZJ+etpyXVrSSVdFyVZn1L5TZx1m3UUlt5OLNnW2ut4USizriEVn9ndDrNmzcL48eOxd+9e3L9/H+np6Xp/9uTm5oZmzZrht99+003TaDT47bff9C5f5dWyZUu99ACQkJBQYHoiIiKSBrN7crp06QIAaN++vd50IQQUCgVyc23Tk1GQcePGITw8HM2bN0eLFi2wYMECPHnyBEOHDgUADB48GFWqVMHMmTMBAB988AHatGmDr776Ct26dcPatWtx9OhRLFu2zJ7VICIiohKS3Qs6+/bti3v37mHKlCm4c+cOGjdujB07dsDf3x8AcOPGDbi4/NuBFRoairi4OEyePBkff/wx6tSpg02bNqFhw4b2qgIR5aN9tYItb+fm6xyIpM/sIKdNmzbWKIdFjRo1CqNGjTL63d69ew2mhYWFISyMDRoREZGcmDQm59SpUwYv4izM2bNnkZNjuTtwiIiIiMxlUpDTpEkT3L9/3+SFtmzZEjdu3Ch2oYiIjLHVJSReqiKSB5MuVwkh8Omnn5r8oLvs7OwSFYqIiIiopEwKclq3bo0LFy6YvNCWLVvCw8Oj2IUiIvtI0MQ7fC9GR5cwqw5AdvT6A3yfFpGpTApyjA3WJSKyF2sFOlIIcIjIdJZ92yIRkY1Y8rZyBjdE8sQgh4gkLW+AYk7Aw8CGSP5s8zZJIiIiIhtjT44T0J7d8syVTCHl7SV/mbdlxRX4nRRxwDGZg9sLe3LIzuRw4CHH1cM3XO9fImtgO+a4GOQQERGRLDHIISKj2NXtWLg+iMzHIIeIiIhkiUEOERWIvQeOgeuBqHjMDnLCw8Oxf/9+a5SFiIiIyGLMDnLS0tLQoUMH1KlTB1988QWSk5OtUS4iIiKiEjE7yNm0aROSk5MxYsQI/PTTT6hevTpee+01rF+/Hmq12hplJCIiIjJbscbk+Pn5Ydy4cfjzzz9x6NAh1K5dG4MGDULlypUxduxYXLx40dLlJBnjMyYcG8eD2Bd/f8fG9suxlWjg8e3bt5GQkICEhAS4urqia9euOH36NOrXr4/58+dbqoxkIWwsqbi47dgHf3cqLm47z5gd5KjVamzYsAGvv/46goKCEB8fjzFjxuDvv//GypUrsWvXLqxbtw7Tp0+3RnmJiIiITGL2u6sqVaoEjUaD/v374/Dhw2jcuLFBmnbt2sHX19cCxSMiR5GgiWfXvA3xTJyo5MwOcubPn4+wsDC4u7sXmMbX1xdXr14tUcGIiIiISsLsIGfQoEHWKAcRERGRRZkd5BCR89JeQuFlK+vhZSoiy+FrHcgh8KApLTwQWwd/V2lhu+X4GOQQERGRLDHIcTI8UyRL4bZkWfw9yVK4Lf2LQQ4RFRsbU8vg70hkHQxyyGHw+rY08QBdMvz9pIntlTQwyCEiIiJZYpBDRCXG3oji4e9GZF0McojIInjANg9/LyLrY5DjhNi4krUkaOK5fRWBvxFZE7ctfQxyyKFwMJ88sKE1jr+LPLCdkg4GOURkFTyg6+PvQWR7fHcVEVkN33XF4IbIntiT46TY8JItOev25qz1Jvvg9maIQQ4RERHJEi9XkcPp6BLGMxIZyrtO5Xz5ituufMl5u5UrBjlEZHNyHKvD4IbI8fByFRHZjVwCA7nUg0hu2JPjxBI08Q57Jq0tFw8e8pd/HTvqNpkXt0vn4+jbJbdJ4xjkEJFDceRLWTyQEEkLgxwickiOMlCZgQ2RdHFMDhEREckSe3LIofF2cgKM96ZYo3eH2xoZ44iXTsk0sglyrl27hhkzZmD37t24c+cOKleujIEDB+KTTz6Bm5tbgfO1bdsW+/bt05v27rvvYunSpdYuskNw5MHHRIUxJSBRq9XYtm0bNqeuhFKptEGpiGyPwXnBZBPknD9/HhqNBt999x1q166NM2fOIDIyEk+ePMHcuXMLnTcyMhLTp0/Xffb09LR2cckM7M0hInvhSaC0ySbI6dKlC7p06aL7XLNmTVy4cAFLliwpMsjx9PREQECAtYtIRERENiSbIMeYtLQ0lCtXrsh0a9aswerVqxEQEIA33ngDn376aaG9OVlZWcjKytJ9Tk9PBwAo3V0BhW3GcqvVaosta1tWHACgh294gWmUHqX0/rU1S9bXlHxslZ+9sJ7y4Qx1BOxXT6WHbS9zmtPWbk5dCcCyv4nN6qvSAJnWz0YhhBDWz8b2Ll26hGbNmmHu3LmIjIwsMN2yZcsQFBSEypUr49SpU5g4cSJatGiBjRs3FjjPtGnTEBMTYzA9Li6Ol7qIiIiKkJGRgQEDBiAtLQ3e3t5Wy8fhg5xJkyZh9uzZhaY5d+4cgoODdZ+Tk5PRpk0btG3bFv/5z3/Mym/37t1o3749Ll26hFq1ahlNY6wnJzAwEK+V7Qtk2aYnRxvBW1JRPTnDlvfCDxEboM7MsXjeprBGnfNTq9VISEhAx44dZT1QlfWUD2eoI2CfehbWJlqLOW2trY8DFqXSYPvDn6we5Dj85arx48djyJAhhaapWbOm7v9///032rVrh9DQUCxbtszs/EJCQgCg0CBHpVJBpVIZTFc/zQWe5pqdZ3FYYydXZxbd5anOzDEpnTXYsgFXKpWyPmBosZ7y4Qx1BGxbT3u1dc/yLrqttddxwCJs1L3i8EGOn58f/Pz8TEqbnJyMdu3aoVmzZoiNjYWLi/m9KidPngQAVKpUyex5ybp4lxUR2QrvqpIH2TzxODk5GW3btkW1atUwd+5c3Lt3D3fu3MGdO3f00gQHB+Pw4cMAgMuXL2PGjBk4duwYrl27hi1btmDw4MFo3bo1GjVqZK+q2A0DCCIiaWB7bRqH78kxVUJCAi5duoRLly6hatWqet9phx2p1WpcuHABGRkZAAA3Nzfs2rULCxYswJMnTxAYGIhevXph8uTJNi8/ERERWZZsgpwhQ4YUOXanevXqyDvOOjAw0OBpx87O0Z+AzEtWRGRtjtwGAuzFMYdsLlcRERER5SWbnhxyHtqzLJ7NEJElOXoPDpmPPTlEREQkSwxyyAB7SIiIHBPbZ/MwyCHJYtcyEVkK2xN5YpBDREREssQgh4ySSpcoz76IqKSk0o5IpV12JAxyiIiISJYY5FCBpHLWIJWzMCJyPFJpP6TSHjsaBjlEREQkSwxyiIiISJYY5JAsSKXLmYgcB9sN+WOQQ4VK0MRL5lowGywiMpVU2gsptcGOiEEOERERyRKDHDLJ5tSV9i6CSTq6hEnmDI2IbE9KbQR7cEqOQQ4RERHJEoMcIiIikiUGOSRLUumOJiLbkVK7IJUhAo6OQQ7JlpQaNCKyLrYHzolBDpmFZxdERCQVDHJI1nj2RkRsB5wXgxwym9Rua2QDR+S8pLb/s7fcshjkEBERkSwxyKFiYW8OETk6qe33UmtXpYBBDhEREckSgxxyGlI7qyOi4uP+TgBQyt4FIOnSdq2yMSEiKj5eprIeBjnkVLQBGRsVInniSRflxctVVGJSDBjYEBLJjxT3aym2n1LCIIeclhQbRCIyjvszGcMghyyCZyNEROZhu2l9DHKIiIhIlhjkkMVI8ayEXdxE0ifF/ViK7aUUMcghpyfFBpKInuH+S4VhkEMWJdWzEzaURNIj1f1Wqu2kFPE5OUT/p6NLGJQeSrwb19feRSGiQkg1uCHbY08OWRzPUojIWnr4htu7CCXC9tG2GOSQVXBHJiLSx3bR9hjkEBERkSwxyCEyQupd4kRExCCHrChBEy/p7lkObiRyHFI+8ZB6WyhlDHKICsFAh8j+uB9ScTHIIauT+hkMG1gi+5H6/if19k/qGOSQTUh9R+/oEib5xpZISuSwz0m93ZMDBjlEZpB6o0skBdzPyFIY5JDNyOWshg0wkfXIZf+SS3sndQxyiIiISJZkFeRUr14dCoVC72/WrFmFzvP06VNERUWhfPny8PLyQq9evZCSkmKjEjsfuZzdyOVsk8iRyGW/kks7JweyCnIAYPr06bh9+7bub/To0YWmHzt2LP73v/8hPj4e+/btw99//4233nrLRqV1TnJpAOTSIBM5ArnsT3Jp3+RCdm8hL1OmDAICAkxKm5aWhuXLlyMuLg6vvvoqACA2Nhb16tXDH3/8gZdeesmaRSUZ6OgSxkaNqITkEuCQ45FdkDNr1izMmDED1apVw4ABAzB27FiUKmW8mseOHYNarUaHDh1004KDg1GtWjUkJSUVGORkZWUhKytL9zk9PR0AoHR3BRS26RxTq9U2ySd/fpbKd1tWHADHe4qp0qOU3r+m6Fp6ADanrrRWkazC0uvTUTlDPaVexx6+4VB6KItMV5x905a0bUBJ14O916cp68IiVBog0/rZKIQQwvrZ2Ma8efPQtGlTlCtXDomJiYiOjsbQoUMxb948o+nj4uIwdOhQvYAFAFq0aIF27dph9uzZRuebNm0aYmJijC7P09Oz5BUhIiKSsYyMDAwYMABpaWnw9va2Wj6OGRLnMWnSpAKDDa1z584hODgY48aN001r1KgR3Nzc8O6772LmzJlQqVQWK1N0dLReXunp6QgMDMSqqM1Alm16cmzdc6BWq5GQkICOHTtCqbR8pO8oPTpKj1IYtrwXfojYAHVmTrGX4+g9O9Zen47CGeoptToWd1+31L5paZbe1+29Pm3WFqs0NsnG4YOc8ePHY8iQIYWmqVmzptHpISEhyMnJwbVr11C3bl2D7wMCApCdnY3U1FT4+vrqpqekpBQ6rkelUhkNmtRPc4GnuYWW1VLs1ZgplUqr5K3OdKyudnVmTonKJIWDDWC99elonKGeUqljSff1ku6blmat39xe69Nmv62NriE5fJDj5+cHPz+/Ys178uRJuLi4oGLFika/b9asGZRKJX777Tf06tULAHDhwgXcuHEDLVu2LHaZiTggmcgQBxiTrcnmFvKkpCQsWLAAf/75J65cuYI1a9Zg7NixGDhwIMqWLQsASE5ORnBwMA4fPgwA8PHxQUREBMaNG4c9e/bg2LFjGDp0KFq2bMk7q2xMjgEBG3Sif8lxf5BjuyU3Dt+TYyqVSoW1a9di2rRpyMrKQo0aNTB27Fi9sTNqtRoXLlxARkaGbtr8+fPh4uKCXr16ISsrC507d8bixYvtUQWnl6CJl11DyB4dIgY4ZD+yCXKaNm2KP/74o9A01atXR/6bydzd3bFo0SIsWrTImsUjE8k10NFiw0jOQm77cV7cj6VDNperSD7k3IDIueEn0pLrdp6giZd1+yRHDHKIbEyuBwAigNs3ORYGOURERCRLshmTQ/Ki7RKW61mhtl7s+ia5kOu+qsV9VZrYk0MOTe4NS0eXMNkfHEjenGEblns7JGcMcsjhOUMD4wwHCpIXZ9lmnaH9kTMGOSQJztLQOMNBg6TPWbZTZ2l35IxBDkmGszQ4znKGTNLjTNums7Q3cscghyTFmRoeZzmYkDQ40/boTO2M3PHuKpIcud95lReflkz25Az7WF7cx+SHPTlEREQkSwxySLKc7azLmcZDkH0547bmbO2Js2CQQ5LmjA2Tsx18yLaccftyxnbEWXBMDkmeHN9cXhSO1SFLcrb9Jy/uP/LGnhySBWduqJzx0gJZhrNvO87cbjgLBjkkG87eYDn7AYtMx22F7YWz4OUqkhVnur28ILyURcY48z6RF/cJ58KeHCIiIpIlBjkkSzxbe4aXJYjbwL/YLjgfXq4i2XLGu64KwktYzoXbvSFu986JQQ7JGgMdQx1dwqD0UOLduL72LgpZUA/fcKgz1fYuhkNigOO8eLmKZI8NXMF6+IbzcoaEdXQJQw/fcHsXw6Fx/3duDHLIKbChKxqDHengujIN93vi5SpyGrx0ZZr8vxEPFPbH7dZ83G4JYE8OERERyRR7csip5D2749mxaXhnln1w+zQft0/Kj0EOOS1evjKfsd+LB5aS43ZYctwOyRgGOeTUGOiUHAMf83B7szxub1QQBjnk9BjoWB4HL/+L25Z1OfO2RUVjkEOEfxtKtVqNbdu22bk08lPYgV4OBykGMrYlh22GbINBDhHZVVEBgiMc0BjEOI7NqSvtXQSSEAY5REZsTl2JrqoB9i4GoWQBhvb1FXzlAZFz4nNyiIiISJYY5BAVIEET7xCXSoicXYImnpepqFgY5BAVgYEOkf1w/6OS4JgcIhNoG1oOQCWyDQY3ZAkMcojMwGCHyLoY3JAl8XIVUTGwISayPO5XZGnsySEqJvbqEFkGgxuyFvbkEBERkSyxJ4eohPKehbJXh8g07L0hW2BPDpEFseEmKhr3E7IV9uQQWRjH6hAZx+CGbI1BDpGVMNgheobBDdkLgxwiK2OwQ86KwQ3ZG4McIhthsEPOgsENOQoGOUQ2xmCH5IrBDTka2dxdtXfvXigUCqN/R44cKXC+tm3bGqR/7733bFhyIiIisgbZ9OSEhobi9u3betM+/fRT/Pbbb2jevHmh80ZGRmL69Om6z56enlYpI1FefL4OyQF7b8iRySbIcXNzQ0BAgO6zWq3G5s2bMXr0aCgUikLn9fT01JuXyNZ4CYukhsENSYFsgpz8tmzZgvv372Po0KFFpl2zZg1Wr16NgIAAvPHGG/j0008L7c3JyspCVlaW7nN6ejoAQOnuCihscwVQrVbbJJ/8+dk6X1uzdz23ZcUBAHr4hls1H6VHKb1/5coZ6mnrOm5OXQmAbZC12LueSg+lbTJSaYBM62ejEEII62dje127dgUAbNu2rdB0y5YtQ1BQECpXroxTp05h4sSJaNGiBTZu3FjgPNOmTUNMTIzB9Li4OF7qIiIiKkJGRgYGDBiAtLQ0eHt7Wy0fhw9yJk2ahNmzZxea5ty5cwgODtZ9vnXrFoKCgrBu3Tr06tXLrPx2796N9u3b49KlS6hVq5bRNMZ6cgIDA/Fa2b5Alm16crRnU7aiVquRkJCAjh07Qqm0UaRvB45cT0v27ig9SmHY8l74IWID1Jk5Fluuo3GGelqzjrZuZwrjyPumJdm7ntbuRdZRabD94U9WD3Icvg93/PjxGDJkSKFpatasqfc5NjYW5cuXR/fu3c3OLyQkBAAKDXJUKhVUKpXBdPXTXOBprtl5Foe9dnKlUinrBkbLEeu57cmzS1mWHLejzsyBOlPe3f+Ac9TTknV05PE2jrhvWoO96mmz/cRG3SsOH+T4+fnBz8/P5PRCCMTGxmLw4MHF2kBOnjwJAKhUqZLZ8xIREZHjcPggx1y7d+/G1atX8c477xh8l5ycjPbt2+O///0vWrRogcuXLyMuLg5du3ZF+fLlcerUKYwdOxatW7dGo0aN7FB6oqLlP8vmHVlUUo7cc0NUErILcpYvX47Q0FC9MTpaarUaFy5cQEZGBoBnt53v2rULCxYswJMnTxAYGIhevXph8uTJti42UbHx9nMqLgY3JHeyC3Li4uIK/K569erIO846MDAQ+/bts0WxiKyODxckUzCwIWciuyCHiHhJi/7FoIacGYMcIifAS1rOh8ENEYMcIqeiPfCp1Wps27YNm1NXoqtqgJ1LRZawOXWlU9xaTWQO2byFnIiIiCgv9uQQOTkOWJam/L1yRGSIQQ4R6Rgbx8HAx/44voaoeBjkEFGhGPjYFgMaIsthkENEZuMt6pbDoIbIehjkEFGJFXSgZvDzLwYzRLbHIIeIrKaoA7ucgiAGMUSOh0EOEdmNqYGBPYMhBi9E0sXn5BAREZEssSeHiBxecXtT8j7ZmU8DJnI+7MkhIiIiWWKQQ0RERLLEIIeIiIhkiUEOERERyRKDHCIiIpIlBjlEREQkSwxyiIiISJYY5BAREZEsMcghIiIiWWKQQ0RERLLE1zpIlK1fWKj0UOLduL7o4RsOdabapnnbEuspL85QT2eoI8B6UvGwJ4eIiIhkiUEOERERyRKDHCIiIpIlBjlEREQkSwxyiIiISJYY5BAREZEsMcghIiIiWWKQQ0RERLLEIIeIiIhkiUEOERERyRKDHCIiIpIlBjlEREQkSwxyiIiISJYY5BAREZEsMcghIiIiWWKQQ0RERLLEIIeIiIhkiUEOERERyRKDHCIiIpIlBjlEREQkSwxyiIiISJYY5BAREZEsMcghIiIiWZJMkPP5558jNDQUnp6e8PX1NZrmxo0b6NatGzw9PVGxYkVMmDABOTk5hS73wYMHePvtt+Ht7Q1fX19ERETg8ePHVqgBERER2ZJkgpzs7GyEhYVhxIgRRr/Pzc1Ft27dkJ2djcTERKxcuRIrVqzAlClTCl3u22+/jbNnzyIhIQFbt27F/v37MXz4cGtUgYiIiGyolL0LYKqYmBgAwIoVK4x+/+uvv+Kvv/7Crl274O/vj8aNG2PGjBmYOHEipk2bBjc3N4N5zp07hx07duDIkSNo3rw5AGDhwoXo2rUr5s6di8qVK1utPkRERGRdkglyipKUlITnn38e/v7+ummdO3fGiBEjcPbsWTRp0sToPL6+vroABwA6dOgAFxcXHDp0CG+++abRvLKyspCVlaX7nJaW9uw/Kg0k1DlmHpUGGRkZz+oo7F0YK2I95cUZ6ukMdQRYT7lRaYBMQAgrV1JITGxsrPDx8TGYHhkZKTp16qQ37cmTJwKA2LZtm9Flff755+K5554zmO7n5ycWL15cYBmmTp0q8Gzz4x//+Mc//vGPf8X8u3z5snlBgJns2pMzadIkzJ49u9A0586dQ3BwsI1KZJro6GiMGzdO9zk1NRVBQUG4ceMGfHx87Fgy60lPT0dgYCBu3rwJb29vexfHalhPeXGGejpDHQHWU27S0tJQrVo1lCtXzqr52DXIGT9+PIYMGVJompo1a5q0rICAABw+fFhvWkpKiu67gua5e/eu3rScnBw8ePCgwHkAQKVSQaVSGUz38fGR9UYJAN7e3rKvI8B6yo0z1NMZ6giwnnLj4mLdIR52DXL8/Pzg5+dnkWW1bNkSn3/+Oe7evYuKFSsCABISEuDt7Y369esXOE9qaiqOHTuGZs2aAQB2794NjUaDkJAQi5SLiIiI7EMyo2Rv3LiBkydP4saNG8jNzcXJkydx8uRJ3TNtOnXqhPr162PQoEH4888/sXPnTkyePBlRUVG6XpfDhw8jODgYycnJAIB69eqhS5cuiIyMxOHDh/H7779j1KhR6NevH++sIiIikjjJ3F01ZcoUrFy5UvdZe7fUnj170LZtW7i6umLr1q0YMWIEWrZsidKlSyM8PBzTp0/XzZORkYELFy5ArVbrpq1ZswajRo1C+/bt4eLigl69euGbb74xq2wqlQpTp041eglLLpyhjgDrKTfOUE9nqCPAesqNreqpEMLa928RERER2Z5kLlcRERERmYNBDhEREckSgxwiIiKSJQY5REREJEsMckzw+eefIzQ0FJ6envD19TWa5saNG+jWrRs8PT1RsWJFTJgwATk5OYUu98GDB3j77bfh7e0NX19fRERE6G6Jt7e9e/dCoVAY/Tty5EiB87Vt29Yg/XvvvWfDkpuvevXqBmWeNWtWofM8ffoUUVFRKF++PLy8vNCrVy/dwycd0bVr1xAREYEaNWrAw8MDtWrVwtSpU5GdnV3ofFJYn4sWLUL16tXh7u6OkJAQg4eC5hcfH4/g4GC4u7vj+eefx7Zt22xUUvPNnDkTL774IsqUKYOKFSuiZ8+euHDhQqHzrFixwmCdubu726jExTNt2jSDMhf1pHsprUctY22NQqFAVFSU0fRSWZf79+/HG2+8gcqVK0OhUGDTpk163wshMGXKFFSqVAkeHh7o0KEDLl68WORyzd23jWGQY4Ls7GyEhYVhxIgRRr/Pzc1Ft27dkJ2djcTERKxcuRIrVqzAlClTCl3u22+/jbNnzyIhIQFbt27F/v37MXz4cGtUwWyhoaG4ffu23t8777yDGjVq6L3Q1JjIyEi9+ebMmWOjUhff9OnT9co8evToQtOPHTsW//vf/xAfH499+/bh77//xltvvWWj0prv/Pnz0Gg0+O6773D27FnMnz8fS5cuxccff1zkvI68Pn/66SeMGzcOU6dOxfHjx/HCCy+gc+fOBk8y10pMTET//v0RERGBEydOoGfPnujZsyfOnDlj45KbZt++fYiKisIff/yBhIQEqNVqdOrUCU+ePCl0Pm9vb711dv36dRuVuPgaNGigV+aDBw8WmFZq61HryJEjenVMSEgAAISFhRU4jxTW5ZMnT/DCCy9g0aJFRr+fM2cOvvnmGyxduhSHDh1C6dKl0blzZzx9+rTAZZq7bxfIqm/GkpmCXg66bds24eLiIu7cuaObtmTJEuHt7S2ysrKMLuuvv/4SAMSRI0d007Zv3y4UCoVITk62eNlLKjs7W/j5+Ynp06cXmq5Nmzbigw8+sE2hLCQoKEjMnz/f5PSpqalCqVSK+Ph43bRz584JACIpKckKJbSOOXPmiBo1ahSaxtHXZ4sWLURUVJTuc25urqhcubKYOXOm0fR9+vQR3bp105sWEhIi3n33XauW01Lu3r0rAIh9+/YVmKagdsqRTZ06Vbzwwgsmp5f6etT64IMPRK1atYRGozH6vRTXJQDx888/6z5rNBoREBAgvvzyS9201NRUoVKpxI8//ljgcszdtwvCnhwLSEpKwvPPPw9/f3/dtM6dOyM9PR1nz54tcB5fX1+9XpEOHTrAxcUFhw4dsnqZzbVlyxbcv38fQ4cOLTLtmjVrUKFCBTRs2BDR0dHIyMiwQQlLZtasWShfvjyaNGmCL7/8stBLjceOHYNarUaHDh1004KDg1GtWjUkJSXZorgWkZaWZtLL8Rx1fWZnZ+PYsWN668HFxQUdOnQocD0kJSXppQee7atSWW9paWkAUOR6e/z4MYKCghAYGIgePXoU2A45kosXL6Jy5cqoWbMm3n77bdy4caPAtFJfj8Cz7Xf16tUYNmwYFApFgemkuC7zunr1Ku7cuaO3vnx8fBASElLg+irOvl0QyTzx2JHduXNHL8ABoPt8586dAufRvmNLq1SpUihXrlyB89jT8uXL0blzZ1StWrXQdAMGDEBQUBAqV66MU6dOYeLEibhw4QI2btxoo5Ka7/3330fTpk1Rrlw5JCYmIjo6Grdv38a8efOMpr9z5w7c3NwMxmf5+/s75Loz5tKlS1i4cCHmzp1baDpHXp///PMPcnNzje5758+fNzpPQfuqFNabRqPBmDFj8PLLL6Nhw4YFpqtbty5++OEHNGrUCGlpaZg7dy5CQ0Nx9uzZIvdfewkJCcGKFStQt25d3L59GzExMWjVqhXOnDmDMmXKGKSX8nrU2rRpE1JTUwt9SbUU12V+2nVizvoqzr5dEKcNciZNmoTZs2cXmubcuXNFDn6TmuLU+9atW9i5cyfWrVtX5PLzjil6/vnnUalSJbRv3x6XL19GrVq1il9wM5lTz3HjxummNWrUCG5ubnj33Xcxc+ZMh3+0enHWZ3JyMrp06YKwsDBERkYWOq+jrE8CoqKicObMmULHqgDPXjzcsmVL3efQ0FDUq1cP3333HWbMmGHtYhbLa6+9pvt/o0aNEBISgqCgIKxbtw4RERF2LJn1LF++HK+99lqh70mU4rp0NE4b5IwfP77QCBoAatasadKyAgICDEZ9a++0CQgIKHCe/AOocnJy8ODBgwLnsYTi1Ds2Nhbly5dH9+7dzc5P+zb3S5cu2fSgWJL1GxISgpycHFy7dg1169Y1+D4gIADZ2dlITU3V681JSUmx6rozxtx6/v3332jXrh1CQ0OxbNkys/Oz1/o0pkKFCnB1dTW4q62w9RAQEGBWekcxatQo3c0J5p7BK5VKNGnSBJcuXbJS6SzP19cXzz33XIFllup61Lp+/Tp27dpldo+oFNeldp2kpKSgUqVKuukpKSlo3Lix0XmKs28XyKwRPE6uqIHHKSkpumnfffed8Pb2Fk+fPjW6LO3A46NHj+qm7dy50+EGHms0GlGjRg0xfvz4Ys1/8OBBAUD8+eefFi6Z9axevVq4uLiIBw8eGP1eO/B4/fr1umnnz593+IHHt27dEnXq1BH9+vUTOTk5xVqGo63PFi1aiFGjRuk+5+bmiipVqhQ68Pj111/Xm9ayZUuHHbCq0WhEVFSUqFy5svh//+//FWsZOTk5om7dumLs2LEWLp31PHr0SJQtW1Z8/fXXRr+X2nrMb+rUqSIgIECo1Wqz5pPCukQBA4/nzp2rm5aWlmbSwGNz9u0Cy2NWaid1/fp1ceLECRETEyO8vLzEiRMnxIkTJ8SjR4+EEM82vIYNG4pOnTqJkydPih07dgg/Pz8RHR2tW8ahQ4dE3bp1xa1bt3TTunTpIpo0aSIOHTokDh48KOrUqSP69+9v8/oVZteuXQKAOHfunMF3t27dEnXr1hWHDh0SQghx6dIlMX36dHH06FFx9epVsXnzZlGzZk3RunVrWxfbZImJiWL+/Pni5MmT4vLly2L16tXCz89PDB48WJcmfz2FEOK9994T1apVE7t37xZHjx4VLVu2FC1btrRHFUxy69YtUbt2bdG+fXtx69Ytcfv2bd1f3jRSW59r164VKpVKrFixQvz1119i+PDhwtfXV3en46BBg8SkSZN06X///XdRqlQpMXfuXHHu3DkxdepUoVQqxenTp+1VhUKNGDFC+Pj4iL179+qts4yMDF2a/HWMiYkRO3fuFJcvXxbHjh0T/fr1E+7u7uLs2bP2qIJJxo8fL/bu3SuuXr0qfv/9d9GhQwdRoUIFcffuXSGE9NdjXrm5uaJatWpi4sSJBt9JdV0+evRId1wEIObNmydOnDghrl+/LoQQYtasWcLX11ds3rxZnDp1SvTo0UPUqFFDZGZm6pbx6quvioULF+o+F7Vvm4pBjgnCw8MFAIO/PXv26NJcu3ZNvPbaa8LDw0NUqFBBjB8/Xi9K37NnjwAgrl69qpt2//590b9/f+Hl5SW8vb3F0KFDdYGTo+jfv78IDQ01+t3Vq1f1focbN26I1q1bi3LlygmVSiVq164tJkyYINLS0mxYYvMcO3ZMhISECB8fH+Hu7i7q1asnvvjiC70euPz1FEKIzMxMMXLkSFG2bFnh6ekp3nzzTb2AwdHExsYa3YbzduZKdX0uXLhQVKtWTbi5uYkWLVqIP/74Q/ddmzZtRHh4uF76devWieeee064ubmJBg0aiF9++cXGJTZdQessNjZWlyZ/HceMGaP7Pfz9/UXXrl3F8ePHbV94M/Tt21dUqlRJuLm5iSpVqoi+ffuKS5cu6b6X+nrMa+fOnQKAuHDhgsF3Ul2X2uNb/j9tXTQajfj000+Fv7+/UKlUon379gb1DwoKElOnTtWbVti+bSqFEEKYd4GLiIiIyPHxOTlEREQkSwxyiIiISJYY5BAREZEsMcghIiIiWWKQQ0RERLLEIIeIiIhkiUEOERERyRKDHCIiIpIlBjlEJElt27aFQqGAQqHAyZMnbZ7/tWvXdPkX9KJBIrIvBjlEJFmRkZG4ffs2GjZsaPO8AwMDcfv2bYwfP97meRORaUrZuwBERMXl6emJgIAAu+Tt6uqKgIAAeHl52SV/Iioae3KIyKbu3buHgIAAfPHFF7ppiYmJcHNzw2+//VaiZe/duxcKhQI7d+5EkyZN4OHhgVdffRV3797F9u3bUa9ePXh7e2PAgAHIyMjQzde2bVuMHj0aY8aMQdmyZeHv74/vv/8eT548wdChQ1GmTBnUrl0b27dvL1H5iMi2GOQQkU35+fnhhx9+wLRp03D06FE8evQIgwYNwqhRo9C+fXuL5DFt2jR8++23SExMxM2bN9GnTx8sWLAAcXFx+OWXX/Drr79i4cKFevOsXLkSFSpUwOHDhzF69GiMGDECYWFhCA0NxfHjx9GpUycMGjRILzgiIsfGIIeIbK5r166IjIzE22+/jffeew+lS5fGzJkzLbb8zz77DC+//DKaNGmCiIgI7Nu3D0uWLEGTJk3QqlUr9O7dG3v27NGb54UXXsDkyZNRp04dREdHw93dHRUqVEBkZCTq1KmDKVOm4P79+zh16pTFyklE1sUgh4jsYu7cucjJyUF8fDzWrFkDlUplsWU3atRI939/f394enqiZs2aetPu3r1b4Dyurq4oX748nn/+eb15ABjMR0SOi0EOEdnF5cuX8ffff0Oj0eDatWsWXbZSqdT9X6FQ6H3WTtNoNAXOY2w+hUIBAAbzEZHj4t1VRGRz2dnZGDhwIPr27Yu6devinXfewenTp1GxYkV7F42IZIQ9OURkc5988gnS0tLwzTffYOLEiXjuuecwbNgwexeLiGSGQQ4R2dTevXuxYMECrFq1Ct7e3nBxccGqVatw4MABLFmyxN7FIyIZUQghhL0LQURkrrZt26Jx48ZYsGCBXcsxbdo0bNq0yS6vliCiwrEnh4gka/HixfDy8sLp06dtnveNGzfg5eWl91BDInIs7MkhIklKTk5GZmYmAKBatWpwc3Ozaf45OTm6u8JUKhUCAwNtmj8RFY1BDhEREckSL1cRERGRLDHIISIiIllikENERESyxCCHiIiIZIlBDhEREckSgxwiIiKSJQY5REREJEsMcoiIiEiW/j8mDInh3KsVRQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "=== Radial equal-area infill ===\n", - "Slice @ z : 0.00 mm\n", - "Area fraction (target) : 0.300\n", - "Filled area : 183.617 mm²\n", - "Centroid (x̄,ȳ) : ( -0.00 , -0.00) mm\n", - "Ix , Iy : 7617.569 , 7617.569 mm⁴\n", - "|Ix − Iy| / Ix : 1.19e-16\n", - "Ixy : -0.000 mm⁴\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAI4CAYAAACIt/jIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaRBJREFUeJzt3XlcVNX/P/DXgMMAKpDK4oK4pOKaWxKU+5qWWopbKigumVoumVIqopVLppaZZhn4ScnETK1cwkKtIM0td7+pIIqCmgIqCANzfn/0Y3KYYZiBWe+8no8HD5075957ztx7zn3fc8+9VyaEECAiIiKSGCdrZ4CIiIjIHBjkEBERkSQxyCEiIiJJYpBDREREksQgh4iIiCSJQQ4RERFJEoMcIiIikiQGOURERCRJDHKIiIhIkhjkkCSlpqZCJpMhNjZWPW3BggWQyWTlWl6XLl3QpUsX02TOyiryO9iqim6fr776CoGBgZDL5fDy8tK5TFPvU8WWLVuGwMBAqFSqCi2HrGPv3r2oUqUKbt++be2skA4McshiYmNjIZPJ1H+VKlVC7dq1ER4ejvT0dGtnjxzUhQsXEB4ejoYNG+Lzzz/H+vXrLbbunJwcLF26FLNnz4aTk+00x7m5uVizZg169eqFmjVromrVqmjTpg3Wrl2LoqIig5ZRr149jfpe/Pfqq69qpc3KysKECRPg7e2NypUro2vXrjh+/Lipi2UWffr0wZNPPonFixdbOyukQyVrZ4Acz8KFC1G/fn08evQIf/zxB2JjY/Hbb7/hzJkzcHV1Ndt6586dizlz5pht+WQ9P/30U7nnPXDgAFQqFT766CM8+eSTJlmmob788ksUFhZi+PDhZl+XMa5cuYKpU6eie/fumDFjBjw8PLBv3z689tpr+OOPP7Bx40aDltO6dWvMnDlTY1rjxo01PqtUKvTr1w9//fUXZs2ahRo1auDTTz9Fly5dcOzYMTRq1Mhk5TKXiRMn4s0330R0dDSqVq1q7ezQYxjkkMU9//zzaN++PQBg3LhxqFGjBpYuXYpdu3ZhyJAhZltvpUqVUKkSd3lLUKlUKCgoMGvQ+jgXF5dyz3vr1i0AUF+mMsUyDRUTE4P+/ftb7HcylJ+fH06fPo3mzZurp02cOBFjx45FTEwM5s2bpxEQlqZ27doYOXKk3jTbtm1DUlIS4uPjMXjwYADAkCFD0LhxY0RFRSEuLq5ihbGAQYMGYerUqYiPj8fYsWOtnR16jO30j5LD6tixIwDg8uXL6mkFBQWYP38+2rVrB09PT1SuXBkdO3ZEYmKi1vxZWVkIDw+Hp6cnvLy8EBYWhqysLK10usZPxMTEoFu3bvDx8YFCoUCzZs2wdu3aCpVn06ZNaNeuHdzc3FCtWjUMGzYM165d00q3fv16NGzYEG5ubujQoQN+/fVXrXEgxZf4UlNTNeY9cOAAZDIZDhw4oJ7266+/IjQ0FHXr1oVCoYC/vz+mT5+OvLy8cpdl+fLlCAkJQfXq1eHm5oZ27dph27ZtWulkMhmmTJmCzZs3o3nz5lAoFNi7dy8AID09HWPHjoWvry8UCgWaN2+OL7/8UmN+Y7a3LiV/t+LfZ+vWrXjvvfdQp04duLq6onv37rh06ZI6Xb169RAVFQUA8Pb2hkwmw4IFC3Qu09RSUlJw6tQp9OjRQ6ssui7zlBwPZE41atTQCHCKvfTSSwCA8+fPG7ysgoICPHz4sNTvt23bBl9fX7z88svqad7e3hgyZAh27tyJ/Px8vcuvV68eXnjhBRw4cADt27eHm5sbWrZsqa4b27dvR8uWLeHq6op27drhxIkTGvOHh4ejSpUqSEtLwwsvvIAqVaqgdu3aWLNmDQDg9OnT6NatGypXroyAgACdQZePjw9atWqFnTt3GvqzkIXwtJasrvgA/sQTT6in5eTk4IsvvsDw4cMxfvx43L9/Hxs2bEDv3r1x5MgRtG7dGgAghMCAAQPw22+/4dVXX0XTpk3x3XffISwszKB1r127Fs2bN0f//v1RqVIlfP/993jttdegUqkwefJko8vy3nvvYd68eRgyZAjGjRuH27dvY/Xq1ejUqRNOnDih7i3YsGEDJk6ciJCQEEybNg1XrlxB//79Ua1aNfj7+xu9XgCIj49Hbm4uJk2ahOrVq+PIkSNYvXo1rl+/jvj4+HIt86OPPkL//v3xyiuvoKCgAFu2bEFoaCh++OEH9OvXTyPtL7/8gq1bt2LKlCmoUaMG6tWrh8zMTDzzzDPqIMjb2xt79uxBREQEcnJyMG3aNACGb29jLVmyBE5OTnjzzTeRnZ2NZcuW4ZVXXsHhw4cBAKtWrcL//vc/fPfdd1i7di2qVKmCVq1alWtdxkpKSgIAtG3bVmP6O++8g3HjxmlM27RpE/bt2wcfHx+9y7x3755BY2bc3d3h7u5uZI6BjIwMAP8GQYb45Zdf4O7ujqKiIgQEBGD69Ol44403NNKcOHECbdu21RqT1KFDB6xfvx7/93//h5YtW+pdz6VLlzBixAhMnDgRI0eOxPLly/Hiiy9i3bp1ePvtt/Haa68BABYvXowhQ4bg4sWLGusrKirC888/j06dOmHZsmXYvHkzpkyZgsqVK+Odd97BK6+8gpdffhnr1q3D6NGjERwcjPr162vkoV27dtixY4dBvwtZkCCykJiYGAFA7N+/X9y+fVtcu3ZNbNu2TXh7ewuFQiGuXbumTltYWCjy8/M15r93757w9fUVY8eOVU/bsWOHACCWLVumMW/Hjh0FABETE6OeHhUVJUru8rm5uVr57N27t2jQoIHGtM6dO4vOnTvrLV9qaqpwdnYW7733nsb006dPi0qVKqmnFxQUCB8fH9G6dWuNMq5fv14A0FhP8W+WkpKisczExEQBQCQmJuoty+LFi4VMJhNXr15VT9P1O5Sm5DILCgpEixYtRLdu3TSmAxBOTk7i7NmzGtMjIiJEzZo1xZ07dzSmDxs2THh6eqqXb+j2Lk3J7VP8+zRt2lRjuR999JEAIE6fPq2eVvx73L59W+8yU1JSDNqnDDV37lwBQNy/f19vut9//13I5XKDfoeAgAABoMy/qKgoo/Obn58vmjVrJurXry+USmWZ6V988UWxdOlSsWPHDrFhwwZ1nXzrrbc00lWuXFln2X788UcBQOzdu1fveorLnJSUpJ62b98+AUC4ublp7PufffaZVr0JCwsTAMT777+vnnbv3j3h5uYmZDKZ2LJli3r6hQsXSv393n//fQFAZGZm6s0vWRZ7csjiSnbP16tXD5s2bUKdOnXU05ydneHs7Azg3/EdWVlZUKlUaN++vcZdF7t370alSpUwadIkjXmnTp2KX3/9tcy8uLm5qf+fnZ0NpVKJzp07Y9++fcjOzoanp6fB5dq+fTtUKhWGDBmCO3fuqKf7+fmhUaNGSExMxNtvv42jR4/i1q1bWLhwoca4j/DwcMyaNcvg9ekry8OHD5GXl4eQkBAIIXDixAnUrVu3Qsss7iXo2LEjvv76a620nTt3RrNmzdSfhRD49ttvMWTIEAghNH6T3r17Y8uWLTh+/DieffZZg7e3scaMGaPxGxdfGr1y5QpatGhR7uWawj///INKlSqhSpUqpabJyMjA4MGD0bp1a3z66adlLnPz5s0GXZ5s0KCBUXkFgClTpuDcuXP48ccfDRrbtmvXLo3PY8aMwfPPP48VK1Zg6tSp6vqel5cHhUKhNX/xOCVDytOsWTMEBwerPwcFBQEAunXrprHfF0+/cuWK1qXIx3vPvLy80KRJE1y6dEljnGCTJk3g5eWFK1euaOWhuCf6zp07Zfa4keUwyCGLW7NmDRo3bozs7Gx8+eWXOHTokM5GbuPGjfjwww9x4cIFKJVK9fTHu4mvXr2KmjVrah0omjRpYlBefv/9d0RFRSE5ORm5ubka3xkb5Pz9998QQpR6N4hcLlfnGYBWOrlcXq6DT7G0tDTMnz8fu3btwr179zS+y87OLnW+u3fvoqCgQP3Zzc1NXe4ffvgB7777Lk6ePKkxNkLXs2FKdt/fvn0bWVlZWL9+fam3ZRcP+gUM297GKhnYFR+ISv4+tqiwsBBDhgxBUVERtm/frrOOlPTss8+aJS8ffPABPv/8cyxatAh9+/Yt1zJkMhmmT5+Offv24cCBA+oByW5ubjrH3Tx69Ej9fVlKbufi/bfkpd/i6SW3v6urK7y9vbXS1qlTR2tf9/T01Ln/CCEA6K4bZD0McsjiOnTooL67auDAgXjuuecwYsQIXLx4UR2sbNq0CeHh4Rg4cCBmzZoFHx8fODs7Y/HixRoDlCvi8uXL6N69OwIDA7FixQr4+/vDxcUFu3fvxsqVK41+OJtKpYJMJsOePXvUvRKP03fGXprSGsyS4y6KiorQs2dP3L17F7Nnz0ZgYCAqV66M9PR0hIeH6y3Lyy+/jIMHD6o/h4WFITY2Fr/++iv69++PTp064dNPP0XNmjUhl8sRExOjc/BlyYNR8TpHjhxZ6hip4vEv5treurYD8N8ByZqqV6+OwsJC3L9/X+dtx7NmzUJycjL279+v0cupz+3btw0ak1OlShWD98fY2FjMnj0br776KubOnWvQPKUpDjru3r2rnlazZk3cvHlTK23xtFq1apW53NK2s6Hbv6LzA/8FToaOVyLLYJBDVlV8IOvatSs++eQT9XNstm3bhgYNGmD79u0aB/riO2GKBQQE4Oeff8aDBw80Gu2LFy+Wue7vv/8e+fn52LVrl8aZoKF39JTUsGFDCCFQv359rWeBlMwz8G/PT7du3dTTlUolUlJS8NRTT6mnFfc8lLxbrLg3qNjp06fxf//3f9i4cSNGjx6tnp6QkFBmvj/88EONM9Pig8q3334LV1dX7Nu3T6MXISYmpsxlAv/eIVO1alUUFRVpXaIsydDtLSWBgYEA/r3LquRg5y1btmDVqlVYtWoVOnfubPAyn376aa19Q5eoqCj1XWT67Ny5E+PGjcPLL7+svtuoIoov8zzea9K6dWv8+uuvUKlUGoOBDx8+DHd3d711yZakpKSgRo0aWj1CZF28hZysrkuXLujQoQNWrVql7qIuPoN6/Izp8OHDSE5O1pi3b9++KCws1Ljtu6ioCKtXry5zvbrWkZ2dbfBBvKSXX34Zzs7OiI6O1jrTE0Lgn3/+AQC0b98e3t7eWLduncZlotjYWK1gpmHDhgCAQ4cOqacVFRVpXf7RVRYhBD766KMy892uXTv06NFD/Vc8rsbZ2RkymUyjZyA1NdXgO0icnZ0xaNAgfPvttzhz5ozW948/Bt/Q7S0lxWNIjh49qjH9zJkzGDduHEaOHKl1J1JZNm/ejISEhDL/Hg+ES3Po0CEMGzYMnTp1wubNm0t9IrNSqcSFCxc0emPu3r2r1aOkVCqxZMkSuLi4oGvXrurpgwcPRmZmJrZv366edufOHcTHx+PFF1806DKdLTh27JjGuCCyDezJIZswa9YshIaGIjY2Fq+++ipeeOEFbN++HS+99BL69euHlJQUrFu3Ds2aNcODBw/U87344ot49tlnMWfOHKSmpqJZs2bYvn273jEoxXr16gUXFxe8+OKLmDhxIh48eIDPP/8cPj4+OrvPy9KwYUO8++67iIyMRGpqKgYOHIiqVasiJSUF3333HSZMmIA333wTcrkc7777LiZOnIhu3bph6NChSElJQUxMjNaYnObNm+OZZ55BZGQk7t69i2rVqmHLli0oLCzUSBcYGIiGDRvizTffRHp6Ojw8PPDtt99WaOxJv379sGLFCvTp0wcjRozArVu3sGbNGjz55JM4deqUQctYsmQJEhMTERQUhPHjx6NZs2a4e/cujh8/jv3796svWxi6vaWkQYMGaNGiBfbv36/xALkxY8YAADp16oRNmzZpzBMSEqJ33JapxuRcvXoV/fv3h0wmw+DBg7UeQdCqVSt171N6ejqaNm2qvswJ/Dvo+N1338XgwYNRv3593L17F3FxcThz5gzef/99+Pn5qZc1ePBgPPPMMxgzZgzOnTunfuJxUVERoqOjTVIec7t16xZOnTpVrsdOkHkxyCGb8PLLL6Nhw4ZYvnw5xo8fj/DwcGRkZOCzzz7Dvn370KxZM2zatAnx8fEaD8BzcnLCrl27MG3aNGzatAkymQz9+/fHhx9+iDZt2uhdZ5MmTbBt2zbMnTsXb775Jvz8/DBp0iR4e3uX+6mlc+bMQePGjbFy5Up1A+3v749evXqhf//+6nQTJkxAUVERPvjgA8yaNQstW7bErl27MG/ePK1lbt68GRMnTsSSJUvg5eWFiIgIdO3aFT179lSnkcvl+P777/H6669j8eLFcHV1xUsvvYQpU6ZoXP4yRrdu3bBhwwYsWbIE06ZNQ/369bF06VKkpqYaHOT4+vriyJEjWLhwIbZv345PP/0U1atXR/PmzbF06VJ1OkO3t9SMHTsW8+fPR15ennpM0+3bt/Hw4UNMmDBBK72uQNgcUlJS1CcKug7cUVFRep8n1LJlS/U2vH37NlxcXNC6dWts3boVoaGhGmmdnZ2xe/duzJo1Cx9//DHy8vLw9NNPIzY21uAbCKyteGC4OZ/YTuUjE7YwAo+IAEB9W6uUD+z0n+zsbDRo0ADLli1DRESEtbND5dSmTRt06dIFK1eutHZWqASOySEishJPT0+89dZb+OCDD4y+m49sw969e/H3338jMjLS2lkhHdiTQ2RD2JNDRGQ67MkhIiIiSWJPDhEREUkSe3KIiIhIkhjkEBERkSQxyCEiycvMzMTgwYNRvXp1yGQyrFq1qtS0MpnMoFceEJHtY5BDJEHTp09H27ZtUa1aNbi7u6Np06ZYsGCBzqcH5+fnY/bs2ahVqxbc3NwQFBRk0DuviqWnp2PIkCHw8vKCh4cHBgwYoH5H0ePrmDp1Kry9vVGnTh28++67Wsu5fv06qlSpgt9//934Apeh+O3XkZGR+Oqrr9CnTx+Tr0MqunTpghYtWlg7GzqFh4eX60W35Lj4xGMiCfrzzz/RsWNHjBkzBq6urjhx4gSWLFmC/fv349ChQxrvIQoPD8e2bdswbdo0NGrUCLGxsejbty8SExPx3HPP6V3PgwcP0LVrV2RnZ+Ptt9+GXC7HypUr0blzZ5w8eRLVq1cHAHzwwQf43//+h3feeQf379/HwoUL0bBhQwwfPly9rFmzZqF///4mezXB43755RcMGDAAb775Zplp8/LyUKkSm0YiSRBEpNODBw+snQWTWr58uQAgkpOT1dMOHz4sAIgPPvhAPS0vL080bNhQBAcHl7nMpUuXCgDiyJEj6mnnz58Xzs7OIjIyUj0tKChIREdHqz+HhYWJYcOGqT//+uuvonLlyuLatWvlLp8+MplMTJ482SzLtrS8vDxRVFRktuV37txZNG/e3GzLr4iwsDBRuXJla2eD7AgvV5GkXb16Fa+99hqaNGkCNzc3VK9eHaGhoUhNTdVIFxsbC5lMhoMHD+K1116Dj48P6tSpo/5+z5496NixIypXroyqVauiX79+OHv2rMYyTp06hfDwcDRo0ACurq7w8/PD2LFj1W8ft7Z69eoBgMabzrdt2wZnZ2eN9yS5uroiIiICycnJuHbtmt5lbtu2DU8//TSefvpp9bTAwEB0794dW7duVU/Ly8vDE088of5crVo15ObmAgBUKhXeeOMNvPXWWxq/uSGuXLmC0NBQ9WW5Z555Bj/++KP6++LtKoTAmjVrIJPJIJPJ9C6z5JicBQsWQCaT4dKlSwgPD4eXlxc8PT0xZswYdRken3fKlCnYsWMHWrRoAYVCgebNm2Pv3r1a60lPT8fYsWPh6+urTvfll19qpDlw4ABkMhm2bNmCuXPnonbt2nB3d0dOTg4A4PLly7h8+bJRv5mxYmJiIJPJtPL2/vvvQyaTYffu3WZdvz5hYWGoUaMGlEql1ne9evWym3dfkfmwT5Yk7c8//0RSUhKGDRuGOnXqIDU1FWvXrkWXLl1w7tw5uLu7a6R/7bXX4O3tjfnz5+Phw4cAgK+++gphYWHo3bs3li5ditzcXKxduxbPPfccTpw4oQ4eEhIScOXKFYwZMwZ+fn44e/Ys1q9fj7Nnz+KPP/4o8+B6584dg8pUtWpVKBSKMtMVFhYiKysLBQUFOHPmDObOnYuqVauiQ4cO6jQnTpxA48aN4eHhoTFvcZqTJ0/C399f5/JVKhVOnTql82WmHTp0wE8//YT79++jatWqePrpp7F+/Xp06dIFDx48wNdff40pU6YAADZs2IA7d+5g1qxZBpW/WGZmJkJCQpCbm4vXX38d1atXx8aNG9G/f39s27YNL730Ejp16oSvvvoKo0aNQs+ePTF69Gij1vG4IUOGoH79+li8eDGOHz+OL774Aj4+PhovGgWA3377Ddu3b8drr72GqlWr4uOPP8agQYOQlpamvnyXmZmJZ555Rh0UeXt7Y8+ePYiIiEBOTg6mTZumscxFixbBxcUFb775JvLz8+Hi4gIA6N69OwBoBe2mNGbMGGzfvh0zZsxAz5494e/vj9OnTyM6OhoRERHo27evQcvJyspCRkYG6tSpo3NcTXp6OmrXrm1U3kaNGoX//e9/2LdvH1544QX19IyMDPzyyy+IiooyankkQdbuSiIyp9zcXK1pycnJAoD43//+p54WExMjAIjnnntOFBYWqqffv39feHl5ifHjx2ssIyMjQ3h6empM17Wur7/+WgAQhw4dKjOvAAz6i4mJMaTo6nIW/zVp0kQkJiZqpGnevLno1q2b1rxnz54VAMS6detKXf7t27cFALFw4UKt79asWSMAiAsXLgghhLh27Zpo3ry5Oi8dO3YU9+/fF1lZWcLb21ts2bLFoDI9btq0aQKA+PXXX9XT7t+/L+rXry/q1auncUkHgMGXqwCIqKgo9eeoqCgBQIwdO1Yj3UsvvSSqV6+uNa+Li4u4dOmSetpff/0lAIjVq1erp0VERIiaNWuKO3fuaMw/bNgw4enpqd6XEhMTBQDRoEEDnftXQECACAgIMKhchtJ1uermzZuiWrVqomfPniI/P1+0adNG1K1bV2RnZ5e5vGvXrolBgwYJJycnAUDI5XLRp08fsXHjRnH58mVx7tw58c4774hnn322zGWVvFxVVFQk6tSpI4YOHaqRbsWKFUImk4krV64YWGqSKvbkkKS5ubmp/69UKpGTk4Mnn3wSXl5eOH78OEaNGqWRfvz48XB2dlZ/TkhIQFZWFoYPH67R0+Ls7IygoCAkJibqXNejR4/w4MEDPPPMMwCA48ePo2PHjnrzaugdTc2bNzcoXbNmzZCQkICHDx8iKSkJ+/fv17q7Ki8vT2evkKurq/r70hR/Z8j8derUwYkTJ3D27Fm4uLggMDAQTk5OmDFjBpo0aYKhQ4fit99+w8yZM3Hjxg289NJLWL58ubrHQpfdu3ejQ4cOGoOjq1SpggkTJiAyMhLnzp0z6V1Cr776qsbnjh074rvvvkNOTo5GT1iPHj3QsGFD9edWrVrBw8NDfceZEALffvsthgwZAiGExn7Vu3dvbNmyBcePH9cYgB0WFqaxfxUzZw/O4/z8/LBmzRoMHz4cHTt2xMmTJ5GQkKDVA6hLdHQ0Hj58iG+//RY+Pj44fvw4tm7divDwcIj//8D9hg0bYs2aNUbny8nJCa+88go+/vhjda8hAGzevBkhISGoX7++0cskaWGQQ5KWl5eHxYsXIyYmBunp6epGFQCys7O10pdsFP/++28AQLdu3XQu//FG/u7du4iOjsaWLVtw69YtjXS61lVSjx49ykxjDA8PD/UyBwwYgLi4OAwYMADHjx/HU089BeDfwCw/P19r3kePHqm/L03xd4bOL5fL0bp1a/XnCxcu4NNPP0VSUhLu3r2Lfv36Yc6cOejatSvGjBmD9957D9HR0aWu/+rVqwgKCtKa3rRpU/X3pgxy6tatq/G5eIzRvXv3NPaDkumK0967dw8AcPv2bWRlZWH9+vVYv369znWV3H9s4WA9bNgwbNq0CT/++CMmTJigvlRWlhkzZqi3CQCEhIRgypQpSE9Px5kzZ/DEE0+gXbt2KCwsLFe+Ro8ejaVLl+K7777D6NGjcfHiRRw7dgzr1q0r1/JIWhjkkKRNnToVMTExmDZtGoKDg+Hp6QmZTIZhw4ZBpVJppS95UC9O89VXX8HPz08r/eO3Gg8ZMgRJSUmYNWsWWrdujSpVqkClUqFPnz4611VSRkaGQWXy9PTUG3yU5uWXX8aoUaOwZcsWdZBTs2ZNpKena6W9efMmAKBWrVqlLq9atWpQKBTqtMbOP336dIwcORJt27bFV199hWrVqiEyMhIA8NZbb5UZ5Fja4z18jxMlXv9XVrrifWHkyJEICwvTmbZVq1Yan8uzvU3tn3/+wdGjRwEA586dg0ql0ngUQWlq1qyJ2bNnIy4uDjdv3kRAQAD69u2LgQMHIiQkBAUFBfj888+xa9eucg1ibtasGdq1a4dNmzZh9OjR2LRpE1xcXDBkyBCjl0XSwyCHJG3btm0ICwvDhx9+qJ726NEjjTuM9Cm+7ODj46O3p+XevXv4+eefER0djfnz56unF/cEGaJmzZoGpYuJiUF4eLjByy2Wn58PlUql0avUunVrJCYmal1yOXz4sPr70jg5OaFly5bqA9/jDh8+jAYNGqgvH5T0ww8/ICkpSf373LhxQ6P8tWrV0hl8PS4gIAAXL17Umn7hwgX197bI29sbVatWRVFRkcl778xp8uTJuH//PhYvXozIyEisWrUKM2bMKHO+t956C3/99RcWLlwIX19fHDt2DF9//TU++eQTdRofHx98/PHH5c7b6NGjMWPGDNy8eRNxcXHo16+fxt185LgY5JCkOTs7a51pr169GkVFRQbN37t3b3h4eOD9999H165dIZfLNb6/ffs2vL291WfvJdel7/UBJZlqTE5WVhYqV66sldcvvvgCANC+fXv1tMGDB2P58uVYv369+kF5+fn5iImJQVBQkMadVWlpacjNzUVgYKDG/HPmzMHRo0fVy7148SJ++eWXUh+8V1BQgBkzZmDu3Lnw8fEBAPj6+uLSpUsoLCxEpUqVcP78eZ09Z4/r27cvVq1aheTkZAQHBwMAHj58iPXr16NevXpo1qyZ3vmtxdnZGYMGDUJcXBzOnDmjdUmteJ+yJdu2bcM333yDjz/+GFOnTsVff/2FuXPn4oUXXkDjxo31zjt+/Hi0b99efXdh3759MW/ePJw9e1Z9uapTp07qcVzlMXz4cMycORNvvPEGrly5gg8++KDcyyJpYZBDkvbCCy/gq6++gqenJ5o1a4bk5GTs379ffStvWTw8PLB27VqMGjUKbdu2xbBhw+Dt7Y20tDT8+OOPePbZZ/HJJ5/Aw8MDnTp1wrJly6BUKlG7dm389NNPSElJMTivpjqrP3DgAF5//XUMHjwYjRo1QkFBAX799Vds374d7du3x8iRI9Vpg4KCEBoaisjISNy6dQtPPvkkNm7ciNTUVGzYsEFjuaNHj8bBgwc1ArnXXnsNn3/+Ofr164c333wTcrkcK1asgK+vL2bOnKkzfx999BEA4I033lBP69u3LyZPnowRI0YgJCQEixYtwrhx4/SWc86cOfj666/x/PPP4/XXX0e1atWwceNGpKSk4NtvvzXoUoq1LFmyBImJiQgKCsL48ePRrFkz3L17F8ePH8f+/ftx9+5dg5ZT/PgCcw5AvnXrFiZNmoSuXbuqb/v/5JNPkJiYiPDwcPz22296f+vHn6H0uObNmxs8iL4s3t7e6NOnD+Lj4+Hl5YV+/fqZZLkkAVa7r4vIAu7duyfGjBkjatSoIapUqSJ69+4tLly4IAICAkRYWJg6XfEt5H/++afO5SQmJorevXsLT09P4erqKho2bCjCw8PF0aNH1WmuX78uXnrpJeHl5SU8PT1FaGiouHHjhtYtyeZ26dIlMXr0aNGgQQPh5uYmXF1dRfPmzUVUVJTOpzjn5eWJN998U/j5+QmFQiGefvppsXfvXq10nTt3FrqajGvXronBgwcLDw8PUaVKFfHCCy+Iv//+W2feMjIyRNWqVcWuXbu0vtuzZ48IDAwUXl5eYvTo0eLhw4dllvXy5cti8ODBwsvLS7i6uooOHTqIH374QSsdTHAL+e3btzXSFe8zKSkpZa6n5P4mhBCZmZli8uTJwt/fX8jlcuHn5ye6d+8u1q9fr05TfAt5fHy8zrzWqFFDPPPMMwaVy1AlbyF/+eWXRdWqVUVqaqpGup07dwoAYunSpSZdvz76nni8detWAUBMmDDBYvkh2ycTokT/OhER2bxz586hefPm+OGHH9hzAWDnzp0YOHAgDh06VObjGshx2G5/LhERlSoxMRHBwcEMcP6/zz//HA0aNCjzpbLkWNiTQ0REdmvLli04deoUFi9ejI8++givv/66tbNENoRBDhER2S2ZTIYqVapg6NChWLduncazq4js6nLVoUOH8OKLL6JWrVqQyWTYsWOHxvdCCMyfPx81a9aEm5sbevToYdBzStasWYN69erB1dUVQUFBOHLkiJlKQEREpiSEwP379/HFF18wwCEtdhXkPHz4EE899VSp7zhZtmwZPv74Y6xbtw6HDx9G5cqV0bt3b/Uj5nX55ptvMGPGDERFRakfd9+7d2+tx6oTERGRfbHby1UymQzfffcdBg4cCODfaL5WrVqYOXOm+iFk2dnZ8PX1RWxsLIYNG6ZzOUFBQXj66afVT99UqVTw9/fH1KlTMWfOHIuUhYiIiExPMn17KSkpyMjI0HigmqenJ4KCgpCcnKwzyCkoKMCxY8fU78sB/n1UfY8ePZCcnFzquvLz8zVeSqhSqXD37l1Ur15d/VRPIiIi0q34MmOtWrXM+uBOyQQ5xS839PX11Zju6+tb6osP79y5g6KiIp3zFL//RpfFixfb1IsDiYiI7NG1a9dQp04dsy1fMkGOJUVGRmq8mC47Oxt169ZFD6+XgXy7GuZkMLmrM0atGYCvJu+E8pFh732yRyyntDhCOR2hjADLKTkKFfZnbS/1Jb6mIpkgp/hlfpmZmRpvM87MzCz1Tco1atSAs7MzMjMzNaZnZmbqfTmgQqGAQqHQ/iLfCSh9jLN9kznB3d39/5dRwhWP5ZQWRyinI5QRYDkl598OAXMP8ZBMt0P9+vXh5+eHn3/+WT0tJycHhw8fVr+huCQXFxe0a9dOYx6VSoWff/651HmIiIjIPthVT86DBw9w6dIl9eeUlBScPHkS1apVQ926dTFt2jS8++67aNSoEerXr4958+ahVq1a6juwAKB79+546aWX1G/TnTFjBsLCwtC+fXt06NABq1atwsOHDzFmzBhLF4+IiIhMyK6CnKNHj6Jr167qz8XjYsLCwhAbG4u33noLDx8+xIQJE5CVlYXnnnsOe/fuhaurq3qey5cv486dO+rPQ4cOxe3btzF//nxkZGSgdevW2Lt3r9ZgZCIiIrIvdhXkdOnSBfoe6yOTybBw4UIsXLiw1DSpqala06ZMmaLu2SEiIiJpkMyYHCIiIqLHMcghIiIiSWKQQ0RERJLEIIeIiIgkiUEOERERSRKDHCIiIpIkBjlEREQkSQxyiIiISJIY5BAREZEkMcghIiIiSWKQQ0RERJLEIIeIiIgkiUEOERERSRKDHCIiIpIkBjlEREQkSQxyiIiISJIY5BAREZEkMcghIiIiSWKQQ0RERJLEIIeIiIgkqZK1M0Dlk6CKL9d8PZ1CTZwTx1Te399WKJVK7N69GzuzNkIul1s7O2bjCOWUWhnZRpkGjxH/Yk+OA5HazmsNCap4uw9wiGwZ65hpsL3/F3tyHAB39ophg0tkeY/XO7Zh5VP8uzlyG8aeHIlj41B+PKMksg0JqnjszNpo7WzYLUc+DjDIkTBH3rErig0qEUmJox4PGOQQERGRJDHIkShHjdorgl3iRLZvZ9ZGXkouJ0c8LjDIkSBH3JErgg0mkX1i3TWeox0fGORIjKPtwBXFBpLI/rEeG8eRjhO8hVwiHGmnNQU2ikTSUlyn2RYaxlFuL2dPjgSwUhuO3dtE0sY6bhypHz8Y5Ng5qe+gpsKGj8ixsM4bTsrHEQY5REREJEkMcuyYlKNvU+LZHJHjYv03jFSPJxx4bKekukOaEhs3IgI4KNlQUvx92JNDksQAh4hKYrvgeNiTQ5LBBoyIysK3mzsW9uSQJDDAISJjsd2QPgY5ZPfYUBFRebH9kDZeriK7xcaJiEyBA5Oliz05REREJEnsySG7wx4cIjIH9uhID3tyyK4wwCEic2M7Ix3sySG7wEaHiCyJvTrSwJ4csnkMcIjIWtj+2DcGOWTT2MAQkbWxHbJfkgpy6tWrB5lMpvU3efJkneljY2O10rq6ulo416RLgiqeDQsR2Qy2R/ZJUmNy/vzzTxQVFak/nzlzBj179kRoaOnXVD08PHDx4kX1Z5lMZtY8EhERkWVIKsjx9vbW+LxkyRI0bNgQnTt3LnUemUwGPz8/c2eNjMAzJiKyRRyMbH8kFeQ8rqCgAJs2bcKMGTP09s48ePAAAQEBUKlUaNu2Ld5//300b95c77Lz8/ORn5+v/pyTkwMAkLs6AzJJXQFUk7tV0vjXHHZmbQQAKJVKs62jLMXrtmYeLIHllA5HKCNgW+XcnR8HABjgFWbyZVuirbUJChWQZ/7VyIQQwvyrsbytW7dixIgRSEtLQ61atXSmSU5Oxt9//41WrVohOzsby5cvx6FDh3D27FnUqVOn1GUvWLAA0dHRWtPj4uLg7u5usjIQERFJUW5uLkaMGIHs7Gx4eHiYbT2SDXJ69+4NFxcXfP/99wbPo1Qq0bRpUwwfPhyLFi0qNZ2unhx/f388/8RQIF+6PTljNwzClxHfQplXaNJlF/fg2AKlUomEhAT07NkTcrnc2tkxG5ZTOhyhjIBtl9OUPTrmbGttikKFPfe+MXuQI8n+sKtXr2L//v3Yvn27UfPJ5XK0adMGly5d0ptOoVBAoVBoTVc+KgIeFemYQzqUeYVQ5pmuu9hWx9/I5XKba0jNgeWUDkcoI2Cb5dz9MM7k43RM3dbaHAt1r0gyyImJiYGPjw/69etn1HxFRUU4ffo0+vbta6acUTFbDW6IiMqDg5Jtk+SurahUKsTExCAsLAyVKmnGcKNHj0ZkZKT688KFC/HTTz/hypUrOH78OEaOHImrV69i3Lhxls42ERERmZjkenL279+PtLQ0jB07Vuu7tLQ0ODn9F9fdu3cP48ePR0ZGBp544gm0a9cOSUlJaNasmSWz7HDYi0NEUpWgimdvjg2RXJDTq1cvlDaW+sCBAxqfV65ciZUrV1ogV1SMAQ4RSR0DHdshuctVZLsY4BCRo2B7ZxsY5JBFsMITkaNhu2d9DHLI7FjRichRsf2zLsmNySHbwcpNRMTby62JPTlkFgxwiIg0sV20PAY5REREJEkMcsjkeLZCRKQb20fLYpBDJsUKTESkH9tJy2GQQybDiktEZBi2l5bBIIdMghWWiMg4bDfNj0EOVRgrKhFR+bD9NC8+J4fKjZWTiKji+Bwd82FPDhEREUkSgxwqF/biEBGZFttV02OQQ0ZjRSQiMo+dWRutnQVJYZBDRmEFJCIie8Egh4iIyMbwhNI0GOQQERGRJDHIIYPwrIKIyLI4/rHi+Jwc0qu4kimVSivnhIjI8fAZOhXDnhwiIiKSJAY5VCp2lRIR2Qa2x+XDIId0YoUiIrItbJeNxyCHtLAiERHZJrbPxmGQQ0RERJLEIIc08CyBiMi2sZ02HG8hJzVWHJKCx2+1lbvJMTFuKAZ4hUGZ999jELivk71LUMXztnIDsCeHiIiIJIk9OcSzWrJJ5jxLLe+yWVfIlvBBgWVjkENEVmNvjbO+/DIAIrI9DHIcHBtmsgR7C2bKo7Qyso6RuXF8TukY5DgwNr5kLmxw/1Pyt2C9I3NgoKMbgxwHxYaWTIUNq3F0/V6sj2QKDHS0McghIqOxITWtx39PBjxEpsNbyImIiEiS2JPjgHimSMZiz43lcAwPVQQvWWliT46DYYNJxujpFMoG08q4DchYbOf/w54cIlLjwdR2sYeHyHjsyXEgbBSpNOwtsD/cZqQP2/t/sSfHAXBnp9KUfHEl2Z8BXmGYGDfU2tkgG8TXPjDIIXIoxY1d8du5STr4pnUibbxcJXFs6AjgpQ1HxG1OxRz5OMAgh4iIiCSJQY6EOXL0Tv/h2bxj4/YnwHGPBxyTQyRBPLDR4/jaCHJU7MmRKDZkjonjMKgs3EcclyMeFxjkSJAj7siOjgcuMhb3GcfkaMcHSQU5CxYsgEwm0/gLDAzUO098fDwCAwPh6uqKli1bYvfu3RbKLZFp8EBFFcH9h6RMcmNymjdvjv3796s/V6pUehGTkpIwfPhwLF68GC+88ALi4uIwcOBAHD9+HC1atLBEdk3O0aJ0R8UDE5kSx+w4Fkd6iaekenKAf4MaPz8/9V+NGjVKTfvRRx+hT58+mDVrFpo2bYpFixahbdu2+OSTTyyYYyIiIjIHyfXk/P3336hVqxZcXV0RHByMxYsXo27dujrTJicnY8aMGRrTevfujR07duhdR35+PvLz89Wfc3JyAAByV2dAZt24Uak0zyP6i5drruXbClsv5wCvMAD/PrG4IuRulTT+lSpHKKepy9i38ggAwM6sjSZZnqnYet00FUuVs6JtSIUpVECe+VcjE0II86/GMvbs2YMHDx6gSZMmuHnzJqKjo5Geno4zZ86gatWqWuldXFywceNGDB8+XD3t008/RXR0NDIzM0tdz4IFCxAdHa01PS4uDu7u7qYpDBERkUTl5uZixIgRyM7OhoeHh9nWI6nTm+eff179/1atWiEoKAgBAQHYunUrIiIiTLaeyMhIjR6gnJwc+Pv746vJO4F8y/fkWOKMS6lUIiEhAT179oRcbuUzADOytXIW99yYmtytEsZuGIQvI76FMq/QLOuwBY5QTkuV0do9O7ZWN83FGuU0Vzujl0JlkdVIKsgpycvLC40bN8alS5d0fu/n56fVY5OZmQk/Pz+9y1UoFFAoFFrTlY+KgEdF5c9wOVmywsvlckk3MMVsoZyWGBiozCt0iLeQO0I5zV3GvooRNjEo2RbqpiVYspxWqRsWuoYkuYHHj3vw4AEuX76MmjVr6vw+ODgYP//8s8a0hIQEBAcHWyJ7JmELjQ6ZnqPc+UD2hfulNEn5OCKpnpw333wTL774IgICAnDjxg1ERUXB2dlZPeZm9OjRqF27NhYvXgwAeOONN9C5c2d8+OGH6NevH7Zs2YKjR49i/fr11iwGOTAeRMjWFe+jUj4wknRIKsi5fv06hg8fjn/++Qfe3t547rnn8Mcff8Db2xsAkJaWBien/zqvQkJCEBcXh7lz5+Ltt99Go0aNsGPHDrt9Rg4RERH9R1JBzpYtW/R+f+DAAa1poaGhCA21z7NnnklJC3txyJ70dAplGyQhUn1AoKTH5BDZCyk2LiR93G/J1jHIsVM8g5IGviSR7B33YemQ4nGFQQ6RlfDAQFLC/ZlskaTG5BDZAx4MSKp45xXZGvbkEFkQAxxyBNzPyVYwyCGyEDb85Ei4v5MtYJBDREREksQxOURmxjNaclQco0PWxp4cIjNigEPEekDWwyCHyEzYsBP9h/WBrIFBDpEZsEEn0sZ6QZbGIIfIxNiQE5WO9YMsiUEOkQmxAScqG+sJWQqDHCIiIpIk3kJOZAI8MyUyDm8vJ0tgTw5RBTHAISo/1h8yJwY5RBXABpqo4liPyFx4uYqI7FZZlzqUSiV2796NnVkbIZfL9ablgZZIehjkEJUTD4rmZ8nxGmWti9vbvHo6hXJ8DpkcgxyicuABzzxs+SBXMm/cB0yPgQ6ZGsfkEBERkSSxJ4fISDyDNw17P2PXlX/uGxXH3hwyJQY5REbgQaz8HOHAxUtapsFAh0yFQQ6RAXiwKh9HP1A9Xn7uQ8bhwwLJFBjkEJHJ8cCkrfg3YbBDZDkMcojKwIOSYRjYGIa9O8bhpSuqCAY5RHrwIKQfDz4Vw4DHMD2dQrE7P87a2SA7xFvIiUrBg45+DHBMi7+nfgO8wqydBbJDDHKIiIhIkni5iogMxt4G8+LlKyLTYpBDpAO7xjUxuLE83o1FVHG8XEVEpUpQxTPAsTJuA008ASFjMMghIp14YLUt3B5ExuPlKqL/r6dTKORuckyMG2rtrFgND6S2jWN2/sWnIZOh2JNDRAB4wLA33F5EZWOQQ0RERJLEIIcIjt31D7BXwF45+nZz9HpLZWOQQw7P0RtKRz9Q2rudWRutnQWrcvT6S/oxyCFyQMUHRkc/QErJzqyNDFiJSmCQQw7NEc8CeSCUNkfcvo5Yj8kwDHKIHIgjHgAdEbcz0b8Y5JDDcrSzPx74HIujbW9Hq89kGAY5REREJEkMcogcgKOd1dO/uN3J0THIIYfkSF3bPNA5Nkfa/o5Ur8kwDHLIofR0CnWohtCRDnBUOkfaDxytjpN+fEEnkQQ50kGNDFO8TzAAIEciqZ6cxYsX4+mnn0bVqlXh4+ODgQMH4uLFi3rniY2NhUwm0/hzdXW1UI7JkhylcWeAQ/o4yv7hKPWd9JNUkHPw4EFMnjwZf/zxBxISEqBUKtGrVy88fPhQ73weHh64efOm+u/q1asWyjGRaTnKAYwqhvsJOQpJXa7au3evxufY2Fj4+Pjg2LFj6NSpU6nzyWQy+Pn5mTt7RGbFAxcZI0EVz94OkjxJBTklZWdnAwCqVaumN92DBw8QEBAAlUqFtm3b4v3330fz5s1LTZ+fn4/8/Hz155ycHACA3NUZkFmmc0ypVFpkPSXXZ+n1mpLcTW5Amkoa/9oTY7aNFLanIRyhnBUpoyF1wlaUp27a43a39j5rsX1CoQLyzL8amRBCmH81lqdSqdC/f39kZWXht99+KzVdcnIy/v77b7Rq1QrZ2dlYvnw5Dh06hLNnz6JOnTo651mwYAGio6O1psfFxcHd3d1kZSAiIpKi3NxcjBgxAtnZ2fDw8DDbeiQb5EyaNAl79uzBb7/9VmqwootSqUTTpk0xfPhwLFq0SGcaXT05/v7+eP6JoUC+ZXpyLP32aKVSiYSEBPTs2RNyuf2c/RUb4BVmUDq5WyWM3TAIX0Z8C2VeoZlzZTrG7g/2vj0N5QjlrGgZDa0b1lbeumnptrKirL3PWmx/UKiw5943Zg9y7K9P3gBTpkzBDz/8gEOHDhkV4ACAXC5HmzZtcOnSpVLTKBQKKBQKrenKR0XAoyKj81se1mqw5XK53R0syjPuQJlXCGWefXR1V2Qsjj1uz/JwhHKWt4y7H8bZ1dgcY+tmX8UIuxyvZq191mLtnoW6VyQV5AghMHXqVHz33Xc4cOAA6tevb/QyioqKcPr0afTt29cMOSQyHXtsuMk28Rk6JFWSuoV88uTJ2LRpE+Li4lC1alVkZGQgIyMDeXn/jW4aPXo0IiMj1Z8XLlyIn376CVeuXMHx48cxcuRIXL16FePGjbNGEcjEpNpoM8Ahc5DqfiXVdoDKJqmenLVr1wIAunTpojE9JiYG4eHhAIC0tDQ4Of0X2927dw/jx49HRkYGnnjiCbRr1w5JSUlo1qyZpbJNREREZiCpIMeQMdQHDhzQ+Lxy5UqsXLnSTDkiIiIia5HU5SoiRyDVSwpkG7h/kZQwyCHJkuJ1eB6AyBKkuJ9JsT2gsjHIISIiIklikEOSJMWzNimeXZPtkuL+JsV2gfRjkENERESSxCCHyA5I8ayabB/3O7J3DHKIiIhIkiT1nBwiXnMnIn2K2wj2UjkGBjlENowNMVkb32tF9oyXq4hsFAMcsiXcH8keMcghyeCZJhEZiu2FY2CQQ0RERJLEIIfIBvHSANki7pdkbxjkEBERkSQxyCEiIiJJYpBDkiClQYS8JEC2TEr7p5TaDdKNQQ4RERFJEoMcIhsipbNkki7up2QvGOQQERGRJDHIIbvH6+pEVF5sP6SNQQ6RjeAlALIn3F/JHjDIISIiIklikENERESSxCCHiIiIJIlBDpEN4PgGskfcb8nWMcghu8Y7I4iootiOSFclQxK1bdvWqIXKZDLs2rULtWvXLlemiIiIiCrKoCDn5MmTmDlzJqpUqVJmWiEElixZgvz8/ApnjoiIiKi8DApyAGDWrFnw8fExKO2HH35Y7gwRERERmYJBQU5KSgq8vb0NXui5c+dQq1atcmeKyFFw4CbZu+J9mONayBYZFOQEBAQYtVB/f/9yZYaIiIjIVAy+XPW4R48e4dSpU7h16xZUKpXGd/379zdJxoiIiIgqwuggZ+/evRg9ejTu3Lmj9Z1MJkNRUZFJMkZUFnaPE5Gp9HQK5eVjCTL6OTlTp05FaGgobt68CZVKpfHHAIfIcGxQSUq4P5MtMjrIyczMxIwZM+Dr62uO/BARERGZhNFBzuDBg3HgwAEzZIWIiIjIdIwek/PJJ58gNDQUv/76K1q2bAm5XK7x/euvv26yzBERERGVl9FBztdff42ffvoJrq6uOHDgAGQymfo7mUzGIIeIiIhsgtFBzjvvvIPo6GjMmTMHTk58vycRERHZJqOjlIKCAgwdOpQBDhEREdk0oyOVsLAwfPPNN+bICxEREZHJGH25qqioCMuWLcO+ffvQqlUrrYHHK1asMFnmiKSKzxQhKUpQxfMhnWRTjA5yTp8+jTZt2gAAzpw5o/Hd44OQiYiIiKzJ6CAnMTHRHPkgIiIiMimOHiYiIiJJMron59GjR1i9ejUSExN1voX8+PHjJsscERERUXkZHeRERETgp59+wuDBg9GhQweOwyGL48BGIjKH4raFNwZIh9FBzg8//IDdu3fj2WefNUd+TGLNmjX44IMPkJGRgaeeegqrV69Ghw4dSk0fHx+PefPmITU1FY0aNcLSpUvRt29fC+aYiIiITM3oMTm1a9dG1apVzZEXk/jmm28wY8YMREVF4fjx43jqqafQu3dv3Lp1S2f6pKQkDB8+HBEREThx4gQGDhyIgQMHat05RkRERPbF6CDnww8/xOzZs3H16lVz5KfCVqxYgfHjx2PMmDFo1qwZ1q1bB3d3d3z55Zc603/00Ufo06cPZs2ahaZNm2LRokVo27YtPvnkEwvnnIhMbYBXmMa/RORYjL5c1b59ezx69AgNGjSAu7u71sMA7969a7LMGaugoADHjh1DZGSkepqTkxN69OiB5ORknfMkJydjxowZGtN69+6NHTt2lLqe/Px85Ofnqz/n5OQAAOSuzoDMMjesKZVKi6yn5PosvV5d5G7yshOVe9mVNP41F2v/jra0Pc3p8e0p1bLa2rY0V/20VN0ErPtbWnt7mrN91aBQAXnmX41MCCGMmaFHjx5IS0tDREQEfH19tQYeh4VZ74zpxo0bqF27NpKSkhAcHKye/tZbb+HgwYM4fPiw1jwuLi7YuHEjhg8frp726aefIjo6GpmZmTrXs2DBAkRHR2tNj4uLg7u7uwlKQkREJF25ubkYMWIEsrOz4eHhYbb1GB0SJyUlITk5GU899ZQ58mMXIiMjNXp/cnJy4O/vj68m7wTyLdOTszNro0XWU0ypVCIhIQE9e/bU6r2zNHNeepC7VcLYDYPwZcS3UOYVmm09lt5+JdnS9jQnRyinrZXRXPXTUnUTsG79tPb2tNilXYWq7DQmYHSQExgYiLw8C/QxlUONGjXg7Oys1QOTmZkJPz8/nfP4+fkZlR4AFAoFFAqF1nTloyLgUVE5cm48azVmcrnc6g2pMs/83bjKvEKzrsfav2ExW9ieluAI5bSVMpq7fpq7bgK2UT+ttT0t0b4CAIy6hlR+Rnc7LFmyBDNnzsSBAwfwzz//ICcnR+PPmlxcXNCuXTv8/PPP6mkqlQo///yzxuWrxwUHB2ukB4CEhIRS0xMREZF9MLonp0+fPgCA7t27a0wXQkAmk6GoyDI9GaWZMWMGwsLC0L59e3To0AGrVq3Cw4cPMWbMGADA6NGjUbt2bSxevBgA8MYbb6Bz58748MMP0a9fP2zZsgVHjx7F+vXrrVkM0qP4QV18KCARmRIfAig9kntB59ChQ3H79m3Mnz8fGRkZaN26Nfbu3QtfX18AQFpaGpyc/uvACgkJQVxcHObOnYu3334bjRo1wo4dO9CiRQtrFYGIiIhMwOggp3PnzubIh0lNmTIFU6ZM0fndgQMHtKaFhoYiNJS9AkRERFJi0JicU6dOab2IU5+zZ8+isNC8o9+JiIiI9DEoyGnTpg3++ecfgxcaHByMtLS0cmeKiIiIqKIMulwlhMC8efMMftBdQUFBhTJFJHU9nUI5yJEkhzcDkK0xKMjp1KkTLl68aPBCg4OD4ebmVu5MEREREVWUQUGOrsG6RERERLbMMu8gICIiIrIwBjlEREQkSQxyiIiISJIY5BAREZEkMcghIiIiSWKQQ2QlfKYISQn3Z7JFDHLIbvFhekRkKmxPpIlBDhEREUkSgxwiIiKSJKODnLCwMBw6dMgceSFyOD2dQjmWgewa92GyZUYHOdnZ2ejRowcaNWqE999/H+np6ebIFxEREVGFGB3k7NixA+np6Zg0aRK++eYb1KtXD88//zy2bdsGpVJpjjwSERERGa1cY3K8vb0xY8YM/PXXXzh8+DCefPJJjBo1CrVq1cL06dPx999/mzqfREREREap0MDjmzdvIiEhAQkJCXB2dkbfvn1x+vRpNGvWDCtXrjRVHolKxds+iaii2I5Il9FBjlKpxLfffosXXngBAQEBiI+Px7Rp03Djxg1s3LgR+/fvx9atW7Fw4UJz5JdIkjhwk+wR91uydZWMnaFmzZpQqVQYPnw4jhw5gtatW2ul6dq1K7y8vEyQPSIiIqLyMTrIWblyJUJDQ+Hq6lpqGi8vL6SkpFQoY0REREQVYXSQM2rUKHPkg4iIiMik+MRjIhvB8Q1kT7i/kj1gkEN2j3dGEFF5sf2QNgY5REREJEkMcohsCC8BkD3gfkr2gkEOERERSRKDHJIEKV1X51ky2TIp7Z9SajdINwY5REREJEkMcoiIiEiSGOQQ2SApXRIg6eB+SfaGQQ4RERFJEoMckgwOIiQiQ7G9cAwMcohsFC8NkC3h/kj2yOgXdBKR5RQfWHjWSdbC4IbsGYMckpTiYIANMxHpwhMGx8LLVURERCRJDHKI7AB7psgauN+RvWOQQ0RERJLEIIckSYrX3XlWTZYkxf1Niu0C6ccgh4iIiCSJQQ5JlhTP2qR4dk22R4r7mRTbAyobgxwiOyPFAxDZDu5fJCUMcoiIiEiSGOQQERGRJEkmyElNTUVERATq168PNzc3NGzYEFFRUSgoKNA7X5cuXSCTyTT+Xn31VQvlmsxNqtfheUmBzEGq+5VU2wEqm2Re63DhwgWoVCp89tlnePLJJ3HmzBmMHz8eDx8+xPLly/XOO378eCxcuFD92d3d3dzZJaowvteKTEWqwQ2RZIKcPn36oE+fPurPDRo0wMWLF7F27doygxx3d3f4+fmZO4tkJQmqeEk34j2dQhnoULlJuW4APAlwdJIJcnTJzs5GtWrVyky3efNmbNq0CX5+fnjxxRcxb948vb05+fn5yM/PV3/OyckBAMhdnQGZZa4AKpVKi6yn5PosvV5TkbvJDUxXSeNfe9G38gjszNpocHp7356GcoRyVqSMA7zCDK4b1lbeumlv297a+6zF9geFCsgz/2pkQghh/tVY3qVLl9CuXTssX74c48ePLzXd+vXrERAQgFq1auHUqVOYPXs2OnTogO3bt5c6z4IFCxAdHa01PS4ujpe6iIiIypCbm4sRI0YgOzsbHh4eZluPzQc5c+bMwdKlS/WmOX/+PAIDA9Wf09PT0blzZ3Tp0gVffPGFUev75Zdf0L17d1y6dAkNGzbUmUZXT46/vz+ef2IokG+ZnhxjztpNQalUIiEhAT179oRcbh9nfiUN8AorM43crRLGbhiELyO+hTKv0AK5Mh1je3LsfXsawhHKWZEyGlInbEV56qal20lTsPY+a7F9QqHCnnvfmD3Isfk++ZkzZyI8PFxvmgYNGqj/f+PGDXTt2hUhISFYv3690esLCgoCAL1BjkKhgEKh0JqufFQEPCoyep3lYa0GWy6X2+3BQplnePevMq/QqPS2oK9ihNHjD+x5exrDEcppbBntdSyOMXXTnre5tfZZi7V7Fupesfkgx9vbG97e3galTU9PR9euXdGuXTvExMTAycn4XpWTJ08CAGrWrGn0vETWxkHIZAh7DXCIjCWZ5+Skp6ejS5cuqFu3LpYvX47bt28jIyMDGRkZGmkCAwNx5MgRAMDly5exaNEiHDt2DKmpqdi1axdGjx6NTp06oVWrVtYqCpmJoxz8eQAjfRxl/3CU+k762XxPjqESEhJw6dIlXLp0CXXq1NH4rnjYkVKpxMWLF5GbmwsAcHFxwf79+7Fq1So8fPgQ/v7+GDRoEObOnWvx/BOZEp+hQyU5SnBD9DjJBDnh4eFljt2pV68eHh9n7e/vj4MHD5o5Z2RLig/6jtLg8/IVAY6zvwMM7EmTZC5XERnDkRpCRzrAkTZH2v6OVK/JMAxyiByAIx3o6D/c7uToGOQQERGRJDHIIYflaF3bPKt3LI62vR2tPpNhGOQQORBHO/A5Km5non8xyCGH5ohnfzwASpsjbl9HrMdkGAY5RA6o+P009vTuItJvgFeYQwY4RPowyCGH5+hngTww2jdHD1Qdvf6SfgxyiMCGkoGOfXL07ebo9ZbKxiCHiIiIJIlBDhEBYK+AveH2IiqbZN5dRVRRCap4KJVK7N6929pZsZrHD5y8FGB7GNj8i/smGYo9OUSkEw+otoXbg8h47MkholIVH1h55mw9DG407czaaO0skB1hTw6RDmxINfV0CuXB1sL4mxNVHHtyiMhgHLNjXgxqiEyLPTlEREQkSQxyiErBngr92OtgWvw99eMlZCoPXq4i0iNBFc+Djx68fFUx3LcMU/x4ByJjMcghKgMDHcMw4DEM9yXjcF+iimCQQ0Qmx1vPtTG4IbI8BjlEBig+WPNAZRxH793h/lJ+jri/kOkxyCEyAi9dlV/J302KBzHuG6YhxX2DrINBDpGRGOiYhq7f0J4ObtwHzMOe9gGyfbyFnIiIiCSJPTlE5cDeHPOw5Uta3N7mZ0vbm6SBQQ5ROTHQMb+yfl9THhS5La2LAQ6ZA4McIrJbZQUmcjc5JsYNxQCvMCjz+DA5IkfDMTlEFcCzT6KKYz0ic2GQQ1RBbKCJyo/1h8yJl6uITIAPCyQyDoMbsgT25BAREZEkMcghMiGenRKVjfWELIVBDpGJsQEnKh3rB1kSgxwiM2BDTqSN9YIsjUEOkZmwQSf6D+sDWQODHCIzYsNOxHpA1sNbyInMjLeXk6NicEPWxp4cIiIikiQGOUQWwrNaciTc38kWMMghsiA2/OQIuJ+TreCYHCIL4xgdkioGN2Rr2JNDZCU8IJCUcH8mW8Qgx06xF0AaElTxPDiQXeM+LB1SPK4wyCGyATxIkD3ifku2jkGOHZNi1O3IeMAge8L9VVqkejxhkENERESSJKkgp169epDJZBp/S5Ys0TvPo0ePMHnyZFSvXh1VqlTBoEGDkJmZaaEcE2ni+AayddxHyZ5IKsgBgIULF+LmzZvqv6lTp+pNP336dHz//feIj4/HwYMHcePGDbz88ssWym3FSbWL0dHxIEK2iPulNEn5OCK55+RUrVoVfn5+BqXNzs7Ghg0bEBcXh27dugEAYmJi0LRpU/zxxx945plnzJlVIr0SVPGSbnzIvjDAIXskuSBnyZIlWLRoEerWrYsRI0Zg+vTpqFRJdzGPHTsGpVKJHj16qKcFBgaibt26SE5OLjXIyc/PR35+vvpzTk4OAEDu6gzILN851rfyCOzM2mjWdSiVSo1/pcrWyrk7P079/wFeYSZbrtytksa/UuUI5TRnGR9vV6xdJ2ytbpqLpcs5wCsMcje5RdalQaEC8sy/GpkQQph/NZaxYsUKtG3bFtWqVUNSUhIiIyMxZswYrFixQmf6uLg4jBkzRiNgAYAOHTqga9euWLp0qc75FixYgOjoaJ3Lc3d3r3hBiIiIJCw3NxcjRoxAdnY2PDw8zLYemz+9mTNnTqnBRrHz588jMDAQM2bMUE9r1aoVXFxcMHHiRCxevBgKhcJkeYqMjNRYV05ODvz9/fHV5J1AvnWHOZmrR0epVCIhIQE9e/aEXG6FqN9C7KWcFe3VkbtVwtgNg/BlxLdQ5hWaKFe2xxHKaeoymrtXuLzspW5WlKXKacqe4XJRqCyyGpsPcmbOnInw8HC9aRo0aKBzelBQEAoLC5GamoomTZpofe/n54eCggJkZWXBy8tLPT0zM1PvuB6FQqEzaFI+KgIeFenNq7mZu/LL5XJJNzDFbL2cyjzTdGUr8wpNtixb5gjlNFUZbXm/B2y/bpqKuctp9fpgoWtINh/keHt7w9vbu1zznjx5Ek5OTvDx8dH5fbt27SCXy/Hzzz9j0KBBAICLFy8iLS0NwcHB5c6zNfV0CuUAQQfw+Dbm4GSqKLYZjsWR2gzJ3EKenJyMVatW4a+//sKVK1ewefNmTJ8+HSNHjsQTTzwBAEhPT0dgYCCOHDkCAPD09ERERARmzJiBxMREHDt2DGPGjEFwcDDvrCK7wQMUVQT3H5Iym+/JMZRCocCWLVuwYMEC5Ofno379+pg+fbrG2BmlUomLFy8iNzdXPW3lypVwcnLCoEGDkJ+fj969e+PTTz+1RhFMhr05jqd4ezvSGRpVDNsIx+RobYRkgpy2bdvijz/+0JumXr16KHkzmaurK9asWYM1a9aYM3sWx0DHMTHYobKwXXBcjtguSCbIIaL/cMwOPY6BDTkqyYzJIW08uBHAA5yj4/YnwHGPBwxyiIiISJIY5Eico0bvpIlvjnY83OZUzJGPAxyTQ+RAig96SqUSu3fvtnJuyJR2Zm10iIfkERmDPTkOoKdTqENH8lS6nVkbebZv52z1NQxkfWz7GeQ4FEff2al0vLRhf7jNSB+29//i5SoiUit50GRDaTsY0BAZjz05DoYHLTIGewusj9uAjMV2/j/syXFAfBoyGYs9PJbDukkVwbqpiT05REREJEnsySEio/G1EabF3hsi82CQ46B4yYpMRdd+xMCndKx3ZC6sd9oY5DgwBjpkLhzD8x/WMbIER65j+jDIcXAMdMgSStvHpNQwsx6RtUipHpkagxwishp9gYEtNtwMZIjsC4McUh9M2ICTLSnv/mhIcMR9naTAFk8EbA1vISciIiJJYk8OqXF8DknB4/tw8dvW+YZukhr24hiGPTmkgRWHiMi2sZ02HIMcIiIikiQGOaSFZwlERLaJ7bNxGOSQTqxIRES2he2y8RjkUKlYoYiIbAPb4/JhkENERESSxFvISa/is4fd+XFWzgkRkeNhD07FsCeHDDLAK8zaWSAicigMcCqOQQ4RERFJEoMcIiIiG8Pec9NgkENGYcUjIiJ7wSCHjMbrxERE5sETSdNikEPlwkCHiMi02K6aHoMcIiIikiQ+J4fKrfisI0EVb+WcEBHZL/bgmA97cqjCWEGJiMqH7ad5Mcghk2BFJSIyDttN82OQQybDCktEZBi2l5bBIIdMihWXiEg/tpOWwyCHTI4VmIhIN7aPlsUgh4iIiCSJQQ6ZBc9WiIg0sV20PD4nh8yGz9EhImJwY03sySGzYwUnIkfF9s+6GOSQRbCiE5GjYbtnfQxyyGJY4YnIUbC9sw0McsiiWPGJSOrYztkOBjlkcWwAiEiq2L7ZFskEOQcOHIBMJtP59+eff5Y6X5cuXbTSv/rqqxbMOREREZmDZG4hDwkJwc2bNzWmzZs3Dz///DPat2+vd97x48dj4cKF6s/u7u5mySP9h7eXE5GUsAfHNkkmyHFxcYGfn5/6s1KpxM6dOzF16lTIZDK987q7u2vMS5bT0ymUgQ4R2TUGOLZLMkFOSbt27cI///yDMWPGlJl28+bN2LRpE/z8/PDiiy9i3rx5entz8vPzkZ+fr/6ck5MDAJC7OgMyyVwB1CB3q6Txryn1rTwCO7M2mny55aFUKjX+lSqWUzocoYyA7ZZzgFcY5G5yky3PnG2tTVGogDzzr0YmhBDmX43l9e3bFwCwe/duvenWr1+PgIAA1KpVC6dOncLs2bPRoUMHbN++vdR5FixYgOjoaK3pcXFxvNRFRERUhtzcXIwYMQLZ2dnw8PAw23psPsiZM2cOli5dqjfN+fPnERgYqP58/fp1BAQEYOvWrRg0aJBR6/vll1/QvXt3XLp0CQ0bNtSZRldPjr+/P55/YiiQL92enLEbBuHLiG+hzCs067qs2aujVCqRkJCAnj17Qi433dmZrWE5pcMRygjYVjkHeIWZbdmWbGutSqHCnnvfmD3Isfn+sJkzZyI8PFxvmgYNGmh8jomJQfXq1dG/f3+j1xcUFAQAeoMchUIBhUKhNV35qAh4VGT0Ou2JMq8Qyjzzdhf3VYyw+jgduVxu9YbUElhO6XCEMgLWLaclx95Yoq21Kgt1r9h8kOPt7Q1vb2+D0wshEBMTg9GjR5erIpw8eRIAULNmTaPnJSIiItshuWsrv/zyC1JSUjBu3Dit79LT0xEYGIgjR44AAC5fvoxFixbh2LFjSE1Nxa5duzB69Gh06tQJrVq1snTW6TE9nUJ5xwIR2Qy2R/ZJckHOhg0bEBISojFGp5hSqcTFixeRm5sL4N/bzvfv349evXohMDAQM2fOxKBBg/D9999bOttUCjYsRGRtbIfsl81frjJWXFxcqd/Vq1cPj4+z9vf3x8GDBy2RLaoAPkuHiKyFAY59k1yQQ9LEJyQTkSUxuJEGyV2uImljw0NE5sZ2RjrYk0N2h706RGQODG6khz05REREJEnsySG7xR4dIjIF9uBIF3tyyO6xgSKi8mL7IW0MckgS2FARkbHYbkgfL1eRZDzeYPESFhHpwsDGsbAnhySJDRkRlcR2wfEwyLFT7KkoG99/RUQA2wJDSfG4wiDHjklxhzQHNm5Ejov13zBSPZ4wyCEiIiJJYpBj56QafZsau6uJHAvrvOGkfBxhkCMBUt5BTY0NH5G0sY4bR+rHD95CLhHFOyort2H4tGQiaWHbZxxHafvYkyMxjrLjmgobRiL7x3psHEc6TjDIkSBH2oFNgd3bRPaJddd4jnZ84OUqiUpQxbPyG6mnUyjkbnJMjBtq7awQUSkGeIVBmae0djbskqMFOAB7coiIiEiiGORImCNG7aYywCvM2lkgIjIZRz0eMMiROEfdsU2B1/uJbENPp1CeeFSAIx8HOCbHAfD28orh282JLI/tVcWxvWJPjkPhDl9x7N0hMi/WMdNge/8v9uTYKTYC1mXvv3/xXWRSv1PFEcrpCGUk49l7G2Uq7MkhIiIiSWKQQ0RERJLEIIeIiIgkiUEOERERSRKDHCIiIpIkBjlEREQkSQxyiIiISJIY5BAREZEkMcghIiIiSWKQQ0RERJLEIIeIiIgkiUEOERERSRKDHCIiIpIkBjlEREQkSQxyiIiISJIY5BAREZEkMcghIiIiSWKQQ0RERJLEIIeIiIgkiUEOERERSRKDHCIiIpIkBjlEREQkSQxyiIiISJLsJsh57733EBISAnd3d3h5eelMk5aWhn79+sHd3R0+Pj6YNWsWCgsL9S737t27eOWVV+Dh4QEvLy9ERETgwYMHZigBERERWZLdBDkFBQUIDQ3FpEmTdH5fVFSEfv36oaCgAElJSdi4cSNiY2Mxf/58vct95ZVXcPbsWSQkJOCHH37AoUOHMGHCBHMUgYiIiCyokrUzYKjo6GgAQGxsrM7vf/rpJ5w7dw779++Hr68vWrdujUWLFmH27NlYsGABXFxctOY5f/489u7diz///BPt27cHAKxevRp9+/bF8uXLUatWLbOVh4iIiMzLboKcsiQnJ6Nly5bw9fVVT+vduzcmTZqEs2fPok2bNjrn8fLyUgc4ANCjRw84OTnh8OHDeOmll3SuKz8/H/n5+erP2dnZ//5HoYIddY4ZR6FCbm7uv2UU1s6MGbGc0uII5XSEMgIsp9QoVEAeIISZCynsTExMjPD09NSaPn78eNGrVy+NaQ8fPhQAxO7du3Uu67333hONGzfWmu7t7S0+/fTTUvMQFRUl8O/uxz/+8Y9//OMf/8r5d/nyZeOCACNZtSdnzpw5WLp0qd4058+fR2BgoIVyZJjIyEjMmDFD/TkrKwsBAQFIS0uDp6enFXNmPjk5OfD398e1a9fg4eFh7eyYDcspLY5QTkcoI8BySk12djbq1q2LatWqmXU9Vg1yZs6cifDwcL1pGjRoYNCy/Pz8cOTIEY1pmZmZ6u9Km+fWrVsa0woLC3H37t1S5wEAhUIBhUKhNd3T01PSOyUAeHh4SL6MAMspNY5QTkcoI8BySo2Tk3mHeFg1yPH29oa3t7dJlhUcHIz33nsPt27dgo+PDwAgISEBHh4eaNasWanzZGVl4dixY2jXrh0A4JdffoFKpUJQUJBJ8kVERETWYTejZNPS0nDy5EmkpaWhqKgIJ0+exMmTJ9XPtOnVqxeaNWuGUaNG4a+//sK+ffswd+5cTJ48Wd3rcuTIEQQGBiI9PR0A0LRpU/Tp0wfjx4/HkSNH8Pvvv2PKlCkYNmwY76wiIiKyc3Zzd9X8+fOxceNG9efiu6USExPRpUsXODs744cffsCkSZMQHByMypUrIywsDAsXLlTPk5ubi4sXL0KpVKqnbd68GVOmTEH37t3h5OSEQYMG4eOPPzYqbwqFAlFRUTovYUmFI5QRYDmlxhHK6QhlBFhOqbFUOWVCmPv+LSIiIiLLs5vLVURERETGYJBDREREksQgh4iIiCSJQQ4RERFJEoMcA7z33nsICQmBu7s7vLy8dKZJS0tDv3794O7uDh8fH8yaNQuFhYV6l3v37l288sor8PDwgJeXFyIiItS3xFvbgQMHIJPJdP79+eefpc7XpUsXrfSvvvqqBXNuvHr16mnlecmSJXrnefToESZPnozq1aujSpUqGDRokPrhk7YoNTUVERERqF+/Ptzc3NCwYUNERUWhoKBA73z2sD3XrFmDevXqwdXVFUFBQVoPBS0pPj4egYGBcHV1RcuWLbF7924L5dR4ixcvxtNPP42qVavCx8cHAwcOxMWLF/XOExsbq7XNXF1dLZTj8lmwYIFWnst60r09bcdiutoamUyGyZMn60xvL9vy0KFDePHFF1GrVi3IZDLs2LFD43shBObPn4+aNWvCzc0NPXr0wN9//13mco2t27owyDFAQUEBQkNDMWnSJJ3fFxUVoV+/figoKEBSUhI2btyI2NhYzJ8/X+9yX3nlFZw9exYJCQn44YcfcOjQIUyYMMEcRTBaSEgIbt68qfE3btw41K9fX+OFprqMHz9eY75ly5ZZKNflt3DhQo08T506VW/66dOn4/vvv0d8fDwOHjyIGzdu4OWXX7ZQbo134cIFqFQqfPbZZzh79ixWrlyJdevW4e233y5zXlvent988w1mzJiBqKgoHD9+HE899RR69+6t9STzYklJSRg+fDgiIiJw4sQJDBw4EAMHDsSZM2csnHPDHDx4EJMnT8Yff/yBhIQEKJVK9OrVCw8fPtQ7n4eHh8Y2u3r1qoVyXH7NmzfXyPNvv/1Walp7247F/vzzT40yJiQkAABCQ0NLnccetuXDhw/x1FNPYc2aNTq/X7ZsGT7++GOsW7cOhw8fRuXKldG7d288evSo1GUaW7dLZdY3Y0lMaS8H3b17t3BychIZGRnqaWvXrhUeHh4iPz9f57LOnTsnAIg///xTPW3Pnj1CJpOJ9PR0k+e9ogoKCoS3t7dYuHCh3nSdO3cWb7zxhmUyZSIBAQFi5cqVBqfPysoScrlcxMfHq6edP39eABDJyclmyKF5LFu2TNSvX19vGlvfnh06dBCTJ09Wfy4qKhK1atUSixcv1pl+yJAhol+/fhrTgoKCxMSJE82aT1O5deuWACAOHjxYaprS2ilbFhUVJZ566imD09v7diz2xhtviIYNGwqVSqXze3vclgDEd999p/6sUqmEn5+f+OCDD9TTsrKyhEKhEF9//XWpyzG2bpeGPTkmkJycjJYtW8LX11c9rXfv3sjJycHZs2dLncfLy0ujV6RHjx5wcnLC4cOHzZ5nY+3atQv//PMPxowZU2bazZs3o0aNGmjRogUiIyORm5trgRxWzJIlS1C9enW0adMGH3zwgd5LjceOHYNSqUSPHj3U0wIDA1G3bl0kJydbIrsmkZ2dbdDL8Wx1exYUFODYsWMa28HJyQk9evQodTskJydrpAf+rav2st2ys7MBoMzt9uDBAwQEBMDf3x8DBgwotR2yJX///Tdq1aqFBg0a4JVXXkFaWlqpae19OwL/7r+bNm3C2LFjIZPJSk1nj9vycSkpKcjIyNDYXp6enggKCip1e5WnbpfGbp54bMsyMjI0AhwA6s8ZGRmlzlP8jq1ilSpVQrVq1Uqdx5o2bNiA3r17o06dOnrTjRgxAgEBAahVqxZOnTqF2bNn4+LFi9i+fbuFcmq8119/HW3btkW1atWQlJSEyMhI3Lx5EytWrNCZPiMjAy4uLlrjs3x9fW1y2+ly6dIlrF69GsuXL9ebzpa35507d1BUVKSz7l24cEHnPKXVVXvYbiqVCtOmTcOzzz6LFi1alJquSZMm+PLLL9GqVStkZ2dj+fLlCAkJwdmzZ8usv9YSFBSE2NhYNGnSBDdv3kR0dDQ6duyIM2fOoGrVqlrp7Xk7FtuxYweysrL0vqTaHrdlScXbxJjtVZ66XRqHDXLmzJmDpUuX6k1z/vz5Mge/2ZvylPv69evYt28ftm7dWubyHx9T1LJlS9SsWRPdu3fH5cuX0bBhw/Jn3EjGlHPGjBnqaa1atYKLiwsmTpyIxYsX2/yj1cuzPdPT09GnTx+EhoZi/Pjxeue1le1JwOTJk3HmzBm9Y1WAf188HBwcrP4cEhKCpk2b4rPPPsOiRYvMnc1yef7559X/b9WqFYKCghAQEICtW7ciIiLCijkznw0bNuD555/X+55Ee9yWtsZhg5yZM2fqjaABoEGDBgYty8/PT2vUd/GdNn5+fqXOU3IAVWFhIe7evVvqPKZQnnLHxMSgevXq6N+/v9HrK36b+6VLlyx6UKzI9g0KCkJhYSFSU1PRpEkTre/9/PxQUFCArKwsjd6czMxMs247XYwt540bN9C1a1eEhIRg/fr1Rq/PWttTlxo1asDZ2VnrrjZ928HPz8+o9LZiypQp6psTjD2Dl8vlaNOmDS5dumSm3Jmel5cXGjduXGqe7XU7Frt69Sr2799vdI+oPW7L4m2SmZmJmjVrqqdnZmaidevWOucpT90ulVEjeBxcWQOPMzMz1dM+++wz4eHhIR49eqRzWcUDj48ePaqetm/fPpsbeKxSqUT9+vXFzJkzyzX/b7/9JgCIv/76y8Q5M59NmzYJJycncffuXZ3fFw883rZtm3rahQsXbH7g8fXr10WjRo3EsGHDRGFhYbmWYWvbs0OHDmLKlCnqz0VFRaJ27dp6Bx6/8MILGtOCg4NtdsCqSqUSkydPFrVq1RL/93//V65lFBYWiiZNmojp06ebOHfmc//+ffHEE0+Ijz76SOf39rYdS4qKihJ+fn5CqVQaNZ89bEuUMvB4+fLl6mnZ2dkGDTw2pm6Xmh+jUjuoq1evihMnTojo6GhRpUoVceLECXHixAlx//59IcS/O16LFi1Er169xMmTJ8XevXuFt7e3iIyMVC/j8OHDokmTJuL69evqaX369BFt2rQRhw8fFr/99pto1KiRGD58uMXLp8/+/fsFAHH+/Hmt765fvy6aNGkiDh8+LIQQ4tKlS2LhwoXi6NGjIiUlRezcuVM0aNBAdOrUydLZNlhSUpJYuXKlOHnypLh8+bLYtGmT8Pb2FqNHj1anKVlOIYR49dVXRd26dcUvv/wijh49KoKDg0VwcLA1imCQ69eviyeffFJ0795dXL9+Xdy8eVP993gae9ueW7ZsEQqFQsTGxopz586JCRMmCC8vL/WdjqNGjRJz5sxRp//9999FpUqVxPLly8X58+dFVFSUkMvl4vTp09Yqgl6TJk0Snp6e4sCBAxrbLDc3V52mZBmjo6PFvn37xOXLl8WxY8fEsGHDhKurqzh79qw1imCQmTNnigMHDoiUlBTx+++/ix49eogaNWqIW7duCSHsfzs+rqioSNStW1fMnj1b6zt73Zb3799XHxcBiBUrVogTJ06Iq1evCiGEWLJkifDy8hI7d+4Up06dEgMGDBD169cXeXl56mV069ZNrF69Wv25rLptKAY5BggLCxMAtP4SExPVaVJTU8Xzzz8v3NzcRI0aNcTMmTM1ovTExEQBQKSkpKin/fPPP2L48OGiSpUqwsPDQ4wZM0YdONmK4cOHi5CQEJ3fpaSkaPwOaWlpolOnTqJatWpCoVCIJ598UsyaNUtkZ2dbMMfGOXbsmAgKChKenp7C1dVVNG3aVLz//vsaPXAlyymEEHl5eeK1114TTzzxhHB3dxcvvfSSRsBga2JiYnTuw4935trr9ly9erWoW7eucHFxER06dBB//PGH+rvOnTuLsLAwjfRbt24VjRs3Fi4uLqJ58+bixx9/tHCODVfaNouJiVGnKVnGadOmqX8PX19f0bdvX3H8+HHLZ94IQ4cOFTVr1hQuLi6idu3aYujQoeLSpUvq7+19Oz5u3759AoC4ePGi1nf2ui2Lj28l/4rLolKpxLx584Svr69QKBSie/fuWuUPCAgQUVFRGtP01W1DyYQQwrgLXERERES2j8/JISIiIklikENERESSxCCHiIiIJIlBDhEREUkSgxwiIiKSJAY5REREJEkMcoiIiEiSGOQQERGRJDHIISK71KVLF8hkMshkMpw8edLi609NTVWvv7QXDRKRdTHIISK7NX78eNy8eRMtWrSw+Lr9/f1x8+ZNzJw50+LrJiLDVLJ2BoiIysvd3R1+fn5WWbezszP8/PxQpUoVq6yfiMrGnhwisqjbt2/Dz88P77//vnpaUlISXFxc8PPPP1do2QcOHIBMJsO+ffvQpk0buLm5oVu3brh16xb27NmDpk2bwsPDAyNGjEBubq56vi5dumDq1KmYNm0annjiCfj6+uLzzz/Hw4cPMWbMGFStWhVPPvkk9uzZU6H8EZFlMcghIovy9vbGl19+iQULFuDo0aO4f/8+Ro0ahSlTpqB79+4mWceCBQvwySefICkpCdeuXcOQIUOwatUqxMXF4ccff8RPP/2E1atXa8yzceNG1KhRA0eOHMHUqVMxadIkhIaGIiQkBMePH0evXr0watQojeCIiGwbgxwisri+ffti/PjxeOWVV/Dqq6+icuXKWLx4scmW/+677+LZZ59FmzZtEBERgYMHD2Lt2rVo06YNOnbsiMGDByMxMVFjnqeeegpz585Fo0aNEBkZCVdXV9SoUQPjx49Ho0aNMH/+fPzzzz84deqUyfJJRObFIIeIrGL58uUoLCxEfHw8Nm/eDIVCYbJlt2rVSv1/X19fuLu7o0GDBhrTbt26Veo8zs7OqF69Olq2bKkxDwCt+YjIdjHIISKruHz5Mm7cuAGVSoXU1FSTLlsul6v/L5PJND4XT1OpVKXOo2s+mUwGAFrzEZHt4t1VRGRxBQUFGDlyJIYOHYomTZpg3LhxOH36NHx8fKydNSKSEPbkEJHFvfPOO8jOzsbHH3+M2bNno3Hjxhg7dqy1s0VEEsMgh4gs6sCBA1i1ahW++uoreHh4wMnJCV999RV+/fVXrF271trZIyIJkQkhhLUzQURkrC5duqB169ZYtWqVVfOxYMEC7NixwyqvliAi/diTQ0R269NPP0WVKlVw+vRpi687LS0NVapU0XioIRHZFvbkEJFdSk9PR15eHgCgbt26cHFxsej6CwsL1XeFKRQK+Pv7W3T9RFQ2BjlEREQkSbxcRURERJLEIIeIiIgkiUEOERERSRKDHCIiIpIkBjlEREQkSQxyiIiISJIY5BAREZEkMcghIiIiSfp/5VE+LBdmdS0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "=== Radial equal-area infill ===\n", - "Slice @ z : 2.50 mm\n", - "Area fraction (target) : 0.300\n", - "Filled area : 183.637 mm²\n", - "Centroid (x̄,ȳ) : ( -0.00 , -0.00) mm\n", - "Ix , Iy : 7825.814 , 7825.814 mm⁴\n", - "|Ix − Iy| / Ix : 0.00e+00\n", - "Ixy : -0.000 mm⁴\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAI4CAYAAACIt/jIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbAlJREFUeJzt3XlcVNX/P/DXgMMAKhCKoIm4Ji6ZS0lS7pqmpZbilopKWG7lkillKlq5ZGqZaZahpWRuqZVLmHuS5pZL6jfNPbdUQAVhYM7vD38zHwcGmIFZ7j3zej4ePHTunHvvOXPPPfd9zz33Xo0QQoCIiIhIMh6uzgARERGRIzDIISIiIikxyCEiIiIpMcghIiIiKTHIISIiIikxyCEiIiIpMcghIiIiKTHIISIiIikxyCEiIiIpMcghKZ07dw4ajQaLFy82TZs0aRI0Gk2RlteiRQu0aNHCPplzseL8DkpV3O3z7bffIjw8HFqtFgEBARaXae86ZTRjxgyEh4fDYDAUaznkGgsWLEClSpWQmZnp6qyQBQxyyGkWL14MjUZj+itRogQeffRR9O/fH5cvX3Z19shNnTx5Ev3790e1atXw5ZdfYuHChU5bd1paGqZPn46xY8fCw0NZzXGLFi3M9lfjX/v27a1exqJFi1CrVi14e3ujRo0amDt3rsV0ly9fRvfu3REQEAA/Pz907twZ//zzj72K4lD9+/dHVlYWvvjiC1dnhSwo4eoMkPuZPHkyqlSpgvv37+P333/H4sWLsXv3bhw7dgze3t4OW+/48eMxbtw4hy2fXOeXX34p8rzbt2+HwWDAJ598gurVq9tlmdb6+uuvkZ2djV69ejl8XUVRsWJFTJ061WxahQoVrJr3iy++wOuvv46uXbti1KhR2LVrF9544w2kp6dj7NixpnR3795Fy5YtkZqainfeeQdarRazZ89G8+bNcfjwYZQpU8auZbI3b29vREdHY9asWRg+fLh0vaRqxyCHnO7555/Hk08+CQB49dVXUbZsWUyfPh3r169H9+7dHbbeEiVKoEQJVnlnMBgMyMrKcmjQ+jAvL68iz3v9+nUAMF2msscyrZWQkIBOnTo57Xeylb+/P/r06WPzfBkZGXj33XfRsWNHrFq1CgAQGxsLg8GAKVOmYNCgQXjkkUcAAJ9//jn+/vtv7Nu3D0899RSAB21E3bp18fHHH+PDDz+0X4EcpHv37pgxYwa2bduGVq1auTo79BBl9Y+SW2ratCkA4MyZM6ZpWVlZmDBhAho1agR/f3+ULFkSTZs2xbZt2/LMn5KSgv79+8Pf3x8BAQGIjo5GSkpKnnSWxk8kJCSgVatWKFeuHHQ6HWrXro358+cXqzxLly5Fo0aN4OPjg8DAQPTs2RMXL17Mk27hwoWoVq0afHx80LhxY+zatSvPOBDjJb5z586Zzbt9+3ZoNBps377dNG3Xrl2IiopCpUqVoNPpEBoaipEjRyIjI6PIZZk5cyYiIyNRpkwZ+Pj4oFGjRqaD1sM0Gg2GDRuGZcuWoU6dOtDpdNi0aROAB5ciBg4ciODgYOh0OtSpUwdff/212fy2bG9Lcv9uxt9nxYoV+OCDD1CxYkV4e3ujdevWOH36tCld5cqVMXHiRABAUFAQNBoNJk2aZHGZ9nb27FkcOXIEbdq0yVMWS5eJco8Hcpbs7GzcvXvXpnm2bduGmzdvYsiQIWbThw4dinv37uHnn382TVu1ahWeeuopU4ADAOHh4WjdujVWrFhR6LqMdW/lypWoXbs2fHx80KRJExw9ehTAgx6l6tWrw9vbGy1atMizL7Vo0QJ169bFkSNH0Lx5c/j6+qJ69eqmer5jxw5ERETAx8cHNWvWxJYtW/LkoVGjRggMDMS6deus/o3IOXhaSy5nbHSMZ3bAg7EKX331FXr16oXY2FjcuXMHixYtQrt27bBv3z7Ur18fACCEQOfOnbF79268/vrrqFWrFn744QdER0dbte758+ejTp066NSpE0qUKIEff/wRQ4YMgcFgwNChQ20uywcffID33nsP3bt3x6uvvoobN25g7ty5aNasGQ4dOmTqLVi0aBFee+01REZGYsSIEfjnn3/QqVMnBAYGIjQ01Ob1AsDKlSuRnp6OwYMHo0yZMti3bx/mzp2LS5cuYeXKlUVa5ieffIJOnTrhlVdeQVZWFpYvX46oqCj89NNP6Nixo1narVu3YsWKFRg2bBjKli2LypUr49q1a3j66adNB6KgoCBs3LgRMTExSEtLw4gRIwBYv71tNW3aNHh4eOCtt95CamoqZsyYgVdeeQV79+4FAMyZMwfffPMNfvjhB8yfPx+lSpVCvXr1irQuW+3ZswcA0LBhQ7Pp7777Ll599VWzaUuXLsXmzZtRrly5Apd5+/Zt5OTkFLpuX19f+Pr6Fpru//7v/1CyZElkZWUhODgYsbGxmDBhArRabYHzHTp0CABMPbZGjRo1goeHBw4dOoQ+ffrAYDDgyJEjGDhwYJ5lNG7cGL/88gvu3LmD0qVLF7i+Xbt2Yf369aZ9durUqXjhhRfw9ttv4/PPP8eQIUNw+/ZtzJgxAwMHDsTWrVvN5r99+zZeeOEF9OzZE1FRUZg/fz569uyJZcuWYcSIEXj99dfRu3dvfPTRR+jWrRsuXryYJ08NGzbEb7/9VmA+yQUEkZMkJCQIAGLLli3ixo0b4uLFi2LVqlUiKChI6HQ6cfHiRVPa7OxskZmZaTb/7du3RXBwsBg4cKBp2tq1awUAMWPGDLN5mzZtKgCIhIQE0/SJEyeK3FU+PT09Tz7btWsnqlatajatefPmonnz5gWW79y5c8LT01N88MEHZtOPHj0qSpQoYZqelZUlypUrJ+rXr29WxoULFwoAZusx/mZnz541W+a2bdsEALFt27YCyzJ16lSh0WjE+fPnTdMs/Q75yb3MrKwsUbduXdGqVSuz6QCEh4eHOH78uNn0mJgYUb58efHff/+ZTe/Zs6fw9/c3Ld/a7Z2f3NvH+PvUqlXLbLmffPKJACCOHj1qmmb8PW7cuFHgMs+ePWtVnbLW+PHjBQBx586dAtP99ttvQqvVWvU7hIWFCQCF/k2cOLHQZQ0cOFBMmjRJrF69WnzzzTeiU6dOAoDo3r17ofMOHTpUeHp6WvwuKChI9OzZUwghxI0bNwQAMXny5Dzp5s2bJwCIkydPFrguAEKn05ntI1988YUAIEJCQkRaWpppelxcXJ79qXnz5gKASExMNE07efKkqU7//vvvpumbN2/OUweMBg0aJHx8fArMKzkfe3LI6XJ3z1euXBlLly5FxYoVTdM8PT3h6ekJ4MH4jpSUFBgMBjz55JM4ePCgKd2GDRtQokQJDB482Gze4cOHY9euXYXmxcfHx/T/1NRU6PV6NG/eHJs3b0Zqair8/f2tLteaNWtgMBjQvXt3/Pfff6bpISEhqFGjBrZt24Z33nkH+/fvx/Xr1zF58mSzcR/9+/fHmDFjrF5fQWW5d+8eMjIyEBkZCSEEDh06hEqVKhVrmcZegqZNm+K7777Lk7Z58+aoXbu26bMQAqtXr0b37t0hhDD7Tdq1a4fly5fj4MGDeOaZZ6ze3rYaMGCA2W9svDT6zz//oG7dukVerj3cvHkTJUqUQKlSpfJNc/XqVXTr1g3169fH559/Xugyly1bZtXlyapVqxaaZtGiRWaf+/bti0GDBuHLL7/EyJEj8fTTT+c7b0ZGRr5jmry9vU15NP6r0+kspns4TUFat26NypUrmz5HREQAALp27WrW42Kc/s8//5ilL1WqFHr27Gn6XLNmTQQEBODRRx81zZN7/tweeeQRZGRkID093apeMnIOBjnkdPPmzcNjjz2G1NRUfP3119i5c6fFRm7JkiX4+OOPcfLkSej1etP0KlWqmP5//vx5lC9fPs+BombNmlbl5bfffsPEiRORnJyM9PR0s+9sDXL+/vtvCCFQo0YNi98bu/jPnz8PAHnSabVaqw4++blw4QImTJiA9evX4/bt22bfpaam5jvfrVu3kJWVZfrs4+NjKvdPP/2E999/H4cPHzZ7DoilO0ge3i4AcOPGDaSkpGDhwoX53pZtHPQLWLe9bZU7sDNeEs39+yhRdnY2unfvjpycHKxZs8biPpLbM88849A8jR49Gl9++SW2bNlSYJDj4+NjVqcedv/+fVPwbPzX0jNm7t+/b5amILm3s7H+5r70a5yee/tXrFgxT5329/e3en7gQVAPWN43yHUY5JDTNW7c2HStvkuXLnj22WfRu3dvnDp1yhSsLF26FP3790eXLl0wZswYlCtXDp6enpg6darZAOXiOHPmDFq3bo3w8HDMmjULoaGh8PLywoYNGzB79mybH85mMBig0WiwceNGU6/Ewwo6Y89Pfg1m7nEXOTk5aNu2LW7duoWxY8ciPDwcJUuWxOXLl9G/f/8Cy/Lyyy9jx44dps/R0dFYvHgxdu3ahU6dOqFZs2b4/PPPUb58eWi1WiQkJCAxMTHPcnIfjIzr7NOnT75jpIzjXxy1vS1tB+B/ByRXKlOmDLKzs/MdczJmzBgkJydjy5YtZr2cBblx44ZVY3JKlSpVpPpoPOjfunWrwHTly5dHTk4Orl+/bjaOKCsrCzdv3jTdhh4YGAidTocrV67kWYZxmjW3rOe3na3d/sWdH3gQ+Pj6+loVlJHzMMghlzIeyFq2bInPPvvM9BybVatWoWrVqlizZo3Zgd54J4xRWFgYfv31V9y9e9es0T516lSh6/7xxx+RmZmJ9evXm50JWntHT27VqlWDEAJVqlTBY489lm+6sLAwAA96fh6+3VSv1+Ps2bN44oknTNOMPQ+57xYz9gYZHT16FP/3f/+HJUuWoF+/fqbpSUlJheb7448/NjszNR5UVq9eDW9vb2zevNmsFyEhIaHQZQIP7lYqXbo0cnJy8lyizM3a7S2T8PBwAA/usso92Hn58uWYM2cO5syZg+bNm1u9zKeeeipP3bBk4sSJprvIbGG8TBMUFFRgOuNA8f3796NDhw6m6fv374fBYDB97+Hhgccffxz79+/Ps4y9e/eiatWqhQ46VoqzZ8+iVq1ars4G5cJbyMnlWrRogcaNG2POnDmmLmrjGdTDZ0x79+5FcnKy2bwdOnRAdna22W3fOTk5+T5Z9WGW1pGammr1QTy3l19+GZ6enoiPj89zpieEwM2bNwE8uOMkKCgICxYsMOvSX7x4cZ5gplq1agCAnTt3mqbl5OTkufxjqSxCCHzyySeF5rtRo0Zo06aN6c84rsbT0xMajcasZ+DcuXNYu3Ztocs0zt+1a1esXr0ax44dy/P9jRs3Csy/pe0tkyZNmgBAngP8sWPH8Oqrr6JPnz548803bVrmsmXLkJSUVOjfw4GwJWlpaXkuIQkh8P777wN4MKbKKD09HSdPnjQbc9WqVSsEBgbmeRzD/Pnz4evra3ZnXrdu3fDHH3+Y/Q6nTp3C1q1bERUVZVP5XengwYOIjIx0dTYoF/bkkCKMGTMGUVFRWLx4MV5//XW88MILWLNmDV566SV07NgRZ8+exYIFC1C7dm2zZ3a8+OKLeOaZZzBu3DicO3cOtWvXxpo1awocg2L03HPPwcvLCy+++CJee+013L17F19++SXKlStnsfu8MNWqVcP777+PuLg4nDt3Dl26dEHp0qVx9uxZ/PDDDxg0aBDeeustaLVavP/++3jttdfQqlUr9OjRA2fPnkVCQkKeMTl16tTB008/jbi4ONy6dQuBgYFYvnw5srOzzdKFh4ejWrVqeOutt3D58mX4+flh9erVxRp70rFjR8yaNQvt27dH7969cf36dcybNw/Vq1fHkSNHrFrGtGnTsG3bNkRERCA2Nha1a9fGrVu3cPDgQWzZssV02cPa7S2TqlWrom7dutiyZYvZLdQDBgwAADRr1gxLly41mycyMrLAcVv2GpNz8OBB9OrVC7169UL16tWRkZGBH374Ab/99hsGDRpkdtv7vn370LJlS7PeIR8fH0yZMgVDhw5FVFQU2rVrh127dmHp0qX44IMPEBgYaJp/yJAh+PLLL9GxY0fT/jFr1iwEBwdj9OjRdimPox04cAC3bt1C586dXZ0VyoVBDinCyy+/jGrVqmHmzJmIjY1F//79cfXqVXzxxRfYvHkzateujaVLl2LlypVmD8Dz8PDA+vXrMWLECCxduhQajQadOnXCxx9/jAYNGhS4zpo1a2LVqlUYP3483nrrLYSEhGDw4MEICgqy+NwOa4wbNw6PPfYYZs+ejfj4eAAPxjE899xz6NSpkyndoEGDkJOTg48++ghjxozB448/jvXr1+O9997Ls8xly5bhtddew7Rp0xAQEICYmBi0bNkSbdu2NaXRarX48ccf8cYbb2Dq1Knw9vbGSy+9hGHDhpld/rJFq1atsGjRIkybNg0jRoxAlSpVMH36dJw7d87qICc4OBj79u3D5MmTsWbNGnz++ecoU6YM6tSpg+nTp5vSWbu9ZTNw4EBMmDABGRkZprEcN27cwL179zBo0KA86S0Fwo4QFhaGpk2b4ocffsDVq1fh4eGBWrVqYcGCBRbzZcmQIUOg1Wrx8ccfY/369QgNDcXs2bPz9E6VLl0a27dvx8iRI/H+++/DYDCgRYsWmD17dqGXxZRi5cqVqFSpEp92rEAaoYQReEQEAKYn7Mp8YKf/SU1NRdWqVTFjxgzExMS4OjtUBJmZmahcuTLGjRtn8+VFcjyOySEichF/f3+8/fbb+Oijj2y+m4+UISEhAVqtFq+//rqrs0IWsCeHSEHYk0NEZD/sySEiIiIpsSeHiIiIpMSeHCIiIpISgxwiIiKSEoMcIpLetWvX0K1bN5QpUwYajQZz5szJN61GoynSKw+ISHkY5BBJaOTIkWjYsCECAwPh6+uLWrVqYdKkSRafHpyZmYmxY8eiQoUK8PHxQUREhFXvvDK6fPkyunfvjoCAAPj5+aFz586mdxw9vI7hw4cjKCgIFStWNL0e4GGXLl1CqVKl8Ntvv9le4EKMHDkSmzdvRlxcHL799lu0b9/e7uuQRYsWLVC3bl1XZ8Oi/v37F+nFouS++MRjIgn98ccfaNq0KQYMGABvb28cOnQI06ZNw5YtW7Bz5054ePzv/KZ///5YtWoVRowYgRo1amDx4sXo0KEDtm3bhmeffbbA9dy9exctW7ZEamoq3nnnHWi1WsyePRvNmzfH4cOHUaZMGQDARx99hG+++Qbvvvsu7ty5g8mTJ6NatWro1auXaVljxoxBp06d7PZqgodt3boVnTt3xltvvVVo2oyMDJQowaaRSAqCiCy6e/euq7NgVzNnzhQARHJysmna3r17BQDx0UcfmaZlZGSIatWqiSZNmhS6zOnTpwsAYt++faZpJ06cEJ6eniIuLs40LSIiQsTHx5s+R0dHi549e5o+79q1S5QsWVJcvHixyOUriEajEUOHDnXIsp0tIyND5OTkOGz5zZs3F3Xq1HHY8osjOjpalCxZ0tXZIBXh5SqS2vnz5zFkyBDUrFkTPj4+KFOmDKKionDu3DmzdIsXL4ZGo8GOHTswZMgQlCtXDhUrVjR9v3HjRjRt2hQlS5ZE6dKl0bFjRxw/ftxsGUeOHEH//v1RtWpVeHt7IyQkBAMHDjS9fdzVKleuDABmbzpftWoVPD09zd5H5O3tjZiYGCQnJ+PixYsFLnPVqlV46qmn8NRTT5mmhYeHo3Xr1lixYoVpWkZGBh555BHT58DAQKSnpwMADAYD3nzzTbz99ttmv7k1/vnnH0RFRZkuyz399NP4+eefTd8bt6sQAvPmzYNGo4FGoylwmbnH5EyaNAkajQanT59G//79ERAQAH9/fwwYMMBUhofnHTZsGNauXYu6detCp9OhTp062LRpU571XL58GQMHDkRwcLAp3ddff22WZvv27dBoNFi+fDnGjx+PRx99FL6+vkhLSwMAnDlzBmfOnLHpN7NVQkICNBpNnrx9+OGH0Gg02LBhg0PXX5Do6GiULVsWer0+z3fPPfccatas6YJckZKwT5ak9scff2DPnj3o2bMnKlasiHPnzmH+/Plo0aIF/vrrL/j6+pqlHzJkCIKCgjBhwgTcu3cPAPDtt98iOjoa7dq1w/Tp05Geno758+fj2WefxaFDh0zBQ1JSEv755x8MGDAAISEhOH78OBYuXIjjx4/j999/L/Tg+t9//1lVptKlS0On0xWaLjs7GykpKcjKysKxY8cwfvx4lC5dGo0bNzalOXToEB577DH4+fmZzWtMc/jwYYSGhlpcvsFgwJEjRyy+zLRx48b45ZdfcOfOHZQuXRpPPfUUFi5ciBYtWuDu3bv47rvvMGzYMADAokWL8N9//2HMmDFWld/o2rVriIyMRHp6Ot544w2UKVMGS5YsQadOnbBq1Sq89NJLaNasGb799lv07dsXbdu2Rb9+/Wxax8O6d++OKlWqYOrUqTh48CC++uorlCtXzuxFowCwe/durFmzBkOGDEHp0qXx6aefomvXrrhw4YLp8t21a9fw9NNPm4KioKAgbNy4ETExMUhLS8OIESPMljllyhR4eXnhrbfeQmZmJry8vAAArVu3BoA8Qbs9DRgwAGvWrMGoUaPQtm1bhIaG4ujRo4iPj0dMTAw6dOhg1XJSUlJw9epVVKxY0eK4msuXL+PRRx+1KW99+/bFN998g82bN+OFF14wTb969Sq2bt2KiRMn2rQ8kpCru5KIHCk9PT3PtOTkZAFAfPPNN6ZpCQkJAoB49tlnRXZ2tmn6nTt3REBAgIiNjTVbxtWrV4W/v7/ZdEvr+u677wQAsXPnzkLzCsCqv4SEBGuKbiqn8a9mzZpi27ZtZmnq1KkjWrVqlWfe48ePCwBiwYIF+S7/xo0bAoCYPHlynu/mzZsnAIiTJ08KIYS4ePGiqFOnjikvTZs2FXfu3BEpKSkiKChILF++3KoyPWzEiBECgNi1a5dp2p07d0SVKlVE5cqVzS7pALD6chUAMXHiRNPniRMnCgBi4MCBZuleeuklUaZMmTzzenl5idOnT5um/fnnnwKAmDt3rmlaTEyMKF++vPjvv//M5u/Zs6fw9/c31aVt27YJAKJq1aoW61dYWJgICwuzqlzWsnS56sqVKyIwMFC0bdtWZGZmigYNGohKlSqJ1NTUQpd38eJF0bVrV+Hh4SEACK1WK9q3by+WLFkizpw5I/766y/x7rvvimeeeabQZeW+XJWTkyMqVqwoevToYZZu1qxZQqPRiH/++cfKUpOs2JNDUvPx8TH9X6/XIy0tDdWrV0dAQAAOHjyIvn37mqWPjY2Fp6en6XNSUhJSUlLQq1cvs54WT09PREREYNu2bRbXdf/+fdy9exdPP/00AODgwYNo2rRpgXm19o6mOnXqWJWudu3aSEpKwr1797Bnzx5s2bIlz91VGRkZFnuFvL29Td/nx/idNfNXrFgRhw4dwvHjx+Hl5YXw8HB4eHhg1KhRqFmzJnr06IHdu3dj9OjR+Pfff/HSSy9h5syZph4LSzZs2IDGjRubDY4uVaoUBg0ahLi4OPz11192vUso9wsYmzZtih9++AFpaWlmPWFt2rRBtWrVTJ/r1asHPz8/0x1nQgisXr0a3bt3hxDCrF61a9cOy5cvx8GDB80GYEdHR5vVLyNH9uA8LCQkBPPmzUOvXr3QtGlTHD58GElJSXl6AC2Jj4/HvXv3sHr1apQrVw4HDx7EihUr0L9/f4j//8D9atWqYd68eTbny8PDA6+88go+/fRTU68hACxbtgyRkZGoUqWKzcskuTDIIallZGRg6tSpSEhIwOXLl02NKgCkpqbmSZ+7Ufz7778BAK1atbK4/Icb+Vu3biE+Ph7Lly/H9evXzdJZWldubdq0KTSNLfz8/EzL7Ny5MxITE9G5c2ccPHgQTzzxBIAHgVlmZmaeee/fv2/6Pj/G76ydX6vVon79+qbPJ0+exOeff449e/bg1q1b6NixI8aNG4eWLVtiwIAB+OCDDxAfH5/v+s+fP4+IiIg802vVqmX63p5BTqVKlcw+G8cY3b5926we5E5nTHv79m0AwI0bN5CSkoKFCxdi4cKFFteVu/4o4WDds2dPLF26FD///DMGDRpkulRWmFGjRpm2CQBERkZi2LBhuHz5Mo4dO4ZHHnkEjRo1QnZ2dpHy1a9fP0yfPh0//PAD+vXrh1OnTuHAgQNYsGBBkZZHcmGQQ1IbPnw4EhISMGLECDRp0gT+/v7QaDTo2bMnDAZDnvS5D+rGNN9++y1CQkLypH/4VuPu3btjz549GDNmDOrXr49SpUrBYDCgffv2FteV29WrV60qk7+/f4HBR35efvll9O3bF8uXLzcFOeXLl8fly5fzpL1y5QoAoEKFCvkuLzAwEDqdzpTW1vlHjhyJPn36oGHDhvj2228RGBiIuLg4AMDbb79daJDjbA/38D1M5Hr9X2HpjHWhT58+iI6Otpi2Xr16Zp+Lsr3t7ebNm9i/fz8A4K+//oLBYDB7FEF+ypcvj7FjxyIxMRFXrlxBWFgYOnTogC5duiAyMhJZWVn48ssvsX79+iINYq5duzYaNWqEpUuXol+/fli6dCm8vLzQvXt3m5dF8mGQQ1JbtWoVoqOj8fHHH5um3b9/3+wOo4IYLzuUK1euwJ6W27dv49dff0V8fDwmTJhgmm7sCbJG+fLlrUqXkJCA/v37W71co8zMTBgMBrNepfr162Pbtm15Lrns3bvX9H1+PDw88Pjjj5sOfA/bu3cvqlatarp8kNtPP/2EPXv2mH6ff//916z8FSpUsBh8PSwsLAynTp3KM/3kyZOm75UoKCgIpUuXRk5Ojt177xxp6NChuHPnDqZOnYq4uDjMmTMHo0aNKnS+t99+G3/++ScmT56M4OBgHDhwAN999x0+++wzU5py5crh008/LXLe+vXrh1GjRuHKlStITExEx44dze7mI/fFIIek5unpmedMe+7cucjJybFq/nbt2sHPzw8ffvghWrZsCa1Wa/b9jRs3EBQUZDp7z72ugl4fkJu9xuSkpKSgZMmSefL61VdfAQCefPJJ07Ru3bph5syZWLhwoelBeZmZmUhISEBERITZnVUXLlxAeno6wsPDzeYfN24c9u/fb1ruqVOnsHXr1nwfvJeVlYVRo0Zh/PjxKFeuHAAgODgYp0+fRnZ2NkqUKIETJ05Y7Dl7WIcOHTBnzhwkJyejSZMmAIB79+5h4cKFqFy5MmrXrl3g/K7i6emJrl27IjExEceOHctzSc1Yp5Rk1apV+P777/Hpp59i+PDh+PPPPzF+/Hi88MILeOyxxwqcNzY2Fk8++aTp7sIOHTrgvffew/Hjx02Xq5o1a2Yax1UUvXr1wujRo/Hmm2/in3/+wUcffVTkZZFcGOSQ1F544QV8++238Pf3R+3atZGcnIwtW7aYbuUtjJ+fH+bPn4++ffuiYcOG6NmzJ4KCgnDhwgX8/PPPeOaZZ/DZZ5/Bz88PzZo1w4wZM6DX6/Hoo4/il19+wdmzZ63Oq73O6rdv34433ngD3bp1Q40aNZCVlYVdu3ZhzZo1ePLJJ9GnTx9T2oiICERFRSEuLg7Xr19H9erVsWTJEpw7dw6LFi0yW26/fv2wY8cOs0BuyJAh+PLLL9GxY0e89dZb0Gq1mDVrFoKDgzF69GiL+fvkk08AAG+++aZpWocOHTB06FD07t0bkZGRmDJlCl599dUCyzlu3Dh89913eP755/HGG28gMDAQS5YswdmzZ7F69WqrLqW4yrRp07Bt2zZEREQgNjYWtWvXxq1bt3Dw4EFs2bIFt27dsmo5xscXOHIA8vXr1zF48GC0bNnSdNv/Z599hm3btqF///7YvXt3gb/1w89QelidOnWsHkRfmKCgILRv3x4rV65EQEAAOnbsaJflkgRcdl8XkRPcvn1bDBgwQJQtW1aUKlVKtGvXTpw8eVKEhYWJ6OhoUzrjLeR//PGHxeVs27ZNtGvXTvj7+wtvb29RrVo10b9/f7F//35TmkuXLomXXnpJBAQECH9/fxEVFSX+/fffPLckO9rp06dFv379RNWqVYWPj4/w9vYWderUERMnTrT4FOeMjAzx1ltviZCQEKHT6cRTTz0lNm3alCdd8+bNhaUm4+LFi6Jbt27Cz89PlCpVSrzwwgvi77//tpi3q1evitKlS4v169fn+W7jxo0iPDxcBAQEiH79+ol79+4VWtYzZ86Ibt26iYCAAOHt7S0aN24sfvrppzzpYIdbyG/cuGGWzlhnzp49W+h6ctc3IYS4du2aGDp0qAgNDRVarVaEhISI1q1bi4ULF5rSGG8hX7lypcW8li1bVjz99NNWlctauW8hf/nll0Xp0qXFuXPnzNKtW7dOABDTp0+36/oLUtATj1esWCEAiEGDBjktP6R8GiFy9a8TEZHi/fXXX6hTpw5++ukn9lwAWLduHbp06YKdO3cW+rgGch/K7c8lIqJ8bdu2DU2aNGGA8/99+eWXqFq1aqEvlSX3wp4cIiJSreXLl+PIkSOYOnUqPvnkE7zxxhuuzhIpCIMcIiJSLY1Gg1KlSqFHjx5YsGCB2bOriFR1uWrnzp148cUXUaFCBWg0Gqxdu9bseyEEJkyYgPLly8PHxwdt2rSx6jkl8+bNQ+XKleHt7Y2IiAjs27fPQSUgIiJ7EkLgzp07+OqrrxjgUB6qCnLu3buHJ554It93nMyYMQOffvopFixYgL1796JkyZJo166d6RHzlnz//fcYNWoUJk6caHrcfbt27fI8Vp2IiIjURbWXqzQaDX744Qd06dIFwINovkKFChg9erTpIWSpqakIDg7G4sWL0bNnT4vLiYiIwFNPPWV6+qbBYEBoaCiGDx+OcePGOaUsREREZH/S9O2dPXsWV69eNXugmr+/PyIiIpCcnGwxyMnKysKBAwdM78sBHjyqvk2bNkhOTs53XZmZmWYvJTQYDLh16xbKlCljeqonERERWWa8zFihQgWHPrhTmiDH+HLD4OBgs+nBwcH5vvjwv//+Q05OjsV5jO+/sWTq1KmKenEgERGRGl28eBEVK1Z02PKlCXKcKS4uzuzFdKmpqahUqRLaBLwMZKpqmJPVtN6e6DuvM74dug76+9a990mNWE65uEM53aGMAMspHZ0BW1LW5PsSX3uRJsgxvszv2rVrZm8zvnbtWr5vUi5btiw8PT1x7do1s+nXrl0r8OWAOp0OOp0u7xeZHkD+Y5zVTeMBX1/f/19GiXc8llMu7lBOdygjwHJK50GHgKOHeEjT7VClShWEhITg119/NU1LS0vD3r17TW8ozs3LywuNGjUym8dgMODXX3/Ndx4iIiJSB1X15Ny9exenT582fT579iwOHz6MwMBAVKpUCSNGjMD777+PGjVqoEqVKnjvvfdQoUIF0x1YANC6dWu89NJLprfpjho1CtHR0XjyySfRuHFjzJkzB/fu3cOAAQOcXTwiIiKyI1UFOfv370fLli1Nn43jYqKjo7F48WK8/fbbuHfvHgYNGoSUlBQ8++yz2LRpE7y9vU3znDlzBv/995/pc48ePXDjxg1MmDABV69eRf369bFp06Y8g5GJiIhIXVQV5LRo0QIFPdZHo9Fg8uTJmDx5cr5pzp07l2fasGHDTD07REREJAdpxuQQERERPYxBDhEREUmJQQ4RERFJiUEOERERSYlBDhEREUmJQQ4RERFJiUEOERERSYlBDhEREUmJQQ4RERFJiUEOERERSYlBDhEREUmJQQ4RERFJiUEOERERSYlBDhEREUmJQQ4RERFJiUEOERERSYlBDhEREUmJQQ4RERFJiUEOERERSYlBDhEREUmphKszQEWTZFjp1PXp9Xps2LAB61KWQKvVOnXdziRrOdt6RLk6C+Qizm4rHEXWfTM3V5dTtraCQQ6RhGRrqKjoctcFWYIeImswyCGSBAMbssbD9YQBD8mOQQ6RyjG4oaIy1h0GOyQrBjlEKsOghuyNl7RIVry7ioiIiKTEnhwiFWDvDTkTx+2QLBjkECkUAxtSAgY8pGYMcogUhsENKRUHKpPaMMghUgAGNqQm7N0htWCQQ+QiDGxIBgx4SMkY5BA5GYMbkhUvZ5HS8BZyIiIikhJ7coichD045C7Yo0NKwSCHyIEY2JA743gdcjUGOUQOwOCGyBx7d8gVGOQQ2RGDG6KCMdghZ2KQQ1RMDGyIbMdLWeQMvLuKqBgY4BAVH/cjchT25BAVARtlIvviZSxyBPbkEBERkZTYk0NkA/bgEDkWe3TInhjkEFmBwQ2RczHYIXtgkENUAAY3RK5l3Ac3ZCa6OCekRgxyiCzoHBANfYbe1dlwa/Y4g9fr9diwYQPWpSyBVqst9vIY9LpO54BovJbYw9XZIJVhkENETqfWSxDW5JuBkGN1DojGhnvs1SHrSBXkVK5cGefPn88zfciQIZg3b16e6YsXL8aAAQPMpul0Oty/f99heSRlMh6YtD5ani3aiVoDmeIqqNwMgOyDDxIka0kV5Pzxxx/IyckxfT527Bjatm2LqKj8GxY/Pz+cOnXK9Fmj0Tg0j0REROQcUgU5QUFBZp+nTZuGatWqoXnz5vnOo9FoEBIS4uiskYLx7Lr4eDZtHUu/E+tf8bT1iGL9o3xJFeQ8LCsrC0uXLsWoUaMK7J25e/cuwsLCYDAY0LBhQ3z44YeoU6dOgcvOzMxEZmam6XNaWhoAQOvtCWic83xFvd65g2KN63P2eh2tc0A0tD7/G5Cq9Slh9q+silrOdSlLLE5Xar1QQ73N766hzgHRVs3POgt0KNk737qpNq6usw+3hw6lMwAZjl+NRgghHL8a51uxYgV69+6NCxcuoEKFChbTJCcn4++//0a9evWQmpqKmTNnYufOnTh+/DgqVqyY77InTZqE+Pj4PNMTExPh6+trtzIQERHJKD09Hb1790Zqair8/Pwcth5pg5x27drBy8sLP/74o9Xz6PV61KpVC7169cKUKVPyTWepJyc0NBTPP9IDyHROT46zz1r0ej2SkpLQtm1bu9yK6yqFnR1rfUpg4KKu+DpmNfQZ2U7KlfPlV05ZzoaNZKm3lhjrsrvX2fyotS67us5a24NYbDoDNt7+3uFBjpT9m+fPn8eWLVuwZs0am+bTarVo0KABTp8+XWA6nU4HnU6XZ7r+fg5wP8fCHPbnqgZbq9Wq8mBh67gHfUa2WzwnR5+R7Ra346q13hbEuN2MzwJypzprTTk76HoDUO94MVfVWafVISd1r0j5gs6EhASUK1cOHTt2tGm+nJwcHD16FOXLl3dQzsgVOLDTXJJhpeksV61nu5TXupQlSDKsVO1B3VG4/7s36YIcg8GAhIQEREdHo0QJ846qfv36IS4uzvR58uTJ+OWXX/DPP//g4MGD6NOnD86fP49XX33V2dkmIiIiO5PuctWWLVtw4cIFDBw4MM93Fy5cgIfH/+K627dvIzY2FlevXsUjjzyCRo0aYc+ePahdu7Yzs0wOxLO4B3h2714e3t7cB3ibuTuTLsh57rnnkN9Y6u3bt5t9nj17NmbPnu2EXJGzsWF/gA07GeuAu+8TfKu5e5IuyCH35u4NORtwyk/uuuGu+wqDHfci3Zgccl/u2mgD4IBTspm71xl3bi/cCXtySAru2GC58wGK7Medx+9wrI782JNDquduDbO7n4GT47hj3XK39sPdsCeHVMvdGid3O/iQ67jbYGWO05EXe3KIiIhISuzJIdVxl7NLgGeW5FruNl6HPTryYU8OqYo7NLSAe46NIGVzpzrpLu2MO2CQQ6rhDg2POx1ISJ3cpY66Q3vjDhjkkCrI3uC4y4GD5OEOdVb2dscdcEwOKZ6sDY3sBwhyD7KP2+GzdNSNPTmkaDI2mgADHJKTrPVa1nbIHTDIISIiIinxchUpkqxnTrKe6RIZyfogQV62UicGOaQ4sjWObBjJHck4VofP0VEfXq4iRZGlMTRiY0gk334gWzslMwY5pBgyNRzucHstkS1k2ydkaq9kxiCHFEGmBkOmhpzI3mTaP2Rqt2TFMTnkcjI0FDI13ESOJtN4HQ5IVjb25JBLqb2BAxjgEBWHDPuPDO2YrBjkEBERkZR4uYpcQoYzHxnOQImUQIZn6/D2cmViTw45nZobMiM2ZET2J8N+JUP7JhMGOeRUMjQAMjTEREolw/4lQzsnC16uIqdR844vQ8NLpBYy3H3Fu66UgT055BRqbagABjhErqTm/U/N7Z4sGOSQw6l5R1dzA0skCzXvh2pu/2TAIIeIiIikxCCHHKatR5Sqz2LUfPZIJJt1KUtcnYUiU3tbqGYMcogsUHODSkREDzDIIYdQ41lLkmElgxsihVuXskS1bzRXY7uodgxyyO7UuCOrscEkcndq3G/V2D6qGYMcsis17sBqbCiJ6AE17r9qbCfVikEO2Y0ad1w1NpBEZE6N+7Ea20s1YpBDREREUmKQQ3ahxrMSNZ79EZFlatyf1dhuqg2DHHJLamwQiahg3K8pNwY5VGxqOhtR662nRGQdte3jamo/1YhBDhWZ2p7iqaaGj4iKR037u9raUjVhkENForYdUk0NHhHZh9r2e7W1q2rAIIekp7aGjojsh/u/e2OQQzZT09kGGzgiUlM70Dkg2tVZkAqDHCIiIpISgxyyiZrOMtR09kZEjsX2wD0xyCEpsUEjotzYLrgfBjkkFbU9I4OInEstbYSaes2VjEEOWUUNO5waGi4iUgY1tBdquslDqaQKciZNmgSNRmP2Fx4eXuA8K1euRHh4OLy9vfH4449jw4YNTsqtOqjlIVVqaLCISFnU0G6opQ1WKqmCHACoU6cOrly5YvrbvXt3vmn37NmDXr16ISYmBocOHUKXLl3QpUsXHDt2zIk5puJSQ0NFRMrE9kNu0gU5JUqUQEhIiOmvbNmy+ab95JNP0L59e4wZMwa1atXClClT0LBhQ3z22WdOzDERERE5QglXZ8De/v77b1SoUAHe3t5o0qQJpk6dikqVKllMm5ycjFGjRplNa9euHdauXVvgOjIzM5GZmWn6nJaWBgDQensCGufEjXq93uHr6BwQDa2PFgCg9Slh9q+S2PO3MC7LGb+vK7Gc8nCHMgKOLaexnVOC/NraDiV7Y13KEies30m/hc4AZDh+NRohhHD8apxj48aNuHv3LmrWrIkrV64gPj4ely9fxrFjx1C6dOk86b28vLBkyRL06tXLNO3zzz9HfHw8rl27lu96Jk2ahPj4+DzTExMT4evra5/CEBERSSo9PR29e/dGamoq/Pz8HLYe5Z2WF8Pzzz9v+n+9evUQERGBsLAwrFixAjExMXZbT1xcnFkPUFpaGkJDQ/Ht0HVApnN6chwd0ee+m0rrUwIDF3XF1zGroc/Idui6reWI30Cv1yMpKQlt27aFVqucszt7Yznl4Q5lBJxTTiXcRVpYW+vstt9hdAanrEaqICe3gIAAPPbYYzh9+rTF70NCQvL02Fy7dg0hISEFLlen00Gn0+WZrr+fA9zPKXqGbeDIxqygkfz6jGzoM1zbLe6MgYJarVbqA4YRyykPdygj4NhybriXCEAZt27n19Z20PV2aBvotPbdSdeQpBt4/LC7d+/izJkzKF++vMXvmzRpgl9//dVsWlJSEpo0aeKM7FER8E4IInI0tjPykCrIeeutt7Bjxw6cO3cOe/bswUsvvQRPT0/TmJt+/fohLi7OlP7NN9/Epk2b8PHHH+PkyZOYNGkS9u/fj2HDhrmqCC6nhDOY/LDhISJnUXJ7o+R2Wmmkulx16dIl9OrVCzdv3kRQUBCeffZZ/P777wgKCgIAXLhwAR4e/4vrIiMjkZiYiPHjx+Odd95BjRo1sHbtWtStW9dVRSAiIiI7kSrIWb58eYHfb9++Pc+0qKgoREUxKgZ4dkBEpBZtPaIU3dukFFJdriJ5cWcmImdju6N+DHJI8e9GYUNDRK6i5PZH6W23EjDIIUVTcgNDRO6B7ZB6MchxczwLICJSN7bj+WOQ48aUvGMkGVby7ImIFEPp7ZGS23NXYpBDiqP0xoSI3BNPvtSHQQ4RERFJiUGOm2LXJhGRXNiu58UghxSFXcFEpHRsp9SDQY4bUmq0z4aDiNRCqe2VUtt3V2GQQ0RERFJikONmlBrlK/WsiIgoP0ptt5TazrsCgxxyOaU2FEREhWH7pWwMcoiIiEhKDHLcCLswiYjcA9v7BxjkkEuxq5eI1I7tmHKVcHUGyPEY0RMRuR9j2+/OQRiDHHIJd97piEg+xjaNJ5XKwstVklPiDscAh4hkpcT2TYnHAWdhkENERERSYpBDREREUmKQIzEldlEqsSuXiMielNjOKfF44AwMcoiIiEhKDHLIaZR4dkNE5Ahs75SBQY6k3LVrkoiILHPH4wKDHHIKntUQkbthu+d6DHIk5I7ROhERFc7djg8McsjheDZDRO6K7Z9rMcghIiIiKTHIkYy7dUUSEZFt3Ok4wRd0ksOwm5aIiC/vdCX25BAREZGUGORIoq1HlKLOEtiLQ0RkTkntotKOGY7CIIeIiIikxDE5ZHdKOlsheVlzFqr10eK1xB7oHBANfYa+0PSsu+RoSYaVbtGDohTsySEiIiIpsSdHAjwrIJk5s37nty728JCs2npESV2/GeSQXcm8s5BzKDFoz50n1nMqDl6ych4GOSrHHYXUTo11mEEPyUTm3hwGOWQ3su4kZH9qDGwK8nB5uB+QNdib4xwMcojIKdylQWfAQ6QcvLtKxdzloEHq5i4PHbPEnctO6iJrPWWQQ0RERFJikEN2wW55yo29GP/D34IsYbvpeByTQ0R2wwN5wTheh8i52JOjUko6mLCxJvZU2I6/GQHKaj9lrI8McoioWGRsGJ2Jvx+R40gV5EydOhVPPfUUSpcujXLlyqFLly44depUgfMsXrwYGo3G7M/b29tJOSZSL/ZE2A9/SyLHkCrI2bFjB4YOHYrff/8dSUlJ0Ov1eO6553Dv3r0C5/Pz88OVK1dMf+fPn3dSjtUtybBSUV2t5Dw8IDsGf1f3xLbUcaQaeLxp0yazz4sXL0a5cuVw4MABNGvWLN/5NBoNQkJCHJ09ItXjQdjxjL8xD3pExSdVkJNbamoqACAwMLDAdHfv3kVYWBgMBgMaNmyIDz/8EHXq1Mk3fWZmJjIzM02f09LSAABab09AI1XnmInWp4TZvwCg1+tdlR2HMZZJxrI9rKjl1PpoHZEdh7FUb9XC2m3DOisPrY9W1XXWJjoDkOH41WiEEMLxq3E+g8GATp06ISUlBbt37843XXJyMv7++2/Uq1cPqampmDlzJnbu3Injx4+jYsWKFueZNGkS4uPj80xPTEyEr6+v3cpAREQko/T0dPTu3Rupqanw8/Nz2HqkDXIGDx6MjRs3Yvfu3fkGK5bo9XrUqlULvXr1wpQpUyymsdSTExoaiucf6QFkytuTM3BRV3wdsxr6jGysS1ni6iw5hF6vR1JSEtq2bQutVl29FrawpZydA6KdlCv7y11v1aqg/Y11Vi7dysdIUWcLpTNg4+3vHR7kSNkfNmzYMPz000/YuXOnTQEOAGi1WjRo0ACnT5/ON41Op4NOp8szXX8/B7ifY3N+1USfkQ19hl7qRgZ4UA9kLyNQeDllGYNjrLdq1UHXu9AxOqyzcjAGNmqvs4VyUveKVN0OQggMGzYMP/zwA7Zu3YoqVarYvIycnBwcPXoU5cuXd0AOidRDlgBHFtweRLaTKsgZOnQoli5disTERJQuXRpXr17F1atXkZHxv9FN/fr1Q1xcnOnz5MmT8csvv+Cff/7BwYMH0adPH5w/fx6vvvqqK4qgCrzrQ258ZotycdvIT9ahAK4iVZAzf/58pKamokWLFihfvrzp7/vvvzeluXDhAq5cuWL6fPv2bcTGxqJWrVro0KED0tLSsGfPHtSuXdsVRSByKR5A1YHbicg6Uo3JsWYM9fbt280+z549G7Nnz3ZQjoiIiMhVpOrJIaKiY++AunB7ERWOQQ4R8YCpUtxuRAVjkEM24aA4+fBAqW5qfo4RkaMxyCFyYzxAEpHMGOQQERGRlBjkELkh9uDIp3NANC89SoRDA+yDQQ4RERFJiUEOkZvh2b7cuH2J/odBDpEb4QHQPXA7Ez0g1ROPiYgefreaXq/Hhg0bsC5lidmbqxkEELkHBjlEbkK2A3txXhSb37wy/UZtPaL4Ml1ye7xcRVbhSH91k+XgnWRYafpT4/KdTZbt7q5kqYeuxJ4cIlIsVzbyudfNgIFIfdiTQyQ5NR6cldibosQ8WUON25/IXhjkEBERkZR4uYqIFEMNPSXGPLKHhEj5GORQgYwNul6vd3FOqCjUciBWQ3CTm5qCHd5ppV5qqmdKxMtVRORSaj/4qj3/RDJjTw6RhNRw1idTcKCGs21j3mT63YkKw54cInI6WQ+0spaLSK0Y5BBJRsm9CYD8gYDSy6f0+kFkTwxyiIiISEock0NETqH0Hg57UsMYHSJ3wJ4cypc7HZRkodSDqrvWJaWWW6n1hPKn1LqkdAxyiMih3L1xdvfyE7kSgxwiIiKSklVjcho2bGjTQjUaDdavX49HH320SJkiItsp8RIEezEeSDKsVNz24VOQyR1YFeQcPnwYo0ePRqlSpQpNK4TAtGnTkJmZWezMEZF68QBqTomBDpHsrL67asyYMShXrpxVaT/++OMiZ4iIiIjIHqwak3P27FkEBQVZvdC//voLYWFhRc4UEakbe3Es4+9C5FxWBTlhYWHQaDRWLzQ0NBSenp5FzhQR2YaXQagoWG9IdkV6GOD9+/dx5MgRXL9+HQaDwey7Tp062SVjRKQ+7KkoHB8USOQ8Ngc5mzZtQr9+/fDff//l+U6j0SAnJ8cuGSPX4sGKiEhZOHjddjY/J2f48OGIiorClStXYDAYzP4Y4BC5LwbGtuHvReR4Ngc5165dw6hRoxAcHOyI/BCRjXhmR8XB+kMysznI6datG7Zv3+6ArBARERHZj81jcj777DNERUVh165dePzxx6HVas2+f+ONN+yWOSIiIqKisjnI+e677/DLL7/A29sb27dvN7u1XKPRMMghckMcX1I0HEhK5Fg2Bznvvvsu4uPjMW7cOHh48P2eREREpEw2RylZWVno0aMHAxwiIiJSNJsjlejoaHz//feOyAsR2aCtR5QiLnXwUlXxKOH3U0pdIrI3my9X5eTkYMaMGdi8eTPq1auXZ+DxrFmz7JY5IiIioqKyOcg5evQoGjRoAAA4duyY2Xe2vN+KiIiIyJFsDnK2bdvmiHwQERER2RVHDxMREZGUbO7JuX//PubOnYtt27ZZfAv5wYMH7ZY5IiIioqKyOciJiYnBL7/8gm7duqFx48Ych0PkxpRwZ5AM+FBAIsewOcj56aefsGHDBjzzzDOOyI9dzJs3Dx999BGuXr2KJ554AnPnzkXjxo3zTb9y5Uq89957OHfuHGrUqIHp06ejQ4cOTswxERER2ZvNY3IeffRRlC5d2hF5sYvvv/8eo0aNwsSJE3Hw4EE88cQTaNeuHa5fv24x/Z49e9CrVy/ExMTg0KFD6NKlC7p06ZLnzjEiIiJSF5uDnI8//hhjx47F+fPnHZGfYps1axZiY2MxYMAA1K5dGwsWLICvry++/vpri+k/+eQTtG/fHmPGjEGtWrUwZcoUNGzYEJ999pmTc05ERET2ZPPlqieffBL3799H1apV4evrm+dhgLdu3bJb5myVlZWFAwcOIC4uzjTNw8MDbdq0QXJyssV5kpOTMWrUKLNp7dq1w9q1a/NdT2ZmJjIzM02f09LSAABab09AI8cNa3q93uLn3NNlo6Zyan20hSfKd94SZv8WldJ/J3fYnvbaloCyfyc1bcviKKycxdnvFUVnADIcvxqNEELYMkObNm1w4cIFxMTEIDg4OM/A4+joaLtm0Bb//vsvHn30UezZswdNmjQxTX/77bexY8cO7N27N888Xl5eWLJkCXr16mWa9vnnnyM+Ph7Xrl2zuJ5JkyYhPj4+z/TExET4+vraoSRERETySk9PR+/evZGamgo/Pz+Hrcfm0H/Pnj1ITk7GE0884Yj8qEJcXJxZ709aWhpCQ0Px7dB1QKYcPTnrUpaYfdbr9UhKSkLbtm3z9N7JRE3l7BxQ9BMKrU8JDFzUFV/HrIY+I7vIy8ldT5TGHbanvbYloOztqaZtWRyFlbM4+72i6AyFp7EDm4Oc8PBwZGQ4oY+pCMqWLQtPT888PTDXrl1DSEiIxXlCQkJsSg8AOp0OOp0uz3T9/Rzgfk4Rcq48+TUiWq1W6gbGSA3l1GcUv9ten5FdrOUo/TcycoftWdxtCahje6phW9pDfuW0x36vCDZdQyo6m7sdpk2bhtGjR2P79u24efMm0tLSzP5cycvLC40aNcKvv/5qmmYwGPDrr7+aXb56WJMmTczSA0BSUlK+6YmIiEgdbO7Jad++PQCgdevWZtOFENBoNMjJcW1PxqhRoxAdHY0nn3wSjRs3xpw5c3Dv3j0MGDAAANCvXz88+uijmDp1KgDgzTffRPPmzfHxxx+jY8eOWL58Ofbv34+FCxe6shhEqtDWI4oPBLQDPgiQyDGke0Fnjx49cOPGDUyYMAFXr15F/fr1sWnTJgQHBwMALly4AA+P/3VgRUZGIjExEePHj8c777yDGjVqYO3atahbt66rikBERER2YHOQ07x5c0fkw66GDRuGYcOGWfxu+/bteaZFRUUhKopnUkRERDKxakzOkSNH8ryIsyDHjx9HdnbxRvkTERERFYdVQU6DBg1w8+ZNqxfapEkTXLhwociZIiIiIiouqy5XCSHw3nvvWf2gu6ysrGJlioiIiKi4rApymjVrhlOnTlm90CZNmsDHx6fImSKiwhnvanL1nTm8w6p4XL39AHD7kbSsCnIsDdYlIiIiUjI53kFARERElAuDHCIqNiVcclEj/m5EjsUgh4iIiKTEIIeIiIikxCCHSOV4ZwwVB+sPyYxBDhHZBceX2Ia/F5HjMcghi9gAExEpC9tl29n8gk4iovwYG2FeAskfD1REzsOeHCIJMKigomC9IdnZHORER0dj586djsgLEUmCvRWW8Xchci6bg5zU1FS0adMGNWrUwIcffojLly87Il9ERERExWJzkLN27VpcvnwZgwcPxvfff4/KlSvj+eefx6pVq6DX6x2RRyJSIfZamOPvQeR8RRqTExQUhFGjRuHPP//E3r17Ub16dfTt2xcVKlTAyJEj8ffff9s7n0RUCCWOr+CB/QEl/g5KrC9E9lasgcdXrlxBUlISkpKS4OnpiQ4dOuDo0aOoXbs2Zs+eba88EhEREdnM5iBHr9dj9erVeOGFFxAWFoaVK1dixIgR+Pfff7FkyRJs2bIFK1aswOTJkx2RXyJSGSX2YjiTu5efyJVsfk5O+fLlYTAY0KtXL+zbtw/169fPk6Zly5YICAiwQ/bIldp6RLFLW2WSDCsVeVB117qkxG0B8FKVGim1LimdzUHO7NmzERUVBW9v73zTBAQE4OzZs8XKGBHJxZ0eFMgDEpEy2Bzk9O3b1xH5ICIiIrIrPvGYSDJK7ymRvZdD6eVTev0gsicGOUTkdEoPBIpK1nIRqRVf0EkkIePZupIPujKN0VHy72wkw+9MZCv25BCRS6khQCiI2vNPJDP25FCBjA34hsxEF+eEikKpt5TnpsZeHTX8rkZq+l3JnJrqmRIxyCEixVBDsMODDpF68HIVERERSYlBDpHklNwrkp+2HlGK6zFRYp6socbtT2QvvFxFRIqVO6hw5gFbjQENEZljkENW6RwQjdcSe7g6G1REahmAXJiHy+CIgEeG3+hh7MVRN9nqoyswyCFyE7IEOkb5lcWaA7tMv0N+GOAQMcghIsk8HMBofbR4LbEHOgdEQ5+hd2GuiMgVOPCYyI3w7N49cDsTPcAgh8jN8AAoN25fov9hkENERERSYpBD5IbWpSxxdRbIztalLGEvjkQ6B0S7OgtSYJBDREREUmKQQ+TG2KNDRDJjkEM2YReqfHiJQ90YqBLlj0EOETHQUSluN6KCMcghIgA8YKoNtxdR4RjkEBERkZQY5BCRCXsH1IHbicg60gQ5586dQ0xMDKpUqQIfHx9Uq1YNEydORFZWVoHztWjRAhqNxuzv9ddfd1Ku1ckdXm7ozpIMK3kQVShuG/nx5g77kuYFnSdPnoTBYMAXX3yB6tWr49ixY4iNjcW9e/cwc+bMAueNjY3F5MmTTZ99fX0dnV0ixZPtreVqx+CGyHbSBDnt27dH+/btTZ+rVq2KU6dOYf78+YUGOb6+vggJCXF0FolUh4GOMjDAISoaaYIcS1JTUxEYGFhoumXLlmHp0qUICQnBiy++iPfee6/A3pzMzExkZmaaPqelpQEAtN6egEaaK4BmtD4lzP7tULK3lM/n0Ov1Zv/KypZybshMVG0Xeu56q0brUpYUuJ1YZ+XROSBaijprFZ0ByHD8ajRCCOH41Tjf6dOn0ahRI8ycOROxsbH5plu4cCHCwsJQoUIFHDlyBGPHjkXjxo2xZs2afOeZNGkS4uPj80xPTEzkpS4iIqJCpKeno3fv3khNTYWfn5/D1qP4IGfcuHGYPn16gWlOnDiB8PBw0+fLly+jefPmaNGiBb766iub1rd161a0bt0ap0+fRrVq1SymsdSTExoaiucf6QFkytuTM3BRV3wdsxr6jGwAcj5pVa/XIykpCW3btoVWq3V1dhymqOVUW4+OpXqrFtbuX6yz8jD25Ki1ztpEZ8DG2987PMhRfH/Y6NGj0b9//wLTVK1a1fT/f//9Fy1btkRkZCQWLlxo8/oiIiIAoMAgR6fTQafT5Zmuv58D3M+xeZ1qos/Ihj7jQXexrA0N8KBsMpfPyNZybriXCEB9d9g9XG+Vrqjjb1hn1e/hOqqmOlskTupeUXyQExQUhKCgIKvSXr58GS1btkSjRo2QkJAADw/be1UOHz4MAChfvrzN87ob44GOgyLdDwckOwb3JffEfclxpLm2cvnyZbRo0QKVKlXCzJkzcePGDVy9ehVXr141SxMeHo59+/YBAM6cOYMpU6bgwIEDOHfuHNavX49+/fqhWbNmqFevnquKQqQKfGaL/fC3JHIMxffkWCspKQmnT5/G6dOnUbFiRbPvjMOO9Ho9Tp06hfT0dACAl5cXtmzZgjlz5uDevXsIDQ1F165dMX78eKfnn0it2KtTPAxuiBxHmiCnf//+hY7dqVy5Mh4eZx0aGoodO3Y4OGeOoaQDS1uPKDbUbs64/ZVSJ9WA+wwBytpnlHRcsRdpghwicr2HD9yyNZb2wMCGyLmkGZNDrsUDGuXGcSb/w9+CLGG76XgMcoiIiEhKDHJUjGeGpAbu3IvhzmUndZG1nnJMDhE5hbuM15H1YEGkRgxyyG54lxVZS7aAh/WebCVDvVcDBjkqJ+Mtf+RecgcIaqjPDGpIJjLXZwY5ZFfszaHiUmLQwzpN9qSEOu0uGORIgL05JLP8AgxH1HkGM+RuZK/zvLuKiIiIpMSeHLI7XrIiZ7Cmjun1emzYsAHrUpZAq9U6IVdEBWOvu3OxJ4eIiIikxCBHEkp76BjPVoiIzCmpXVTaMcNRGOQQERGRlDgmhxzGeNbiDmcLRET5UVIPjrthT45kGFAQEVFB3Ok4wSCHiIiIpMQghxyOXbVE5K7Y/rkWgxwJuVNXJBERWc/djg8McsgpeDZDRO6G7Z7rMciRlLtF60REVDB3PC4wyCGn4VkNEbkLtnfKwCCHiIiIpMQgR2JK7Jrk2Q0RyU6J7ZwSjwfOwCCHiIiIpMQgh4iIiKTEIEdySuyiVGJXLhGRPSixfVPiccBZ+IJOcgm+vJOIZKLE4IYY5LgFYyDBnZCIyH3wJJKXq8jFGHgRkdqxHVMuBjluhFE9EZF7YHv/AIMcIiIikhKDHHI5dvUSkVqx/VI2BjluRqldmGwoiEhtlNpuKbWddwUGOURERCQlBjluSKlRvlLPioiIclNqe6XU9t1VGOSQoii14SAiMmI7pR4MctwUo30iIrmwXc+LQQ4RERFJiUEOKQ67golIidp6RLF9UhkGOW5MyV2bbEyISEmU3h4puT13JQY5bo47BhGRurEdzx+DHFI0pZ89EZH82A6pF4McQpJhpaLPBNjAEJGrKLn9UXrbrQQMckgVlNzQEJGc2O6oH4McMuEZARGROrC9tg6DHCIiIpKSVEFO5cqVodFozP6mTZtW4Dz379/H0KFDUaZMGZQqVQpdu3bFtWvXnJRj5VHy2QG7jonIWZTc3ii5nVYaqYIcAJg8eTKuXLli+hs+fHiB6UeOHIkff/wRK1euxI4dO/Dvv//i5ZdfdlJuyVZKbniISA5sZ+RRwtUZsLfSpUsjJCTEqrSpqalYtGgREhMT0apVKwBAQkICatWqhd9//x1PP/20I7OqWEmGlYreyY1549kMEdmTkts9I7Z7tpEuyJk2bRqmTJmCSpUqoXfv3hg5ciRKlLBczAMHDkCv16NNmzamaeHh4ahUqRKSk5PzDXIyMzORmZlp+pyWlgYA0Hp7AhrndI7p9XqHLl/ro831uYTZv0rQoWRvrEtZYtdlGn9XR/++rsZyysMdygg4vpydA6LztHuuUFhb6+y232F0BiDD8avRCCGE41fjHLNmzULDhg0RGBiIPXv2IC4uDgMGDMCsWbMspk9MTMSAAQPMAhYAaNy4MVq2bInp06dbnG/SpEmIj4+3uDxfX9/iF4SIiEhi6enp6N27N1JTU+Hn5+ew9SjntDwf48aNyzfYMDpx4gTCw8MxatQo07R69erBy8sLr732GqZOnQqdTme3PMXFxZmtKy0tDaGhofh26Dog0zk9OfbuwchP54BoAA/OKgYu6oqvY1ZDn5HtlHVby56/hV6vR1JSEtq2bQut1vVndY7CcsrDHcoIOLacxnZOCfJra53d5juczuCU1Sg+yBk9ejT69+9fYJqqVatanB4REYHs7GycO3cONWvWzPN9SEgIsrKykJKSgoCAANP0a9euFTiuR6fTWQya9PdzgPs5BebVXpzVmOkz9Lk+Z+eZ5mqO+C20Wq3UBwwjllMe7lBGwDHlVFqbBuRta13V5juMk64hKT7ICQoKQlBQUJHmPXz4MDw8PFCuXDmL3zdq1AharRa//vorunbtCgA4deoULly4gCZNmhQ5z+RcbT2iOBiPiIpEDYONqegUH+RYKzk5GXv37kXLli1RunRpJCcnY+TIkejTpw8eeeQRAMDly5fRunVrfPPNN2jcuDH8/f0RExODUaNGITAwEH5+fhg+fDiaNGnitndW5WYMHjqU7O3inBSMgQ4R2UoNAQ7bteKR5jk5Op0Oy5cvR/PmzVGnTh188MEHGDlyJBYuXGhKo9frcerUKaSnp5umzZ49Gy+88AK6du2KZs2aISQkBGvWrHFFERTNWdeDi0MNDRYRKYMa2gsGOMUnTU9Ow4YN8fvvvxeYpnLlysh9M5m3tzfmzZuHefPmOTJ75CR8hg4RFUQNwQ2gjhNLNZCmJ4foYWppyIjIedguuB8GOWQTNZ1dsEEjIiO2B+6JQQ4RERFJiUEO2UxN41149kZEamoH1NRbrgYMckh6amrgiMi+uP+7NwY5VCRq6s0B2NARuSO17fdqa1fVgEEOFVmSYaWqdkq1NXhEVHRq2t/V1paqCYMcKjY17ZxtPaJU1fgRkW3Uto+rqf1UIwY55JbU1AgSkXW4X1NuDHLILtR4NsIGkUgeatyf1dhuqg2DHCIiIpISgxyyGzWelajx7I+IzKlxP1Zje6lGDHLIrtS446qxgSSiB9S4/6qxnVQrBjlkd2rcgdXYUBK5OzXut2psH9WshKszQHJKMqxUXQPU1iMKWh8tXkvs4eqsEFE+OgdEQ5+hd3U2ioQBjvOxJ4fIgs4B0a7OAhERFRODHHIYtT/FU209UUQyU/OJh9rbQjVjkENERERSYpBDDqfmMxj25hC5npr3QzW3fzJgkENOoeYdXc0NLJHaqXn/U3O7JwveXUVOo8Y7rowezjcbLiLHUms78TC2E8rAnhxyKhl2fBkaYCKlkmH/kqGdkwWDHHI6GRoAGRpiIqWRYb+SoX2TCS9XkUsYGwI1N2rGvLNRIyoeNbcDRmwHlIk9OURERCQlBjnkUjKc/chwFkrkKjLsPzK0Y7Li5SpyOTXfdWXEu6+IrKf2/f1h3N+VjT05pAgyNRQyNeBE9ibT/iFTuyUrBjmkGDI1GG09oqRqzImKS7Z9Qqb2SmYMckhRZGs4ZGrUiYpKtv1AtnZKZhyTQ4ojwxidh3G8DrkjmfZhI+6/6sMghxRJhufoWMJn65DsZNtnjbjPqhMvVxEREZGUGOSQosl69iTr2S65N1nrtaztkDvg5SpSPNnG6BhxrA7JQMZ982HcN9WNPTmkCrI3NLLdXkvyc4c6K3u74w4Y5JBquEOD4w4HDlI3d6mj7tDeuAMGOaQq7tLwuMuBhNTDneqku7Qz7oBjckh1ZL293BKO2yFXcod97GHcx+TDnhwiIiKSEntySLXcqUcH4IMEyXncZZ8y4j4lL/bkkOq5WwPlTmMjyLncsW65W/vhbtiTQ1KQ9Vk6BeF4HbIHd9tvHsb9Rn7sySFpuHOD5Y5n4FQ87l5n3Lm9cCfsySGpuNs4ndxyl5sNORm56z6RG/cJ98Igh6Tk7sGOEQcrk7vvA0bcB9wTgxySmjuO1bGE43fcC+u8OdZ59yXNmJzt27dDo9FY/Pvjjz/yna9FixZ50r/++utOzDkRERE5gjQ9OZGRkbhy5YrZtPfeew+//vornnzyyQLnjY2NxeTJk02ffX19HZJHcg325phr6xEFrY8WryX2QOeAaGy4l+jqLJEddA6Ihj5D7+psKA57cdybNEGOl5cXQkJCTJ/1ej3WrVuH4cOHQ6PRFDivr6+v2bwkH47RyR8vZamTcbsZA1Yyx7pMgERBTm7r16/HzZs3MWDAgELTLlu2DEuXLkVISAhefPFFvPfeewX25mRmZiIzM9P0OS0tDQCg9fYENM65AqjXO/eMzbg+Z6/X3jZkPui16BwQbfF7rU8Js39llV85O5TsnSftupQlTsmTI8hSby3VV62P9v//6951NjdjfVXrNnd1nTXWK4fTGYAMx69GI4QQjl+N83Xo0AEAsGHDhgLTLVy4EGFhYahQoQKOHDmCsWPHonHjxlizZk2+80yaNAnx8fF5picmJvJSFxERUSHS09PRu3dvpKamws/Pz2HrUXyQM27cOEyfPr3ANCdOnEB4eLjp86VLlxAWFoYVK1aga9euNq1v69ataN26NU6fPo1q1apZTGOpJyc0NBTPP9IDyHROT46zz671ej2SkpLQtm1baLVOivSd5OGzZK1PCQxc1BVfx6yGPiPbhblyLHuXU6m9PWqot/n1KlqLdVa59a8oXF1ni1sfraYzYOPt7x0e5Ci+f3P06NHo379/gWmqVq1q9jkhIQFlypRBp06dbF5fREQEABQY5Oh0Ouh0ujzT9fdzgPs5Nq+zKFzVYGu1WsUeLIpqw73EPGN19BnZbjGI017l7KDLe5lLSWMilFJvHTkmzF3rrJLqmT25qs46rQ45qXtF8UFOUFAQgoKCrE4vhEBCQgL69etXpApy+PBhAED58uVtnpeIiIiUQ/FBjq22bt2Ks2fP4tVXX83z3eXLl9G6dWt88803aNy4Mc6cOYPExER06NABZcqUwZEjRzBy5Eg0a9YM9erVc0HuyVWMZ4N6vb7QcVxknYJ6LWQ9+wZ4B58zyFx/yL6kC3IWLVqEyMhIszE6Rnq9HqdOnUJ6ejqAB7edb9myBXPmzMG9e/cQGhqKrl27Yvz48c7ONpFbsSYQUOKBjAGM68k0/oYcT7ogJzEx/webVa5cGQ+Psw4NDcWOHTuckS1SmXUpS6DVanlQcyF7/PYPP/TQHcaryGxdyhL2spLNpAtyiOyJDxEkcq2HLyUT2YpBDpEVGOwQOZcSL1eS+jDIIbIBgx0ix2JwQ/YkzVvIiYiIiB7GnhyiImCPDpF9sQeHHIE9OUTFwIaZqPi4H5GjsCeHqJgebqDZs0NkHQY25AwMcojsiJexiArG4IaciUEOkQMw2CEyx+CGXIFBDpED8VIWuTMGNuRqDHKInIS9O+QuGNyQUvDuKiIiIpISe3KInIw9OiQr9uCQ0jDIIXIRjtchGTCwISVjkEOkAAx4SE0Y2JBaMMghUhheziKlYnBDasMgh0ih2LtDSsDAhtSMQQ6RCjDgIWdiYEOy4C3kREREJCX25BCpTO6zbPbsUHGx54ZkxSCHSOU4UJmKisENyY5BDpEkOG6HrMHAhtwJgxwiCfGSFhkxqCF3xiBHpZx90NL6aPFaYg90DoiGPkPv1HU7k7uUk9yHLAGuu+yb7lJOZ+HdVURERCQlBjlEREQkJQY5REREJCUGOURERCQlBjlEREQkJQY5REREJCUGOURERCQlBjlEREQkJQY5REREJCUGOURERCQlBjlEREQkJQY5REREJCUGOURERCQlBjlEREQkJQY5REREJCUGOURERCQlBjlEREQkJQY5REREJCUGOURERCQlBjlEREQkJQY5REREJCUGOURERCQlBjlEREQkJdUEOR988AEiIyPh6+uLgIAAi2kuXLiAjh07wtfXF+XKlcOYMWOQnZ1d4HJv3bqFV155BX5+fggICEBMTAzu3r3rgBIQERGRM6kmyMnKykJUVBQGDx5s8fucnBx07NgRWVlZ2LNnD5YsWYLFixdjwoQJBS73lVdewfHjx5GUlISffvoJO3fuxKBBgxxRBCIiInKiEq7OgLXi4+MBAIsXL7b4/S+//IK//voLW7ZsQXBwMOrXr48pU6Zg7NixmDRpEry8vPLMc+LECWzatAl//PEHnnzySQDA3Llz0aFDB8ycORMVKlRwWHmIiIjIsVQT5BQmOTkZjz/+OIKDg03T2rVrh8GDB+P48eNo0KCBxXkCAgJMAQ4AtGnTBh4eHti7dy9eeukli+vKzMxEZmam6XNqauqD/+gMUFHnmG10BqSnpz8oo3B1ZhyI5ZSLO5TTHcoIsJyy0RmADEAIBxdSqExCQoLw9/fPMz02NlY899xzZtPu3bsnAIgNGzZYXNYHH3wgHnvssTzTg4KCxOeff55vHiZOnCjwoPrxj3/84x//+Me/Iv6dOXPGtiDARi7tyRk3bhymT59eYJoTJ04gPDzcSTmyTlxcHEaNGmX6nJKSgrCwMFy4cAH+/v4uzJnjpKWlITQ0FBcvXoSfn5+rs+MwLKdc3KGc7lBGgOWUTWpqKipVqoTAwECHrselQc7o0aPRv3//AtNUrVrVqmWFhIRg3759ZtOuXbtm+i6/ea5fv242LTs7G7du3cp3HgDQ6XTQ6XR5pvv7+0tdKQHAz89P+jICLKds3KGc7lBGgOWUjYeHY4d4uDTICQoKQlBQkF2W1aRJE3zwwQe4fv06ypUrBwBISkqCn58fateune88KSkpOHDgABo1agQA2Lp1KwwGAyIiIuySLyIiInIN1YySvXDhAg4fPowLFy4gJycHhw8fxuHDh03PtHnuuedQu3Zt9O3bF3/++Sc2b96M8ePHY+jQoaZel3379iE8PByXL18GANSqVQvt27dHbGws9u3bh99++w3Dhg1Dz549eWcVERGRyqnm7qoJEyZgyZIlps/Gu6W2bduGFi1awNPTEz/99BMGDx6MJk2aoGTJkoiOjsbkyZNN86Snp+PUqVPQ6/WmacuWLcOwYcPQunVreHh4oGvXrvj0009typtOp8PEiRMtXsKShTuUEWA5ZeMO5XSHMgIsp2ycVU6NEI6+f4uIiIjI+VRzuYqIiIjIFgxyiIiISEoMcoiIiEhKDHKIiIhISgxyrPDBBx8gMjISvr6+CAgIsJjmwoUL6NixI3x9fVGuXDmMGTMG2dnZBS731q1beOWVV+Dn54eAgADExMSYbol3te3bt0Oj0Vj8++OPP/Kdr0WLFnnSv/76607Mue0qV66cJ8/Tpk0rcJ779+9j6NChKFOmDEqVKoWuXbuaHj6pROfOnUNMTAyqVKkCHx8fVKtWDRMnTkRWVlaB86lhe86bNw+VK1eGt7c3IiIi8jwUNLeVK1ciPDwc3t7eePzxx7FhwwYn5dR2U6dOxVNPPYXSpUujXLly6NKlC06dOlXgPIsXL86zzby9vZ2U46KZNGlSnjwX9qR7NW1HI0ttjUajwdChQy2mV8u23LlzJ1588UVUqFABGo0Ga9euNfteCIEJEyagfPny8PHxQZs2bfD3338Xulxb921LGORYISsrC1FRURg8eLDF73NyctCxY0dkZWVhz549WLJkCRYvXowJEyYUuNxXXnkFx48fR1JSEn766Sfs3LkTgwYNckQRbBYZGYkrV66Y/b366quoUqWK2QtNLYmNjTWbb8aMGU7KddFNnjzZLM/Dhw8vMP3IkSPx448/YuXKldixYwf+/fdfvPzyy07Kre1OnjwJg8GAL774AsePH8fs2bOxYMECvPPOO4XOq+Tt+f3332PUqFGYOHEiDh48iCeeeALt2rXL8yRzoz179qBXr16IiYnBoUOH0KVLF3Tp0gXHjh1zcs6ts2PHDgwdOhS///47kpKSoNfr8dxzz+HevXsFzufn52e2zc6fP++kHBddnTp1zPK8e/fufNOqbTsa/fHHH2ZlTEpKAgBERUXlO48atuW9e/fwxBNPYN68eRa/nzFjBj799FMsWLAAe/fuRcmSJdGuXTvcv38/32Xaum/ny6FvxpJMfi8H3bBhg/Dw8BBXr141TZs/f77w8/MTmZmZFpf1119/CQDijz/+ME3buHGj0Gg04vLly3bPe3FlZWWJoKAgMXny5ALTNW/eXLz55pvOyZSdhIWFidmzZ1udPiUlRWi1WrFy5UrTtBMnTggAIjk52QE5dIwZM2aIKlWqFJhG6duzcePGYujQoabPOTk5okKFCmLq1KkW03fv3l107NjRbFpERIR47bXXHJpPe7l+/boAIHbs2JFvmvzaKSWbOHGieOKJJ6xOr/btaPTmm2+KatWqCYPBYPF7NW5LAOKHH34wfTYYDCIkJER89NFHpmkpKSlCp9OJ7777Lt/l2Lpv54c9OXaQnJyMxx9/HMHBwaZp7dq1Q1paGo4fP57vPAEBAWa9Im3atIGHhwf27t3r8Dzbav369bh58yYGDBhQaNply5ahbNmyqFu3LuLi4pCenu6EHBbPtGnTUKZMGTRo0AAfffRRgZcaDxw4AL1ejzZt2pimhYeHo1KlSkhOTnZGdu0iNTXVqpfjKXV7ZmVl4cCBA2bbwcPDA23atMl3OyQnJ5ulBx7sq2rZbqmpqQBQ6Ha7e/cuwsLCEBoais6dO+fbDinJ33//jQoVKqBq1ap45ZVXcOHChXzTqn07Ag/q79KlSzFw4EBoNJp806lxWz7s7NmzuHr1qtn28vf3R0RERL7bqyj7dn5U88RjJbt69apZgAPA9Pnq1av5zmN8x5ZRiRIlEBgYmO88rrRo0SK0a9cOFStWLDBd7969ERYWhgoVKuDIkSMYO3YsTp06hTVr1jgpp7Z744030LBhQwQGBmLPnj2Ii4vDlStXMGvWLIvpr169Ci8vrzzjs4KDgxW57Sw5ffo05s6di5kzZxaYTsnb87///kNOTo7Ffe/kyZMW58lvX1XDdjMYDBgxYgSeeeYZ1K1bN990NWvWxNdff4169eohNTUVM2fORGRkJI4fP17o/usqERERWLx4MWrWrIkrV64gPj4eTZs2xbFjx1C6dOk86dW8HY3Wrl2LlJSUAl9SrcZtmZtxm9iyvYqyb+fHbYOccePGYfr06QWmOXHiRKGD39SmKOW+dOkSNm/ejBUrVhS6/IfHFD3++OMoX748WrdujTNnzqBatWpFz7iNbCnnqFGjTNPq1asHLy8vvPbaa5g6dariH61elO15+fJltG/fHlFRUYiNjS1wXqVsTwKGDh2KY8eOFThWBXjw4uEmTZqYPkdGRqJWrVr44osvMGXKFEdns0ief/550//r1auHiIgIhIWFYcWKFYiJiXFhzhxn0aJFeP755wt8T6Iat6XSuG2QM3r06AIjaACoWrWqVcsKCQnJM+rbeKdNSEhIvvPkHkCVnZ2NW7du5TuPPRSl3AkJCShTpgw6depk8/qMb3M/ffq0Uw+Kxdm+ERERyM7Oxrlz51CzZs0834eEhCArKwspKSlmvTnXrl1z6LazxNZy/vvvv2jZsiUiIyOxcOFCm9fnqu1pSdmyZeHp6ZnnrraCtkNISIhN6ZVi2LBhppsTbD2D12q1aNCgAU6fPu2g3NlfQEAAHnvssXzzrNbtaHT+/Hls2bLF5h5RNW5L4za5du0aypcvb5p+7do11K9f3+I8Rdm382XTCB43V9jA42vXrpmmffHFF8LPz0/cv3/f4rKMA4/3799vmrZ582bFDTw2GAyiSpUqYvTo0UWaf/fu3QKA+PPPP+2cM8dZunSp8PDwELdu3bL4vXHg8apVq0zTTp48qfiBx5cuXRI1atQQPXv2FNnZ2UVahtK2Z+PGjcWwYcNMn3NycsSjjz5a4MDjF154wWxakyZNFDtg1WAwiKFDh4oKFSqI//u//yvSMrKzs0XNmjXFyJEj7Zw7x7lz54545JFHxCeffGLxe7Vtx9wmTpwoQkJChF6vt2k+NWxL5DPweObMmaZpqampVg08tmXfzjc/NqV2U+fPnxeHDh0S8fHxolSpUuLQoUPi0KFD4s6dO0KIBxWvbt264rnnnhOHDx8WmzZtEkFBQSIuLs60jL1794qaNWuKS5cumaa1b99eNGjQQOzdu1fs3r1b1KhRQ/Tq1cvp5SvIli1bBABx4sSJPN9dunRJ1KxZU+zdu1cIIcTp06fF5MmTxf79+8XZs2fFunXrRNWqVUWzZs2cnW2r7dmzR8yePVscPnxYnDlzRixdulQEBQWJfv36mdLkLqcQQrz++uuiUqVKYuvWrWL//v2iSZMmokmTJq4oglUuXbokqlevLlq3bi0uXbokrly5Yvp7OI3atufy5cuFTqcTixcvFn/99ZcYNGiQCAgIMN3p2LdvXzFu3DhT+t9++02UKFFCzJw5U5w4cUJMnDhRaLVacfToUVcVoUCDBw8W/v7+Yvv27WbbLD093ZQmdxnj4+PF5s2bxZkzZ8SBAwdEz549hbe3tzh+/LgrimCV0aNHi+3bt4uzZ8+K3377TbRp00aULVtWXL9+XQih/u34sJycHFGpUiUxduzYPN+pdVveuXPHdFwEIGbNmiUOHTokzp8/L4QQYtq0aSIgIECsW7dOHDlyRHTu3FlUqVJFZGRkmJbRqlUrMXfuXNPnwvZtazHIsUJ0dLQAkOdv27ZtpjTnzp0Tzz//vPDx8RFly5YVo0ePNovSt23bJgCIs2fPmqbdvHlT9OrVS5QqVUr4+fmJAQMGmAInpejVq5eIjIy0+N3Zs2fNfocLFy6IZs2aicDAQKHT6UT16tXFmDFjRGpqqhNzbJsDBw6IiIgI4e/vL7y9vUWtWrXEhx9+aNYDl7ucQgiRkZEhhgwZIh555BHh6+srXnrpJbOAQWkSEhIs1uGHO3PVuj3nzp0rKlWqJLy8vETjxo3F77//bvquefPmIjo62iz9ihUrxGOPPSa8vLxEnTp1xM8//+zkHFsvv22WkJBgSpO7jCNGjDD9HsHBwaJDhw7i4MGDzs+8DXr06CHKly8vvLy8xKOPPip69OghTp8+bfpe7dvxYZs3bxYAxKlTp/J8p9ZtaTy+5f4zlsVgMIj33ntPBAcHC51OJ1q3bp2n/GFhYWLixIlm0wrat62lEUII2y5wERERESkfn5NDREREUmKQQ0RERFJikENERERSYpBDREREUmKQQ0RERFJikENERERSYpBDREREUmKQQ0RERFJikENEqtSiRQtoNBpoNBocPnzY6es/d+6caf35vWiQiFyLQQ4RqVZsbCyuXLmCunXrOn3doaGhuHLlCkaPHu30dRORdUq4OgNEREXl6+uLkJAQl6zb09MTISEhKFWqlEvWT0SFY08OETnVjRs3EBISgg8//NA0bc+ePfDy8sKvv/5arGVv374dGo0GmzdvRoMGDeDj44NWrVrh+vXr2LhxI2rVqgU/Pz/07t0b6enppvlatGiB4cOHY8SIEXjkkUcQHByML7/8Evfu3cOAAQNQunRpVK9eHRs3bixW/ojIuRjkEJFTBQUF4euvv8akSZOwf/9+3LlzB3379sWwYcPQunVru6xj0qRJ+Oyzz7Bnzx5cvHgR3bt3x5w5c5CYmIiff/4Zv/zyC+bOnWs2z5IlS1C2bFns27cPw4cPx+DBgxEVFYXIyEgcPHgQzz33HPr27WsWHBGRsjHIISKn69ChA2JjY/HKK6/g9ddfR8mSJTF16lS7Lf/999/HM888gwYNGiAmJgY7duzA/Pnz0aBBAzRt2hTdunXDtm3bzOZ54oknMH78eNSoUQNxcXHw9vZG2bJlERsbixo1amDChAm4efMmjhw5Yrd8EpFjMcghIpeYOXMmsrOzsXLlSixbtgw6nc5uy65Xr57p/8HBwfD19UXVqlXNpl2/fj3feTw9PVGmTBk8/vjjZvMAyDMfESkXgxwicokzZ87g33//hcFgwLlz5+y6bK1Wa/q/RqMx+2ycZjAY8p3H0nwajQYA8sxHRMrFu6uIyOmysrLQp08f9OjRAzVr1sSrr76Ko0ePoly5cq7OGhFJhD05ROR07777LlJTU/Hpp59i7NixeOyxxzBw4EBXZ4uIJMMgh4icavv27ZgzZw6+/fZb+Pn5wcPDA99++y127dqF+fPnuzp7RCQRjRBCuDoTRES2atGiBerXr485c+a4NB+TJk3C2rVrXfJqCSIqGHtyiEi1Pv/8c5QqVQpHjx51+rovXLiAUqVKmT3UkIiUhT05RKRKly9fRkZGBgCgUqVK8PLycur6s7OzTXeF6XQ6hIaGOnX9RFQ4BjlEREQkJV6uIiIiIikxyCEiIiIpMcghIiIiKTHIISIiIikxyCEiIiIpMcghIiIiKTHIISIiIikxyCEiIiIp/T9DLu/T8RCRLgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "=== Radial equal-area infill ===\n", - "Slice @ z : 5.00 mm\n", - "Area fraction (target) : 0.300\n", - "Filled area : 183.637 mm²\n", - "Centroid (x̄,ȳ) : ( -0.00 , -0.00) mm\n", - "Ix , Iy : 8009.353 , 8009.353 mm⁴\n", - "|Ix − Iy| / Ix : 0.00e+00\n", - "Ixy : 0.000 mm⁴\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAI4CAYAAACIt/jIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaIFJREFUeJzt3XlcVFX/B/DPgMMAyuLC4oIopuKSuSVJueWallqKWyooYZlaiplSJqKVS6aWqWUp+KhkaqZWLmGiVpDm9rikPmkgSoKmAioIA3N+f/SbyWEGmIFZ73zerxcvnTvn3nvO3HvO/d5zz71XJoQQICIiIpIYJ2tngIiIiMgcGOQQERGRJDHIISIiIklikENERESSxCCHiIiIJIlBDhEREUkSgxwiIiKSJAY5REREJEkMcoiIiEiSGOSQJKWnp0MmkyEhIUEzbe7cuZDJZJVaXvfu3dG9e3fTZM7KqvI72Kqqbp8NGzYgODgYcrkc3t7eepdp6n1KbfHixQgODoZKparScsg6Pv30UzRs2BCFhYXWzgrpwSCHLCYhIQEymUzzV61aNdSvXx8RERHIzMy0dvbIQV24cAERERFo0qQJPv/8c6xZs8Zi687Ly8OiRYswc+ZMODnZTnOsDujK+ouKiqpwGWXNu3DhQp20mZmZGDZsGLy9veHp6YlBgwbhzz//NEfRTC4iIgJFRUX47LPPrJ0V0qOatTNAjmfevHlo3LgxHjx4gF9//RUJCQn4+eefcfbsWbi6upptvbNnz8asWbPMtnyynh9++KHS8x48eBAqlQofffQRHnnkEZMs01Dr1q1DcXExRo4cafZ1GcPHxwcbNmzQmb53715s2rQJffr0MWg5vXv3xtixY7WmtWvXTuvzvXv30KNHD+Tm5uKtt96CXC7HsmXL0K1bN5w6dQq1a9eufEEswNXVFeHh4Vi6dCmmTJkiuV5Se8cghyzumWeeQceOHQEAL730EurUqYNFixZh165dGDZsmNnWW61aNVSrxl3eElQqFYqKiswatD7MxcWl0vPeuHEDADSXqUyxTEPFx8dj4MCBFvudDFW9enWMHj1aZ3pCQgI8PT3x3HPPGbScZs2a6V3Ow1atWoU//vgDR48exeOPPw7gnzaidevW+PDDD/H+++8bXwALGzZsGBYvXozk5GQ8/fTT1s4OPcR2+kfJYXXp0gUAcPnyZc20oqIizJkzBx06dICXlxeqV6+OLl26IDk5WWf+nJwcREREwMvLC97e3ggPD0dOTo5OOn3jJ+Lj4/H000/D19cXCoUCLVu2xOrVq6tUno0bN6JDhw5wc3NDrVq1MGLECFy9elUn3Zo1a9CkSRO4ubmhU6dO+Omnn3TGgagv8aWnp2vNe/DgQchkMhw8eFAz7aeffkJYWBgaNmwIhUKBgIAATJs2DQUFBZUuy5IlSxAaGoratWvDzc0NHTp0wLZt23TSyWQyTJ48GZs2bUKrVq2gUCiwd+9eAP9cihg/fjz8/PygUCjQqlUrrFu3Tmt+Y7a3PqV/N/Xvs2XLFrz33nto0KABXF1d0bNnT1y6dEmTrlGjRoiNjQXwT++FTCbD3Llz9S7T1NLS0nD69Gn06tVLpyxlXep5eDyQpV2/fh3Jycl44YUXjArKCgoK8ODBgzK/37ZtGx5//HFNgAMAwcHB6NmzJ7Zs2VLh8tX73tatW9GyZUu4ubmhc+fOOHPmDADgs88+wyOPPAJXV1d0795dpy51794drVu3xunTp9GtWze4u7vjkUce0eznhw4dQkhICNzc3NC8eXPs379fJw8dOnRArVq1sHPnTkN+ErIgntaS1akbnZo1a2qm5eXl4YsvvsDIkSMRFRWFu3fvYu3atejbty+OHj2Ktm3bAgCEEBg0aBB+/vlnvPLKK2jRogW++eYbhIeHG7Tu1atXo1WrVhg4cCCqVauGb7/9Fq+++ipUKhUmTZpkdFnee+89vPPOOxg2bBheeukl3Lx5EytWrEDXrl1x8uRJTW/B2rVr8fLLLyM0NBRTp07Fn3/+iYEDB6JWrVoICAgwer0AsHXrVuTn52PixImoXbs2jh49ihUrVuDatWvYunVrpZb50UcfYeDAgXjxxRdRVFSEzZs3IywsDN999x0GDBiglfbAgQPYsmULJk+ejDp16qBRo0bIzs7GE088oTkQ+fj4YM+ePYiMjEReXh6mTp0KwPDtbayFCxfCyckJb7zxBnJzc7F48WK8+OKLOHLkCABg+fLl+M9//oNvvvkGq1evRo0aNdCmTZtKrctYKSkpAID27dtrTX/77bfx0ksvaU3buHEj9u3bB19f33KXeefOHZSUlFS4bnd3d7i7uxuV382bN0OlUuHFF180eJ6EhASsWrUKQgi0aNECs2fPxqhRozTfq1QqnD59GuPHj9eZt1OnTvjhhx9w9+5deHh4lLuen376Cbt27dLU2QULFuDZZ5/Fm2++iVWrVuHVV1/FnTt3sHjxYowfPx4HDhzQmv/OnTt49tlnMWLECISFhWH16tUYMWIENm3ahKlTp+KVV17BqFGj8MEHH2Do0KG4evWqTp7at2+PX375xeDfhixEEFlIfHy8ACD2798vbt68Ka5evSq2bdsmfHx8hEKhEFevXtWkLS4uFoWFhVrz37lzR/j5+Ynx48drpu3YsUMAEIsXL9aat0uXLgKAiI+P10yPjY0VpXf5/Px8nXz27dtXBAUFaU3r1q2b6NatW7nlS09PF87OzuK9997Tmn7mzBlRrVo1zfSioiLh6+sr2rZtq1XGNWvWCABa61H/ZmlpaVrLTE5OFgBEcnJyuWVZsGCBkMlk4sqVK5pp+n6HspReZlFRkWjdurV4+umntaYDEE5OTuLcuXNa0yMjI0XdunXF33//rTV9xIgRwsvLS7N8Q7d3WUpvH/Xv06JFC63lfvTRRwKAOHPmjGaa+ve4efNmuctMS0szaJ8y1OzZswUAcffu3XLT/fLLL0Iulxv0OwQGBgoAFf7FxsYand8OHTqIunXripKSEoPSh4aGiuXLl4udO3eK1atXi9atWwsAYtWqVZo0N2/eFADEvHnzdOZfuXKlACAuXLhQ7noACIVCoVVHPvvsMwFA+Pv7i7y8PM30mJgYnfrUrVs3AUAkJiZqpl24cEGzT//666+a6fv27dPZB9QmTJgg3Nzcys0rWR57csjiSnfPN2rUCBs3bkSDBg0005ydneHs7Azgn7O9nJwcqFQqdOzYESdOnNCk2717N6pVq4aJEydqzTtlyhT89NNPFebFzc1N8//c3FwolUp069YN+/btQ25uLry8vAwu1/bt26FSqTBs2DD8/fffmun+/v5o2rQpkpOT8dZbb+HYsWO4ceMG5s2bpzXuIyIiAjNmzDB4feWV5f79+ygoKEBoaCiEEDh58iQaNmxYpWWqewm6dOmCL7/8Uidtt27d0LJlS81nIQS+/vprDBs2DEIIrd+kb9++2Lx5M06cOIEnn3zS4O1trHHjxmn9xupLo3/++Sdat25d6eWawq1bt1CtWjXUqFGjzDRZWVkYOnQo2rZti1WrVlW4zE2bNhl0eTIoKMiovP7vf//D8ePHMW3aNIPvAivdqzF+/Hh06NABb731FiIiIuDm5qbJq0Kh0JlffUnMkPL07NkTjRo10nwOCQkBAAwZMkSrx0U9/c8//9RKX6NGDYwYMULzuXnz5vD29kb9+vU185Sev7SaNWuioKAA+fn5RveSkfkwyCGLW7lyJZo1a4bc3FysW7cOhw8f1tvIrV+/Hh9++CEuXLgApVKpmd64cWPN/69cuYK6devqHCiaN29uUF5++eUXxMbGIjU1Ffn5+VrfGRvk/PHHHxBCoGnTpnq/l8vlmjwD0Eknl8uNPvg8LCMjA3PmzMGuXbtw584dre9yc3PLnO/27dsoKirSfHZzc9OU+7vvvsO7776LU6dOaT0HRN8dJA9vFwC4efMmcnJysGbNmjJvy1YP+gUM297GKh3YqS+Jlv59bFFxcTGGDRuGkpISbN++XW8dKe3JJ580S142bdoEAEZdqirNxcUFkydPxiuvvILjx4/jqaee0gTR+p4xox7H83CgXZbS21m9/5a+9KueXnr7N2jQQGef9vLyMnh+4J+gHtBfN8h6GOSQxXXq1Elzd9XgwYPx1FNPYdSoUbh48aImWNm4cSMiIiIwePBgzJgxA76+vnB2dsaCBQu0BihXxeXLl9GzZ08EBwdj6dKlCAgIgIuLC3bv3o1ly5YZ/XA2lUoFmUyGPXv2aHolHlbeGXtZymowS4+7KCkpQe/evXH79m3MnDkTwcHBqF69OjIzMxEREVFuWV544QUcOnRI8zk8PBwJCQn46aefMHDgQHTt2hWrVq1C3bp1IZfLER8fj8TERJ3llD4Yqdc5evToMsdIqce/mGt769sOwL8HJGuqXbs2iouLyxxzMmPGDKSmpmL//v1avZzluXnzpkFjcmrUqGHU/piYmIjmzZujQ4cOBs+jjzpouH37NgCgVq1aUCgUuH79uk5a9bR69epVuNyytrOh27+q8wP/BD7u7u4GBWVkOQxyyKrUB7IePXrgk08+0TzHZtu2bQgKCsL27du1DvTqO2HUAgMD8eOPP+LevXtajfbFixcrXPe3336LwsJC7Nq1S+tM0NA7ekpr0qQJhBBo3LgxmjVrVma6wMBAAP/0/Dx8u6lSqURaWhoee+wxzTR1z0Ppu8XUvUFqZ86cwf/+9z+sX79e67kkSUlJFeb7ww8/1DozVR9Uvv76a7i6umLfvn1avQjx8fEVLhP4524lDw8PlJSU6FyiLM3Q7S0lwcHBAP65y6r0YOfNmzdj+fLlWL58Obp162bwMh9//HGdfUOf2NhYzV1kFTly5AguXbqEefPmGZyPsqgv8/j4+AAAnJyc8Oijj+LYsWN61xsUFFThoGNbkZaWhhYtWlg7G1QKbyEnq+vevTs6deqE5cuXa7qo1WdQD58xHTlyBKmpqVrz9u/fH8XFxVq3fZeUlGDFihUVrlffOnJzcw0+iJf2wgsvwNnZGXFxcTpnekII3Lp1CwDQsWNH+Pj44NNPP9W6TJSQkKATzDRp0gQAcPjwYc20kpISncs/+soihMBHH31UYb47dOiAXr16af7U42qcnZ0hk8m0egbS09OxY8eOCpepnn/IkCH4+uuvcfbsWZ3vb968WW7+9W1vKencuTMA6Bzgz549i5deegmjR4/G66+/btQyN23ahKSkpAr/Sj+grzzqXruH74p6WH5+Pi5cuKA15urhbat29+5dLF++HHXq1NHqERo6dCh+++03rd/h4sWLOHDgAMLCwgzOp7WdOHECoaGh1s4GlcKeHLIJM2bMQFhYGBISEvDKK6/g2Wefxfbt2/H8889jwIABSEtLw6effoqWLVvi3r17mvmee+45PPnkk5g1axbS09PRsmVLbN++vdwxKGp9+vSBi4sLnnvuObz88su4d+8ePv/8c/j6+urtPq9IkyZN8O677yImJgbp6ekYPHgwPDw8kJaWhm+++QYTJkzAG2+8AblcjnfffRcvv/wynn76aQwfPhxpaWmIj4/XGZPTqlUrPPHEE4iJicHt27dRq1YtbN68GcXFxVrpgoOD0aRJE7zxxhvIzMyEp6cnvv766yqNPRkwYACWLl2Kfv36YdSoUbhx4wZWrlyJRx55BKdPnzZoGQsXLkRycjJCQkIQFRWFli1b4vbt2zhx4gT279+vuWxh6PaWkqCgILRu3Rr79+/XuoV63LhxAICuXbti48aNWvOEhoaWO27L1GNySkpK8NVXX+GJJ57QBNylHT16FD169NDqHVq5ciV27NiB5557Dg0bNsT169exbt06ZGRkYMOGDVqDwV999VV8/vnnGDBggKZ+LF26FH5+fpg+fbpJy2Mux48fx+3btzFo0CBrZ4VKYZBDNuGFF15AkyZNsGTJEkRFRSEiIgJZWVn47LPPsG/fPrRs2RIbN27E1q1btR6A5+TkhF27dmHq1KnYuHEjZDIZBg4ciA8//FDn8fGlNW/eHNu2bcPs2bPxxhtvwN/fHxMnToSPj4/e53YYYtasWWjWrBmWLVuGuLg4AP+MQ+jTpw8GDhyoSTdhwgSUlJTggw8+wIwZM/Doo49i165deOedd3SWuWnTJrz88stYuHAhvL29ERkZiR49eqB3796aNHK5HN9++y1ee+01LFiwAK6urnj++ecxefJkrctfxnj66aexdu1aLFy4EFOnTkXjxo2xaNEipKenGxzk+Pn54ejRo5g3bx62b9+OVatWoXbt2mjVqhUWLVqkSWfo9paa8ePHY86cOSgoKNCM5bh58ybu37+PCRMm6KTXFwib0/79+5GdnY23337bqPmefPJJpKSk4IsvvsCtW7dQvXp1dOrUCevWrdN5IrCHhwcOHjyIadOm4d1334VKpUL37t2xbNkyzWUtW7d161Y0bNiQTzu2QTJhCyPwiAgANE/YlfKBnf6Vm5uLoKAgLF68GJGRkdbODlVCYWEhGjVqhFmzZhl9eZHMj2NyiIisxMvLC2+++SY++OADo+/mI9sQHx8PuVyOV155xdpZIT3Yk0NkQ9iTQ0RkOuzJISIiIkliTw4RERFJEntyiIiISJIY5BAREZEkMcghIsnLzs7G0KFDUbt2bchkMixfvrzMtDKZzOBXHhCRbWOQQyRB06ZNQ/v27VGrVi24u7ujRYsWmDt3rt6nBxcWFmLmzJmoV68e3NzcEBISYtA7r9QyMzMxbNgweHt7w9PTE4MGDdK8o+jhdUyZMgU+Pj5o0KAB3n33XZ3lXLt2DTVq1MAvv/xifIErMG3aNOzbtw8xMTHYsGED+vXrZ/J1SEX37t3RunVra2dDr4iIiEq96JYcF594TCRBv/32G7p06YJx48bB1dUVJ0+exMKFC7F//34cPnwYTk7/nt9ERERg27ZtmDp1Kpo2bYqEhAT0798fycnJeOqpp8pdz71799CjRw/k5ubirbfeglwux7Jly9CtWzecOnUKtWvXBgB88MEH+M9//oO3334bd+/exbx589CkSROMHDlSs6wZM2Zg4MCBJn81AQAcOHAAgwYNwhtvvFFh2oKCAlSrxqaRSBIEEel17949a2fBpJYsWSIAiNTUVM20I0eOCADigw8+0EwrKCgQTZo0EZ07d65wmYsWLRIAxNGjRzXTzp8/L5ydnUVMTIxmWkhIiIiLi9N8Dg8PFyNGjNB8/umnn0T16tXF1atXK12+8shkMjFp0iSzLNvSCgoKRElJidmW361bN9GqVSuzLb8qwsPDRfXq1a2dDbIjvFxFknblyhW8+uqraN68Odzc3FC7dm2EhYUhPT1dK11CQgJkMhkOHTqEV199Fb6+vmjQoIHm+z179qBLly6oXr06PDw8MGDAAJw7d05rGadPn0ZERASCgoLg6uoKf39/jB8/XvP2cWtr1KgRAGi96Xzbtm1wdnbWek+Sq6srIiMjkZqaiqtXr5a7zG3btuHxxx/H448/rpkWHByMnj17YsuWLZppBQUFqFmzpuZzrVq1kJ+fDwBQqVR4/fXX8eabb2r95ob4888/ERYWprks98QTT+D777/XfK/erkIIrFy5EjKZDDKZrNxllh6TM3fuXMhkMly6dAkRERHw9vaGl5cXxo0bpynDw/NOnjwZO3bsQOvWraFQKNCqVSvs3btXZz2ZmZkYP348/Pz8NOnWrVunlebgwYOQyWTYvHkzZs+ejfr168Pd3R15eXkAgMuXL+Py5ctG/WbGio+Ph0wm08nb+++/D5lMht27d5t1/eUJDw9HnTp1oFQqdb7r06cPmjdvboVckS1hnyxJ2m+//YaUlBSMGDECDRo0QHp6OlavXo3u3bvj999/h7u7u1b6V199FT4+PpgzZw7u378PANiwYQPCw8PRt29fLFq0CPn5+Vi9ejWeeuopnDx5UhM8JCUl4c8//8S4cePg7++Pc+fOYc2aNTh37hx+/fXXCg+uf//9t0Fl8vDwgEKhqDBdcXExcnJyUFRUhLNnz2L27Nnw8PBAp06dNGlOnjyJZs2awdPTU2tedZpTp04hICBA7/JVKhVOnz6t92WmnTp1wg8//IC7d+/Cw8MDjz/+ONasWYPu3bvj3r17+PLLLzF58mQAwNq1a/H3339jxowZBpVfLTs7G6GhocjPz8drr72G2rVrY/369Rg4cCC2bduG559/Hl27dsWGDRswZswY9O7dG2PHjjVqHQ8bNmwYGjdujAULFuDEiRP44osv4Ovrq/WiUQD4+eefsX37drz66qvw8PDAxx9/jCFDhiAjI0Nz+S47OxtPPPGEJijy8fHBnj17EBkZiby8PEydOlVrmfPnz4eLiwveeOMNFBYWat7i3bNnTwDQCdpNady4cdi+fTuio6PRu3dvBAQE4MyZM4iLi0NkZCT69+9v0HJycnKQlZWFBg0a6B1Xk5mZifr16xuVtzFjxuA///kP9u3bh2effVYzPSsrCwcOHEBsbKxRyyMJsnZXEpE55efn60xLTU0VAMR//vMfzbT4+HgBQDz11FOiuLhYM/3u3bvC29tbREVFaS0jKytLeHl5aU3Xt64vv/xSABCHDx+uMK8ADPqLj483pOiacqr/mjdvLpKTk7XStGrVSjz99NM68547d04AEJ9++mmZy79586YAIObNm6fz3cqVKwUAceHCBSGEEFevXhWtWrXS5KVLly7i7t27IicnR/j4+IjNmzcbVKaHTZ06VQAQP/30k2ba3bt3RePGjUWjRo20LukAMPhyFQARGxur+RwbGysAiPHjx2ule/7550Xt2rV15nVxcRGXLl3STPvvf/8rAIgVK1ZopkVGRoq6deuKv//+W2v+ESNGCC8vL82+lJycLACIoKAgvftXYGCgCAwMNKhchtJ3uer69euiVq1aonfv3qKwsFC0a9dONGzYUOTm5la4vKtXr4ohQ4YIJycnAUDI5XLRr18/sX79enH58mXx+++/i7fffls8+eSTFS6r9OWqkpIS0aBBAzF8+HCtdEuXLhUymUz8+eefBpaapIo9OSRpbm5umv8rlUrk5eXhkUcegbe3N06cOIExY8ZopY+KioKzs7Pmc1JSEnJycjBy5EitnhZnZ2eEhIQgOTlZ77oePHiAe/fu4YknngAAnDhxAl26dCk3r4be0dSqVSuD0rVs2RJJSUm4f/8+UlJSsH//fp27qwoKCvT2Crm6umq+L4v6O0Pmb9CgAU6ePIlz587BxcUFwcHBcHJyQnR0NJo3b47hw4fj559/xvTp0/HXX3/h+eefx5IlSzQ9Fvrs3r0bnTp10hocXaNGDUyYMAExMTH4/fffTXqXUOkXMHbp0gXffPMN8vLytHrCevXqhSZNmmg+t2nTBp6enpo7zoQQ+PrrrzFs2DAIIbT2q759+2Lz5s04ceKE1gDs8PBwrf1LzZw9OA/z9/fHypUrMXLkSHTp0gWnTp1CUlKSTg+gPnFxcbh//z6+/vpr+Pr64sSJE9iyZQsiIiIg/v+B+02aNMHKlSuNzpeTkxNefPFFfPzxx5peQwDYtGkTQkND0bhxY6OXSdLCIIckraCgAAsWLEB8fDwyMzM1jSoA5Obm6qQv3Sj+8ccfAICnn35a7/IfbuRv376NuLg4bN68GTdu3NBKp29dpfXq1avCNMbw9PTULHPQoEFITEzEoEGDcOLECTz22GMA/gnMCgsLdeZ98OCB5vuyqL8zdH65XI62bdtqPl+4cAGrVq1CSkoKbt++jQEDBmDWrFno0aMHxo0bh/feew9xcXFlrv/KlSsICQnRmd6iRQvN96YMcho2bKj1WT3G6M6dO1r7Qel06rR37twBANy8eRM5OTlYs2YN1qxZo3ddpfcfWzhYjxgxAhs3bsT333+PCRMmaC6VVSQ6OlqzTQAgNDQUkydPRmZmJs6ePYuaNWuiQ4cOKC4urlS+xo4di0WLFuGbb77B2LFjcfHiRRw/fhyffvpppZZH0sIghyRtypQpiI+Px9SpU9G5c2d4eXlBJpNhxIgRUKlUOulLH9TVaTZs2AB/f3+d9A/fajxs2DCkpKRgxowZaNu2LWrUqAGVSoV+/frpXVdpWVlZBpXJy8ur3OCjLC+88ALGjBmDzZs3a4KcunXrIjMzUyft9evXAQD16tUrc3m1atWCQqHQpDV2/mnTpmH06NFo3749NmzYgFq1aiEmJgYA8Oabb1YY5Fjawz18DxOlXv9XUTr1vjB69GiEh4frTdumTRutz5XZ3qZ269YtHDt2DADw+++/Q6VSaT2KoCx169bFzJkzkZiYiOvXryMwMBD9+/fH4MGDERoaiqKiInz++efYtWtXpQYxt2zZEh06dMDGjRsxduxYbNy4ES4uLhg2bJjRyyLpYZBDkrZt2zaEh4fjww8/1Ex78OCB1h1G5VFfdvD19S23p+XOnTv48ccfERcXhzlz5mimq3uCDFG3bl2D0sXHxyMiIsLg5aoVFhZCpVJp9Sq1bdsWycnJOpdcjhw5ovm+LE5OTnj00Uc1B76HHTlyBEFBQZrLB6V99913SElJ0fw+f/31l1b569Wrpzf4elhgYCAuXryoM/3ChQua722Rj48PPDw8UFJSYvLeO3OaNGkS7t69iwULFiAmJgbLly9HdHR0hfO9+eab+O9//4t58+bBz88Px48fx5dffolPPvlEk8bX1xcff/xxpfM2duxYREdH4/r160hMTMSAAQO07uYjx8UghyTN2dlZ50x7xYoVKCkpMWj+vn37wtPTE++//z569OgBuVyu9f3Nmzfh4+OjOXsvva7yXh9QmqnG5OTk5KB69eo6ef3iiy8AAB07dtRMGzp0KJYsWYI1a9ZoHpRXWFiI+Ph4hISEaN1ZlZGRgfz8fAQHB2vNP2vWLBw7dkyz3IsXL+LAgQNlPnivqKgI0dHRmD17Nnx9fQEAfn5+uHTpEoqLi1GtWjWcP39eb8/Zw/r374/ly5cjNTUVnTt3BgDcv38fa9asQaNGjdCyZcty57cWZ2dnDBkyBImJiTh79qzOJTX1PmVLtm3bhq+++goff/wxpkyZgv/+97+YPXs2nn32WTRr1qzceaOiotCxY0fN3YX9+/fHO++8g3PnzmkuV3Xt2lUzjqsyRo4cienTp+P111/Hn3/+iQ8++KDSyyJpYZBDkvbss89iw4YN8PLyQsuWLZGamor9+/drbuWtiKenJ1avXo0xY8agffv2GDFiBHx8fJCRkYHvv/8eTz75JD755BN4enqia9euWLx4MZRKJerXr48ffvgBaWlpBufVVGf1Bw8exGuvvYahQ4eiadOmKCoqwk8//YTt27ejY8eOGD16tCZtSEgIwsLCEBMTgxs3buCRRx7B+vXrkZ6ejrVr12otd+zYsTh06JBWIPfqq6/i888/x4ABA/DGG29ALpdj6dKl8PPzw/Tp0/Xm76OPPgIAvP7665pp/fv3x6RJkzBq1CiEhoZi/vz5eOmll8ot56xZs/Dll1/imWeewWuvvYZatWph/fr1SEtLw9dff23QpRRrWbhwIZKTkxESEoKoqCi0bNkSt2/fxokTJ7B//37cvn3boOWoH19gzgHIN27cwMSJE9GjRw/Nbf+ffPIJkpOTERERgZ9//rnc3/rhZyg9rFWrVgYPoq+Ij48P+vXrh61bt8Lb2xsDBgwwyXJJAqx2XxeRBdy5c0eMGzdO1KlTR9SoUUP07dtXXLhwQQQGBorw8HBNOvUt5L/99pve5SQnJ4u+ffsKLy8v4erqKpo0aSIiIiLEsWPHNGmuXbsmnn/+eeHt7S28vLxEWFiY+Ouvv3RuSTa3S5cuibFjx4qgoCDh5uYmXF1dRatWrURsbKzepzgXFBSIN954Q/j7+wuFQiEef/xxsXfvXp103bp1E/qajKtXr4qhQ4cKT09PUaNGDfHss8+KP/74Q2/esrKyhIeHh9i1a5fOd3v27BHBwcHC29tbjB07Vty/f7/Csl6+fFkMHTpUeHt7C1dXV9GpUyfx3Xff6aSDCW4hv3nzplY69T6TlpZW4XpK729CCJGdnS0mTZokAgIChFwuF/7+/qJnz55izZo1mjTqW8i3bt2qN6916tQRTzzxhEHlMlTpW8hfeOEF4eHhIdLT07XS7dy5UwAQixYtMun6y1PeE4+3bNkiAIgJEyZYLD9k+2RClOpfJyIim/f777+jVatW+O6779hzAWDnzp0YPHgwDh8+XOHjGshx2G5/LhERlSk5ORmdO3dmgPP/Pv/8cwQFBVX4UllyLOzJISIiu7V582acPn0aCxYswEcffYTXXnvN2lkiG8Igh4iI7JZMJkONGjUwfPhwfPrpp1rPriKyq8tVhw8fxnPPPYd69epBJpNhx44dWt8LITBnzhzUrVsXbm5u6NWrl0HPKVm5ciUaNWoEV1dXhISE4OjRo2YqARERmZIQAnfv3sUXX3zBAId02FWQc//+fTz22GNlvuNk8eLF+Pjjj/Hpp5/iyJEjqF69Ovr27at5xLw+X331FaKjoxEbG6t53H3fvn11HqtORERE9sVuL1fJZDJ88803GDx4MIB/ovl69eph+vTpmoeQ5ebmws/PDwkJCRgxYoTe5YSEhODxxx/XPH1TpVIhICAAU6ZMwaxZsyxSFiIiIjI9yfTtpaWlISsrS+uBal5eXggJCUFqaqreIKeoqAjHjx/XvC8H+OdR9b169UJqamqZ6yosLNR6KaFKpcLt27dRu3ZtzVM9iYiISD/1ZcZ69eqZ9cGdkgly1C839PPz05ru5+dX5osP//77b5SUlOidR/3+G30WLFhgUy8OJCIiskdXr15FgwYNzLZ8yQQ5lhQTE6P1Yrrc3Fw0bNgQvbxfAArtapiTweSuzhizchA2TNoJ5QPD3vtkj1hOaXGEcjpCGQGWU3IUKuzP2V7mS3xNRTJBjvplftnZ2VpvM87Ozi7zTcp16tSBs7MzsrOztaZnZ2eX+3JAhUIBhUKh+0WhE1D2GGf7JnOCu7v7/5dRwhWP5ZQWRyinI5QRYDkl558OAXMP8ZBMt0Pjxo3h7++PH3/8UTMtLy8PR44c0byhuDQXFxd06NBBax6VSoUff/yxzHmIiIjIPthVT869e/dw6dIlzee0tDScOnUKtWrVQsOGDTF16lS8++67aNq0KRo3box33nkH9erV09yBBQA9e/bE888/r3mbbnR0NMLDw9GxY0d06tQJy5cvx/379zFu3DhLF4+IiIhMyK6CnGPHjqFHjx6az+pxMeHh4UhISMCbb76J+/fvY8KECcjJycFTTz2FvXv3wtXVVTPP5cuX8ffff2s+Dx8+HDdv3sScOXOQlZWFtm3bYu/evTqDkYmIiMi+2FWQ0717d5T3WB+ZTIZ58+Zh3rx5ZaZJT0/XmTZ58mRNzw4RERFJg2TG5BARERE9jEEOERERSRKDHCIiIpIkBjlEREQkSQxyiIiISJIY5BAREZEkMcghIiIiSWKQQ0RERJLEIIeIiIgkiUEOERERSRKDHCIiIpIkBjlEREQkSQxyiIiISJIY5BAREZEkMcghIiIiSWKQQ0RERJLEIIeIiIgkiUEOERERSRKDHCIiIpIkBjlEREQkSdWsnQEitSTVVmtnAUqlErt378bOnPWQy+XWzo7ZsJzS4QhlBGyznL2dwqydBaoAe3LIJthCgENEZAy2W7aPPTlkVWwkiMieqdsw9urYJgY5ZBUMbohIShjs2CZeriKLY4BDRFLF9s22MMghIiIiSWKQQxbFsxwikjq2c7aDY3LIIljpiciRcIyObWBPDpkdAxwiclRs/6yLPTlkNqzcRETs1bEm9uSQWTDAISLSxnbR8hjkkMmxIhMR6cf20bIY5BAREZEkcUwOmQzPUIiIKsYxOpbDnhwyCQY4RETGYbtpfgxyqMpYUYmIKoftp3nxchVVGisnEVHV8fKV+bAnhyqFAQ4RkWmxXTU9BjlkNFZEIiLz2Jmz3tpZkBQGOWQUVkAiIrIXDHKIiIhIkhjkEBER2Rj2mpsGgxwyCCscEZFlcfxj1fEWciqXupIplUor54SIyPHw9vKqYU8OlYlnEUREtoHtceUwyCG9WKGIiGwL22XjSSrIadSoEWQymc7fpEmT9KZPSEjQSevq6mrhXNseViQiItvE9tk4khqT89tvv6GkpETz+ezZs+jduzfCwsq+lunp6YmLFy9qPstkMrPmkYiIiCxDUkGOj4+P1ueFCxeiSZMm6NatW5nzyGQy+Pv7mztrdoNnCUREti1JtZUDkQ0kqSDnYUVFRdi4cSOio6PL7Z25d+8eAgMDoVKp0L59e7z//vto1apVucsuLCxEYWGh5nNeXh4AQO7qDMjs9wrgzpz1Zd5FpZ4u9busWE5pcYRyOkIZAZaztN2FiRjkHW6JLJmHQgUUmH81MiGEMP9qLG/Lli0YNWoUMjIyUK9ePb1pUlNT8ccff6BNmzbIzc3FkiVLcPjwYZw7dw4NGjQoc9lz585FXFyczvTExES4u7ubrAxERERSlJ+fj1GjRiE3Nxeenp5mW49kg5y+ffvCxcUF3377rcHzKJVKtGjRAiNHjsT8+fPLTKevJycgIADP1BwOFNpXT46hD/lTKpVISkpC7969IZfLzZwr62E5pcURyukIZQRYzorYXa+OQoU9d74ye5AjyctVV65cwf79+7F9+3aj5pPL5WjXrh0uXbpUbjqFQgGFQqEzXfmgBHhQomcO21SZ8TdyuVzSDYwayyktjlBORygjwHKWZff9RPsap2Oh7hX76nYwUHx8PHx9fTFgwACj5ispKcGZM2dQt25dM+XMdnCAMRGRtLBd1yW5IEelUiE+Ph7h4eGoVk27o2rs2LGIiYnRfJ43bx5++OEH/Pnnnzhx4gRGjx6NK1eu4KWXXrJ0tomIiMjEJHe5av/+/cjIyMD48eN1vsvIyICT079x3Z07dxAVFYWsrCzUrFkTHTp0QEpKClq2bGnJLFsco30iImni7eXaJBfk9OnTB2WNpT548KDW52XLlmHZsmUWyJXtYIBDRCRtDHT+JbnLVVQ2BjhERI6B7f0/GOQQERGRJEnuchXpYkRPROR41G2/I1+6YpAjcQxwSMoqarzlbnK8nDgcg7zDoSwo/zH5rCskVY48RodBjoSx0SZ7Y82G2Nh1s36RPXHUQIdjcoiIiEiS2JMjUTzLJFsllbPJ8srB+ke2yBF7cxjkSBAbWLIFjtaYPqyssrNukrU5WqDDIIeIqsyRGs2q0Pc7MfAhMh8GORLDBpMsgUGN6ZT+LVmHydwcqTeHQY5EsGEkc3KUBtEWMOghS3CUZ+gwyJEANoJkSlJv9OwNL3GROUm9V4e3kBMREZEkMcixczyjI1Pp7RQm6TM6KeG2IlOS8nGEl6uIHJghrzsg29XbKUzz6goi0sUgx45JOfom81Cf/fPAKD2lA1a2D2QMqY7N4eUqO8UGjIzByxuOh9ucjCXF4wp7cogkjAc5Uu8DUjyAEVWEQQ6RhDCoobLw+TvkiBjkEEkAgxsyFnt4yBFwTA4RERFJEntyiOwUe2/IFB7ej9irQ1LDIIfIzjC4IXPhJSySGgY5RHaCwQ1ZCoMdkgqOySGyAwxwyBq435G9Y08OkY3iAYZsAcfskD1jkENkYxjckK3iZSyyN7xcRURERJLEIIfIhrAXh+wB91OyF7xcRWQDeNAge8NLV2QPGOQQWRGDG7J3DHbIljHIIbICBjckNQx2yBZxTA6RhTHAISnj/k22hD05RBbCxp8cBXt1yFawJ4eIiIgkiT05RGbGHhxyVOzRIWtjkENkJgxuiP7BYIeshZeriMyAAQ6RLtYLsjQGOUQmxoacqGysH2RJDHKITIgNOFHFWE/IUjgmh6iK2GATGe/hesOxOmQu7MkhqgIGOERVx3pE5sIgh4iIiCSJQQ5RJfHsk8h0WJ/IHBjkEFUCG2Qi02O9IlNjkENkJDbERObD+kWmxCCHyAhsgInMj/WMTEVSQc7cuXMhk8m0/oKDg8udZ+vWrQgODoarqyseffRR7N6920K5JXvS2ymMDS+RBbHOkSlI7jk5rVq1wv79+zWfq1Uru4gpKSkYOXIkFixYgGeffRaJiYkYPHgwTpw4gdatW1siu2Tj2MgSWZe6Du4uTLRyTsgeSaonB/gnqPH399f81alTp8y0H330Efr164cZM2agRYsWmD9/Ptq3b49PPvnEgjkmIiIic5BcT84ff/yBevXqwdXVFZ07d8aCBQvQsGFDvWlTU1MRHR2tNa1v377YsWNHuesoLCxEYWGh5nNeXh4AQO7qDMgsEzcqlUqLrKf0+iy9Xkt7uJyDvMMhd5NbOUfmIXerpvWvVDlCOR2hjAAwtG4kxq8d4lBtkDVYrM1TqIAC869GJoQQ5l+NZezZswf37t1D8+bNcf36dcTFxSEzMxNnz56Fh4eHTnoXFxesX78eI0eO1ExbtWoV4uLikJ2dXeZ65s6di7i4OJ3piYmJcHd3N01hiIiIJCo/Px+jRo1Cbm4uPD09zbYeSYX+zzzzjOb/bdq0QUhICAIDA7FlyxZERkaabD0xMTFaPUB5eXkICAjAhkk7gULL9OTszFlvkfWoKZVKJCUloXfv3pDLpdm7AfxbznWRX0NZUGzt7JiN3K0axq8dIqly6qsTFe23g7zDLZE1s5LittTn4XJuu77W2tkxG2u3tRarEwqVRVYjqSCnNG9vbzRr1gyXLl3S+72/v79Oj012djb8/f3LXa5CoYBCodCZrnxQAjwoqXyGjWCtQEMul0s2yOntFAa5mxwvJw6HsqAYygJpd4sDsPlymurFjWXtt7vvGz6Y1dYHodv6tjQVZUEx+itGAZD2iz2t1dZabB+y0DUkSQc59+7dw+XLlzFmzBi933fu3Bk//vgjpk6dqpmWlJSEzp07WyiHRGQvB6ry8mnrARCRo5JUkPPGG2/gueeeQ2BgIP766y/ExsbC2dlZM+Zm7NixqF+/PhYsWAAAeP3119GtWzd8+OGHGDBgADZv3oxjx45hzZo11iwGWQEPUpZjL0GNMUqXifuTZfR2CpPk/kSmI6kg59q1axg5ciRu3boFHx8fPPXUU/j111/h4+MDAMjIyICT079jZkJDQ5GYmIjZs2fjrbfeQtOmTbFjxw4+I4eIiEgCJBXkbN68udzvDx48qDMtLCwMYWE863JkPOs2L0c802bPjuWwN4fKI6kgh8hYPPiYBw862h7+PbjPmR4DHSoLgxxyWDzYmA4PMIZjL495MNAhfRjkkEPigaXqeEAxDfbymA4DHSqNQQ45FB5EqoYHEPNiwFN16t+N+yoBDHLIgfCgUTk8WFgHA56qYa8OAQxyiKgMPEDYDvW2YLBDZBzLvGiJiIiIyMLYk0MOgWfAhmHvjW3jJSzj8JIVsSeHJI8HA8PwYGBfuL0Mw/rv2BjkkKSxgatYkmorD5h2Kkm1FTtz1ls7GzaP7YDjYpBDksWGrWzqAyMPkNKxM2c9g9VysD1wTByTQ+RA1AdBpVJp5ZyQufBOLKJ/sSeHJIkNvC6e5TsWbm9dbBccD4McIiIikiReriJJ4ZmaLp7ROy5eutLF1z44FvbkEEkYG3ICuB+Q42KQQ5LBs9V/8bZwKo37hDa2F46BQQ5JAhusf/BARhXhPvIvthvSxyCHSCJ44CJjcH8hR8Agh+wez8Z4wKLK4X7D9kPqGOQQERGRJPEWcrJrjnwWxrNwMgW+2ZxvK5cy9uQQ2SE2yGQO3K9IahjkkN1y1LNOHojInBx1/3LU9kTqGOSQ3entFOawDZKjHoDIshx1P3PktkWqGOQQ2QlHPfCQdXB/IylgkEN2xVHPsnjAIWtw1P3OUdsZKeLdVUQ2zFEPMmQ7+JJPsmfsySEiIiJJYpBDdsPRziTZi0O2xNH2R0drb6SKQQ7ZBUdrcBztgEL2wdH2S0drd6SIQQ6RjXG0AwnZF+6fZE8Y5JDNc6SzKR5AyB440n7qSO2PFDHIIbIRjnTgIPvH/ZXsAYMcsmmOchbFAwbZI0fZbx2lHZIiBjlEREQkSQxyiIiISJL4xGOySY7SPewo3f0kXY7yROTeTmGsr3aIPTlEVsIGk6SE+zPZIgY5ZHOkfkYI8IBA0iT1/bq3U5hDtE9SwiCHiIiIJIlBDpGFSf1slxwb92+yJQxyiIiISJIY5JBNkfr1bp7lkiOQ+n4u9XZKShjkEFmI1Bt+oodxfydbwCCHbAbPjojIXrC9sg98GCCRmfGMlhyVozwokGyXpHpyFixYgMcffxweHh7w9fXF4MGDcfHixXLnSUhIgEwm0/pzdXW1UI5JTaqNIAMcIunWA6m2W1IiqSDn0KFDmDRpEn799VckJSVBqVSiT58+uH//frnzeXp64vr165q/K1euWCjHREREZC6Suly1d+9erc8JCQnw9fXF8ePH0bVr1zLnk8lk8Pf3N3f2yMFI9eyVqDKSVFvZ80EWJ6kgp7Tc3FwAQK1atcpNd+/ePQQGBkKlUqF9+/Z4//330apVqzLTFxYWorCwUPM5Ly8PACB3dQZklukcUyqVFllP6fWZa71yN7lZlmssuVs1rX+rwtLbyBjm3p62whHKaU9lrEo9N2XdNCVT/+7W3p4Wa4sVKqDA/KuRCSGE+VdjeSqVCgMHDkROTg5+/vnnMtOlpqbijz/+QJs2bZCbm4slS5bg8OHDOHfuHBo0aKB3nrlz5yIuLk5nemJiItzd3U1WBiIiIinKz8/HqFGjkJubC09PT7OtR7JBzsSJE7Fnzx78/PPPZQYr+iiVSrRo0QIjR47E/Pnz9abR15MTEBCAZ2oOBwot05OzM2e9RdajplQqkZSUhN69e0MuN22kP8g73KTLqwq5WzWMXzsE6yK/hrKguNLLsfT2MZY5t6ctcYRy2lsZK1vfTVU3zcGU9d3a29Ni7bFChT13vjJ7kGNb/X4mMnnyZHz33Xc4fPiwUQEOAMjlcrRr1w6XLl0qM41CoYBCodCZrnxQAjwoMTq/lWGtxkwul5t83coC2+tmVxYUVylf9nCwAcyzPW2RI5TTXspY1fpe1bppDub43a21PS3221qoe0VSd1cJITB58mR88803OHDgABo3bmz0MkpKSnDmzBnUrVvXDDmk0qQ4EJEDjonKJsX6IcV2TCokFeRMmjQJGzduRGJiIjw8PJCVlYWsrCwUFPw7umns2LGIiYnRfJ43bx5++OEH/Pnnnzhx4gRGjx6NK1eu4KWXXrJGEcjOSbEBJzI11hOyFEldrlq9ejUAoHv37lrT4+PjERERAQDIyMiAk9O/sd2dO3cQFRWFrKws1KxZEx06dEBKSgpatmxpqWw7JJ75EJGUqNs0BnC2RVJBjiFjqA8ePKj1edmyZVi2bJmZckRERETWIqkgh8haePZGZBy+14osQVJjcoiIiIjUGOQQVRF7cYgqj/WHzIlBDlkcu6eJSKrYvtkWBjlEREQkSQxyiKqAXe1EVcd6RObCIIeIiIgkiUEOWRSvVxOR1LGdsx0McogqiV3sRKbD+kTmwCCHiIiIJIlBDhEREUkSgxyyGCldp2bXOpHpSaleSam9s2cMcoiIiEiSGOQQERGRJDHIISIiIklikENkJCmNGyCyNaxfZEoMcsgiOAiPiBwN2z3rY5BDREREksQgh8gI7EonMj/WMzIVBjlEREQkSQxyiIiISJIY5BAREZEkMcghs5PCHQZJqq0cJ0BkQVKpc1Jo/+wZgxwiIiKSJAY5REREJEkMcoiIiEiSqhmSqH379kYtVCaTYdeuXahfv36lMkVkS6QwLsBRlB7/IHeT4+XE4RjkHQ5lgVLrO25X+5Ck2spxLVRpBgU5p06dwvTp01GjRo0K0wohsHDhQhQWFlY5c0RE5anKwa/0vAx6iKTHoCAHAGbMmAFfX1+D0n744YeVzhARERGRKRgU5KSlpcHHx8fghf7++++oV69epTNF0sAuZjIXc+xb6mWyR4dMjfuW9RgU5AQGBhq10ICAgEplhoioPJYInHlAIpIOgy9XPezBgwc4ffo0bty4AZVKpfXdwIEDTZIxIiI1a/QKMtghsn9GBzl79+7F2LFj8ffff+t8J5PJUFJSYpKMEREB1r/s2dspjIEOkZ0y+jk5U6ZMQVhYGK5fvw6VSqX1xwCHpIYHN+uydoCjZiv5cFSsh1RZRgc52dnZiI6Ohp+fnznyQ0QEwPYCC1vLDxFVzOggZ+jQoTh48KAZskJE9A9bDShsNV9EpJ/RY3I++eQThIWF4aeffsKjjz4KuVyu9f1rr71msswRERERVZbRQc6XX36JH374Aa6urjh48CBkMpnmO5lMxiCHiKrE1ntLOBCZyH4YHeS8/fbbiIuLw6xZs+DkxPd7EhERkW0yOkopKirC8OHDGeAQkcnZei+Omr3kk8jRGR2phIeH46uvvjJHXoiIiIhMxujLVSUlJVi8eDH27duHNm3a6Aw8Xrp0qckyR/aLZ7pkDHvcX/hEZDIWx3NZntFBzpkzZ9CuXTsAwNmzZ7W+e3gQMhEREZE1GR3kJCcnmyMfRERERCbF0cNEZWC3MpHt2Jmz3tpZIDtkdE/OgwcPsGLFCiQnJ+t9C/mJEydMljkikj57HI/zMI6zILJdRgc5kZGR+OGHHzB06FB06tSJ43CIiIjIJhkd5Hz33XfYvXs3nnzySXPkxyRWrlyJDz74AFlZWXjsscewYsUKdOrUqcz0W7duxTvvvIP09HQ0bdoUixYtQv/+/S2YYyIiIjI1o8fk1K9fHx4eHubIi0l89dVXiI6ORmxsLE6cOIHHHnsMffv2xY0bN/SmT0lJwciRIxEZGYmTJ09i8ODBGDx4sM6dY0RERGRfjA5yPvzwQ8ycORNXrlwxR36qbOnSpYiKisK4cePQsmVLfPrpp3B3d8e6dev0pv/oo4/Qr18/zJgxAy1atMD8+fPRvn17fPLJJxbOOREREZmS0ZerOnbsiAcPHiAoKAju7u46DwO8ffu2yTJnrKKiIhw/fhwxMTGaaU5OTujVqxdSU1P1zpOamoro6GitaX379sWOHTvKXE9hYSEKCws1n/Py8gAAcldnQGaZG9aUSqVF1lN6fYauV+4mrziRDZK7VdP8a+nf2JKM3Z7mZM595eHtaU7W/B1taVuak7p85t6W5lbRdrL29rRY261QAQXmX41MCCGMmaFXr17IyMhAZGQk/Pz8dAYeh4eHmzSDxvjrr79Qv359pKSkoHPnzprpb775Jg4dOoQjR47ozOPi4oL169dj5MiRmmmrVq1CXFwcsrOz9a5n7ty5iIuL05memJgId3d3E5SEiIhIuvLz8zFq1Cjk5ubC09PTbOsxOiROSUlBamoqHnvsMXPkxy7ExMRo9f7k5eUhICAAGybtBAot05Nj6WdGKJVKJCUloXfv3jq9d/oM8rZesFsVcrdqGL92CNZFfo1t19daOztmY+z2NCdz7isPb09lQbHZ1mPNZ7jY0rY0J3U5zb0tza2ifcXa29NibbdCVXEaEzA6yAkODkZBgQX6mCqhTp06cHZ21umByc7Ohr+/v955/P39jUoPAAqFAgqFQme68kEJ8KCkEjk3nrUaM7lcbtC6lQX23XWuLCiW9AFDzdDtaU6W2FeUBcVmXY+1f0N1HmwhH+Zm7m1pboZuI2ttT4v9tkZdQ6o8o7sdFi5ciOnTp+PgwYO4desW8vLytP6sycXFBR06dMCPP/6omaZSqfDjjz9qXb56WOfOnbXSA0BSUlKZ6YmIiMg+GN2T069fPwBAz549taYLISCTyVBSYpmejLJER0cjPDwcHTt2RKdOnbB8+XLcv38f48aNAwCMHTsW9evXx4IFCwAAr7/+Orp164YPP/wQAwYMwObNm3Hs2DGsWbPGmsUgIiKiKpLcCzqHDx+OmzdvYs6cOcjKykLbtm2xd+9e+Pn5AQAyMjLg5PRvB1ZoaCgSExMxe/ZsvPXWW2jatCl27NiB1q1bW6sIRA4lSbXVrl/twFc6ENkuo4Ocbt26mSMfJjV58mRMnjxZ73cHDx7UmRYWFoawMPttZMk8+E4iItsxyDscLycOt3Y2yM4YNCbn9OnTOi/iLM+5c+dQXGy/o9+JiIjI/hkU5LRr1w63bt0yeKGdO3dGRkZGpTNFREREVFUGXa4SQuCdd94x+EF3RUVFVcoU2T97H2dBlqW+LGhP+wwvZZKxuM9YnkFBTteuXXHx4kWDF9q5c2e4ublVOlNEREREVWVQkKNvsC4RkanZSw8gz8iJ7INl3kFAREREZGEMcojIpth6L4mt54+I/sUgh4iIiCSJQQ4R2Rxb7S2x1XwRkX4McojIJtlaQGFr+SGiijHIISqHPdzpI2W2EljYSj4cFeshVRaDHCKyadYOMKy9fiKqPKNf0ElEZGnWeCIygxsi+8cgh4jshiWCHQY3RNJhdJATHh6OyMhIdO3a1Rz5IQmxx/cRkX0wx77F4IbMhfuW9Rg9Jic3Nxe9evVC06ZN8f777yMzM9Mc+SIiIiKqEqN7cnbs2IGbN29iw4YNWL9+PWJjY9GrVy9ERkZi0KBBkMvl5sgnEZGO0mfIxvTs8OyaSPoqNSbHx8cH0dHRiI6OxokTJxAfH48xY8agRo0aGD16NF599VU0bdrU1HklsoreTmE8INqJ0ttJqVRi9+7d2JmznidgdoqXu6kqqnQL+fXr15GUlISkpCQ4Ozujf//+OHPmDFq2bIlly5aZKo9ERERERjM6yFEqlfj666/x7LPPIjAwEFu3bsXUqVPx119/Yf369di/fz+2bNmCefPmmSO/RERERAYx+nJV3bp1oVKpMHLkSBw9ehRt27bVSdOjRw94e3ubIHtERERElWN0kLNs2TKEhYXB1dW1zDTe3t5IS0urUsZIOpJUW+3+uro6/xybQ2QZ9t5mqLHNsC6jg5wxY8aYIx9EREREJsV3VxEREZEkMcghIiIiSWKQQ2QEqYwTILJlrGdkKgxyiIiISJIY5JBF8A4DInI0bPesj0EOkZHYlU5kPqxfZEoMcoiIiEiSGOQQERGRJDHIISIiIklikEMWI6VBeBw3QGR6UqpXUmrv7BmDHCIiIpIkBjlEREQkSQxyiCpJSl3rRNbG+kTmwCCHLIrXqYlI6tjO2Q4GOURERCRJDHKIqoBd7ERVx3pE5sIgh4iIiCSJQQ5ZHK9XE5FUsX2zLQxyiKqIXe1Elcf6Q+bEIIeIiIgkqZq1M0AkBeqzUXZVExmGPThkCezJISIiIkliTw5ZhbrHg2dzRCQF7MW1TZLpyUlPT0dkZCQaN24MNzc3NGnSBLGxsSgqKip3vu7du0Mmk2n9vfLKKxbKNUkNgzaiirGekKVIpifnwoULUKlU+Oyzz/DII4/g7NmziIqKwv3797FkyZJy542KisK8efM0n93d3c2dXfp/SaqtkmvwejuF8ayOqAxSq+8Ae3FsmWSCnH79+qFfv36az0FBQbh48SJWr15dYZDj7u4Of39/c2eRiIiILEgyQY4+ubm5qFWrVoXpNm3ahI0bN8Lf3x/PPfcc3nnnnXJ7cwoLC1FYWKj5nJeXBwCQuzoDMstcAVQqlRZZT+n1mWO9cje5yZdZWXK3alr/Vlb/6qOwM2e9KbJkFubcnrbEEcppT2Uc5B1e6fpuqrppDqb87a29PS3WHitUQIH5VyMTQgjzr8byLl26hA4dOmDJkiWIiooqM92aNWsQGBiIevXq4fTp05g5cyY6deqE7du3lznP3LlzERcXpzM9MTGRl7qIiIgqkJ+fj1GjRiE3Nxeenp5mW4/NBzmzZs3CokWLyk1z/vx5BAcHaz5nZmaiW7du6N69O7744guj1nfgwAH07NkTly5dQpMmTfSm0deTExAQgGdqDgcKLdOTY+leAqVSiaSkJPTu3Rtyuekj/UHe4SZfZmXI3aph/NohWBf5NZQFxVValq335Jhze9oKRyinPZWxKvXclHXTlExdz629PS3WFitU2HPnK7MHObbX71fK9OnTERERUW6aoKAgzf//+usv9OjRA6GhoVizZo3R6wsJCQGAcoMchUIBhUKhM135oAR4UGL0OivDWo2ZXC43y7qVBbbV1a4sKK5ynvorRtn8gERzbU9b4wjltPUymmrAsSnqpimZ6ze31va02G9roe4Vmw9yfHx84OPjY1DazMxM9OjRAx06dEB8fDycnIzvVTl16hQAoG7dukbPS0RERLZDMs/JyczMRPfu3dGwYUMsWbIEN2/eRFZWFrKysrTSBAcH4+jRowCAy5cvY/78+Th+/DjS09Oxa9cujB07Fl27dkWbNm2sVRSHZOs9HpUlxdtliYwl1Xog1XZLSmy+J8dQSUlJuHTpEi5duoQGDRpofacedqRUKnHx4kXk5+cDAFxcXLB//34sX74c9+/fR0BAAIYMGYLZs2dbPP8kXXyvFTkqqQY3ZD8kE+RERERUOHanUaNGeHicdUBAAA4dOmTmnJGhpPhgQCKSJp602AfJXK4isnUM4MiRcH8nW8Agh2yK1M+O2PCTI5D6fi71dkpKGOQQERGRJDHIIbIwqZ/lkmPj/k22hEEOERERSRKDHLI5jnC9m2e7JEVS36+TVFsdon2SEgY5RFYi9QMCORbuz2SLJPOcHJIW9dmS1BtOPiiQ7J3U66ga66h9Yk8OERERSRKDHCIiIpIkBjlk0xyli9hRuvxJWhxlv3WUdkiKGOQQ2QhHOWCQNHB/JXvAIIdsniOdRfHAQfbAkfZTR2p/pIhBDpGNcaQDCNkf7p9kTxjkkF1wtLMpHkjIFjnafulo7Y4UMcghu+FoDY6jHVDItjna/uho7Y1UMcghIiIiSeITj4lsGJ+ITNbmaD04JC3sySG74qgHex5oyBocdb9z1HZGihjkENkJRz3gkHVwfyMpYJBDdidJtdVhz7R44CFLcNT9zJHbFqlikEN2y1EbI0c9AJFlOOr+5ajtidQxyCGyQ456ICLz4n5FUsO7q8iuJam2OmzD/HC5eRZKleWo9edhrD/SxZ4cIiIikiQGOWT3eBbGs3GqHO43bD+kjkEOkUTwgEXG4P5CjoBBDkkCz8b+0dspjAcvKhf3kX+x3ZA+BjkkGWyw/sUDGZXGfUIb2wvHwCCHSMJ4UCOA+wE5Lt5CTpKiPjtjo/4vvuTTcbEe6GI9cCzsySEiIiJJYpBDksSzNV08q3cs3N662C44Hl6uInIg6gPf7sJEK+eEzIXBDdG/2JNDksWztrIN8g7X+pfs3yDvcAY45WB74JgY5JCksWGrGG8ttl+9ncIYqBqA7YDjYpBDkscGzjAMdOwLt5dhWP8dG8fkkENw5LeVG4NvNrdt3IeNw32Y2JNDREREksSeHCLSiw8RtB3swSGqHAY55DB4yapyeAnLOrivVg33VQIY5JCD4WsfqoYBj3lxv6w67pf0MAY55JDYq1N1DHhMg/uh6XA/pNIY5JDDYqBjOqV/Rx5sysZ9zjy4z5E+DHLIoTHQMQ/28mjjPmZe3MeoLAxyyOEx0DEvR+zl4f5kOY6wP1Hl8Tk5REREJEmSCnIaNWoEmUym9bdw4cJy53nw4AEmTZqE2rVro0aNGhgyZAiys7MtlGOyFTwbtBz1u7Kk9M4sKZbJHrDeUkUkd7lq3rx5iIqK0nz28PAoN/20adPw/fffY+vWrfDy8sLkyZPxwgsv4JdffjF3VokI5V/asaWDGIMXIvsjuSDHw8MD/v7+BqXNzc3F2rVrkZiYiKeffhoAEB8fjxYtWuDXX3/FE088Yc6sko1JUm2FUqnE7t27rZ0V+n/GBBaVCYgYuNgnWwp+ybZJLshZuHAh5s+fj4YNG2LUqFGYNm0aqlXTX8zjx49DqVSiV69emmnBwcFo2LAhUlNTywxyCgsLUVhYqPmcl5cHAJC7OgMyy1wBVCqVFllP6fVZer2Wpi6f3E1yVUOLunxSKmf/6qN0psndqmH82iEYWjcSyoJiPd/LLZE1s5LittRHXb5tN7+QdDtk7bbWYnVCoQIKzL8amRBCmH81lrF06VK0b98etWrVQkpKCmJiYjBu3DgsXbpUb/rExESMGzdOK2ABgE6dOqFHjx5YtGiR3vnmzp2LuLg4vctzd3evekGIiIgkLD8/H6NGjUJubi48PT3Nth6bD/1nzZpVZrChdv78eQQHByM6OlozrU2bNnBxccHLL7+MBQsWQKFQmCxPMTExWuvKy8tDQEAANkzaCRRapidnZ856i6xHTalUIikpCb1794Zcbv9nv2UpXc5B3uHWzpJZqHs41kV+rbeHQyocoZyOUEbgnx4cR2yDLM1ibZ5CZZHV2HyQM336dERERJSbJigoSO/0kJAQFBcXIz09Hc2bN9f53t/fH0VFRcjJyYG3t7dmenZ2drnjehQKhd6gSfmgBHhQUm5eTcValVwul0u6gVFTl1NZIN1ucQBQFhRLvoyAY5RT6mVUtzuO1gZZmsX2IQtdQ7L5IMfHxwc+Pj6VmvfUqVNwcnKCr6+v3u87dOgAuVyOH3/8EUOGDAEAXLx4ERkZGejcuXOl80zSwRd6ElmXug5KeRwOmY/NBzmGSk1NxZEjR9CjRw94eHggNTUV06ZNw+jRo1GzZk0AQGZmJnr27In//Oc/6NSpE7y8vBAZGYno6GjUqlULnp6emDJlCjp37sw7q0gLgx0iy+IdVGQKkglyFAoFNm/ejLlz56KwsBCNGzfGtGnTtMbOKJVKXLx4Efn5+Zppy5Ytg5OTE4YMGYLCwkL07dsXq1atskYRyA7wFRBE5scAh0xFMkFO+/bt8euvv5abplGjRih9M5mrqytWrlyJlStXmjN7JCEMdIjMhwEOmZKkXutAZClsiIlMj/WKTI1BDlElsUEmMh3WJzIHBjlEREQkSQxyiKqAZ59EVcd6ROYimYHHRNbycAPNAclEhmFgQ5bAnhwiE2LDTVQx1hOyFAY5RCbGBpyobKwfZEkMcojMgA05kS7WC7I0jskhMhO+CoLoHwxuyFoY5BCZGYMdclQMbsjaeLmKiIiIJIk9OUQWwh4dchTswSFbwZ4cIgvjAYCkjPs32RL25BBZAXt1SGoY3JAtYpBDZEUMdsjeMbghW8Ygh8gGMNghe8PghuwBx+QQ2RAeOMgecD8le8Egh4iIiCSJl6uIbAwvXZGtYg8O2RsGOUQ26uEDCgMeshYGNmTPeLmKyA7wQEPWwP2O7B17cojsBC9jkaUwuCGpYJBDZGcY7JC5MLghqWGQQ2SnOGaHTIGBDUkZx+QQERGRJLEnh0gCeAmLjMUeHHIEDHKIJKT0gYtBD6kxqCFHxCCHSMLYw0MMbsiRcUyOneJBi4yRpNrKg52D4TYnY0nxuMKeHDvW2ymMjRgZRb2/KJVK7N6928q5IVPambMecrnc2tkgOyXFAAdgkEPk0B4+MEq1kZOyJNVWBqxE5eDlKjvHAxOZCi9v2A9uKzIlKR9HGOQQERGRJPFylQRwbA6Zkr59ScpneraOdZvMSep1m0GORKh3VDaIZA58/o7lsA6TJThKHWaQIzHs1SFLYNBjOqyvZGmOVF8Z5BBRlfESl2EY0BBZFoMcCWJvDtmCsvZBRwh+WP/IVjlC/XsYgxyJYqBDtqq8/dKeGmDWL7I39lS/TIW3kBMREZEksSdHwtibQ/bG2P3VlGemrCskZY7YiwMwyJE8BjokZRXt2+pXHvC9TuTIHDXAARjkOAQ+Q4eIyPE4cnCjxjE5REREJEkMchwIo3oiIsfA9v4fDHIcDHd8IiJpYzv/LwY5DogVgIhImti+a5NMkHPw4EHIZDK9f7/99luZ83Xv3l0n/SuvvGLBnBMREZE5SObuqtDQUFy/fl1r2jvvvIMff/wRHTt2LHfeqKgozJs3T/PZ3d3dLHm0Jby1nIhIWtiLo0syQY6Liwv8/f01n5VKJXbu3IkpU6ZAJpOVO6+7u7vWvI6CgQ4RkTQwwNFPMkFOabt27cKtW7cwbty4CtNu2rQJGzduhL+/P5577jm888475fbmFBYWorCwUPM5Ly8PACB3dQZk9nUFsH/1UdiZs77CdEqlUutfqWI5pcURyukIZQRYzvIM8g6H3M3OHnapUAEF5l+NTAghzL8ay+vfvz8AYPfu3eWmW7NmDQIDA1GvXj2cPn0aM2fORKdOnbB9+/Yy55k7dy7i4uJ0picmJjrEpS4iIqKqyM/Px6hRo5CbmwtPT0+zrcfmg5xZs2Zh0aJF5aY5f/48goODNZ+vXbuGwMBAbNmyBUOGDDFqfQcOHEDPnj1x6dIlNGnSRG8afT05AQEBeKbmcKDQvnpySiurV0epVCIpKQm9e/eW9OPxWU5pcYRyOkIZAZaztEHe4RbMlRkoVNhz5yuzBzk2f7lq+vTpiIiIKDdNUFCQ1uf4+HjUrl0bAwcONHp9ISEhAFBukKNQKKBQKHSmKx+UAA9KjF6nLemvGFXuOB25XC7pBkaN5ZQWRyinI5QRYDkBiYy/sVD3is0HOT4+PvDx8TE4vRAC8fHxGDt2bKUqwqlTpwAAdevWNXpeIiIish32fW1FjwMHDiAtLQ0vvfSSzneZmZkIDg7G0aNHAQCXL1/G/Pnzcfz4caSnp2PXrl0YO3YsunbtijZt2lg66zZDEmcJREQSxPbZOJILctauXYvQ0FCtMTpqSqUSFy9eRH5+PoB/bjvfv38/+vTpg+DgYEyfPh1DhgzBt99+a+ls2xxWJCIi28J22Xg2f7nKWImJiWV+16hRIzw8zjogIACHDh2yRLbsEp+jQ0RkGxjgVI7kghwyLXXF2l1YdvBIRETmweCmaiR3uYrMw+5vVyQisjMMcKqOQQ4REZGN4YmlaTDIISIiIklikENG4dkFERHZCwY5ZDReJyYiMg+eSJoWgxyqFAY6RESmxXbV9HgLOVWaukLyWTpERJXH4MZ82JNDVcYKSkRUOWw/zYtBDpkEKyoRkXHYbpofL1eRyfDyFRFRxRjcWA57coiIiEiSGOSQyfEshYhIP7aPlsUgh8yCFZmISBvbRcvjmBwyG47RISJicGNN7Mkhs2MFJyJHxfbPutiTQxbBXh0iciQMbmwDe3LIoljxiUjq2M7ZDgY5REREJEkMcsjieJZDRFLF9s22cEwOWQXH6BCRlDC4sU0McsiqGOwQkT1jcGPbeLmKbAIbCiKyN2y3bB97cshm2EKDIXeT4+XE4RjkHQ5lgdLa2TEbllM6HKGMgOOUk0yLPTlEREQkSQxyiIiISJIY5BAREZEkMcghIiIiSWKQQ0RERJLEIIeIiIgkiUEOERERSRKDHCIiIpIkBjlEREQkSQxyiIiISJIY5BAREZEkMcghIiIiSWKQQ0RERJLEIIeIiIgkiUEOERERSRKDHCIiIpIkBjlEREQkSQxyiIiISJIY5BAREZEkMcghIiIiSWKQQ0RERJLEIIeIiIgkiUEOERERSZLdBDnvvfceQkND4e7uDm9vb71pMjIyMGDAALi7u8PX1xczZsxAcXFxucu9ffs2XnzxRXh6esLb2xuRkZG4d++eGUpARERElmQ3QU5RURHCwsIwceJEvd+XlJRgwIABKCoqQkpKCtavX4+EhATMmTOn3OW++OKLOHfuHJKSkvDdd9/h8OHDmDBhgjmKQERERBZUzdoZMFRcXBwAICEhQe/3P/zwA37//Xfs378ffn5+aNu2LebPn4+ZM2di7ty5cHFx0Znn/Pnz2Lt3L3777Td07NgRALBixQr0798fS5YsQb169cxWHiIiIjIvuwlyKpKamopHH30Ufn5+mml9+/bFxIkTce7cObRr107vPN7e3poABwB69eoFJycnHDlyBM8//7zedRUWFqKwsFDzOTc395//KFSwo84x4yhUyM/P/6eMwtqZMSOWU1ocoZyOUEaA5ZQahQooAIQwcyGFnYmPjxdeXl4606OiokSfPn20pt2/f18AELt379a7rPfee080a9ZMZ7qPj49YtWpVmXmIjY0V+Gf34x//+Mc//vGPf5X8u3z5snFBgJGs2pMza9YsLFq0qNw058+fR3BwsIVyZJiYmBhER0drPufk5CAwMBAZGRnw8vKyYs7MJy8vDwEBAbh69So8PT2tnR2zYTmlxRHK6QhlBFhOqcnNzUXDhg1Rq1Yts67HqkHO9OnTERERUW6aoKAgg5bl7++Po0ePak3Lzs7WfFfWPDdu3NCaVlxcjNu3b5c5DwAoFAooFAqd6V5eXpLeKQHA09NT8mUEWE6pcYRyOkIZAZZTapyczDvEw6pBjo+PD3x8fEyyrM6dO+O9997DjRs34OvrCwBISkqCp6cnWrZsWeY8OTk5OH78ODp06AAAOHDgAFQqFUJCQkySLyIiIrIOuxklm5GRgVOnTiEjIwMlJSU4deoUTp06pXmmTZ8+fdCyZUuMGTMG//3vf7Fv3z7Mnj0bkyZN0vS6HD16FMHBwcjMzAQAtGjRAv369UNUVBSOHj2KX375BZMnT8aIESN4ZxUREZGds5u7q+bMmYP169drPqvvlkpOTkb37t3h7OyM7777DhMnTkTnzp1RvXp1hIeHY968eZp58vPzcfHiRSiVSs20TZs2YfLkyejZsyecnJwwZMgQfPzxx0blTaFQIDY2Vu8lLKlwhDICLKfUOEI5HaGMAMspNZYqp0wIc9+/RURERGR5dnO5ioiIiMgYDHKIiIhIkhjkEBERkSQxyCEiIiJJYpBjgPfeew+hoaFwd3eHt7e33jQZGRkYMGAA3N3d4evrixkzZqC4uLjc5d6+fRsvvvgiPD094e3tjcjISM0t8dZ28OBByGQyvX+//fZbmfN1795dJ/0rr7xiwZwbr1GjRjp5XrhwYbnzPHjwAJMmTULt2rVRo0YNDBkyRPPwSVuUnp6OyMhING7cGG5ubmjSpAliY2NRVFRU7nz2sD1XrlyJRo0awdXVFSEhIToPBS1t69atCA4OhqurKx599FHs3r3bQjk13oIFC/D444/Dw8MDvr6+GDx4MC5evFjuPAkJCTrbzNXV1UI5rpy5c+fq5LmiJ93b03ZU09fWyGQyTJo0SW96e9mWhw8fxnPPPYd69epBJpNhx44dWt8LITBnzhzUrVsXbm5u6NWrF/74448Kl2ts3daHQY4BioqKEBYWhokTJ+r9vqSkBAMGDEBRURFSUlKwfv16JCQkYM6cOeUu98UXX8S5c+eQlJSE7777DocPH8aECRPMUQSjhYaG4vr161p/L730Eho3bqz1QlN9oqKitOZbvHixhXJdefPmzdPK85QpU8pNP23aNHz77bfYunUrDh06hL/++gsvvPCChXJrvAsXLkClUuGzzz7DuXPnsGzZMnz66ad46623KpzXlrfnV199hejoaMTGxuLEiRN47LHH0LdvX50nmaulpKRg5MiRiIyMxMmTJzF48GAMHjwYZ8+etXDODXPo0CFMmjQJv/76K5KSkqBUKtGnTx/cv3+/3Pk8PT21ttmVK1cslOPKa9WqlVaef/755zLT2tt2VPvtt9+0ypiUlAQACAsLK3Mee9iW9+/fx2OPPYaVK1fq/X7x4sX4+OOP8emnn+LIkSOoXr06+vbtiwcPHpS5TGPrdpnM+mYsiSnr5aC7d+8WTk5OIisrSzNt9erVwtPTUxQWFupd1u+//y4AiN9++00zbc+ePUImk4nMzEyT572qioqKhI+Pj5g3b1656bp16yZef/11y2TKRAIDA8WyZcsMTp+TkyPkcrnYunWrZtr58+cFAJGammqGHJrH4sWLRePGjctNY+vbs1OnTmLSpEmazyUlJaJevXpiwYIFetMPGzZMDBgwQGtaSEiIePnll82aT1O5ceOGACAOHTpUZpqy2ilbFhsbKx577DGD09v7dlR7/fXXRZMmTYRKpdL7vT1uSwDim2++0XxWqVTC399ffPDBB5ppOTk5QqFQiC+//LLM5Rhbt8vCnhwTSE1NxaOPPgo/Pz/NtL59+yIvLw/nzp0rcx5vb2+tXpFevXrByckJR44cMXuejbVr1y7cunUL48aNqzDtpk2bUKdOHbRu3RoxMTHIz8+3QA6rZuHChahduzbatWuHDz74oNxLjcePH4dSqUSvXr0004KDg9GwYUOkpqZaIrsmkZuba9DL8Wx1exYVFeH48eNa28HJyQm9evUqczukpqZqpQf+qav2st1yc3MBoMLtdu/ePQQGBiIgIACDBg0qsx2yJX/88Qfq1auHoKAgvPjii8jIyCgzrb1vR+Cf/Xfjxo0YP348ZDJZmenscVs+LC0tDVlZWVrby8vLCyEhIWVur8rU7bLYzROPbVlWVpZWgANA8zkrK6vMedTv2FKrVq0aatWqVeY81rR27Vr07dsXDRo0KDfdqFGjEBgYiHr16uH06dOYOXMmLl68iO3bt1sop8Z77bXX0L59e9SqVQspKSmIiYnB9evXsXTpUr3ps7Ky4OLiojM+y8/Pzya3nT6XLl3CihUrsGTJknLT2fL2/Pvvv1FSUqK37l24cEHvPGXVVXvYbiqVClOnTsWTTz6J1q1bl5muefPmWLduHdq0aYPc3FwsWbIEoaGhOHfuXIX111pCQkKQkJCA5s2b4/r164iLi0OXLl1w9uxZeHh46KS35+2otmPHDuTk5JT7kmp73JalqbeJMdurMnW7LA4b5MyaNQuLFi0qN8358+crHPxmbypT7mvXrmHfvn3YsmVLhct/eEzRo48+irp166Jnz564fPkymjRpUvmMG8mYckZHR2umtWnTBi4uLnj55ZexYMECm3+0emW2Z2ZmJvr164ewsDBERUWVO6+tbE8CJk2ahLNnz5Y7VgX458XDnTt31nwODQ1FixYt8Nlnn2H+/PnmzmalPPPMM5r/t2nTBiEhIQgMDMSWLVsQGRlpxZyZz9q1a/HMM8+U+55Ee9yWtsZhg5zp06eXG0EDQFBQkEHL8vf31xn1rb7Txt/fv8x5Sg+gKi4uxu3bt8ucxxQqU+74+HjUrl0bAwcONHp96re5X7p0yaIHxaps35CQEBQXFyM9PR3NmzfX+d7f3x9FRUXIycnR6s3Jzs4267bTx9hy/vXXX+jRowdCQ0OxZs0ao9dnre2pT506deDs7KxzV1t528Hf39+o9LZi8uTJmpsTjD2Dl8vlaNeuHS5dumSm3Jmet7c3mjVrVmae7XU7ql25cgX79+83ukfUHreleptkZ2ejbt26munZ2dlo27at3nkqU7fLZNQIHgdX0cDj7OxszbTPPvtMeHp6igcPHuhdlnrg8bFjxzTT9u3bZ3MDj1UqlWjcuLGYPn16peb/+eefBQDx3//+18Q5M5+NGzcKJycncfv2bb3fqwceb9u2TTPtwoULNj/w+Nq1a6Jp06ZixIgRori4uFLLsLXt2alTJzF58mTN55KSElG/fv1yBx4/++yzWtM6d+5sswNWVSqVmDRpkqhXr5743//+V6llFBcXi+bNm4tp06aZOHfmc/fuXVGzZk3x0Ucf6f3e3rZjabGxscLf318olUqj5rOHbYkyBh4vWbJEMy03N9eggcfG1O0y82NUagd15coVcfLkSREXFydq1KghTp48KU6ePCnu3r0rhPhnx2vdurXo06ePOHXqlNi7d6/w8fERMTExmmUcOXJENG/eXFy7dk0zrV+/fqJdu3biyJEj4ueffxZNmzYVI0eOtHj5yrN//34BQJw/f17nu2vXronmzZuLI0eOCCGEuHTpkpg3b544duyYSEtLEzt37hRBQUGia9euls62wVJSUsSyZcvEqVOnxOXLl8XGjRuFj4+PGDt2rCZN6XIKIcQrr7wiGjZsKA4cOCCOHTsmOnfuLDp37myNIhjk2rVr4pFHHhE9e/YU165dE9evX9f8PZzG3rbn5s2bhUKhEAkJCeL3338XEyZMEN7e3po7HceMGSNmzZqlSf/LL7+IatWqiSVLlojz58+L2NhYIZfLxZkzZ6xVhHJNnDhReHl5iYMHD2pts/z8fE2a0mWMi4sT+/btE5cvXxbHjx8XI0aMEK6uruLcuXPWKIJBpk+fLg4ePCjS0tLEL7/8Inr16iXq1Kkjbty4IYSw/+34sJKSEtGwYUMxc+ZMne/sdVvevXtXc1wEIJYuXSpOnjwprly5IoQQYuHChcLb21vs3LlTnD59WgwaNEg0btxYFBQUaJbx9NNPixUrVmg+V1S3DcUgxwDh4eECgM5fcnKyJk16erp45plnhJubm6hTp46YPn26VpSenJwsAIi0tDTNtFu3bomRI0eKGjVqCE9PTzFu3DhN4GQrRo4cKUJDQ/V+l5aWpvU7ZGRkiK5du4patWoJhUIhHnnkETFjxgyRm5trwRwb5/jx4yIkJER4eXkJV1dX0aJFC/H+++9r9cCVLqcQQhQUFIhXX31V1KxZU7i7u4vnn39eK2CwNfHx8Xr34Yc7c+11e65YsUI0bNhQuLi4iE6dOolff/1V8123bt1EeHi4VvotW7aIZs2aCRcXF9GqVSvx/fffWzjHhitrm8XHx2vSlC7j1KlTNb+Hn5+f6N+/vzhx4oTlM2+E4cOHi7p16woXFxdRv359MXz4cHHp0iXN9/a+HR+2b98+AUBcvHhR5zt73Zbq41vpP3VZVCqVeOedd4Sfn59QKBSiZ8+eOuUPDAwUsbGxWtPKq9uGkgkhhHEXuIiIiIhsH5+TQ0RERJLEIIeIiIgkiUEOERERSRKDHCIiIpIkBjlEREQkSQxyiIiISJIY5BAREZEkMcghIiIiSWKQQ0R2qXv37pDJZJDJZDh16pTF15+enq5Zf1kvGiQi62KQQ0R2KyoqCtevX0fr1q0tvu6AgABcv34d06dPt/i6icgw1aydASKiynJ3d4e/v79V1u3s7Ax/f3/UqFHDKusnooqxJ4eILOrmzZvw9/fH+++/r5mWkpICFxcX/Pjjj1Va9sGDByGTybBv3z60a9cObm5uePrpp3Hjxg3s2bMHLVq0gKenJ0aNGoX8/HzNfN27d8eUKVMwdepU1KxZE35+fvj8889x//59jBs3Dh4eHnjkkUewZ8+eKuWPiCyLQQ4RWZSPjw/WrVuHuXPn4tixY7h79y7GjBmDyZMno2fPniZZx9y5c/HJJ58gJSUFV69exbBhw7B8+XIkJibi+++/xw8//IAVK1ZozbN+/XrUqVMHR48exZQpUzBx4kSEhYUhNDQUJ06cQJ8+fTBmzBit4IiIbBuDHCKyuP79+yMqKgovvvgiXnnlFVSvXh0LFiww2fLfffddPPnkk2jXrh0iIyNx6NAhrF69Gu3atUOXLl0wdOhQJCcna83z2GOPYfbs2WjatCliYmLg6uqKOnXqICoqCk2bNsWcOXNw69YtnD592mT5JCLzYpBDRFaxZMkSFBcXY+vWrdi0aRMUCoXJlt2mTRvN//38/ODu7o6goCCtaTdu3ChzHmdnZ9SuXRuPPvqo1jwAdOYjItvFIIeIrOLy5cv466+/oFKpkJ6ebtJly+Vyzf9lMpnWZ/U0lUpV5jz65pPJZACgMx8R2S7eXUVEFldUVITRo0dj+PDhaN68OV566SWcOXMGvr6+1s4aEUkIe3KIyOLefvtt5Obm4uOPP8bMmTPRrFkzjB8/3trZIiKJYZBDRBZ18OBBLF++HBs2bICnpyecnJywYcMG/PTTT1i9erW1s0dEEiITQghrZ4KIyFjdu3dH27ZtsXz5cqvmY+7cudixY4dVXi1BROVjTw4R2a1Vq1ahRo0aOHPmjMXXnZGRgRo1amg91JCIbAt7cojILmVmZqKgoAAA0LBhQ7i4uFh0/cXFxZq7whQKBQICAiy6fiKqGIMcIiIikiReriIiIiJJYpBDREREksQgh4iIiCSJQQ4RERFJEoMcIiIikiQGOURERCRJDHKIiIhIkhjkEBERkST9Hzy2OBVibHgKAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "=== Radial equal-area infill ===\n", - "Slice @ z : 7.50 mm\n", - "Area fraction (target) : 0.300\n", - "Filled area : 183.587 mm²\n", - "Centroid (x̄,ȳ) : ( -0.00 , -0.00) mm\n", - "Ix , Iy : 7516.301 , 7516.301 mm⁴\n", - "|Ix − Iy| / Ix : 0.00e+00\n", - "Ixy : -0.000 mm⁴\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAI4CAYAAACIt/jIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbBBJREFUeJzt3XlcVNX/P/DXgMMAKuCC4IK4ZOKSu5KUW65pqaW4paISlqnlkillKlq5ZGqZ2scy9JOSuaV+zCUs1yDNLXe/aSqKipYBKggDc35/+GNymIUZmPXM6/l48NC5c+6958w599z3PXdTCCEEiIiIiCTj4egMEBEREdkCgxwiIiKSEoMcIiIikhKDHCIiIpISgxwiIiKSEoMcIiIikhKDHCIiIpISgxwiIiKSEoMcIiIikhKDHHJ5V65cgUKhwMqVK7XTZsyYAYVCUazltW/fHu3bt7dO5hysJL+Dsypp/XzzzTcICwuDUqlEQECAwWVau00VmDdvHsLCwqDRaEq0HHJ+Tz/9NN555x1HZ8PtMcghm1i5ciUUCoX2r1SpUqhatSqGDRuG1NRUR2eP3NT58+cxbNgw1K5dG19++SWWL19ut3VnZmZi7ty5mDx5Mjw8nKvr/fHHHxEdHY2GDRvC09MTNWrUMJpWo9Fg3rx5qFmzJry9vdGoUSN8++23Zq8rPT0dI0eORGBgIEqXLo0OHTrg2LFjBtNu3boVzZo1g7e3N6pXr47p06cjLy/P0uI5xOTJk7FkyRLcunXL0Vlxa6UcnQGS28yZM1GzZk08fPgQv/76K1auXImDBw/i9OnT8Pb2ttl6p06diilTpths+eQ4P/74Y7Hn3bt3LzQaDT799FM88cQTVlmmub7++mvk5eVh4MCBNl+XpRISEvDdd9+hWbNmqFKlism07733HubMmYOYmBi0bNkSW7ZswaBBg6BQKDBgwACT82o0GvTo0QO///47Jk2ahIoVK2Lp0qVo3749jh49ijp16mjT7tixA71790b79u2xePFinDp1Ch988AFu376NZcuWWaXcttSrVy/4+flh6dKlmDlzpqOz474EkQ3Ex8cLAOK3337TmT558mQBQHz33XdWW9fly5cFABEfH2+V5bVr1060a9fOKstytOnTpwtbb+b5+fkiOzvbpuuwlri4OAFA3Llzx2Q6Q22qpL9lo0aNxODBg4s9vy2lpqaK3NxcIYQQPXr0EKGhoQbTXb9+XSiVSjF69GjtNI1GI9q0aSOqVasm8vLyTK7nu+++EwDE+vXrtdNu374tAgICxMCBA3XS1q9fXzRu3Fio1WrttPfee08oFApx7tw5S4voEGPGjBGhoaFCo9E4Oituy7nGTEl6bdq0AQBcunRJOy03NxfTpk1D8+bN4e/vj9KlS6NNmzbYs2eP3vzp6ekYNmwY/P39ERAQgKioKKSnp+ulM3T9RHx8PJ577jlUqlQJKpUK9evXL/ER4erVq9G8eXP4+PigfPnyGDBgAK5du6aXbvny5ahduzZ8fHzQqlUrHDhwQO86kIJTfFeuXNGZd+/evVAoFNi7d6922oEDBxAZGYnq1atDpVIhJCQE48ePR3Z2drHLMn/+fERERKBChQrw8fFB8+bNsWHDBr10CoUCY8aMwZo1a9CgQQOoVCrs3LkTAJCamooRI0YgKCgIKpUKDRo0wNdff60zvyX1bUjh363g91m3bh0+/PBDVKtWDd7e3ujYsSMuXryoTVejRg1Mnz4dABAYGAiFQoEZM2YYXKa1Xb58GSdPnkSnTp30yvL4ad3H/x6/HsjWqlSpAqVSWWS6LVu2QK1W44033tBOUygUGDVqFK5fv47k5GST82/YsAFBQUF4+eWXtdMCAwPRr18/bNmyBTk5OQCAs2fP4uzZsxg5ciRKlfr3hMMbb7wBIYTBdvm4gm3p4MGDePPNNxEYGIiAgAC89tpryM3NRXp6OoYOHYpy5cqhXLlyeOeddyCE0M5fcE3W/PnzsWTJEtSqVQu+vr7o0qULrl27BiEEZs2ahWrVqsHHxwe9evXC3bt39fLRuXNnXL16FSdOnDCZX7Idnq4iuyrYgZcrV047LTMzE1999RUGDhyImJgY3Lt3DytWrEDXrl1x+PBhNGnSBAAghECvXr1w8OBBvP7666hXrx6+//57REVFmbXuZcuWoUGDBujZsydKlSqF//3vf3jjjTeg0WgwevRoi8vy4Ycf4v3330e/fv3w6quv4s6dO1i8eDHatm2L48ePay9qXbFiBV577TVERERg3Lhx+PPPP9GzZ0+UL18eISEhFq8XANavX4+srCyMGjUKFSpUwOHDh7F48WJcv34d69evL9YyP/30U/Ts2ROvvPIKcnNzsXbtWkRGRmLbtm3o0aOHTtqff/4Z69atw5gxY1CxYkXUqFEDaWlpePrpp7VBUGBgIHbs2IHo6GhkZmZi3LhxAMyvb0vNmTMHHh4eePvtt5GRkYF58+bhlVdewaFDhwAAixYtwn//+198//33WLZsGcqUKYNGjRoVa12WSkpKAgA0a9ZMZ/p7772HV199VWfa6tWrsWvXLlSqVMnkMv/55x/k5+cXuW5fX1/4+vpamGPDjh8/jtKlS6NevXo601u1aqX9/tlnnzU5f7NmzfSuSWrVqhWWL1+O//u//8NTTz2F48ePAwBatGihk65KlSqoVq2a9vuijB07FsHBwYiLi8Ovv/6K5cuXIyAgAElJSahevTo++ugjbN++HR9//DEaNmyIoUOH6sy/Zs0a5ObmYuzYsbh79y7mzZuHfv364bnnnsPevXsxefJkXLx4EYsXL8bbb7+tF9A3b94cAPDLL7+gadOmZuWZrMyxA0kkq4LTVbt37xZ37twR165dExs2bBCBgYFCpVKJa9euadPm5eWJnJwcnfn/+ecfERQUJEaMGKGdtnnzZgFAzJs3T2feNm3amHVqISsrSy+fXbt2FbVq1dKZZs7pqitXrghPT0/x4Ycf6kw/deqUKFWqlHZ6bm6uqFSpkmjSpIlOGZcvXy4A6Kyn4De7fPmyzjL37NkjAIg9e/aYLMvs2bOFQqEQV69e1U6z5BRL4WXm5uaKhg0biueee05nOgDh4eEhzpw5ozM9OjpaVK5cWfz111860wcMGCD8/f21yze3vo0pXD8Fv0+9evV0lvvpp58KAOLUqVPaaQW/R+HTVYWXae3TVVOnThUAxL1790ym++WXX4RSqTTrdwgNDRUAivybPn26RXk1dbqqR48eetuLEEI8ePBAABBTpkwxuezSpUsbLNsPP/wgAIidO3cKIYT4+OOPBQCRkpKil7Zly5bi6aefNrmegm2pa9euOqeKWrduLRQKhXj99de10/Ly8kS1atUM1n9gYKBIT0/XTo+NjRUA9E6jDRw4UHh5eYmHDx/q5cXLy0uMGjXKZH7JdjiSQzZVeHi+Ro0aWL16NapVq6ad5unpCU9PTwCPLkxMT0+HRqNBixYtdO662L59O0qVKoVRo0bpzDt27FgcOHCgyLz4+Pho/5+RkQG1Wo127dph165dyMjIgL+/v9nl2rRpEzQaDfr164e//vpLOz04OBh16tTBnj178O677+LIkSO4ffs2Zs6cCS8vL226YcOGYdKkSWavz1RZHjx4gOzsbEREREAIgePHj6N69eolWmbBKEGbNm0M3jnTrl071K9fX/tZCIGNGzeiX79+EELo/CZdu3bF2rVrcezYMTzzzDNm17elhg8frvMbF5wa/fPPP9GwYcNiL9ca/v77b5QqVQplypQxmubWrVvo27cvmjRpgqVLlxa5zDVr1ph1erJWrVoW5dWU7OxsqFQqvekFNxEUlR9z5y/411jazMxMs/IbHR2tc9o6PDwcycnJiI6O1k7z9PREixYtcPToUb35IyMjdfqF8PBwAMDgwYN1TqOFh4fj22+/RWpqqt7vXa5cOZ3tgeyLQQ7Z1JIlS/Dkk08iIyMDX3/9Nfbv32+w41q1ahU++eQTnD9/Hmq1Wju9Zs2a2v9fvXoVlStX1ttR1K1b16y8/PLLL5g+fTqSk5ORlZWl852lQc4ff/wBIYTO3SCPK7i+4erVqwCgl06pVJZo55OSkoJp06Zh69at+Oeff3S+y8jIMDrf3bt3kZubq/3s4+OjLfe2bdvwwQcf4MSJE9prIwAYfDbM4/UCAHfu3EF6ejqWL19u9Lbs27dva/9vTn1bqnBgV3BKtPDv44zy8vLQr18/5OfnY9OmTQa3kcKeeeYZO+RMl4+Pj07bKPDw4UPt99aYv+BfY2mLWk+Bwm2ioK0XPk3s7+9vsJ1YMj9guK0JIaR7VpUrYZBDNtWqVSvtefXevXvj2WefxaBBg3DhwgVtsLJ69WoMGzYMvXv3xqRJk1CpUiV4enpi9uzZOhcol8SlS5fQsWNHhIWFYcGCBQgJCYGXlxe2b9+OhQsXWvxwNo1GA4VCgR07dmhHJR5n6ojdGGMdYeHrLvLz89G5c2fcvXsXkydPRlhYGEqXLo3U1FQMGzbMZFlefvll7Nu3T/s5KioKK1euxIEDB9CzZ0+0bdsWS5cuReXKlaFUKhEfH4+EhAS95RTeyRSsc/DgwUavkSq4/sVW9W2oHgDoXFDqKBUqVEBeXh7u3buHsmXL6n0/adIkJCcnY/fu3TqjnKbcuXPHrGtyypQpU6z2aEjlypWxZ88evR33zZs3AaDI288rV66sTfu4wvNXrlxZO71wQHHz5k3tNUBFMdYmDE031E4smd/YMtLT01GxYkVT2SQbYpBDdlOwI+vQoQM+//xz7XNsNmzYgFq1amHTpk06HWfBnTAFQkND8dNPP+H+/fs6nfaFCxeKXPf//vc/5OTkYOvWrTpHZ+be0VNY7dq1IYRAzZo18eSTTxpNFxoaCuDRyM9zzz2nna5Wq3H58mU0btxYO61g5KHw3WIFo0EFTp06hf/7v//DqlWrdC6UTExMLDLfn3zyic7RZsFOZePGjfD29sauXbt0RhHi4+OLXCbw6A6ZsmXLIj8/X+8UZWHm1rdMwsLCADy6y6rwxc5r167FokWLsGjRIrRr187sZbZs2VKvbRgyffp07V1kJdWkSRN89dVXOHfunM7pyoKLu4u6aLxJkyY4cOAANBqNzsXHhw4dgq+vr3ZbKljOkSNHdAKaGzdu4Pr16xg5cqRVymNrqampyM3N1btQm+yHt5CTXbVv3x6tWrXCokWLtEPUBUdFjx8FHTp0SO921O7duyMvL0/ntu/8/HwsXry4yPUaWkdGRobZO/HCXn75ZXh6eiIuLk7v6E0Igb///hvAo7tDAgMD8cUXX+icJlq5cqVeMFO7dm0AwP79+7XT8vPz9U7/GCqLEAKffvppkflu3rw5OnXqpP0r2FF5enpCoVDojAxcuXIFmzdvLnKZBfP36dMHGzduxOnTp/W+v3Pnjsn8G6pvmbRu3RrAo532406fPo1XX30VgwcPxltvvWXRMtesWYPExMQi/wrfMVQSvXr1glKp1LlmSAiBL774AlWrVkVERIR2+s2bN/VOR/bt2xdpaWnYtGmTdtpff/2F9evX48UXX9QG2A0aNEBYWBiWL1+u0yaXLVsGhUKBvn37Wq1MtlRwnc/jvwvZF0dyyO4mTZqEyMhIrFy5Eq+//jpeeOEFbNq0CS+99BJ69OiBy5cv44svvkD9+vVx//597XwvvvginnnmGUyZMgVXrlxB/fr1sWnTJpPXoBTo0qULvLy88OKLL+K1117D/fv38eWXX6JSpUoGh8+LUrt2bXzwwQeIjY3FlStX0Lt3b5QtWxaXL1/G999/j5EjR+Ltt9+GUqnEBx98gNdeew3PPfcc+vfvj8uXLyM+Pl7vmpwGDRrg6aefRmxsLO7evYvy5ctj7dq1eo+xDwsLQ+3atfH2228jNTUVfn5+2LhxY4muPenRowcWLFiAbt26YdCgQbh9+zaWLFmCJ554AidPnjRrGXPmzMGePXsQHh6OmJgY1K9fH3fv3sWxY8ewe/du7XNEzK1vmdSqVQsNGzbE7t27MWLECO304cOHAwDatm2L1atX68wTERFh8rota16Tc/LkSWzduhUAcPHiRWRkZOCDDz4AADRu3BgvvvgiAKBatWoYN24cPv74Y6jVarRs2RKbN2/GgQMHsGbNGp3TOLGxsVi1ahUuX76sfU1E37598fTTT2P48OE4e/as9onH+fn5iIuL08nTxx9/jJ49e6JLly4YMGAATp8+jc8//xyvvvqqy4yMJCYmonr16rx93JHsfTsXuQdjTzwW4tETcmvXri1q164t8vLyhEajER999JEIDQ0VKpVKNG3aVGzbtk1ERUXp3cr6999/iyFDhgg/Pz/h7+8vhgwZIo4fP27W7b5bt24VjRo1Et7e3qJGjRpi7ty54uuvv9a7bduSJx5v3LhRPPvss6J06dKidOnSIiwsTIwePVpcuHBBJ93SpUtFzZo1hUqlEi1atBD79+83uJ5Lly6JTp06CZVKJYKCgsS7774rEhMT9W4hP3v2rOjUqZMoU6aMqFixooiJiRG///57iW57XrFihahTp45QqVQiLCxMxMfHG5wfgM4Tbx+XlpYmRo8eLUJCQoRSqRTBwcGiY8eOYvny5do0ltS3IcZuIX/8KbpCmL4N3N63kAshxIIFC0SZMmV0btU3dRu4tZ7gbY6C7dXQX1RUlE7a/Px8bf15eXmJBg0aiNWrV+stMyoqyuAjEe7evSuio6NFhQoVhK+vr2jXrp3BfkIIIb7//nvRpEkToVKpRLVq1cTUqVO1T2Y2pzyFl2us/qOiokTp0qW1nwvq/+OPP9ZJZ6ytGVpffn6+qFy5spg6dWqR+SXbUQjhBFflEbmhgifsPv4kY5JXRkYGatWqhXnz5uncwkxy2rx5MwYNGoRLly5pL6Qm++M1OUREduDv74933nkHH3/8scV385HrmTt3LsaMGcMAx8E4kkPkIBzJISKyLY7kEBERkZQ4kkNERERS4kgOERERSYlBDhEREUmJQQ4RSS8tLQ19+/ZFhQoVoFAosGjRIqNpFQqF1V6DQESOxSCHSELjx49Hs2bNUL58efj6+qJevXqYMWOGwScK5+TkYPLkyahSpQp8fHwQHh5u1nuwCqSmpqJfv34ICAiAn58fevXqhT///FNvHWPHjkVgYCCqVaumfZru465fv44yZcrgl19+sbzARRg/fjx27dqF2NhYfPPNN+jWrZvV1yGL9u3bo2HDho7OhkHDhg2z2stGyT3wtQ5EEvrtt9/Qpk0bDB8+HN7e3jh+/DjmzJmD3bt3Y//+/TovRxw2bBg2bNiAcePGoU6dOli5ciW6d++OPXv24NlnnzW5nvv376NDhw7IyMjAu+++C6VSiYULF6Jdu3Y4ceIEKlSoAODRI/r/+9//4r333sO9e/cwc+ZM1K5dGwMHDtQua9KkSejZs6dVX1dQ4Oeff0avXr3w9ttvF5k2OzsbpUqxaySSgiMft0zkzO7fv+/oLFjV/PnzBQCRnJysnXbo0CG9x9dnZ2eL2rVri9atWxe5zLlz5woA4vDhw9pp586dE56eniI2NlY7LTw8XMTFxWk/R0VFiQEDBmg/HzhwQJQuXVpcu3at2OUzRaFQGH0VhavJzs4W+fn5Nlt+u3btRIMGDWy2/JIo/PoFoqLwdBVJ7erVq3jjjTdQt25d+Pj4oEKFCoiMjMSVK1d00q1cuRIKhQL79u3DG2+8gUqVKqFatWra73fs2IE2bdqgdOnSKFu2LHr06IEzZ87oLOPkyZMYNmwYatWqBW9vbwQHB2PEiBHaN5I7WsFLEh9/+/mGDRvg6emJkSNHaqd5e3sjOjoaycnJuHbtmsllbtiwAS1btkTLli2108LCwtCxY0esW7dOOy07OxvlypXTfi5fvjyysrIAABqNBm+99Rbeeecdnd/cHH/++SciIyO1p+Wefvpp/PDDD9rvC+pVCIElS5ZAoVBAoVCYXGbha3JmzJgBhUKBixcvYtiwYQgICIC/vz+GDx+uLcPj844ZMwabN29Gw4YNoVKp0KBBA+zcuVNvPampqRgxYgSCgoK06b7++mudNHv37oVCocDatWsxdepUVK1aFb6+vsjMzAQAXLp0CZcuXbLoN7NUfHw8FAqFXt4++ugjKBQKbN++3abrNyUqKgoVK1bUedN5gS5duqBu3boOyBU5E47JktR+++03JCUlYcCAAahWrRquXLmCZcuWoX379jh79ix8fX110r/xxhsIDAzEtGnT8ODBAwDAN998g6ioKHTt2hVz585FVlYWli1bhmeffRbHjx/XBg+JiYn4888/MXz4cAQHB+PMmTNYvnw5zpw5g19//bXInetff/1lVpnKli0LlUpVZLq8vDykp6cjNzcXp0+fxtSpU1G2bFm0atVKm+b48eN48skn4efnpzNvQZoTJ04gJCTE4PI1Gg1Onjyp81btx+f/8ccfce/ePZQtWxYtW7bE8uXL0b59e9y/fx/ffvstxowZAwBYsWIF/vrrL0yaNMms8hdIS0tDREQEsrKy8Oabb6JChQpYtWoVevbsiQ0bNuCll15C27Zt8c0332DIkCHo3Lkzhg4datE6HtevXz/UrFkTs2fPxrFjx/DVV1+hUqVKmDt3rk66gwcPYtOmTXjjjTdQtmxZfPbZZ+jTpw9SUlK0p+/S0tLw9NNPa4OiwMBA7NixA9HR0cjMzMS4ceN0ljlr1ix4eXnh7bffRk5ODry8vAAAHTt2BAC9oN2ahg8fjk2bNmHChAno3LkzQkJCcOrUKcTFxSE6Ohrdu3c3aznp6em4desWqlWrZvC6mtTUVFStWtWivA0ZMgT//e9/sWvXLrzwwgva6bdu3cLPP/+M6dOnW7Q8kpCjh5KIbOnxNz4XSE5OFgDEf//7X+20grcIP/vssyIvL087/d69eyIgIEDExMToLOPWrVvC399fZ7qhdX377bcCgNi/f3+ReYWRt0AX/jP37dQF5Sz4q1u3rs6bzIUQokGDBuK5557Tm/fMmTMCgPjiiy+MLv/OnTsCgJg5c6bed0uWLBEAxPnz54UQQly7dk00aNBAm5c2bdqIe/fuifT0dBEYGCjWrl1rVpkeN27cOAFAHDhwQDvt3r17ombNmqJGjRo6p3Rg4s3phQEQ06dP134ueHP1iBEjdNK99NJLokKFCnrzenl5iYsXL2qnFbwdfvHixdpp0dHRonLlyuKvv/7SmX/AgAHC399f25YK3npdq1Ytg+0rNDTUrDe3W8LQ6aqbN2+K8uXLi86dO4ucnBzRtGlTUb16dZGRkVHk8q5duyb69OkjPDw8BAChVCpFt27dxKpVq8SlS5fE2bNnxXvvvSeeeeaZIpdV+HRVfn6+qFatmujfv79OugULFgiFQiH+/PNPM0tNsuJIDknNx8dH+3+1Wo3MzEw88cQTCAgIwLFjxzBkyBCd9DExMfD09NR+TkxMRHp6OgYOHKgz0uLp6Ynw8HDs2bPH4LoePnyI+/fv4+mnnwYAHDt2DG3atDGZV3PvaGrQoIFZ6erXr4/ExEQ8ePAASUlJ2L17t97dVdnZ2QZHhby9vbXfG1PwnTnzV6tWDcePH8eZM2fg5eWFsLAweHh4YMKECahbty769++PgwcPYuLEibhx4wZeeuklzJ8/XztiYcj27dvRqlUrnYujy5Qpg5EjRyI2NhZnz5616l1Cr7/+us7nNm3a4Pvvv0dmZqbOSFinTp1Qu3Zt7edGjRrBz89Pe8eZEAIbN25Ev379IITQaVddu3bF2rVrcezYMZ0LsKOionTaVwFbjuA8Ljg4GEuWLMHAgQPRpk0bnDhxAomJiXojgIbExcXhwYMH2LhxIypVqoRjx45h3bp1GDZsGMT/f+B+7dq1sWTJEovz5eHhgVdeeQWfffaZdtQQANasWYOIiAjUrFnT4mWSXBjkkNSys7Mxe/ZsxMfHIzU1VdupAkBGRoZe+sKd4h9//AEAeO655wwu//FO/u7du4iLi8PatWtx+/ZtnXSG1lVYp06dikxjCT8/P+0ye/XqhYSEBPTq1QvHjh1D48aNATwKzHJycvTmffjwofZ7Ywq+M3d+pVKJJk2aaD+fP38eS5cuRVJSEu7evYsePXpgypQp6NChA4YPH44PP/wQcXFxRtd/9epVhIeH602vV6+e9ntrBjnVq1fX+VxwjdE///yj0w4KpytI+88//wAA7ty5g/T0dCxfvhzLly83uK7C7ccZdtYDBgzA6tWr8cMPP2DkyJHaU2VFmTBhgrZOACAiIgJjxoxBamoqTp8+jXLlyqF58+bIy8srVr6GDh2KuXPn4vvvv8fQoUNx4cIFHD16FF988UWxlkdyYZBDUhs7dizi4+Mxbtw4tG7dGv7+/lAoFBgwYAA0Go1e+sI79YI033zzDYKDg/XSP36rcb9+/ZCUlIRJkyahSZMmKFOmDDQaDbp162ZwXYXdunXLrDL5+/ubDD6MefnllzFkyBCsXbtWG+RUrlwZqampemlv3rwJAKhSpYrR5ZUvXx4qlUqb1tL5x48fj8GDB6NZs2b45ptvUL58ecTGxgIA3nnnnSKDHHt7fITvcaLQ6/+KSlfQFgYPHoyoqCiDaRs1aqTzuTj1bW1///03jhw5AgA4e/YsNBqNzqMIjKlcuTImT56MhIQE3Lx5E6GhoejevTt69+6NiIgI5Obm4ssvv8TWrVuLdRFz/fr10bx5c6xevRpDhw7F6tWr4eXlhX79+lm8LJIPgxyS2oYNGxAVFYVPPvlEO+3hw4c6dxiZUnDaoVKlSiZHWv755x/89NNPiIuLw7Rp07TTC0aCzFG5cmWz0sXHx2PYsGFmL7dATk4ONBqNzqhSkyZNsGfPHr1TLocOHdJ+b4yHhweeeuop7Y7vcYcOHUKtWrW0pw8K27ZtG5KSkrS/z40bN3TKX6VKFYPB1+NCQ0Nx4cIFvennz5/Xfu+MAgMDUbZsWeTn51t99M6WRo8ejXv37mH27NmIjY3FokWLMGHChCLne+edd/D7779j5syZCAoKwtGjR/Htt9/i888/16apVKkSPvvss2LnbejQoZgwYQJu3ryJhIQE9OjRQ+duPnJfDHJIap6ennpH2osXL0Z+fr5Z83ft2hV+fn746KOP0KFDByiVSp3v79y5g8DAQO3Re+F1mXp9QGHWuiYnPT0dpUuX1svrV199BQBo0aKFdlrfvn0xf/58LF++XPugvJycHMTHxyM8PFznzqqUlBRkZWUhLCxMZ/4pU6bgyJEj2uVeuHABP//8s9EH7+Xm5mLChAmYOnUqKlWqBAAICgrCxYsXkZeXh1KlSuHcuXMGR84e1717dyxatAjJyclo3bo1AODBgwdYvnw5atSogfr165uc31E8PT3Rp08fJCQk4PTp03qn1AralDPZsGEDvvvuO3z22WcYO3Ysfv/9d0ydOhUvvPACnnzySZPzxsTEoEWLFtq7C7t37473338fZ86c0Z6uatu2rfY6ruIYOHAgJk6ciLfeegt//vknPv7442Ivi+TCIIek9sILL+Cbb76Bv78/6tevj+TkZOzevVt7K29R/Pz8sGzZMgwZMgTNmjXDgAEDEBgYiJSUFPzwww945pln8Pnnn8PPzw9t27bFvHnzoFarUbVqVfz444+4fPmy2Xm11lH93r178eabb6Jv376oU6cOcnNzceDAAWzatAktWrTA4MGDtWnDw8MRGRmJ2NhY3L59G0888QRWrVqFK1euYMWKFTrLHTp0KPbt26cTyL3xxhv48ssv0aNHD7z99ttQKpVYsGABgoKCMHHiRIP5+/TTTwEAb731lnZa9+7dMXr0aAwaNAgRERGYNWsWXn31VZPlnDJlCr799ls8//zzePPNN1G+fHmsWrUKly9fxsaNG806leIoc+bMwZ49exAeHo6YmBjUr18fd+/exbFjx7B7927cvXvXrOUUPL7Alhcg3759G6NGjUKHDh20t/1//vnn2LNnD4YNG4aDBw+a/K0ff4bS4xo0aGD2RfRFCQwMRLdu3bB+/XoEBASgR48eVlkuScBh93UR2cE///wjhg8fLipWrCjKlCkjunbtKs6fPy9CQ0NFVFSUNl3BLeS//fabweXs2bNHdO3aVfj7+wtvb29Ru3ZtMWzYMHHkyBFtmuvXr4uXXnpJBAQECH9/fxEZGSlu3Lihd0uyrV28eFEMHTpU1KpVS/j4+Ahvb2/RoEEDMX36dINPcc7OzhZvv/22CA4OFiqVSrRs2VLs3LlTL127du2EoS7j2rVrom/fvsLPz0+UKVNGvPDCC+KPP/4wmLdbt26JsmXLiq1bt+p9t2PHDhEWFiYCAgLE0KFDxYMHD4os66VLl0Tfvn1FQECA8Pb2Fq1atRLbtm3TSwcr3EJ+584dnXQFbeby5ctFrqdwexNCiLS0NDF69GgREhIilEqlCA4OFh07dhTLly/Xpim4hXz9+vUG81qxYkXx9NNPm1UucxW+hfzll18WZcuWFVeuXNFJt2XLFgFAzJ0716rrN8XUE4/XrVsnAIiRI0faLT/k/BRCFBpfJyIip3f27Fk0aNAA27Zt48gFgC1btqB3797Yv39/kY9rIPfhvOO5RERk1J49e9C6dWsGOP/fl19+iVq1ahX5UllyLxzJISIil7V27VqcPHkSs2fPxqeffoo333zT0VkiJ8Igh4iIXJZCoUCZMmXQv39/fPHFFzrPriJyqdNV+/fvx4svvogqVapAoVBg8+bNOt8LITBt2jRUrlwZPj4+6NSpk1nPKVmyZAlq1KgBb29vhIeH4/DhwzYqARERWZMQAvfu3cNXX33FAIf0uFSQ8+DBAzRu3NjoO07mzZuHzz77DF988QUOHTqE0qVLo2vXrtpHzBvy3XffYcKECZg+fbr2cfddu3bVe6w6ERERuRaXPV2lUCjw/fffo3fv3gAeRfNVqlTBxIkTtQ8hy8jIQFBQEFauXIkBAwYYXE54eDhatmypffqmRqNBSEgIxo4diylTptilLERERGR90oztXb58Gbdu3dJ5oJq/vz/Cw8ORnJxsMMjJzc3F0aNHte/LAR49qr5Tp05ITk42uq6cnBydlxJqNBrcvXsXFSpU0D7Vk4iIiAwrOM1YpUoVmz64U5ogp+DlhkFBQTrTg4KCjL748K+//kJ+fr7BeQref2PI7NmznerFgURERK7o2rVrqFatms2WL02QY0+xsbE6L6bLyMhA9erV0SngZSDHpS5zMpvS2xNDlvTCN6O3QP3QvPc+uSKWUy7uUE53KCPAckpHpcHu9E1GX+JrLdIEOQUv80tLS9N5m3FaWprRNylXrFgRnp6eSEtL05melpZm8uWAKpUKKpVK/4scD8D4Nc6uTeEBX1/f/19GiTc8llMu7lBOdygjwHJK59GAgK0v8ZBm2KFmzZoIDg7GTz/9pJ2WmZmJQ4cOad9QXJiXlxeaN2+uM49Go8FPP/1kdB4iIiJyDS41knP//n1cvHhR+/ny5cs4ceIEypcvj+rVq2PcuHH44IMPUKdOHdSsWRPvv/8+qlSpor0DCwA6duyIl156Sfs23QkTJiAqKgotWrRAq1atsGjRIjx48ADDhw+3d/GIiIjIilwqyDly5Ag6dOig/VxwXUxUVBRWrlyJd955Bw8ePMDIkSORnp6OZ599Fjt37oS3t7d2nkuXLuGvv/7Sfu7fvz/u3LmDadOm4datW2jSpAl27typdzEyERERuRaXCnLat28PU4/1USgUmDlzJmbOnGk0zZUrV/SmjRkzRjuyQ0RERHKQ5pocIiIioscxyCEiIiIpMcghIiIiKTHIISIiIikxyCEiIiIpMcghIiIiKTHIISIiIikxyCEiIiIpMcghIiIiKTHIISIiIikxyCEiIiIpMcghIiIiKTHIISIiIikxyCEiIiIpMcghIiIiKTHIISIiIikxyCEiIiIpMcghIiIiKTHIISIiIikxyCEiIiIplXJ0Bqh4EjXr7bo+tVqN7du3Y0v6KiiVSruu25o6e0Q6OgtEZAf27iOtxdF9rWx9JIMccguybbhEZFrBNu+qwQ5ZB4MckhqDGyL3xmDHvTHIIWkxwJGbOTstS4f+2Wbk1dkjkoGOG2KQQ1LhTsr1ONOOp7h5YbtzDY/XkzO1O7Id3l1FREREUuJIDkmDR9POyR2OmIsqI9um8+HpK/fAIIdcHncgzoE7DOOM/TZsu47Fi5LlxyCHXBp3Eo7BnYJ1GPod2abtj6M68mKQQy6LOwP7YOdvXwx8HIOBjpwY5JBLYWdvW+zknRMDH/vg3VfyYZBDLoOdum2wM3dNBfVW8Cwgsi6O7MiBt5ATERGRlDiSQ06PIzjWU/jof0v6KgfniKyl8FOdud2UHO++cn0McsipsaMuOXbQ7unxeud2VDI8deW6GOSQU2KnXHzsjKmwwm2C25flGOi4JgY55HTYARcPO2AyV0Fb4bZmGZ6+cj0McshpsMO1DDtaKimO8BQPgx3XwburyCmwczVfomY9O1eyCbYty7Dfcn4cySGHY0dRNO54yJ540bL5eK2Oc+NIDhEREUmJIznkUDxKNI5Hh+QMOKpTNI7mOC8GOeQQ7CyNY2dJzop3ZRnHi5GdE4Mcsit2jsaxcyRXwWDHOAY7zoVBDtkNO0R97AjJlfFUlnE8heUceOEx2QU7QF28VZdkwzatj/2e40kV5NSoUQMKhULvb/To0QbTr1y5Ui+tt7e3nXMtP27o/+KOgGTHNq6L/Z9jSXW66rfffkN+fr728+nTp9G5c2dERhpvZH5+frhw4YL2s0KhsGkeiYiIyD6kCnICAwN1Ps+ZMwe1a9dGu3btjM6jUCgQHBxs66y5JR7BPMKjWnJHvF7nX7wY2XGkCnIel5ubi9WrV2PChAkmR2fu37+P0NBQaDQaNGvWDB999BEaNGhgctk5OTnIycnRfs7MzAQAKL09AYV9zgCq1Wq7rKfw+sxdb6+AKCh9lLbMkk0ofUrp/FsSW9JXAbB/XZnD0vp0Ve5QTlco4/acBACP+oXisua26SjdSw/S9gvGOLo+7dZvqzRAtu1XoxBCCNuvxv7WrVuHQYMGISUlBVWqVDGYJjk5GX/88QcaNWqEjIwMzJ8/H/v378eZM2dQrVo1o8ueMWMG4uLi9KYnJCTA19fXamUgIiKSUVZWFgYNGoSMjAz4+fnZbD3SBjldu3aFl5cX/ve//5k9j1qtRr169TBw4EDMmjXLaDpDIzkhISF4vlx/IMc+IzlFHQ1Ym1qtRmJiIjp37gyl0nikX5IjNWeg9CmFESv64OvojVBn51k8v73rpbjMrU9X5w7ldNUyWtpXlHTbdDbG+gpH16fd+nCVBjv++c7mQY7rjvuZcPXqVezevRubNm2yaD6lUommTZvi4sWLJtOpVCqoVCq96eqH+cDDfANzWJ+jOjOlUml03TKdd1dn50Gdbd5wsSufZzdVnzJxh3K6Whm3P0jQ/t+SvsOSbdOZdVcNMtl3OKo+7fbb2ml4RapbyAvEx8ejUqVK6NGjh0Xz5efn49SpU6hcubKNciYvmQIcc/FWWSLrcNdtyR37TXuTLsjRaDSIj49HVFQUSpXSHagaOnQoYmNjtZ9nzpyJH3/8EX/++SeOHTuGwYMH4+rVq3j11VftnW0iIiKyMumCnN27dyMlJQUjRozQ+y4lJQU3b97Ufv7nn38QExODevXqoXv37sjMzERSUhLq169vzyy7PHc8GnHHo04iW3PH7cod+097ku6anC5dusDYtdR79+7V+bxw4UIsXLjQDrmSkztunO7YCRPZkzu+/JPP0bEd6UZyyD7cqQMC3PeaASJHccdtzt36VXtgkEMWc6cN0R07WiJn4m7boKs/hsPZMMghi7jTBuhOHSuRs3OVZ1CRc2GQQ2QAO1QiciR3OqC0JQY5ZBZ32OASNesZ3BA5uS3pq9zmFJY7XRpgKwxyiIiISEoMcsikzh6RbnE04Q5HhUSycYft1l36YFthkENGucOG5S7D3kSycpdt2B36Y1tgkEMGucMG5Q4dI5G7cIft2R36ZWtjkEN63GFDcocOkcjduMN27Q79szVJ91oHIlPcoRMkcmfu+FoIMo4jOaRD1o7BXc7bE9EjMm/zsvbTtsAgh4iIiKTEIIe0ZD06kPVojoiKJuv2L2t/bW0Mckjq5zDI2sERkflk7Qdk7ruthUGOm5N5A5G1YyMiy8ncH8jcj5cUgxw3JvOGIXOHRkTFI3O/IHN/XhK8hZykInMnRkQlx1vM3QtHctyUbBu4zLeLEpH1ydhnyNavWwODHDck24YgW0dFRPYjW/8hW/9eUgxyiIiISEoMctyMbFG+bEdhRGR/svUjsvXzJcEgx43I1vBl65iIyHFk609k6++Li3dXkcuRrTMiIufAO6/kw5EcNyDTUzEZ4BCRrcnSz8jU9xcXgxzJydTAZel4iMj5ydTfyLQfsBSDHHIJMnU4ROQa2O+4PgY5REREJCUGORKTZYiSR1NE5Ciy9D+y7A8sxSBHUrI0aFk6GCJyXbL0Q7LsFyzBIEdCMjRkGd8rQ0SuS5b+SIb9gyUY5JDTkaUzISK58ODL9TDIkYy7RelERGQZd9pPMMiRhCwPfeJREhE5Oxn6KVn2GUVhkENERERSYpBDTkOGoyMicg/sr1wDgxwJyDDkyA6DiFyNDP2WDPsPUxjkuDgZGqgMHQURuScZ+i8Z9iPGMMghh5KhgyAi98Z+zHkxyHFhrhx983kTRCQTV+/TXHl/YgqDHCIiIpISgxwX5cpRtysf7RARmeLK/Zsr71eMYZBDREREUmKQQ3blykc5RETmYD/nPBjkkN1wwycid8H+zjkwyCG74AZPRO6G/Z7jMcghIiIiKUkV5MyYMQMKhULnLywszOQ869evR1hYGLy9vfHUU09h+/btdsqt++DRDBG5K/Z/jlXK0RmwtgYNGmD37t3az6VKGS9iUlISBg4ciNmzZ+OFF15AQkICevfujWPHjqFhw4b2yK7UuHETEf3bF8p4i7azk2okB3gU1AQHB2v/KlasaDTtp59+im7dumHSpEmoV68eZs2ahWbNmuHzzz+3Y46JiIjIFqQbyfnjjz9QpUoVeHt7o3Xr1pg9ezaqV69uMG1ycjImTJigM61r167YvHmzyXXk5OQgJydH+zkzMxMAoPT2BBTSxY0AAKVPKZ1/zaFWq22VHZspyLMr5t0SLKc83KGMgBzlVPoozUhjeV/rklQaINv2q1EIIYTtV2MfO3bswP3791G3bl3cvHkTcXFxSE1NxenTp1G2bFm99F5eXli1ahUGDhyonbZ06VLExcUhLS3N6HpmzJiBuLg4vekJCQnw9fW1TmGIiIgklZWVhUGDBiEjIwN+fn42W49UoeLzzz+v/X+jRo0QHh6O0NBQrFu3DtHR0VZbT2xsrM4IUGZmJkJCQvDN6C1AjrwjOSNW9MHX0Ruhzs4zmXZL+io75cr61Go1EhMT0blzZyiVRR91uSqWUx7uUEZArnL2Cogy+p0lfa1LU2nsshqpgpzCAgIC8OSTT+LixYsGvw8ODtYbsUlLS0NwcLDJ5apUKqhUKr3p6of5wMP84mfYBaiz86DONj5cLMvFxkql0uU7UnOwnPJwhzICcpRz+4OEIi9CLqqvdXl2Oock57DD/3f//n1cunQJlStXNvh969at8dNPP+lMS0xMROvWre2RPSIiIrIhqYKct99+G/v27cOVK1eQlJSEl156CZ6entprboYOHYrY2Fht+rfeegs7d+7EJ598gvPnz2PGjBk4cuQIxowZ46giuDRZRnGIiGyN/aV9SHW66vr16xg4cCD+/vtvBAYG4tlnn8Wvv/6KwMBAAEBKSgo8PP6N6yIiIpCQkICpU6fi3XffRZ06dbB582Y+I4eIiEgCUgU5a9euNfn93r179aZFRkYiMpIPaCopHpUQEVkmUbOeDwi0MalOVxEREREVYJBDJcZRHCKi4mH/aVtSna4i++LGSURUcny3le1wJIeIiIikxCCHioWjOERE1sV+1foY5BAREZGUGOQQERGRlBjkkMU4pEpEZBuu/IJjZ8S7q8gi3ADJ2T1+h4rSR4nXEvqjV0CUzssOGagTuQcGOUTk1GxxW62ly2RQROSaGOQQkdNw1ueEGMoXAx+ypS3pq9BdNcjR2XB5DHKIyCGcNaAxFwMfIufHIIfMsiV9FbZv3+7obJALc/WgxhyFy8igh0qCL/AsOd5dRURERFLiSA4R2Yy7H4U+Xn6O6hDZH4McMqmgY1ar1UWkJGJQYwpPZVFx8OWdJcMgh4hKjB2w5Qp+MwY7RLbDIIeMYudLpjCwsQ6e0iJz8CLk4mGQQ0RmYydrWwx4iKyLd1eRQexg6XGdPSIZ4NgZf3MqjP2y5RjkEBERkZQY5BCRSRxNcCz+/kTFxyCH9HBIlACeLnEmrAsqwP7ZMrzwmIi0uCN1brwwmcgyHMkhHew43RcDHNfC+nJf7KfNx5EcIjfHnaXr6uwRCaWPEq8l9Hd0VoicEkdySItHB+6nV0CUo7NARMXA/to8HMkhcjM8+pdTr4AoqLMfvWOOO0CiRziSQ0RERFJikENI1KznkZ+b4PU37oH17B7YdxeNQQ6Rm+COz72wvokY5BC5Be7w3BPrndwdgxw3x6FOufFJucQ2ID/248bx7ioiCXGnRoUVtAnuEMmdcCTHjbGzkxMDHDKF7UNO7M8NY5BDREREUmKQQyQRHqWTOdhOyF0wyCGSBHdcZAm2F3IHDHLcFM/fyoU7LCoOthu5sF/XxyCHyMVxR0UlwfZDMmOQ44YY7cuBzz8ha2Fbkgf7d10McohcEHdIZAtsVyQbBjlEREQkJQY5RC6GR9tkS2xfJBMGOW6G52uJiOTGfv5fDHKIXAiPsske2M5IFgxyiFwEdzxkT2xvJAOp3kI+e/ZsbNq0CefPn4ePjw8iIiIwd+5c1K1b1+g8K1euxPDhw3WmqVQqPHz40NbZtTsOYbou7nAMK6pNq9VqbN++HVvSV0GpVJpMy99YX2ePSPYbLipRs55tGpIFOfv27cPo0aPRsmVL5OXl4d1330WXLl1w9uxZlC5d2uh8fn5+uHDhgvazQqGwR3aJisRO6hF77GiNrcPd66Cg/Ax2yBVJFeTs3LlT5/PKlStRqVIlHD16FG3btjU6n0KhQHBwsK2zR0QWcJad6uP5cPeAh8jVSBXkFJaRkQEAKF++vMl09+/fR2hoKDQaDZo1a4aPPvoIDRo0MJo+JycHOTk52s+ZmZkAAKW3J6Bw3suc1Gp1iectyTJcgbOVU+lj+hRL8ZdbSudfZ2SNOrB2fdqqPkrCXnXp6G3C2bZNW7FmOZ2xvWqpNEC27VejEEII26/G/jQaDXr27In09HQcPHjQaLrk5GT88ccfaNSoETIyMjB//nzs378fZ86cQbVq1QzOM2PGDMTFxelNT0hIgK+vr9XKQEREJKOsrCwMGjQIGRkZ8PPzs9l6pA1yRo0ahR07duDgwYNGgxVD1Go16tWrh4EDB2LWrFkG0xgayQkJCcHz5foDOc43krMlfVWJl6FWq5GYmIjOnTsXeQGnK3OWcvYKiLLp8pU+pTBiRR98Hb0R6uw8m66rKNZon8bYqz5tXV+m2LsubVlfpjjLtmlrtiinI9unUSoNdvzznc2DHOcdqy6BMWPGYNu2bdi/f79FAQ4AKJVKNG3aFBcvXjSaRqVSQaVS6U1XP8wHHuZbnF9bs2aHoFQqpe5gCji6nOps+wzJq7Pz7Laux9n7ehtb1+f2Bwna/zvquh171aWjt39Hb5v2Ys1yOmIbL5KdhlekCnKEEBg7diy+//577N27FzVr1rR4Gfn5+Th16hS6d+9ugxwSFU3Wi1ud5UJiW5P9QmXeVk6uxPnOrZTA6NGjsXr1aiQkJKBs2bK4desWbt26hezsf69uGjp0KGJjY7WfZ86ciR9//BF//vknjh07hsGDB+Pq1at49dVXHVEEq2Nn5Fpk3CkC7tsOZS23rO1UVrK2Q3NINZKzbNkyAED79u11psfHx2PYsGEAgJSUFHh4/Bvb/fPPP4iJicGtW7dQrlw5NG/eHElJSahfv769sk0kLXfuXAsU/AYMDIjsT6ogx5xrqPfu3avzeeHChVi4cKGNckRERESOItXpKiJXJtuRPkdxdMn2e8jWXklOUo3kEJFjybYjtzbZL0omcjYcyZEYdziuQ4YdHtubZWT4vWRot+5ChvZWHAxyiByos0ekFDsKd+1AS0qG302WNkxyYpBDRCUiw47akfj7EdkOgxwiB5Hh6Jc7aOuQ4XeUoT2TfBjkEBERkZQY5EhKhiNDcl6JmvVsY1bG35RszR3bF4McIgfg0D7JiO2anA2fk0NEZnPHI0F742sgiKyHIzlEZBYGOPbF35uo5BjkENmZKx6hc4frGK74u7ti+yZ5MciRkCt2jOS82J4ci78/WZO7tScGOUR25GpHue7WITorV6sHV2vnJC8GOURERCQlBjlEREQkJQY5RGSQq50ikR3rg8hyDHKI7MRVrlPgk3edlyvVjau0d5IbgxzJuEoHSEREjuFO+wkGOUSk5U6dnytjPRGZh0EOkY119oh0iaF77jhdiyvUl6u0fZIXgxwiIiKSEoMcIiIikhKDHCJyiVMfpI/1RmQagxwiG+L1CETcDshxGOQQERGRlEqZk6hZs2YWLVShUGDr1q2oWrVqsTJFluOwNRUX245r25K+Ctu3b3d0NsjFFGz3so+ymRXknDhxAhMnTkSZMmWKTCuEwJw5c5CTk1PizBEREREVl1lBDgBMmjQJlSpVMivtJ598UuwMEREREVmDWdfkXL58GYGBgWYv9OzZswgNDS12pohk4ArDwFvSVzk6C+QmXGF7IPmYNZJjacASEhJSrMwQERERWYvZp6se9/DhQ5w8eRK3b9+GRqPR+a5nz55WyRgRERFRSVgc5OzcuRNDhw7FX3/9pfedQqFAfn6+VTJGRLbDO3LksyV9FZRKJU8LET3G4ufkjB07FpGRkbh58yY0Go3OHwMcIiIichYWBzlpaWmYMGECgoKCbJEfIinwaJpIH7cLsjeLg5y+ffti7969NsgKEdkDH/4nN9Yv0b8svibn888/R2RkJA4cOICnnnoKSqVS5/s333zTapkjIiIiKi6Lg5xvv/0WP/74I7y9vbF3714oFArtdwqFgkEOEREROQWLg5z33nsPcXFxmDJlCjw8+H5PIiIick4WRym5ubno378/AxwiIiJyahZHKlFRUfjuu+9skRcqJl5oSERExSH7/sPi01X5+fmYN28edu3ahUaNGuldeLxgwQKrZY6IrEv2Do0eSdSs5+3aRChGkHPq1Ck0bdoUAHD69Gmd7x6/CJmIiIjIkSwOcvbs2WOLfBARERFZFa8eJiIiIilZPJLz8OFDLF68GHv27DH4FvJjx45ZLXNERERExWVxkBMdHY0ff/wRffv2RatWrXgdDlEhvOCTyLjOHpG8AJ7sxuIgZ9u2bdi+fTueeeYZW+THKpYsWYKPP/4Yt27dQuPGjbF48WK0atXKaPr169fj/fffx5UrV1CnTh3MnTsX3bt3t2OOiYiIyNosvianatWqKFu2rC3yYhXfffcdJkyYgOnTp+PYsWNo3Lgxunbtitu3bxtMn5SUhIEDByI6OhrHjx9H79690bt3b707x4iIiMi1WBzkfPLJJ5g8eTKuXr1qi/yU2IIFCxATE4Phw4ejfv36+OKLL+Dr64uvv/7aYPpPP/0U3bp1w6RJk1CvXj3MmjULzZo1w+eff27nnBMREZE1WXy6qkWLFnj48CFq1aoFX19fvYcB3r1712qZs1Rubi6OHj2K2NhY7TQPDw906tQJycnJBudJTk7GhAkTdKZ17doVmzdvNrqenJwc5OTkaD9nZmYCAJTenoDC/jesqdVqu63DHutyJGuUU+mjLDqRgxQuH+vT9Rkroyu0w+LMI3NdAo4pp0PaikoDZNt+NQohhLBkhk6dOiElJQXR0dEICgrSu/A4KirKqhm0xI0bN1C1alUkJSWhdevW2unvvPMO9u3bh0OHDunN4+XlhVWrVmHgwIHaaUuXLkVcXBzS0tIMrmfGjBmIi4vTm56QkABfX18rlISIiEheWVlZGDRoEDIyMuDn52ez9Vg8kpOUlITk5GQ0btzYFvlxCbGxsTqjP5mZmQgJCcE3o7cAOfYfydmSvsrm61Cr1UhMTETnzp31Ru9kYo1y9gpwXKBflIK2wvqUh7EyukI7tIQ71CXgmHI6pK2oNEWnsQKLg5ywsDBkZ9thjKkYKlasCE9PT70RmLS0NAQHBxucJzg42KL0AKBSqaBSqfSmqx/mAw/zi5HzkrHnBq9UKqXuYAqUpJzqbOcdTi9cJtanPAqX0ZXaoaXzyl6XgH3L6ZC2YtE5pOKzeNhhzpw5mDhxIvbu3Yu///4bmZmZOn+O5OXlhebNm+Onn37STtNoNPjpp590Tl89rnXr1jrpASAxMdFoeiIiInINFo/kdOvWDQDQsWNHnelCCCgUCuTn238k43ETJkxAVFQUWrRogVatWmHRokV48OABhg8fDgAYOnQoqlatitmzZwMA3nrrLbRr1w6ffPIJevTogbVr1+LIkSNYvny5I4tBLoxvgCYyjg8CJHuS7gWd/fv3x507dzBt2jTcunULTZo0wc6dOxEUFAQASElJgYfHvwNYERERSEhIwNSpU/Huu++iTp062Lx5Mxo2bOioIhAREZEVWBzktGvXzhb5sKoxY8ZgzJgxBr/bu3ev3rTIyEhERvLIm4iISCZmXZNz8uRJvRdxmnLmzBnk5eUVO1NEREREJWVWkNO0aVP8/fffZi+0devWSElJKXamiIiIiErKrNNVQgi8//77Zj/oLjc3t0SZIiLb4Bug3QMvfCd6xKwgp23btrhw4YLZC23dujV8fHyKnSmyDHdcRERUHLIHxGYFOYYu1iUiIiJyZvZ/BwERERGRHTDIISIiIikxyCEiIiIpMcghcjOyX2jo7li/RP9ikENkA7zbjUgftwuyNwY5REREJCUGOURuqFdAlKOzQFbWKyCKp6qICmGQQ0RERFJikENERERSsjjIiYqKwv79+22RFyKpuMJFljxtRfbiCtsDycfiICcjIwOdOnVCnTp18NFHHyE1NdUW+SIiIiIqEYuDnM2bNyM1NRWjRo3Cd999hxo1auD555/Hhg0boFarbZFHIiIiIosV65qcwMBATJgwAb///jsOHTqEJ554AkOGDEGVKlUwfvx4/PHHH9bOJxWhs0ck76ygYmG7cW085UjF4S77jBJdeHzz5k0kJiYiMTERnp6e6N69O06dOoX69etj4cKF1sojERERkcUsDnLUajU2btyIF154AaGhoVi/fj3GjRuHGzduYNWqVdi9ezfWrVuHmTNn2iK/RC6FF1sScTsgxyll6QyVK1eGRqPBwIEDcfjwYTRp0kQvTYcOHRAQEGCF7BGRPXT2iOSOyAV19oiE0kfp6GwQOS2Lg5yFCxciMjIS3t7eRtMEBATg8uXLJcoYERERUUlYHOQMGTLEFvkgIiIisio+8ZjIxhI1613iVJA73GkhE1eoL1dp+yQvBjlEpOUKO05iPRGZi0GOZNj5ERGRKe60n2CQQ2QnrjJs7y4PCXNFrlQ3rtLeSW4McojIIFfZmboL1geR5RjkEBERkZQY5BAREZGUGOQQ2ZGrXafAUyTOwdXqwdXaOcmLQY6EXK1DJOfG9uRY/P3JmtytPTHIIbIzVzzKdbeO0Vm44u/uiu2b5MUgh4jM4oo7XFfG35uo5Cx+dxURua+CHS+P1m2HwQ2R9XAkh8gBGCSQjNiuydkwyJEUjwbJllzpybuugr8p2Zo7ti8GOURERCQlBjlEDiLD0L47Hhnaggy/owztmeTDIIeISkSGHbQj8fcjsh0GOUQOlKhZL8URMHfUxSPD7yZLGyY5MciRmAwdqLuQYSfB9mYZGX4vGdqtu5ChvRUHn5NDRFbzeEfKHaA+d93REDkKR3KInIRsQQF36Lpk+z1ka68kJwY5REREJCWeriIim+FrIOQbwSFyJdKM5Fy5cgXR0dGoWbMmfHx8ULt2bUyfPh25ubkm52vfvj0UCoXO3+uvv26nXNseO1jXImsw4K7tUNZyy9pOZSVrOzSHNCM558+fh0ajwX/+8x888cQTOH36NGJiYvDgwQPMnz/f5LwxMTGYOXOm9rOvr6+ts0tkVKJmvZSdkrtclCxj3T1O5roj+UgT5HTr1g3dunXTfq5VqxYuXLiAZcuWFRnk+Pr6Ijg42NZZJKL/T7aAR/bAhshVSRPkGJKRkYHy5csXmW7NmjVYvXo1goOD8eKLL+L99983OZqTk5ODnJwc7efMzEwAgNLbE1A43xnA7qUHAQC2pK8q9jLUarXOv7JylnJuz0lAr4Aomy1f6VNK519HKmifQMnaqCG2rM/H60fpo7T68s1lz7rckr7KYduGs2ybtmbNcha0UUe2T6NUGiDb9qtRCCGE7VdjfxcvXkTz5s0xf/58xMTEGE23fPlyhIaGokqVKjh58iQmT56MVq1aYdOmTUbnmTFjBuLi4vSmJyQk8FQXERFREbKysjBo0CBkZGTAz8/PZutx+iBnypQpmDt3rsk0586dQ1hYmPZzamoq2rVrh/bt2+Orr76yaH0///wzOnbsiIsXL6J27doG0xgayQkJCcHz5foDOc43klOgpCM5iYmJ6Ny5M5RKJzwqsBJnK6etRnOUPqUwYkUffB29EersPJuso6SsMapj7fq05ehacdmrLq09ymYpZ9s2bcWa5XTG9qql0mDHP9/ZPMhx/Fh1ESZOnIhhw4aZTFOrVi3t/2/cuIEOHTogIiICy5cvt3h94eHhAGAyyFGpVFCpVHrT1Q/zgYf5Fq/TXqzRMSiVSqk7mALOUk51tm2H5tXZeTZfR3F1V/17Gquk1+2UpD5d5XobW9elM2wPgPNsm7ZmjXI667YNALDT8IrTBzmBgYEIDAw0K21qaio6dOiA5s2bIz4+Hh4elo+qnDhxAgBQuXJli+clsraCnbur7GhtxVj5rXnRsrv/xsbIcGE4uS+nD3LMlZqaivbt2yM0NBTz58/HnTt3tN8V3DmVmpqKjh074r///S9atWqFS5cuISEhAd27d0eFChVw8uRJjB8/Hm3btkWjRo0cVRSb6ewRyQ7LRcl6W3lJFfWbKH2UeC2hP3oFRDn3Ua2TYn/huthfPCJNkJOYmIiLFy/i4sWLqFatms53BZcdqdVqXLhwAVlZWQAALy8v7N69G4sWLcKDBw8QEhKCPn36YOrUqXbPP1FRGOiQPTHAIRlIE+QMGzasyGt3atSogcevsw4JCcG+fftsnDMi62GgQ/bAAIdk4by3ApFNcAdJRCQ39vP/YpBD5GJ4lE22xPZFMmGQQ0RERFJikEPkgni0TbbAdkWyYZDjhni+Vg6JmvXcKZFVsC3Jg/27LgY5RC6OOycqCbYfkhmDHDfFaF8u3FFRcbDdyIX9uj4GOUSS4A6LLMH2Qu6AQQ6RRLjjInOwnZC7YJBDREREUmKQ48Z4/lZOPEonU9g+5MT+3DBp3l1FRP8q2JGx46MCDG7IHXEkx81xJyg3Pv+E2Abkx37cOAY5RG6AOzn3xHond8cgh8hNcIfnXljfRAxyCI+GOjnc6R6443MPrGf3wL67aAxyiIiISEq8u4rIzSRq1kOtVmP79u2OzgpZ0Zb0VVAqlY7OBpFT4UgOaXHY0/1sSV/l6CwQUTGwvzYPgxwiN8dbjF1XomY9A1UiExjkkA4eHbgvBjquhfXlvthPm4/X5BCR1uM7TnakzoeBDZFlOJJDerhzI4CnsZwJ64IKsH+2DIMcIjKJO1fH4u9PVHwMcoiIiEhKDHLIIA6J0uN4usT++JtTYeyXLccLj4nIbLww2bYY1BBZF4McMqqzRyQ7XTKKAY91cBsjc3AbKx4GOURUYgU7anbE5mNwQ2R7DHLIpIKd1vacBAfnhFxB4R03g55/Maih4uA2VDIMcojIZtz9lBYDGyLH4t1VREREJCWO5JBZegVE4bWE/o7OBrkwdziVxZEbsiYZtxF7Y5BDRA5hKCBwpU6dAQ2R82OQQ0ROw1kDHwY0ZG+9AqIcnQUpMMghIqdmaYBhTlDEoIXIPTDIIYv0CojC9ge8nZyc1+MBjFqtxvbt27ElfRWUSqUDc0VEjsC7q8hiznD6gIhIRjxNZV0McoiIiEhKDHKIiIhISgxyqFh4yoqIyLrYr1ofgxwiIiKSEu+uomIrOOrg7bhERMXHERzb4UgOlRg3UCKi4mH/aVsMcoiIiEhKDHLIKng0QkRkGfabtscgh4iIiKQkVZBTo0YNKBQKnb85c+aYnOfhw4cYPXo0KlSogDJlyqBPnz5IS0uzU47lwqMSIiLzsL+0D6mCHACYOXMmbt68qf0bO3asyfTjx4/H//73P6xfvx779u3DjRs38PLLL9spt0RERGQr0t1CXrZsWQQHB5uVNiMjAytWrEBCQgKee+45AEB8fDzq1auHX3/9FU8//bQtsyqlzh6RvKWciMgEjuLYj3RBzpw5czBr1ixUr14dgwYNwvjx41GqlOFiHj16FGq1Gp06ddJOCwsLQ/Xq1ZGcnGw0yMnJyUFOTo72c2ZmJgBA6e0JKKQbHAMAKH1K6fxrSvfSg7AlfZWts2QTarVa519ZsZzycIcyAvKUs1dAFJQ+SqPfW9LXujSVBsi2/WoUQghh+9XYx4IFC9CsWTOUL18eSUlJiI2NxfDhw7FgwQKD6RMSEjB8+HCdgAUAWrVqhQ4dOmDu3LkG55sxYwbi4uIMLs/X17fkBSEiIpJYVlYWBg0ahIyMDPj5+dlsPU4fKk6ZMsVosFHg3LlzCAsLw4QJE7TTGjVqBC8vL7z22muYPXs2VCqV1fIUGxurs67MzEyEhITgm9FbgBx5R3JGrOiDr6M3Qp2dZ9Y8rjiao1arkZiYiM6dO0OpNH605epYTnm4QxkBOcrZKyCqyDTF6Wtdkkpjl9U4fZAzceJEDBs2zGSaWrVqGZweHh6OvLw8XLlyBXXr1tX7Pjg4GLm5uUhPT0dAQIB2elpamsnrelQqlcGgSf0wH3iYbzKvrk6dnQd1tnnDxa7aEQGP8u7K+TcXyykPdygj4NrlNLfvfJTW/L7WJdnpHJLTBzmBgYEIDAws1rwnTpyAh4cHKlWqZPD75s2bQ6lU4qeffkKfPn0AABcuXEBKSgpat25d7DzTI3y3FRERLzR2JGnOrSQnJ2PRokX4/fff8eeff2LNmjUYP348Bg8ejHLlygEAUlNTERYWhsOHDwMA/P39ER0djQkTJmDPnj04evQohg8fjtatW/POKiviBk5E7or9n2M5/UiOuVQqFdauXYsZM2YgJycHNWvWxPjx43WunVGr1bhw4QKysrK00xYuXAgPDw/06dMHOTk56Nq1K5YuXeqIIhAREZEVSRPkNGvWDL/++qvJNDVq1EDhm8m8vb2xZMkSLFmyxJbZc3t8fg4RuRuO4jieNKeryPlxgycid8H+zjkwyCG74oZPRLJjP+c8GOQQERGRlBjkuChXvr6FRzlEJCtX7t9ceb9iDIMcIiIikhKDHBfmylF3Z49Ilz7iISJ6nKv3aa68PzGFQQ45lCt3CkREAPsxZ8Ygx8XJEH2zgyAiVyVD/yXDfsQYBjkSkKGBytBREJF7kaHfkmH/YQqDHHIaMnQYROQe2F+5BgY5REREJCUGOZJI1KyXYtiRR0dE5Oxk6Kdk2WcUhUGOZNyh0RIRUfG5036CQQ45HRmOkohIPq7+LBx3xCBHQjJE6exMiMiZyNIfybB/sASDHEnJ0pBl6ViIyHXJ0g/Jsl+wBIMcicnSoGXpYIjI9cjS/8iyP7AUgxwiIiKSEoMccgmyHE0Rketgv+P6GORITqYhSnY4RGQvMvU3Mu0HLMUgxw3I9NAnmToeInJOsvQzMvX9xVXK0RkgslRBB+TuGy8RWZcswQ39iyM5bkS2oIAdEhFZi2z9iWz9fXExyHEzsjV82TomIrI/2foR2fr5kmCQQ0RERFJikOOGZIvyZTsKIyL7ka3/kK1/LykGOW5Ktg2B77oiIkvI2GfI1q9bA++uIqnwzisiMkW2wIZM40iOG5M5EGBHRkSFydwvyNyflwSDHDcn84Yhc4dGRJaRuT+QuR8vKQY5JPVTMWXu2IjIPLL2AzL33dbCIIe0ZN1YZO3giKhosm7/svbX1sYgh4iIiKTEIId0yHp0IOPtokRknMzbvKz9tC3wFnJyK7zFnEhusgY2VDwcySE97hAAsCMkko87bNfu0D9bE4McMsgdNiR36BCJ3IU7bM/u0C9bG4McMsodNiiZz9sTuQN32YbdoT+2BQY5ZJK7PIfBHTpJItm4w3brLn2wrTDIISIiIikxyCGzbElf5egs2Fxnj0j0CohydDaIyIReAVE8RUVmY5BDZACDHSJyJHc4sLQHBjlkEXfa8NzhSJHIVfDAg4qDQQ5ZzJ2GUN1lWJzIWbnbNuhOB5L2wCCHisWdAh3A/TpaIkdzx23O3fpVe+BrHajYCjZId+qI+FoIIttyp/6kAPsT2+FIDpWYO26g7tgRE9maO25X7th/2pM0Qc7evXuhUCgM/v32229G52vfvr1e+tdff92OOSciIiJbkOZ0VUREBG7evKkz7f3338dPP/2EFi1amJw3JiYGM2fO1H729fW1SR5llqhZ73ZHYTx1RWQd7tZ3FGDfYXvSBDleXl4IDg7Wflar1diyZQvGjh0LhUJhcl5fX1+deal43DHQAXQ7aHZaROZxx77icewr7EOaIKewrVu34u+//8bw4cOLTLtmzRqsXr0awcHBePHFF/H++++bHM3JyclBTk6O9nNmZiYAQOntCSjscwZQrVbbZT2F11fUerfnJLj08yyUPqV0/rVU99KDXOIWUHPr09W5QzldsYy9AqKg9FFaNE9Jt01nsiV9ldH6cnR9WlovxabSANm2X41CCCFsvxr76969OwBg+/btJtMtX74coaGhqFKlCk6ePInJkyejVatW2LRpk9F5ZsyYgbi4OL3pCQkJPNVFRERUhKysLAwaNAgZGRnw8/Oz2XqcPsiZMmUK5s6dazLNuXPnEBYWpv18/fp1hIaGYt26dejTp49F6/v555/RsWNHXLx4EbVr1zaYxtBITkhICJ4v1x/Isc9Ijr1HC9RqNRITE9G5c2coleZF+q44oqP0KYURK/rg6+iNUGfnWWWZzjiyU5z6dEXuUE5XKKM1+gJbbJv2Zk5f4Oj6tFu/rdJgxz/f2TzIcfpxv4kTJ2LYsGEm09SqVUvnc3x8PCpUqICePXtavL7w8HAAMBnkqFQqqFQqvenqh/nAw3yL11kcjurMlEql2eve/iABgGuee1dn50GdbZ3h4u6qQdr/O9t5eEvq05W5QzmdrYy22u6tuW3aS3G2e0fVp91+WzsNrzh9kBMYGIjAwECz0wshEB8fj6FDhxargZw4cQIAULlyZYvnJSIiIuchzXNyCvz888+4fPkyXn31Vb3vUlNTERYWhsOHDwMALl26hFmzZuHo0aO4cuUKtm7diqFDh6Jt27Zo1KiRvbMuLWcbvXAkd3xUPbkXtnFd7P8cy+lHciy1YsUKRERE6FyjU0CtVuPChQvIysoC8Oi28927d2PRokV48OABQkJC0KdPH0ydOtXe2Zaeu95ebgyfsUOy4fatj9u340kX5CQkJBj9rkaNGnj8OuuQkBDs27fPHtkiMNAxhM/YIVfG7dk4bs/OQbogh5ybO77U01wc3SFXwe3XOG6/zoVBDjkEgx3jGOyQs+L2ahy3V+fEIIcciqewjOOpLHIG3D6Lxu3TeUl3dxURERERwJEccgIczSkaR3XInrg9mo/bo3PjSA45BXYU5uNzSMhW2LYsw37L+XEkh5wGL0a2TOHfiR0uWYrbWvFwW3MdDHLI6fD0VfHwriwyF7ev4uG25XoY5JBT4qhO8XGEhwrjdlRy3I5cE4Mccmoc1Sk5XrTsnrjdWA+3G9fFIIecHkd1rKfgN1T6KPFaQn/0CojC9gfGX4VCrqNXQBTU2WpHZ0MqDG5cH++uIiIiIilxJIdcBk9d2QZPZ7mmwqNyZF3cFuTAIIdcyuMdDwMe6zP0m7Kzdzy2dftgW5cPgxxyWRzZsQ8GPvbFNu0YbNNyYpBDLo2BjmMw8LEOtl3nwLYrLwY55PJ495VzMPb7cwfCtums2DblxyCHpMFRHedUVJ3IsKNhu3M9MrQ7KhpvISciIiIpcSSHpMK7r1xPcevJFkfibDNy4+iN+2GQQ9Li6Su5mVO3jz/ZmU8Ddm8McNwTgxySGi9KJnJvDG7cG4MccgsMdojcC4MbAhjkuCx776w57E9ErsRVD2jY11oX764iIiIiKTHIISIiIikxyCEiIiIpMcghIiIiKTHIISIiIikxyCEiIiIpMcghIiIiKTHIISIiIikxyCEiIiIpMcghIiIiKTHIISIiIikxyCEiIiIpMcghIiIiKTHIISIiIikxyCEiIiIpMcghIiIiKTHIISIiIikxyCEiIiIpMcghIiIiKTHIISIiIikxyCEiIiIpMcghIiIiKTHIISIiIim5TJDz4YcfIiIiAr6+vggICDCYJiUlBT169ICvry8qVaqESZMmIS8vz+Ry7969i1deeQV+fn4ICAhAdHQ07t+/b4MSEBERkT25TJCTm5uLyMhIjBo1yuD3+fn56NGjB3Jzc5GUlIRVq1Zh5cqVmDZtmsnlvvLKKzhz5gwSExOxbds27N+/HyNHjrRFEYiIiMiOSjk6A+aKi4sDAKxcudLg9z/++CPOnj2L3bt3IygoCE2aNMGsWbMwefJkzJgxA15eXnrznDt3Djt37sRvv/2GFi1aAAAWL16M7t27Y/78+ahSpYrNykNERES25TJBTlGSk5Px1FNPISgoSDuta9euGDVqFM6cOYOmTZsanCcgIEAb4ABAp06d4OHhgUOHDuGll14yuK6cnBzk5ORoP2dkZDz6j0oDFxocs4xKg6ysrEdlFI7OjA2xnHJxh3K6QxkBllM2Kg2QDQhh40IKFxMfHy/8/f31psfExIguXbroTHvw4IEAILZv325wWR9++KF48skn9aYHBgaKpUuXGs3D9OnTBR41P/7xj3/84x//+FfMv0uXLlkWBFjIoSM5U6ZMwdy5c02mOXfuHMLCwuyUI/PExsZiwoQJ2s/p6ekIDQ1FSkoK/P39HZgz28nMzERISAiuXbsGPz8/R2fHZlhOubhDOd2hjADLKZuMjAxUr14d5cuXt+l6HBrkTJw4EcOGDTOZplatWmYtKzg4GIcPH9aZlpaWpv3O2Dy3b9/WmZaXl4e7d+8anQcAVCoVVCqV3nR/f3+pGyUA+Pn5SV9GgOWUjTuU0x3KCLCcsvHwsO0lHg4NcgIDAxEYGGiVZbVu3Roffvghbt++jUqVKgEAEhMT4efnh/r16xudJz09HUePHkXz5s0BAD///DM0Gg3Cw8Otki8iIiJyDJe5SjYlJQUnTpxASkoK8vPzceLECZw4cUL7TJsuXbqgfv36GDJkCH7//Xfs2rULU6dOxejRo7WjLocPH0ZYWBhSU1MBAPXq1UO3bt0QExODw4cP45dffsGYMWMwYMAA3llFRETk4lzm7qpp06Zh1apV2s8Fd0vt2bMH7du3h6enJ7Zt24ZRo0ahdevWKF26NKKiojBz5kztPFlZWbhw4QLUarV22po1azBmzBh07NgRHh4e6NOnDz777DOL8qZSqTB9+nSDp7Bk4Q5lBFhO2bhDOd2hjADLKRt7lVMhhK3v3yIiIiKyP5c5XUVERERkCQY5REREJCUGOURERCQlBjlEREQkJQY5Zvjwww8REREBX19fBAQEGEyTkpKCHj16wNfXF5UqVcKkSZOQl5dncrl3797FK6+8Aj8/PwQEBCA6Olp7S7yj7d27FwqFwuDfb7/9ZnS+9u3b66V//fXX7Zhzy9WoUUMvz3PmzDE5z8OHDzF69GhUqFABZcqUQZ8+fbQPn3RGV65cQXR0NGrWrAkfHx/Url0b06dPR25ursn5XKE+lyxZgho1asDb2xvh4eF6DwUtbP369QgLC4O3tzeeeuopbN++3U45tdzs2bPRsmVLlC1bFpUqVULv3r1x4cIFk/OsXLlSr868vb3tlOPimTFjhl6ei3rSvSvVYwFDfY1CocDo0aMNpneVuty/fz9efPFFVKlSBQqFAps3b9b5XgiBadOmoXLlyvDx8UGnTp3wxx9/FLlcS7dtQxjkmCE3NxeRkZEYNWqUwe/z8/PRo0cP5ObmIikpCatWrcLKlSsxbdo0k8t95ZVXcObMGSQmJmLbtm3Yv38/Ro4caYsiWCwiIgI3b97U+Xv11VdRs2ZNnReaGhITE6Mz37x58+yU6+KbOXOmTp7Hjh1rMv348ePxv//9D+vXr8e+fftw48YNvPzyy3bKreXOnz8PjUaD//znPzhz5gwWLlyIL774Au+++26R8zpzfX733XeYMGECpk+fjmPHjqFx48bo2rWr3pPMCyQlJWHgwIGIjo7G8ePH0bt3b/Tu3RunT5+2c87Ns2/fPowePRq//vorEhMToVar0aVLFzx48MDkfH5+fjp1dvXqVTvluPgaNGigk+eDBw8aTetq9Vjgt99+0yljYmIiACAyMtLoPK5Qlw8ePEDjxo2xZMkSg9/PmzcPn332Gb744gscOnQIpUuXRteuXfHw4UOjy7R02zbKpm/Gkoyxl4Nu375deHh4iFu3bmmnLVu2TPj5+YmcnByDyzp79qwAIH777TfttB07dgiFQiFSU1OtnveSys3NFYGBgWLmzJkm07Vr10689dZb9smUlYSGhoqFCxeanT49PV0olUqxfv167bRz584JACI5OdkGObSNefPmiZo1a5pM4+z12apVKzF69Gjt5/z8fFGlShUxe/Zsg+n79esnevTooTMtPDxcvPbaazbNp7Xcvn1bABD79u0zmsZYP+XMpk+fLho3bmx2elevxwJvvfWWqF27ttBoNAa/d8W6BCC+//577WeNRiOCg4PFxx9/rJ2Wnp4uVCqV+Pbbb40ux9Jt2xiO5FhBcnIynnrqKQQFBWmnde3aFZmZmThz5ozReQICAnRGRTp16gQPDw8cOnTI5nm21NatW/H3339j+PDhRaZds2YNKlasiIYNGyI2NhZZWVl2yGHJzJkzBxUqVEDTpk3x8ccfmzzVePToUajVanTq1Ek7LSwsDNWrV0dycrI9smsVGRkZZr0cz1nrMzc3F0ePHtWpBw8PD3Tq1MloPSQnJ+ukBx5tq65SbxkZGQBQZL3dv38foaGhCAkJQa9evYz2Q87kjz/+QJUqVVCrVi288sorSElJMZrW1esReNR+V69ejREjRkChUBhN54p1+bjLly/j1q1bOvXl7++P8PBwo/VVnG3bGJd54rEzu3Xrlk6AA0D7+datW0bnKXjHVoFSpUqhfPnyRudxpBUrVqBr166oVq2ayXSDBg1CaGgoqlSpgpMnT2Ly5Mm4cOECNm3aZKecWu7NN99Es2bNUL58eSQlJSE2NhY3b97EggULDKa/desWvLy89K7PCgoKcsq6M+TixYtYvHgx5s+fbzKdM9fnX3/9hfz8fIPb3vnz5w3OY2xbdYV602g0GDduHJ555hk0bNjQaLq6devi66+/RqNGjZCRkYH58+cjIiICZ86cKXL7dZTw8HCsXLkSdevWxc2bNxEXF4c2bdrg9OnTKFu2rF56V67HAps3b0Z6errJl1S7Yl0WVlAnltRXcbZtY9w2yJkyZQrmzp1rMs25c+eKvPjN1RSn3NevX8euXbuwbt26Ipf/+DVFTz31FCpXroyOHTvi0qVLqF27dvEzbiFLyjlhwgTttEaNGsHLywuvvfYaZs+e7fSPVi9OfaampqJbt26IjIxETEyMyXmdpT4JGD16NE6fPm3yWhXg0YuHW7durf0cERGBevXq4T//+Q9mzZpl62wWy/PPP6/9f6NGjRAeHo7Q0FCsW7cO0dHRDsyZ7axYsQLPP/+8yfckumJdOhu3DXImTpxoMoIGgFq1apm1rODgYL2rvgvutAkODjY6T+ELqPLy8nD37l2j81hDccodHx+PChUqoGfPnhavr+Bt7hcvXrTrTrEk9RseHo68vDxcuXIFdevW1fs+ODgYubm5SE9P1xnNSUtLs2ndGWJpOW/cuIEOHTogIiICy5cvt3h9jqpPQypWrAhPT0+9u9pM1UNwcLBF6Z3FmDFjtDcnWHoEr1Qq0bRpU1y8eNFGubO+gIAAPPnkk0bz7Kr1WODq1avYvXu3xSOirliXBXWSlpaGypUra6enpaWhSZMmBucpzrZtlEVX8Li5oi48TktL0077z3/+I/z8/MTDhw8NLqvgwuMjR45op+3atcvpLjzWaDSiZs2aYuLEicWa/+DBgwKA+P33362cM9tZvXq18PDwEHfv3jX4fcGFxxs2bNBOO3/+vNNfeHz9+nVRp04dMWDAAJGXl1esZThbfbZq1UqMGTNG+zk/P19UrVrV5IXHL7zwgs601q1bO+0FqxqNRowePVpUqVJF/N///V+xlpGXlyfq1q0rxo8fb+Xc2c69e/dEuXLlxKeffmrwe1erx8KmT58ugoODhVqttmg+V6hLGLnweP78+dppGRkZZl14bMm2bTQ/FqV2U1evXhXHjx8XcXFxokyZMuL48ePi+PHj4t69e0KIRw2vYcOGokuXLuLEiRNi586dIjAwUMTGxmqXcejQIVG3bl1x/fp17bRu3bqJpk2bikOHDomDBw+KOnXqiIEDB9q9fKbs3r1bABDnzp3T++769euibt264tChQ0IIIS5evChmzpwpjhw5Ii5fviy2bNkiatWqJdq2bWvvbJstKSlJLFy4UJw4cUJcunRJrF69WgQGBoqhQ4dq0xQupxBCvP7666J69eri559/FkeOHBGtW7cWrVu3dkQRzHL9+nXxxBNPiI4dO4rr16+Lmzdvav8eT+Nq9bl27VqhUqnEypUrxdmzZ8XIkSNFQECA9k7HIUOGiClTpmjT//LLL6JUqVJi/vz54ty5c2L69OlCqVSKU6dOOaoIJo0aNUr4+/uLvXv36tRZVlaWNk3hMsbFxYldu3aJS5cuiaNHj4oBAwYIb29vcebMGUcUwSwTJ04Ue/fuFZcvXxa//PKL6NSpk6hYsaK4ffu2EML16/Fx+fn5onr16mLy5Ml637lqXd67d0+7XwQgFixYII4fPy6uXr0qhBBizpw5IiAgQGzZskWcPHlS9OrVS9SsWVNkZ2drl/Hcc8+JxYsXaz8XtW2bi0GOGaKiogQAvb89e/Zo01y5ckU8//zzwsfHR1SsWFFMnDhRJ0rfs2ePACAuX76snfb333+LgQMHijJlygg/Pz8xfPhwbeDkLAYOHCgiIiIMfnf58mWd3yElJUW0bdtWlC9fXqhUKvHEE0+ISZMmiYyMDDvm2DJHjx4V4eHhwt/fX3h7e4t69eqJjz76SGcErnA5hRAiOztbvPHGG6JcuXLC19dXvPTSSzoBg7OJj4832IYfH8x11fpcvHixqF69uvDy8hKtWrUSv/76q/a7du3aiaioKJ3069atE08++aTw8vISDRo0ED/88IOdc2w+Y3UWHx+vTVO4jOPGjdP+HkFBQaJ79+7i2LFj9s+8Bfr37y8qV64svLy8RNWqVUX//v3FxYsXtd+7ej0+bteuXQKAuHDhgt53rlqXBfu3wn8FZdFoNOL9998XQUFBQqVSiY4dO+qVPzQ0VEyfPl1nmqlt21wKIYSw7AQXERERkfPjc3KIiIhISgxyiIiISEoMcoiIiEhKDHKIiIhISgxyiIiISEoMcoiIiEhKDHKIiIhISgxyiIiISEoMcojIJbVv3x4KhQIKhQInTpyw+/qvXLmiXb+xFw0SkWMxyCEilxUTE4ObN2+iYcOGdl93SEgIbt68iYkTJ9p93URknlKOzgARUXH5+voiODjYIev29PREcHAwypQp45D1E1HROJJDRHZ1584dBAcH46OPPtJOS0pKgpeXF3766acSLXvv3r1QKBTYtWsXmjZtCh8fHzz33HO4ffs2duzYgXr16sHPzw+DBg1CVlaWdr727dtj7NixGDduHMqVK4egoCB8+eWXePDgAYYPH46yZcviiSeewI4dO0qUPyKyLwY5RGRXgYGB+PrrrzFjxgwcOXIE9+7dw5AhQzBmzBh07NjRKuuYMWMGPv/8cyQlJeHatWvo168fFi1ahISEBPzwww/48ccfsXjxYp15Vq1ahYoVK+Lw4cMYO3YsRo0ahcjISERERODYsWPo0qULhgwZohMcEZFzY5BDRHbXvXt3xMTE4JVXXsHrr7+O0qVLY/bs2VZb/gcffIBnnnkGTZs2RXR0NPbt24dly5ahadOmaNOmDfr27Ys9e/bozNO4cWNMnToVderUQWxsLLy9vVGxYkXExMSgTp06mDZtGv7++2+cPHnSavkkIttikENEDjF//nzk5eVh/fr1WLNmDVQqldWW3ahRI+3/g4KC4Ovri1q1aulMu337ttF5PD09UaFCBTz11FM68wDQm4+InBeDHCJyiEuXLuHGjRvQaDS4cuWKVZetVCq1/1coFDqfC6ZpNBqj8xiaT6FQAIDefETkvHh3FRHZXW5uLgYPHoz+/fujbt26ePXVV3Hq1ClUqlTJ0VkjIolwJIeI7O69995DRkYGPvvsM0yePBlPPvkkRowY4ehsEZFkGOQQkV3t3bsXixYtwjfffAM/Pz94eHjgm2++wYEDB7Bs2TJHZ4+IJKIQQghHZ4KIyFLt27dHkyZNsGjRIofmY8aMGdi8ebNDXi1BRKZxJIeIXNbSpUtRpkwZnDp1yu7rTklJQZkyZXQeakhEzoUjOUTkklJTU5GdnQ0AqF69Ory8vOy6/ry8PO1dYSqVCiEhIXZdPxEVjUEOERERSYmnq4iIiEhKDHKIiIhISgxyiIiISEoMcoiIiEhKDHKIiIhISgxyiIiISEoMcoiIiEhKDHKIiIhISv8PD1hNFch6LK4AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "=== Radial equal-area infill ===\n", - "Slice @ z : 10.00 mm\n", - "Area fraction (target) : 0.300\n", - "Filled area : 183.647 mm²\n", - "Centroid (x̄,ȳ) : ( -0.00 , -0.00) mm\n", - "Ix , Iy : 8084.520 , 8084.520 mm⁴\n", - "|Ix − Iy| / Ix : 1.12e-16\n", - "Ixy : 0.000 mm⁴\n", - "\n" - ] - } - ], - "source": [ - "# ----------------------------------------------------------------------\n", - "# NEW – isotropic, constant-area implicit surface\n", - "# ----------------------------------------------------------------------\n", - "\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "\n", - "def compute_area_moments(XX, YY, mask):\n", - " dx = XX[0, 1] - XX[0, 0]\n", - " dy = YY[1, 0] - YY[0, 0]\n", - " dA = dx * dy\n", - "\n", - " A = np.count_nonzero(mask) * dA\n", - " if A == 0:\n", - " return A, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0\n", - "\n", - " x_vals = XX[mask]\n", - " y_vals = YY[mask]\n", - " x_c = np.sum(x_vals * dA) / A\n", - " y_c = np.sum(y_vals * dA) / A\n", - " x_shift = x_vals - x_c\n", - " y_shift = y_vals - y_c\n", - "\n", - " I_x = np.sum((y_shift**2) * dA)\n", - " I_y = np.sum((x_shift**2) * dA)\n", - " I_xy = np.sum((x_shift * y_shift) * dA)\n", - " J = I_x + I_y\n", - "\n", - " return A, x_c, y_c, I_x, I_y, I_xy, J\n", - "\n", - "\n", - "\n", - "def radial_equal_area_infill_rectangular(\n", - " *,\n", - " width,\n", - " height,\n", - " area_fraction, # 0 … 1 of INNER rectangle that must be solid\n", - " z_height=0.0,\n", - " base_period=6.0, # radial wavelength [mm]\n", - " shell_layers=0,\n", - " layer_width=0.4,\n", - " grid_N=400,\n", - " plot=True,\n", - " tol=1e-4,\n", - " max_iter=40\n", - "):\n", - " \"\"\"\n", - " Generates a mask for an r-dependent implicit surface\n", - " f(r,z) = sin( 2π r / base_period + ϕ(z) )\n", - " At each z the threshold is chosen so that:\n", - " • filled area = area_fraction · inner_area (constant)\n", - " • Ix ≈ Iy (radial symmetry → automatic)\n", - " Optional perimeter shells match the style of your gyroid routine.\n", - " \"\"\"\n", - " # 1) Build XY grid -------------------------------------------------\n", - " xs = np.linspace(-width / 2, width / 2, grid_N)\n", - " ys = np.linspace(-height / 2, height / 2, grid_N)\n", - " XX, YY = np.meshgrid(xs, ys)\n", - "\n", - " # 2) Implicit field f(r,z) ----------------------------------------\n", - " r = np.hypot(XX, YY)\n", - " k = 2.0 * np.pi / base_period\n", - " phi = 2.0 * np.pi * z_height / base_period # simple upward phase shift\n", - " F = np.sin(k * r + phi) # values in [-1 … 1]\n", - "\n", - " # 3) Perimeter shells (optional) ----------------------------------\n", - " shell_thk = shell_layers * layer_width\n", - " inner_w = width / 2 - shell_thk\n", - " inner_h = height / 2 - shell_thk\n", - " inner_mask = ((np.abs(XX) < inner_w) &\n", - " (np.abs(YY) < inner_h))\n", - " shell_mask = ~inner_mask if shell_layers else np.zeros_like(F, bool)\n", - "\n", - " # 4) Desired filled area in INNER region --------------------------\n", - " A_inner = inner_w * 2 * inner_h * 2\n", - " target_area = area_fraction * A_inner\n", - "\n", - " # 5) Bisection to find threshold t so A == target_area ------------\n", - " lo, hi = F.min(), F.max()\n", - " t = 0.0\n", - " for _ in range(max_iter):\n", - " t = 0.5 * (lo + hi)\n", - " mask_core = (F >= t) & inner_mask\n", - " A, *_ = compute_area_moments(XX, YY, mask_core)\n", - " if abs(A - target_area) < tol * A_inner:\n", - " break\n", - " if A > target_area:\n", - " lo = t\n", - " else:\n", - " hi = t\n", - "\n", - " core_mask = (F >= t) & inner_mask\n", - " final_mask = core_mask | shell_mask\n", - "\n", - " # 6) Section properties ------------------------------------------\n", - " A_tot, x_c, y_c, Ix, Iy, Ixy, J = compute_area_moments(XX, YY, final_mask)\n", - "\n", - " # 7) Optional plot ------------------------------------------------\n", - " if plot:\n", - " plt.figure(figsize=(6, 6))\n", - " plt.imshow(np.where(final_mask, 1.0, np.nan),\n", - " origin='lower',\n", - " extent=[-width / 2, width / 2, -height / 2, height / 2],\n", - " interpolation='none')\n", - " plt.title(f\"Radial equal-area infill (z = {z_height:.2f} mm)\\n\"\n", - " f\"area = {area_fraction*100:.1f}% of inner; Ix ≈ Iy\")\n", - " plt.xlabel(\"x [mm]\")\n", - " plt.ylabel(\"y [mm]\")\n", - " plt.gca().set_aspect('equal', 'box')\n", - " plt.grid(True)\n", - " plt.show()\n", - "\n", - " # 8) Console report ----------------------------------------------\n", - " print(\"=== Radial equal-area infill ===\")\n", - " print(f\"Slice @ z : {z_height:6.2f} mm\")\n", - " print(f\"Area fraction (target) : {area_fraction:6.3f}\")\n", - " print(f\"Filled area : {A_tot:8.3f} mm²\")\n", - " print(f\"Centroid (x̄,ȳ) : ({x_c:6.2f} , {y_c:6.2f}) mm\")\n", - " print(f\"Ix , Iy : {Ix:8.3f} , {Iy:8.3f} mm⁴\")\n", - " print(f\"|Ix − Iy| / Ix : {abs(Ix-Iy)/Ix:8.2e}\")\n", - " print(f\"Ixy : {Ixy:8.3f} mm⁴\")\n", - " print(\"\")\n", - " return final_mask\n", - "\n", - "\n", - "# ----------------------------------------------------------------------\n", - "# DEMO: comment or delete after testing\n", - "# ----------------------------------------------------------------------\n", - "if __name__ == \"__main__\":\n", - " width = 20.0 # square coupon 20 × 20 mm\n", - " shell_layers = 3\n", - " layer_width = 0.4\n", - " z_values = np.linspace(0.0, 10.0, 5) # 5 Z-slices\n", - " area_fraction = 0.30 # 30 % of inner area\n", - "\n", - " for z in z_values:\n", - " radial_equal_area_infill_rectangular(\n", - " width=width,\n", - " height=width,\n", - " area_fraction=area_fraction,\n", - " z_height=z,\n", - " shell_layers=shell_layers,\n", - " layer_width=layer_width,\n", - " plot=True\n", - " )\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "e7f0e3ec-7f4b-462d-8ab7-a9d123a5ec0d", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwQAAAMWCAYAAABP5UFyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4m+d56P8vBgEQIMEFcG+Km6L2sqZjO85y7TRxmvSkJ07b06RN0iQ9V06dnrYZ5/dLmqYZtpM4x068V9x4xNvx0N7UIEVS4t57AgSJDfz+0O99CmrYsixRknl/rkvXJb0CgfcFXpLP/Tz3c9+6aDQaRQghhBBCCLEo6a/0CQghhBBCCCGuHAkIhBBCCCGEWMQkIBBCCCGEEGIRk4BACCGEEEKIRUwCAiGEEEIIIRYxCQiEEEIIIYRYxCQgEEIIIYQQYhGTgEAIIYQQQohFTAICIYQQQgghFjEJCIQQl013dzc6nY6HHnpIHfvud7+LTqe7qOfbtm0b27ZtuzQnd4U99NBD6HQ6uru7r/SpXFUOHz7Mddddh81mQ6fTcfz48XPeM4WFhdxxxx3q3zt27ECn07Fjx46FPeGrhE6n47vf/e6VPg0hxDVKAgIhFhltIKr9MRqN5OTkcMcddzAwMHClT++SKCwsnHeNsX8+8pGPXOnTu2ivvPIKOp2O7OxsIpHIlT6dc9q2bRs1NTUX9bXBYJDbb7+dyclJfvazn/Hoo49SUFBwic/w4tx///1s3bqVjIwMzGYzRUVFfPGLXzwroNOCYO1PXFwcDoeD6667jn/6p3+it7f3XV/r2WefRafT8Zvf/Oa8j3njjTfQ6XTcfffd7/fShBAC45U+ASHElfH973+foqIifD4fBw4c4KGHHmLPnj00NjZisVgu2+v+8z//M3feeedle37N8uXL+Z//83+edTw7O/uyv/bl8vjjj1NYWEh3dzdvv/02N95445U+pUuqo6ODnp4e7r//fv76r/9aHV+oe+adHDt2jKKiIv7kT/6ElJQUurq6uP/++3nppZeor68/67763Oc+x8c+9jEikQhTU1McPnyYn//859x111389re/5bOf/ex5X+vjH/84SUlJPPHEE/Peh1hPPPEEBoNBPY/X68VolF/pQoiLIz89hFikPvrRj7J69WoA/vqv/xqHw8GPfvQjXnjhBT7zmc9cttc1Go0LMnDJycnh85///GV/nYUyOzvLH/7wB374wx/y4IMP8vjjj19QQBCJRAgEApc1yLtURkdHAUhOTp53fKHumXfyq1/96qxjt912G6tXr+aRRx45K2BZuXLlWfdfT08PH/7wh/nCF75AZWUly5YtO+drmc1mPv3pT/Pggw8yODh4VrDh8/l47rnnuOmmm0hPTwe4Jj5fIcTVS1KGhBAAbN68GTg9S6sJBAL867/+K6tWrSIpKQmbzcbmzZvZvn37WV8/PT3NHXfcQVJSEsnJyXzhC19genr6rMedKx/8wQcf5EMf+hDp6emYzWaqqqq49957L+0Fnsfzzz9PTU0NFouFmpoannvuOe644w4KCwvVY86Xn36uPRINDQ3ccccdFBcXY7FYyMzM5C//8i+ZmJh4X+f53HPP4fV6uf322/nsZz/Ls88+i8/nO+txOp2Or371qzz++ONUV1djNpt57bXXABgYGOAv//IvVdpLdXU1DzzwwLyvfy+f+YXSzkl7r7XX1s4L4I477mDr1q0A3H777eh0OrVf5P3sO7mctHvkXPf5uRQUFPDQQw8RCAT493//93d87Oc//3kikQhPPfXUWf/38ssv43K5+G//7b+pY+faQ/Bun3c0GsXhcPAP//AP6lgkEiE5ORmDwTDvun70ox9hNBrxeDwXdK1CiGuLrBAIIQBULnRKSoo65na7+c1vfsPnPvc5/sf/+B/MzMzw29/+lptvvplDhw6xfPly4PTA4tZbb2XPnj18+ctfprKykueee44vfOELF/Ta9957L9XV1fzJn/wJRqORF198kb/7u78jEonwla985aKuJxgMMj4+ftZxm81GfHw8AH/84x/51Kc+RVVVFT/84Q+ZmJjgi1/8Irm5uRf1mnA6t7uzs5MvfvGLZGZm0tTUxH333UdTUxMHDhy46IHt448/zvXXX09mZiaf/exnufPOO3nxxRe5/fbbz3rs22+/zdNPP81Xv/pVHA4HhYWFjIyMsH79ejU4dzqdvPrqq/zVX/0Vbrebb3zjG8CFf+bv1Z49e3j22Wf5u7/7OxITE7n77rv51Kc+RW9vL2lpaXzpS18iJyeHH/zgB/z93/89a9asISMj46Je63KamJggHA7T29vL97//fQBuuOGGC/76DRs2UFJSwhtvvPGOj9uyZQu5ubk88cQT8wbscDpdyGq1ctttt5336y/k89bpdGzcuJFdu3apr2toaMDlcqHX69m7dy8f//jHAdi9ezcrVqwgISHhgq9VCHENiQohFpUHH3wwCkTffPPN6NjYWLSvry/6+9//Pup0OqNmszna19enHhsKhaJ+v3/e109NTUUzMjKif/mXf6mOPf/881Eg+u///u/zvnbz5s1RIPrggw+q49/5zneiZ/7omZubO+s8b7755mhxcfG8Y1u3bo1u3br1Xa+xoKAgCpzzzw9/+EP1uOXLl0ezsrKi09PT6tgf//jHKBAtKChQx7Zv3x4Fotu3b5/3Ol1dXWdd37mu5cknn4wC0V27dqlj2ufQ1dX1rtczMjISNRqN0fvvv18du+6666K33nrrWY8Fonq9PtrU1DTv+F/91V9Fs7KyouPj4/OOf/azn40mJSWp877Qz/x8tm7dGq2urj7rnEwmU7S9vV0dq6+vjwLRe+65Rx3T3uf//M//nPf157pnCgoKol/4whfO+tozP6NLzWw2q3spLS0tevfdd8/7f+2e+PGPf3ze57j11lujQNTlcr3ja33rW9+KAtGWlhZ1zOVyRS0WS/Rzn/vcvMcC0e985zvq3xf6ef/4xz+OGgyGqNvtjkaj0ejdd98dLSgoiK5duzb6j//4j9FoNBoNh8PR5OTk6De/+c13PF8hxLVLUoaEWKRuvPFGnE4neXl5fPrTn8Zms/HCCy/Mmx03GAyYTCbgdCrB5OQkoVCI1atXc/ToUfW4V155BaPRyN/+7d/O+9qvfe1rF3Qu2ow9gMvlYnx8nK1bt9LZ2YnL5bqo61u3bh1vvPHGWX8+97nPATA0NMTx48f5whe+QFJSkvq6m266iaqqqot6zTOvxefzMT4+zvr16wHmvWfvxVNPPYVer+dTn/qUOva5z32OV199lampqbMev3Xr1nnXEI1GeeaZZ7jllluIRqOMj4+rPzfffDMul0ud24V+5u/VjTfeSElJifp3bW0tdrudzs7Oi37OK+HVV1/llVde4Sc/+Qn5+fnMzs6+5+fQZtlnZmbe8XHaHoQnnnhCHXvmmWfw+Xzz0oXO9F4+782bNxMOh9m3bx9weiVg8+bNbN68md27dwPQ2NjI9PS0SisUQnzwSMqQEIvUL3/5S8rKynC5XDzwwAPs2rULs9l81uMefvhhfvKTn3Dq1CmCwaA6XlRUpP7e09NDVlbWWekE5eXlF3Que/fu5Tvf+Q779+9nbm5u3v+5XK55A/YL5XA43nHTbU9PDwClpaVn/V95eflFD34nJyf53ve+x1NPPaU2yWreKbhxuVx4vV71b5PJRGpqKgCPPfYYa9euZWJiQu1FWLFiBYFAgP/8z//kb/7mb+Y9V+xnAzA2Nsb09DT33Xcf99133zlfP/ZcL+Qzf6/y8/PPOpaSknLOgOZyCQQCTE5OnvP/EhISLigd5vrrrwdOb8q/9dZbqampISEhga9+9asXfB5aHn5iYuI7Pq62tpaamhqefPJJtT/giSeewOFwcPPNN5/3697L571y5UqsViu7d+/m5ptvZvfu3Xzve98jMzOTe+65B5/PpwKDTZs2XfA1CiGuLRIQCLFIrV27VlUZuu2229i0aRN//ud/TktLixoYPfbYY9xxxx3cdtttfOtb3yI9PR2DwcAPf/jDeZuP34+Ojg5uuOEGKioq+OlPf0peXh4mk4lXXnmFn/3sZ1dFvf3z5f2Hw+Gzjn3mM59h3759fOtb32L58uUkJCQQiUT4yEc+8o7X8vWvf52HH35Y/Xvr1q3s2LGDtrY2Dh8+DJw7eHn88cfPCghiVykA9bqf//znz7uvo7a2Frh8n7nBYDjn8Wg0etHP+V7t27dPDejP9J3vfOc9N/YqKSlhxYoVPP744+8pIGhsbCQ9PR273f6uj/385z/PnXfeSV1dHbm5uWzfvp0vfelL71h16b183nFxcaxbt45du3bR3t7O8PAwmzdvJiMjg2AwyMGDB9m9ezcVFRU4nc4LvkYhxLVFAgIhhBrwXX/99fziF79QJRR///vfU1xcrBolab7zne/M+/qCggLeeustPB7PvFnWlpaWd33tF198Eb/fzwsvvDBvFvn9VLW5EFrDq7a2trP+78zz1jZan1lNRltl0ExNTfHWW2/xve99j3/9139Vx8/1Gmf6X//rf80rU6m95uOPP05cXByPPvroWYPqPXv2cPfdd9Pb23vOGXiN0+kkMTGRcDj8rqVKL/QzvxYtW7bsvJt5i4uLL+o5vV4vfr//gh+/f/9+Ojo6Lrgk7uc+9zm+/e1v88QTT1BQUEA4HH7HdCF4b583nE4b+tGPfsSbb76Jw+GgoqICnU5HdXU1u3fvZvfu3XziE5+4oPMVQlybZA+BEAI43WF27dq1/PznP1flLLUBaOws7sGDB9m/f/+8r/3Yxz5GKBSaVyo0HA5zzz33vOvrnus1XC4XDz744MVfzAXIyspi+fLlPPzww/NSed544w2am5vnPbagoACDwTCvGgucXZv+XNcC8POf//xdz6eqqoobb7xR/Vm1ahVwOiDYvHkzf/Znf8anP/3peX++9a1vAfDkk0++43MbDAY+9alP8cwzz9DY2HjW/4+Njb3jNZzrM78WpaSkzHuPY/+8U0AQCoXOmdp06NAhTpw4oVba3k1PTw933HEHJpNJfXbvJj8/n82bN/O73/2Oxx57jKKiIq677rp3/Jr38nnD6YDA7/fz85//nE2bNqlAcPPmzTz66KMMDg7K/gEhPuBkhUAIoXzrW9/i9ttv56GHHuLLX/4yn/jEJ3j22Wf55Cc/ycc//nG6urr49a9/TVVV1bx65LfccgsbN27kzjvvpLu7m6qqKp599tkL2hD84Q9/GJPJxC233MKXvvQlPB4P999/P+np6QwNDV30tQwMDPDYY4+ddTwhIUGVa/zhD3/Ixz/+cTZt2sRf/uVfMjk5yT333EN1dfW860tKSuL222/nnnvuQafTUVJSwksvvXTWHgG73c6WLVv493//d4LBIDk5Ofzxj3+kq6vroq7h4MGDtLe3nzcdJScnh5UrV/L444/zj//4j+/4XP/2b//G9u3bWbduHf/jf/wPqqqqmJyc5OjRo7z55psqt/5CP/PFxOPxkJeXx5/92Z9RXV2NzWbjxIkTPPjggyQlJfEv//IvZ33N0aNHeeyxx4hEIkxPT3P48GGeeeYZdDodjz76qErZuRCf//zn+Zu/+RsGBwf53//7f1/Q11zo5w2nS6EajUZaWlrmpZ9t2bJFBfkSEAjxAXfF6hsJIa4Irdzl4cOHz/q/cDgcLSkpiZaUlERDoVA0EolEf/CDH0QLCgqiZrM5umLFiuhLL70U/cIXvjCvLGc0Go1OTExE/+Iv/iJqt9ujSUlJ0b/4i7+IHjt27ILKjr7wwgvR2traqMViiRYWFkZ/9KMfRR944IGzynJeirKjZ573M888E62srIyazeZoVVVV9Nlnnz3n9Y2NjUU/9alPRa1WazQlJSX6pS99KdrY2HjW9fX390c/+clPRpOTk6NJSUnR22+/PTo4OHhWWcgLKTv6ta99LQpEOzo6zvuY7373u1EgWl9fH41GT5ef/MpXvnLOx46MjES/8pWvRPPy8qJxcXHRzMzM6A033BC977771GPey2d+LucrO3quczpf6dCrreyo3++Pfv3rX4/W1tZG7XZ7NC4uLlpQUBD9q7/6q7M+P63sqPbHaDRGU1NTo+vWrYt++9vfjvb09Lzn15+cnFTlTpubm8/5mDPvr2j0wj5vzZo1a6JA9ODBg+pYf39/FIjm5eW953MWQlxbdNHoAu7oEkKIa8Add9zBjh07VLM2IYQQ4oNM9hAIIYQQQgixiElAIIQQQgghxCImAYEQQgghhBCLmOwhEEIIIYQQYhGTFQIhhBBCCCEWMQkIhBBCCCGEWMQkIBBCCCGEEGIRk4BACCGEEEKIRUwCAiGEEEIIIRYxCQiEEEIIIYRYxCQgEEIIIYQQYhGTgEAIIYQQQohFTAICIYQQQgghFjEJCIQQQgghhFjEJCAQQgghhBBiEZOAQAghhBBCiEVMAgIhhBBCCCEWMQkIhBBCCCGEWMQkIBBCCCGEEGIRk4BACCGEEEKIRUwCAiGEEEIIIRYxCQiEEEIIIYRYxCQgEEIIIYQQYhGTgEAIIYQQQohFTAICIYQQQgghFjEJCIQQQgghhFjEJCAQQgghhBBiEZOAQAghhBBCiEVMAgIhhBBCCCEWMQkIhBBCCCGEWMQkIBBCCCGEEGIRk4BACCGEEEKIRUwCAiGEEEIIIRYxCQiEEEIIIYRYxCQgEEIIIYQQYhGTgEAIIYQQQohFTAICIYQQQgghFjEJCIQQQgghhFjEJCAQQgghhBBiEZOAQAghhBBCiEVMAgIhhBBCCCEWMQkIhBBCCCGEWMQkIBBCCCGEEGIRk4BACCGEEEKIRUwCAiGEEEIIIRYxCQiEEEIIIYRYxCQgEEIIIYQQYhGTgEAIIYQQQohFTAICIYQQQgghFjEJCIQQQgghhFjEJCAQQgghhBBiEZOAQAghhBBCiEVMAgIhhBBCCCEWMQkIhBBCCCGEWMQkIBBCCCGEEGIRk4BACCGEEEKIRUwCAiGEEEIIIRYxCQiEEEIIIYRYxCQgEEIIIYQQYhGTgEAIIcR7Eo1GiUajV/o0hBBCXCLGK30CQgghrn7RaJRwOEwgECAQCGA2mzEajRgMBvR6mVsSQohrmS4q0zxCCCHOIxqNEgwGCQQCBINBotEoer0ek8kEgE6nw2AwqMBAp9Nd4TMWQgjxXskKgRBCiLNEIhG1GhAOhwHUgF8LArT5pFAoRDgcRq/Xq+BAAgMhhLh2yAqBEEIIYH5aUDAYJBwOq8H/mQN8bYUg9mu1XydnrhoIIYS4uklAIIQQi1w0GiUUCuH3++elBb1TCtCZAUHsc2l/JJ1ICCGuDZIyJIQQi1QkEiEYDOL3+wmHw0SjUbUacLGDd+1rtaAgNp3IaDRKYCCEEFchWSEQQohFJBqNnrU/4HxpQe/kfCsE53vN2HQiLTCQdCIhhLg6SEAghBCLgDZbr+0PiEQi75oW9E7eS0AQew5nphMZjcb3tSIhhBDi/ZOAQAghPsC0tKBAIEAoFLokaUFwcQGB5szAQNKJhBDiypKAQAghPoBim4hdbFrQO3k/AYFG+/VzZjqRlC0VQoiFJQGBEEJ8QFzqtKB3cikCglixqwbaOUs6kRBCLAwJCIQQ4hqndRP2+/2EQiFgfhOxy+FSBwSa2A3IgJQtFUKIBSBlR4UQ4hoViUTw+/0EAgEikQjANV+9J7ZsKfxXF2RJJxJCiMtHVgiEEOIaEttNWAsELvX+gAtxuVYIzkW6IAshxOUlAYEQQlwDtLQgbX/AhXQTvtQikQijo6P09/djMpkoKCjA4XAs2OtLF2QhhLg8JCAQQoir2JlNxODy7w84UyAQYGBggIGBAQwGA7m5uUSjUXp7ezEajRQWFpKdnY3RuDBZqNqvLW11RK/Xq+BAAgMhhHjvJCAQQoirTGxakFYtCFjwAa/H46Gvr4+RkRGSkpLIy8sjLS0NnU6HyWQiEokwNDRET08Pc3Nz5ObmUlBQQHx8/IKdo6QTCSHE+ycBgRBCXCW0sqF+v/+KpQVFo1HGx8fp6+vD7XaTmZlJbm4uCQkJ8x4Xu4cgGo0yNTVFT08Po6OjpKenU1hYSHJysqQTCSHENUACAiGEuMK0bsJ+v59wOHzJugm/F6FQiKGhIfr7+wmHw+Tm5pKdnX3ezcPnOz43N0dvby/9/f1YrVYKCwvJzMxcsBl76YIshBDvnQQEQghxhVzubsIXwuv10t/fz+DgIDabjdzcXNLT0991AP9uVYZCoRADAwP09PQQDofJy8sjLy8Ps9l8KU//HZ2ZTqQFBpJOJIQQ80lAIIQQC2ghuwm/0zlMT0/T19fHxMQETqeTvLw8kpKSLvg5LrTsaDQaZWxsjJ6eHqampsjKyqKwsJDExMSLPf337FzpRNIFWQgh/osEBEIIsQC0JmJ+v18NThc6LSgcDjM6OkpfXx8+n4+cnBxycnKwWCzv+bkupg/BzMwMPT09DA4OkpycTGFhIU6n84rtM4hEIpjNZqlOJIRY9CQgEEKIyyg2LWhkZIS+vj5Wr169oGkrfr9flQ2Ni4sjLy+PzMxMDAbDRT/n+2lMFggE6Ovro7e3F4PBQH5+Prm5uQtetvSNN95gw4YNJCQkSBdkIcSitjA/fYUQYhE5X1qQNuBdqGBgZmaGvr4+RkdHSUlJoaqqitTU1Cs+6DWZTJSUlFBUVMTw8DA9PT20t7eTk5NDQUEBVqv1sr5+7PXrdDqi0SiBQEClbkk6kRBisZGAQAghLhGtm7Df7ycUCgH/tZl1oQaYWs5+X18fMzMzZGVlsWbNGmw222V/7fdKr9eTnZ1NVlYW09PT9PT0sHv3bpxOJ4WFhaSkpFzW9yy2rKuWShQOhwmHw1K2VAixqEhAIIQQ75O2PyAQCKgmYuerZnO5sjSDwaAqGxqNRsnNzaW2tpa4uLjL8nqXkk6nIyUlhZSUFLxeL729vRw7dgyLxUJBQQFZWVnvK73pQs9BWy2A01WSQqGQWjGQdCIhxAeZBARCCHERYrsJa4HAu5UNvRwDyrm5Ofr7+xkaGiIhIYElS5bgcDiu2dKa8fHxlJeXU1JSwuDgIF1dXbS2tpKXl0d+fv4lLVuqbS6Opf3bYDCoVYNgMEgoFJIuyEKIDywJCIQQ4j3QBoja/gAt7URLC1qoc5iamqKvr4/JyUnS09NZsWIFdrt9QV5/IRiNRvLz88nLy2N8fJyenh527txJZmYmBQUF76lE6sWKXTU4X2AgqwZCiA8CCQiEEOICRCKReU3EADUgvNBBYWxKysUIh8OqUlEgECAnJ4eKiooFbfa10HQ6HU6nE6fTicfjoaenh0OHDmG32ykoKCAjI+OiBuWxDcsu5BzOTCcKh8Po9XoVHEhgIIS4lklAIIQQ5xGbFqRVCwIWfADo9/tVN2GTyUReXh4ZGRmXPa/+apOQkEB1dTWlpaX09/dz6tQpWlpaVNnSy71f4sx0okgkQiQSkXQiIcQ1TwICIYQ4g1Y21O/3z0sLuhSBwHtZIXC73apsaFpaGtXV1Ze98s61wGQyUVxcTGFhIaOjo3R3d88rW3ohFZXeywrBuUg6kRDig0QCAiGE+P9FIhFVNjQcDl/ybsIX8hyRSESVDZ2dnSUrK4t169Zd9tr81yK9Xk9mZiaZmZm4XC66u7vZs2cPDoeDgoIC0tLSLvug/MzAIDadyGg0SmAghLgmSEAghFj0YqsFhcPhd60W9H6cb4UgGAwyODhIf38/Op2O3NxcsrOzF6x777UuKSmJZcuWUV5eTm9vL/X19ZjNZgoKCsjOzj4rver9rhCcKTZo1NKJAoGA6kMh+wyEEFcz+U0jhFiU3qmb8OUauJ3reWdnZ1XZULvdTllZGQ6HQwaPF8lisVBWVkZJSQlDQ0N0d3fPK1tqsVgu+zmcuWqgBQYGg0G6IAshrkoSEAghFhUtLSgQCBAKhVRa0EKVDdUGiZOTk/T19TE9PU16ejqrVq0iMTHxsr/+YmEwGMjNzSUnJ4fJyUm6u7vnlS1NSEgALk9vCI2kEwkhrhUSEAghFoVzpQWdr5vw5RKJRAiHwxw8eJBgMEhubi5VVVWYTKYFO4fFRqfTkZaWRlpaGrOzs/T09HD48GEVEGiVoy73OcSWLQ2Hw6qRnaQTCSGuBrro+ymKLYQQV7HzpQUt9Mysz+ejv7+fgYEBIpEIFRUVZGRkXLMlKgOBABaL5Zrd3xAMBunt7aWtrU3tM8jNzV3QwExbNdAqWMWmq0lwIIRYaBIQCCE+cLQykH6/X6UFLXQgEI1GVdnQsbExHA4HqampdHZ2snnz5gU5h8thcHCQe++9F7vdzt///d9fs2lOwWCQt956i9raWvr6+nC73WRnZ89LJ1oIWlCgkbKlQogr4dqc3hFCiHOIRCL4/X4CgYBKBbkSaUGjo6P09fUxNzdHdnY269evJz4+HrfbfU0O8gKBAM8//zyBQICCggJ6e3ux2Wy0trZy9OhRsrOz+djHPnZNXZs2CM/IyCA7Oxu32013dzf79u0jNTWVgoKCBdncfa4uyKFQSK0YSDqREGIhSEAghLimxXYT1gKBy1k29HwCgYAqG6ptaM3KypqXVhM78LuWdHd38/rrrxMIBPjqV7/Kn//5n5OYmMjY2Bgvv/wyWVlZrF+/nrS0tCt9qhfNbrdTW1tLeXk5fX19nDhxgri4OFW29HKnR53ZBfl8zc6EEOJykIBACHFN0gZM2v4ALS1ooaoFaTweD319fYyMjJCUlERFRcWCNMRaSLm5uaxbtw6/3095eTnJycmYTCb6+/tZv349ubm5pKSkXOnTfE/O14fAbDazZMkSiouLz1m2ND4+/rKfm3RBFkIsNNlDIIS4pmgNn7RqQZe6m/CFiEajTExM0NfXh8vlIiMjg7y8vHfNPZ+ZmeHYsWNs2bJlQc7zcrrWKyP5/X62b9/Ohz/84XeceY9Go0xNTdHT08Po6CgZGRkUFBSQnJy8oPcboFa/9Hq9Cg4kMBBCXAqyQiCEuOrFpgVp1YKABR8QhUIhhoeH6evrIxwOk5ubS3V19QUPjmXwdvW40E7FOp2O1NRUUlNTmZubo6enhyNHjmCz2SgoKCAzM/Oyp/KcmU4UiUSIRCKSTiSEuGQkIBBCXLW0sqF+v39eWtBCBwJer5f+/n4GBwexWq0UFRWRnp5+UYMwWZS9dlmtViorKyktLWVgYID29nZaWlrIz88nLy9vQVZNJJ1ICHE5SEAghLjqaN2E/X7/FU0Lmp6epr+/n/HxcZxOJ8uXL8dut1/0OchA7epxoSsE52I0GikoKCA/P5+xsTF6enro6OhQZUsXohSrdEEWQlxKEhAIIa4a5+omvNCrAZFIhJGREfr6+vD5fGRnZ7NhwwYsFssleX5ZIfjg0Ol0pKenk56ezszMDD09Pezfv5+UlBQKCgpwOp0LVrYUUOlEgUBAuiALId4TCQiEEFfU+boJL3S1oEAgwMDAAAMDAxiNRvLy8sjMzMRgMFyy15CB2dUjGo1e0s8jMTGRmpoaysrK6Ovro6mpCYPBQEFBATk5OQvS1fnMVQMtMDAYDNIFWQjxjiQgEEJcEVpa0NTUFC6XC6fTOW/gslBmZmbo6+tjdHSU5ORkKisrSU1NlYGTuCgmk4mSkhKKiooYHh6mu7ubtrY2cnNzyc/Px2q1XvZzODMwCIfDdHV1kZWVhc1mk3QiIcRZJCAQQiyoM9OCXC4Xg4ODZGdnL9g5RKNRxsfH6evrw+12k5WVxZo1a7DZbJf1da/VxmQfRJd6heBMer2e7OxssrKymJ6epqenh927d5Oenk5BQQEpKSkL2gW5vb2d5ORk4uLiJJ1ICHEWCQiEEJedNkupVQuKTQtaiFQKTSgUUt2Eo9Eoubm5LF26lLi4uAU7B7G46HQ6UlJSSElJwev10tvby9GjR7FarRQUFJCVlbUgZUtjN+Zr6UR6vX5eep4EB0IsXhIQCCEumwvpJrwQs+Zzc3P09/czNDSEzWajpKQEp9N5RWq3ywrB1eFyrxCcS3x8POXl5ZSUlDA4OEhnZ+e8sqVms/myvbZ2vedKJwqHw1K2VIhFTgICIcQlp1U68fv9qomYNht5pssVEGgdZvv7+5mYmCA9PZ0VK1Zgt9sv+WtdKBloCThdtlQLAsbHx+np6aGzs5PMzEwKCwsvyz2qBeOa2MAATq+ehUIhFbBLOpEQi4sEBEKISyK2m3AgECASiVxw2dBLGRCEw2FVNjQQCJCdnU15efllnX29ULHlIWWwdWVdDZ+BTqfD6XTidDrxeDz09PRw4MABkpKSKCwsJD09/ZKd4/m+x87sgny+ZmdCiA82CQiEEO/LhaQFvZNLtULg9/tV2VCTyUReXh4ZGRmXtGyoEJdLQkIC1dXVlJaW0t/fz8mTJzl16pQqW/p+9rlo31/vNrCXLshCLF4SEAghLoqWFqRVC7rYbsLvNyBwu9309fUxNjZGSkoK1dXVC1LB5f24GmanxdWZwmUymSguLqawsJCRkRF6enrmlS29mEpY77Ur87nSibQuyFpwcDW+d0KIiycBgRDigsWmBQWDwUvSTfhiAoJIJKLKhno8HrKysli7du2C1Hh/P2QQdfW42jd36/V6srKy5pUt3bNnDw6Hg8LCwvfUK+O9BgSaM9OJIpEIkUhE0omE+ACSgEAI8a60bsJa2dD3mhb0TvR6/QUPzoLBoCobqtPpyM3Npba29porG3q1D0YXg2tplSY5OZnk5GTKy8vp7e3l+PHjmM1mCgsLycrKete0uIsNCGK9UzqRlC0V4tonAYEQ4ry0bsJ+v/99pQW9kwtZIZidnVVlQxMTEyktLcXhcFxzs5MyYBLvh8VioaysTJUt7e7unle21GKxnPPrLkVAoDkzMIhNJzIajbLPQIhrlAQEQoiznNlN+P2mBb2bcwUE0WiUyclJ+vv7mZqaIj09nVWrVpGYmHhZzkEsPtfqwNVgMJCXl0dubi4TExP09PSwc+dOVbY0KSlp3uMvZUCgiZ0U0NKJAoGAdEEW4holAYEQAvivtCBtf0BsN+HL+Yv9zBWCcDjM8PAwfX19BINBcnJyqKiouCrKhr5fsQMocWV9ED4DnU6Hw+HA4XAwOztLT08Phw4dIjExUZUtjU3Ju1zfx2euGkgXZCGuPRIQCLHIafnAfr+fUCik0oIudyCg0QYSPp9PlQ21WCwUFBSQnp4uZUPFZXEt7SG4EDabjaqqKlW29NSpU6psqcPhAC7/isj5uiBLOpEQVz8JCIRYpM6VFnS+bsKXk8fjIRwOs3//ftLS0li6dCnJyckf6IHDB2F2Wlyd4uLiKCoqoqCggNHRUVW2FE7vxUlISLjs53Bm2dJwOKwaFUo6kRBXJwkIhFhEztVNeCHSgs4UiUQYHR2lv7+f2dlZANavX098fPyCncOVIIMgsVD0ej2ZmZlkZmYyMjLCsWPH2LdvH6mpqRQWFpKWlrYgKwYwvwuypBMJcXWSgECIReD9dhO+VILBoEoL0uv15ObmkpyczOHDhz/wwUCs97tC4Pf70ev1Z5VbnZubw2w2z0uzikajzM3NYbVa533W2vEzG11pAeOZn0cgEABON86K5fV6iYuLw2ic/+tkdnaW+Pj4eStO0WiU2dlZbDbbvHOJRCL4fL6z+khovS7OrJ5zvut/Lz5oKUPvxGazYTAY2LJlC729vTQ0NBAXF6e6IC9EWt750omkC7IQVwcJCIT4ANMqf/j9fiKRCMAVSwvq7+9neHgYu91OWVkZDocDnU6Hz+cDFscA7VJc38DAAL/61a+w2Wx87WtfU1WXGhoaeOSRRyguLubLX/6y+ozfeustXnrpJbZs2cKf/umfqud57LHHOHr0KJ/5zGfYsGEDcHrQ/4tf/IKRkRH++q//mtLSUgAmJia45557APjqV7+qctLb29v59a9/TXp6Ol//+tfVxu/9+/fz5JNPsnz5cr74xS+q637++ed5++23+fjHP85HPvIR4PQ9+utf/5rW1la+8IUvsGLFCuD0PXPXXXfhcrn4yle+QkFBgbr+e+65B6vVyje+8Q3sdvtFvY+L4X7TaAGo2WymtLSU4uJihoaG5nVBLigoOG/Z0kvpfF2QJZ1IiCtLAgIhPmDOlRZ0ucuGnu88JiYm6Ovrw+VykZGRwerVq8/KYY6tvLNYBgLRaJR9+/Zx8uRJPvzhD5OXlwecHhy/+uqrTExMcMstt5CSkgKcnoX/wx/+gF6vJycnh/7+fqxWKx0dHRw/fpysrCxCoRA9PT0AtLS0sHfvXpYuXUpnZyfd3d1kZWVx/PhxDh8+zJYtW2hpaaGrq4vu7m58Ph9dXV1s2LCBnp4elXve1NSEx+OhsrKS/v5+otEoXV1dvP7669jtdpKTk+nt7WVubo729nb27dtHUVERExMTdHV1ER8fT0tLCzt37mTNmjW0tbXR2dlJe3s7hw4d4vjx42zevJn29na6urro7e1lZGSEgYEBVq1aRU9PDx6Ph97eXg4cOEAoFKKwsJD+/n4sFgudnZ0cP36clJQUbrnlFhUE9fX18eqrr1JRUcGWLVvU+97U1MSePXu47rrryM7OXuBP/crRVgQ1BoOB3NxccnJymJycVGVLMzIyKCwsJDk5+bKf07nSiWKbnUkXZCEWlgQEQnxAXC1pQaFQiOHhYfr7+wmFQuTk5FBdXX1WqonmWi7F6fP51IBcm8EGcLlcNDY2UlZWhtPpVMdHRkZoamqiurqaZ599llOnTmG32wkGg4yNjZGZmcnLL7/MxMQE+fn5OBwOgsEger2eV199FYPBwNe+9jXWrl1LamoqY2NjvPTSS2RmZvKVr3yFDRs2UFNTw5EjR3juuedob2/nv//3/47L5eKGG27glVdeYc+ePYRCIT784Q9jsVhYsWIF//f//l+6urpwOp1s2bKFzs5OMjIyePrpp/F4PBQVFbFmzRp1j73yyiskJCTwjW98g9WrV5Ofn09HRwd/+MMfKCws5O/+7u9Yu3YtGzduZMeOHTz77LMMDQ1x6623Mjc3x9atW3n88cc5evQocXFxfPSjH+X48eOUlpbyi1/8goGBAXJycti2bRvj4+PYbDZeeeUVgsEgX//619m4cSMWi4Xp6WlefPFFUlNTqa2tZXh4mPT0dI4dO8Zzzz1HeXk51dXVnDx5kpKSEl599VVef/11XC4Xt912Gw0NDdTW1s4bAHd3dzM4OMjKlSvnzZg3NzczOzvLypUrr7nKV+cLtnU6HWlpaaSlpTE3N0dPTw+HDx8mISGBgoICMjMzF2RQ/k5dkCWdSIiFIQGBENe4hegmfCG8Xq/qJhwfHz+vDvo7uZoDApfLhcFgOGtVY2JiApvNxq5du3j00UfJzc3lX//1X/F4PKSkpPD888/z2muvsXr1ar7xjW8wMTGBw+HggQceYPv27aSkpHDddddhMpkoKiri3nvvZXR0lL/4i79g2bJljIyMYLPZ+PWvf00oFOKLX/wi1dXVGI1GZmZmOHr0KImJidxxxx1UV1dTWFhIR0cHR44cYXJykk996lMsXbqUzZs3s3fvXo4ePYrFYmH9+vW4XC5WrlzJT37yE5qbmwFYu3YtNpuNjIwMvv3tbzM5OUlGRga1tbW4XC68Xi8PPfQQkUiE73//+1RXV5OcnKzSlJKTk/nJT37C0qVLqaqq4rnnnuOxxx6jrq6Of/qnf6K9vZ2NGzdyzz33sGfPHqamprj55psJh8MsXbqUZ599lo6ODsrKyli9ejUpKSkqOHK73dTW1rJ06VIV6B45cgSj0UhVVRVLly7F6XTS2dnJgw8+SHp6Ov/tv/03amtrWbVqFW+88QbPPPMMNTU13HDDDQwNDbF+/Xqeeuoptm/fTnx8PF/4wheYnJzEbrfzq1/9it7eXu644w62bdvG7OwsgUCAX/7yl8zNzfHVr36V8vJywuHwWQ3ApqeniYuLO2tfxpV2IatvVquVyspKVba0ra1tXhfk8wX0l9L50on0er0KDiQwEOLykIBAiGtQbFqQtvHySqUFuVwu+vr6GB8fx+FwUFtbS1JS0gWfx9UaEPT393P33XdjMpn45je/SVpaGgD19fU8+OCDZGZmsnHjRux2O0lJSezevZsXXniB5cuX43Q6SUpKIjU1lSeffJL9+/fzsY99jNTUVGw2GwkJCXR2duLxePD5fCQlJeHz+TAajezbt4/R0VHWrVtHQkICoVAIv9/Pvn370Ov1rFy5ksTERBITExkcHOTgwYP09vby+c9/nqSkJJKTk2lsbOTw4cPo9XpWrFhBUlISKSkpHDhwgMOHD1NYWIjX6yUQCODxeNi9ezft7e1UVlaqVLOpqSn279+Px+MhLy9PNasbHBxk7969JCQksG3bNrUq1dLSwoEDBxgfHyctLY1gMMjc3BzHjh3j0KFDJCQkMDs7SzAYxOv1snv3bg4ePEhlZSUpKSkkJSVhtVp59tln6e/vZ8OGDdjtdjVrvHv3bkKhEBs2bCAxMRG9Xs/U1BR79+7F4XBQU1OD3W7HbrfT1tbGwYMHmZ2d5aMf/SjJycmkpKQwPT2Nx+Ohq6sLu91OQkICycnJPPjggxw5coRbb72VlJQUXC4XFouFn/3sZwwMDHD77ber1wyHw/y//+//SyAQ4Otf/zr5+fkAdHR08Itf/IKEhAS+9a1vXfTehsvhvaTjGY1GCgsLKSgoYGxsjO7ubjo6OsjOzqagoGBBOoWfmU4UiUSIRCKSTiTEZSQBgRDXEK2bsN/vv6JpQZFIhJGREfr7+/F6vWRnZ1902dCrKSCYnZ3lySefRKfTUVtby9TUFHFxcXR2dvLEE0+QkZFBSkoK4+PjauXA6XRSU1PD5OQko6OjDA0NUVtbi9PppLKykj179jA6OsrIyAjJycmEQiHsdjsjIyOMjY3hcrmw2Wzq82xsbMTtdtPY2Ki6zA4NDdHe3g6gUrHMZjOnTp2io6OD8fFx/H4/gUCA5ORkjhw5QkdHB+FwmG3btuH3+0lLS+N3v/sdHR0d7Nu3j+uvv55gMMh1113HD37wA0ZGRmhtbWXVqlV0dnaSk5PDqVOn8Pl8zM7OUlFRQSAQoKenh+bmZuLi4ti0aRNFRUUUFxfT0dFBe3s7brebf/7nf6auro4bb7yRvXv30tbWhsVi4c///M8ZGxtj27Zt3HvvvXR0dHD48GFWrVql7un6+nqmpqZobGzEYrEwMTHB4OAgp06dIhqNqr0MBoOBpqYm2traGB4exufzEQgEsFqt7N+/n7a2Nvx+P5/97Gfx+/2kpqYyOjqqPqPc3FxCoRApKSk0NjYyMjLCxMQES5cuZW5ujqSkJEZHRxkfH8fr9VJWVsbQ0BA6nY7JyUkCgQBDQ0O8/vrrRKNRysrKmJiYwO/309PTw/bt23E6nXzmM5+54ilGF7M/R6fTkZ6eTnp6OjMzM3R3d7N//35SUlIoLCxURQEut3dKJ5KypUJcOhIQCHENuFrSggKBgCobajQayc3NJTMz86ySk+/FlQ4IotEohw4dIhKJYLVa2b17N3q9nuXLl7Nq1SqSkpKYmZlh165dpKen85WvfIWqqiqqqqpoa2ujrq4Oj8fDX//1X9PS0sINN9zA7t27qaurIzU1lc2bN+PxeFi3bh3f/OY3aWpq4sknn+RP/uRPqK+vJycnh+9///tq38D69evp6+sjKyuLhx9+mFAoRFVVFTU1NRiNRiYnJ3njjTewWq38y7/8CxUVFSxZsoR9+/bx9ttv09zczJ133qk2LD/yyCPs3r2b6elpbrvtNnw+H7fccgu//OUv6enpYceOHdx0003U1dWxdOlS/u3f/g2Xy0V3dzerVq1iampq3nu0Zs0ali9fjt1up7+/n/r6ejo7O/mnf/onKioqWLlyJbt37+bkyZPMzs7yjW98g/7+fj75yU/y3HPPcerUKZ577jluu+02XnrpJW666Sb+7d/+jYGBATIyMti6dSstLS0sWbKE733ve8zOzlJeXs7KlStVxaxXXnkFvV7Pt7/9baqrq8nJyaGuro433niDI0eOcOedd9LU1MSWLVt47LHHeOutt+jt7eVXv/oVnZ2dbNq0iX/5l3+hsbGRBx98kC9/+cuEw2FWrVrF/fffT1NTE1VVVWzdupUTJ06Qn5/Pc889p1ZuVq1ahcfjwWg0smvXLiKRCCtXrmTDhg0kJCQwPj7Ojh07SEtLY926dXR3d+N0Olm6dOkVu8ffz8+JxMREli5dSllZGX19fTQ2NmIwGFTZ0vfz/X+hzgwMYtOJpAuyEO+fBARCXMXO1U34SuTRzszM0N/fr2a5KyoqLlljoysVEExMTBAOh3G5XDz44IOEw2G+/OUvs2rVKuLi4vB4PBw4cAC73c6XvvQlVq5cSX5+Pnv37uWJJ54gNTWVH/3oR6xevZoNGzbw6KOP8uyzz3Ls2DG+9a1v4Xa72bx5Mz/72c84cuQI4+PjrFixgqGhIYqKirjnnnsYGBjAZDKxZMkSTCYTqampvPTSS8zNzeH1esnLy1NpYa2trRiNRj72sY+RlZVFSkoKJ0+epKGhge7ubr75zW+SmZlJZWUlr776Kk1NTXi9Xm699Vba2tpYtmwZv//972lubuaFF16gtraWQCBAWVkZv/3tbxkeHubYsWMUFxczPDxMcnIyu3btwufzkZ+fT3Z2NnFxcVgsFurr6zGbzdx5550UFBSQkJDAH//4R44dO8bAwABf+cpXyM7Opra2lhdffJGmpib+8z//k61bt9LX18fq1at57rnnaG1t5eWXX6ampoZoNEppaSk//elPmZ6eprGxkcLCQiYnJ9WsfzQaZevWreTk5BAXF0cwGKS7u5vR0VFWrlxJVlYWeXl5dHd309vby/bt29X7tWLFCn75y1/y2muv0dLSQkVFBcPDw6xevZp/+7d/o7m5GZ/Px80330xCQgJFRUX8wz/8AxMTEzidTjZv3kx3dzehUIh7772XUChESUkJ69atIxAIqKDJYDDwN3/zN6xbtw6Hw0F3dzf3338/DoeD7373u3i9XpKSkhYk9UZzqSp4mc1mlixZou6R7u5uVbY0Pz//rD4Sl0PsJIiWThQIBKRsqRDvkwQEQlxltNkvbSB4pboJR6NRxsfH6evrw+12k5mZec6yoe/XlQgIxsbG+I//+A+CwSCf//zncTgchMNhfD4fnZ2dWK1W1q5dq/YCdHV18cYbb5CamsrNN9+M0WhU+f5vvvkmw8PDZGVlqbzm1157jbfffhuTyYTZbEav16s0q7m5ObVJUqfTEQgEmJ6exu12ExcXp2Y6vV4vLpeLQCCgnkOv1+N2u3G73eh0Oqanp/H5fOh0Orq7u9X/6fV6fD4f4+PjDA8P4/F48Hg8TE9P4/f76e/vB04HenNzc+p5BgYGmJqaYmJiguPHjzM7O0s4HMZsNuP3+/F6vQwPD+P1egkGg4yMjDAzM4PFYiEuLo5AIMDk5CQNDQ1MTEwwMTHB+Pg4Pp+PyclJ3G43MzMzjI2NMTo6qs7RaDTidrvp7e3F7Xbj8/mYmppS70tHR4fqaD0zM6M272rXHvveTE9PqyZq2oyy2+1mdHQUu92OTqfDbDYTDAaZnZ1lYGBABdoWi4VnnnmG+vp67Ha7GmBGo1GeeeYZxsfH1V4Co9GIx+Ph+eefR6fTsXLlSpxOp/pcBwYGGBsbo6KiQqXenDp1ikcffZTMzEzuvPPOBan7D5e+pK9eryc7O5usrCymp6fp7u5m9+7dpKenq7KlVyKdSLogC3HxZFeOEFcJ7Rfa0NCQGrhdiVmvUChEX18f+/fvp7W1ldTUVDZu3EhFRcUlDwY0sZVFLhefz8evf/1rfvKTnzA4OMjc3JyaiU9ISCAzMxODwcDc3JwaCE9NTeHz+ejp6WFwcJCuri6sVivZ2dmsXbuWsbExhoaGOHnyJMXFxWomuaOjg4GBAQ4fPqz2E2zZsoWjR48yOTnJyy+/THV1NRkZGVRXV9PU1MTAwADbt2+nuLiY7OxsTCYTnZ2d9PT00NraSnZ2NsXFxSplq7W1lbS0NLVXoaOjg+HhYerq6li1ahVpaWls2rSJ/fv3MzQ0xJtvvsmmTZtUUHPo0CGGhobYvn07y5cvJy0tjczMTBobGxkeHmZubo4lS5aQmZlJQkIC3d3d9PT0YDKZVL36vr4+BgYGOHnyJDU1NaSnp7N27Vo6OzsZHR1lz549rFq1itTUVLZu3cof//hHhoaG2LFjB1u3biUtLY2NGzdy8OBBhoaGOHXqFDU1NTidTjIzM2lpaaGvr2/eKoWWztTZ2YlOp1Pvy65du+jv76epqYnKykoyMzNZunQpL774IkNDQxw+fJjNmzeTnp5OVVUVb731FhMTExw8eJAtW7bgcDgoLS2lqamJwcFBRkZGWLZsGenp6SQmJqrPNBqNUlNTQ15enuqR0NfXp4KjmZkZ/H6/ur9sNhupqanY7XYVmM3MzNDe3s73v/99nnjiict+71+uHh86nY6UlBRWrFjBli1biI+P58iRI+zfv5+BgQHVDPFyiw0KtYILbrebyclJlWIphHhnskIgxBV2ZlpQfX091dXVqinVQpmbm1NlQ202GyUlJTidzgWrQ345fmlHo1EOHDigKuUcPXqU2dlZNmzYwMqVK4lGoxiNRrWB9frrr2fJkiWkpaXR2NjIrl27sFqt/Ou//ivV1dUUFxfT3NzMyZMnmZqa4tvf/jZNTU1s27aN3//+9zQ2NjI6Osr//J//k+npaT7zmc/ws5/9jK6uLu69917WrVvH9PQ0NTU1vPDCC0xNTfHMM89QXl5Od3c3eXl5PP744/j9fmpqasjNzcXn8xEKhVTVoOXLl+NwOEhKSqKjo4ORkRE8Hg9f/epXOXz4MGVlZezcuZOJiQn27dvHn/zJnzA8PMyGDRt4+eWXGR0d5Q9/+AOrVq2irq6O6upqHn74YbxeL/X19SxZsoSxsTEKCgp46aWXCIfDTExMkJmZCZwurdnX14fBYODmm2/G4XDgdDrVoN7tdvO3f/u3tLa2snTpUl5//XVGRkZ49tlnufnmm3G5XGzdupWnn36aiYkJlb7U3NzMqlWruOeee/B4PLS0tFBYWMjU1BSZmZn09vaqSjNZWVnExcXR3d1NXV0dcXFxfPGLX8ThcKh8//r6enp7e7nlllvo7e1lw4YN/OpXv6KxsRGPx8Py5ctVMPB//+//ZWRkhCeffJJbb72Vt99+m8rKSv75n/+Zubk59u/fz4033khHRwe5ubncf//9zM3NccMNN7B+/XpCoRBut5s33ngDg8HAxz/+cUpLS7HZbHg8Hpqbm7HZbFx//fWsWbOG7Oxsuru7OXz4MKOjo2zZsoX6+nry8vKora295N8HWnPCyyk+Pl7tZxkYGKCjo4PW1lby8vLIy8tTXawvp9gVA211bNWqVZJOJMQFkIBAiCvgXN2EYzfHLeR5aAM8LVd6+fLlZ9VXv9wudUAwNjbG7OwsBoOBxx57jJmZGb785S+zfv16fD4fer2e3bt3ExcXx6pVq1i7di3Jycm0tLTw6KOPYrFYuPPOOyksLCQlJYXm5maampoYGxvjG9/4Bnv37qWyspKXXnqJI0eOMDQ0xPXXX8/Ro0dJSUnhd7/7HSdOnECn01FSUsLQ0BAJCQnU19erdJv09HS8Xi8mk4m+vj48Hg8mk0nNJHu9XoaGhgiHwyQmJmK1WjEYDPT29jIxMYHH4+Gmm27CarWSkpLCiRMnmJqaorOzk5tuuon6+nqcTid1dXVMT09z6tQplaISCAQ4ceKESu/R7jmTycTAwACzs7MMDw+rz2V6eprR0VHgdG8G7TPr7+9ncnISn89Henq6ev/b2tqYnp6mo6MDq9WKTqfDZDJx+PBhpqam2Ldvn3psYmIibW1tTE1NceLECVJSUohEIuTk5PDHP/4Rn89HX18fiYmJhEIhEhISGBsbU2lR8fHxWK1WVSo1HA5TWFiIxWLB4XDg8/nweDzU19eTnZ2NxWJhyZIlTExMMDs7y549e0hLS8PtdlNeXs7jjz/OwMAANptNNSzLycnhN7/5DbOzs9TW1lJZWcnExARZWVk0NDTg8/lYu3YtJSUlxMXFMTQ0xMMPP4zJZOKuu+5i06ZNWK1Wpqam1L6UL3/5y2zatIklS5Zw7NgxHnjgAQoKCvh//p//h+HhYZWudiksZBdwo9FIQUEB+fn5jI+Pq9UcrXnfQpRj1e5bLf1O0omEeHeSMiTEAtJ+Mc3OzjIzM4PP5wOYN3ul5ZtfTuFwmMHBQQ4fPsyJEyew2Wyqy+1CBwNwaQICLY94amqKn/70p/zHf/wHg4OD5OTkkJ2dDUBDQwPt7e1YLBays7PJyclhdHSU5557jkcffZRwOEx8fDzx8fHz8tnT09PVwLOpqYmRkREGBgaA0ylWs7OzjI6OqsGQwWAgGAwyOjqK3+9Hr9dTWlqqqkT19/ereuqlpaX4fD6CwaCq3mQ0GklPT1dpJw0NDRiNRkwmE9FoFL/fr9JVdDodVqtVpZlNTk7i8XjQ6/WkpaUxNjZGIBCgu7ubtLQ0jEYjGRkZTExMEAwGmZqawuFwYDabyc/Px+124/f7GR0dxWazYbFYsFgs6lz0ej0WiwWbzYbL5cLn8+F2u8nKysJkMpGWlkZXVxd+v5/x8XEqKysxmUzk5+czOTlJMBhkcHCQ5ORk4uLisNvtqlzn+Pg4VqsVvV6v9j5o701cXJwqNTo7O8vc3BzJyckYjUbi4uKoq6tT51JWVobBYCAuLk6VafX7/ep4bPCg1+tVR14tSAiFQiQmJpKamorRaKSnp0et1Oj1evr6+lQ3bu1+cTqdaj+GVq7WYrEwNDTE448/ztNPP41OpyM3N5e8vDz8fj9dXV0cPHiQ5ORk8vPzKSkp4eDBg/zgBz/g7rvvJhQKXZJAeSEDAo1Op8PpdLJmzRo2bNiATqfjwIEDHDp0iJGRkcuexqNNspwrnUgrcSvpREL8FwkIhFgAkUhEDVa05kx6vV4NcmJ/WWu/uC4Hv99PZ2cn+/bto7e3l5ycHDZu3EhJScmCbXA8l/cbEAQCAe69917+z//5PwwMDBAMBgkGg/h8PgwGA3a7HYvFQigUIhQK4fP5GBoaYnh4WNWa11JvMjIyqKioQKfTMTU1xfDwMBaLBbvdTkVFBZ2dnYyPj3PixAkyMjJIS0tjw4YNavP18ePHqaysxOFwcPPNN9PY2IjL5eLll1+mqqqK5ORktm7dSmtrK1NTU7z44ouUlpaSmZlJWVkZ/f39jI+PU19fT0pKCna7nfj4eEZHRxkcHCQSiWCz2XA4HIyOjjI9PU1rayuFhYVYrVby8/M5ceIELpeL/fv3U1tbq2bFm5ubVS+BiooK4uPjWbFiharj39raSkZGBlarlaysLFwulwoEkpKSSEpKIhAIMDc3h8vlIj09HavVSkZGBu3t7ep9XbZsGVarldLSUo4cOYLf76elpYVVq1YRHx/Pddddx/DwMH6/n7q6OrKzs7FarSxZsoTW1lYmJycZGBjA4XCQkJCAXq9ncHCQ0dFRLBaLasB28uRJxsbG6O/vp6SkBJvNRnZ2tkrHam1t5aabbiI9PZ3a2lr+8Ic/MD09zYkTJ7j++utJTk6mpKRElWVtbm5m48aNOBwOVa3I5XLhcrnUHolgMEhnZyfDw8NMT0+Tm5tLamoqc3NzjI+PMz4+jtPppLi4mNzcXPr7+xkbG2N4eBi3262uQwt0gsGgasoGqH4KPp+PpqYmvv3tb7/vfQZXIiCIlZiYSE1NDdu2bSMtLY3m5mZ27dqlqjZdDmemSWmBgbYyoBVuCAQClyzwEuJaJgGBEJeJVi1obm5OVXOJRCKqoc75UoN0Ot0lXyFwu900Nzezf/9+ZmZmqK6uZt26deTk5FzxpklwcQFBNBpl7969vPTSS6o2enNzsyrvuWrVKux2O6dOnaKtrY1IJEJRURFFRUUMDAywf/9+du7cSTQaZfny5WzevJnp6WlOnjxJXV0dRUVF1NTU8JGPfIS9e/fS3NzM888/T21trRpg7t+/n9HRUQ4cOMC2bdtwOp2sX7+eN954g+HhYX7/+99TVVWF2WwmPT2dffv2MTExwSuvvEJOTg4Wi4Xk5GTq6+vp6+tT1W0sFota7fB4PKSkpGCz2bDZbAwODuLxeBgbG2PJkiVYLBZSUlI4duwYXq+X3t5eli5dislkIjMzk7179+Lz+Whra6OsrAyLxUJJSQktLS34fD4aGxtxOp2YzWays7MZGRlRKx4JCQnEx8djMBjUwNhkMmGxWEhMTGR0dJTZ2VlGRkbIz8/HbDbjdDppbGzE6/XS2tpKWVkZJpOJ4uJilV5z6NAhCgoKMJvNrFq1iv7+fubm5ti3bx8pKSnEx8dTUlLC2NgYHo+HgYEBEhISsFqtWCwW3G636o8QHx+P3W7H5/OpNKu0tDS1CvT8888zMDDArl27yMzMxGw2U1FRwQsvvMDExARvvfUW6enpWCwWli9fzquvvsrg4CDbt29Xn/WaNWtobGxkcHCQjo4OlixZotKPduzYwbFjxxgZGWHLli2sWLGCSCRCY2OjCurWrl3Lhg0bOHnyJHv27OHtt98mLi6OvLw8KioqGB0dpbW1lcbGRkpKSli1ahXr1q2jra2NhoYGtQH8mWee4fjx4+/5+0tLn7nSTCYTJSUlbN26VTV62759OydPnmRubu6Svtb5rlkLCLSJmNgeL1pVNyEWI9lDIMQlpnXT1MqGvtduwpdqhSASiaiyoR6Ph8zMTNasWYPNZnvfz32pvZeAYGRkBJfLhd1u58knn2RiYkLlY09PT5OYmMjbb79NJBJh1apVbNiwAaPRyOjoKI888gg6nY5//Md/pKysDKPRyMjICHV1dSQmJnLzzTdTUlJCTk4Oe/fuZf/+/Zw4cYK/+Zu/ISEhAYfDwY4dOxgfH8dsNnPjjTfS1tZGZmYmb7zxBuPj45w8eZLMzEzVUbetrY1wOExycjLT09NMT0+rEqDaXgKj0ahSZrxeL6FQiLy8PAwGA5FIhL6+PpV6lJaWpgYtx44dU7PJCQkJ6t5raGggGAzicrmIi4sDTq+ijI2NqVnp2BSrmZkZtXISiUSIRqMqjUcLarXX1NJ+otEoLpdLpWG4XC5CoRAej0cFNJFIhLm5OUKhkNrXoX0/aKk5PT096rPXyo/6/X6OHTtGOBwmEomQlJSEz+cjHA7T1NSkUn2cTifBYFCdl7Z5VDs+OTmprt9msxEfH69m+LX7Ljc3V6VP1dXVqfSSoqIi9uzZw+TkJNu3bycjI4OxsTFWrFjBwYMH8Xg8NDU1qe7TVquVF198UTUpq6qqUiVb6+vrVffr8vJy0tPTOXLkCI8//jhJSUn86le/UpWOBgcH2bNnD21tbfzt3/4tH/rQh6iurmb//v088MADVFRUUFZWRldXF9nZ2RdUfOBKrxCcSa/Xk5WVdVbZUqfTSUFBAampqe/7fLWUoXfyTl2QDQaDNDsTi8qVnzIQ4gMiEong9/uZmZlhdnZWbWJ7r9Ut3u8KQTAYpLe3lwMHDtDW1obT6eS6666jvLz8qgwG4N0DAm21xe128/Of/5yf/vSndHV1UVxcTFFREWazmcOHD3Pq1Ck1mCsuLmZmZoYnn3ySBx98kNnZWRITE0lISGB4eJiRkRGmp6fJzs4mMTERu91Oc3Mzvb29tLa2Eh8frwa1zc3N6HQ67HY7TqcTOD3A1irfaIPCYDBIf38/fr8fk8lEdXW1Skno7OxU9frXrFmjBuF79+5Vufq1tbV4vV4CgQD79+/HYrGo/HStD4C2z8BsNmMymdT7og2A4uPjmZ6eJhKJ4HK5SEtLQ6/Xk5OTo5qxnTp1iqSkJPR6PcXFxbjd7nnnaDAYcDqd6lxmZmaIi4sjLi5OpVp4vV4SExMxGo1qz4V2LoWFhej1eux2Oy0tLYTDYcbGxsjLy0Ov15Oamsrg4KAq7Wq32zEYDKSkpOD1egmHw3g8HuLi4jAajYyNjalzcTqdmEwmTCaTCoi8Xi+VlZWYzWZsNhu7d+8mFAoxMzPDunXrMJvNWCwWGhoaCIfDzMzMUF5ejtFoVFWUwuEwBoOBvLw8tTF4ampK9YEwGo1EIhFaWlrU96d270WjUZqamlTqSVxcHB0dHXR1damVFrvdjsPhYGpqSu1JsFqtJCUl0dLSwsMPP8yjjz6qVkeWLFmiVqx27NihUspqamrYsWMHP/rRj/jFL36hKi+92/fP1TqwTU5OZvny5WzZsgWbzcbx48fZt28f/f39hMPhi37eCwkINLH7DCSdSCxWEhAI8T6cmRak1a/XNjRezAzTxa4QzM3N0dLSwr59+1Q6yYYNG8jPz1ezpFerdwoIAoEAv/zlL/ne9743bzbZ7/erwZrValWzfF6vl66uLjo7O9WM/NTUFGNjYzgcDgoLC7Hb7czMzDA1NYXX68Vms5GVlaWacnV3dxMIBHA4HNTW1uLxeHC73XR3d+NwOFSN/87OTtxuN/v371edWmtqahgYGMDn83HixAmWLFmC1Wpl5cqV9Pf3EwgE2L59O2lpaWrgrc2e79+/H6vVitFoxGq14nK5VFMtrcmZNuPu9/tVIyyLxUJXV5eaka+oqECv1+NwOOjp6SESiag9I3q9noKCAsbGxohEIrS3t6sBeVZWFnNzc4TDYUZGRtRAWGs6FggEVMqb2WxmbGxM3f9ZWVkYDAZVNSgSiTAxMaGCg5ycHHWO3d3dpKenq4BEqxff19dHQkICBoOBsrIyNWM7NDSkggBApXjEx8ergKSuro7Z2VnGxsbU+5Kamsobb7yB1+ulv79f9ZrIycnh0KFDBAIBurq6WLp0KTabjeLiYjo7O/H5fIyOjlJcXKxSlVpbW5menmZiYoKlS5eqlZrR0VFcLhc2m43S0lKysrLo7OxUvQzi4uJUH4Lh4WFcLhfT09MUFRWRm5tLeno6nZ2d6h7VehR0d3er1Y9oNEpiYqLqoB07YXD06FH+8R//kccee+y830NXc0CgiY+Pp7y8nG3btpGfn09XVxc7d+6kra1NFV94Ly6m1Oo7pROFQiFJJxIfaBIQCHERtOXl2GpBWk3799tR+L2sEESjUSYnJ6mvr+fgwYOEQiGVP68NuK4FZwYE0WiUXbt28eyzz9Lf38+pU6dobW1ldHSU2tpa1Uirvb2dzs5OvF4vBQUFZGdnMz09zcGDB1V+/6pVq9i0aRMAzc3NNDQ0kJiYyNKlS/nQhz5Ee3s7TU1NbN++HYfDQXZ2NjU1NbS2tjI0NER9fT3r1q0jMzOTtWvXsmvXLgYHB3nppZdYsWIFFouFrKwsjh07xtzcHJ2dnSxduhSz2UxOTg6NjY3Mzs7S1NREamqqukZtEKzlxev1etUoLRwO43A41F6T0dFRlepTUlKiNqQ3Njaqqinl5eWq4lBra6taIdCqRkWjUbUpeWpqCqPxdMZoMBjE4/EQDoeZnp5W56fNyGsDfs3U1JSaQY3dEDo2NkY4HGZ2dlbdvwaDgdHRUSKRiCpjCpCQkKBWMU6ePKnuU21zbjgcpqOjA5PJpCo0aWl4vb29auUtNTVVdZienZ1Fr9erlZNwOKzSiHQ6HampqYRCIcLhsGqwBlBQUMCJEyfweDzU1dWRm5uLxWJh3bp19Pf3Mzs7S319PQ6HA6vVSlFREXv37qW/v5/m5mZqamrIyckhJyeHtrY2uru78fl8FBcXU1hYSH9/P4cOHeLIkSPo9Xquu+461qxZw9jYGCdPnuTYsWOUlpayZs0atm3bxr59+zh8+DA7d+4kMTGR9PR0ysvLGRwcpK2tjVOnTlFaWsqyZctYuXIl7e3tnDx5kvr6egYGBnjqqac4evTovO+vayEg0GirNJs2baK2thaXy8WuXbtoaGhQJW8vxPvdNxG7CVmrDqdNQmhpdUJ8kMgeAiHeg9gZI61knTabdKl+4V7ICkE4HFZlDwOBADk5OVRUVCxI85/LQfulOzg4iMvlIjU1laeffpqxsTFSUlLYtm2b+vuTTz5JMBhk9erVXHfddUSjUWZnZ3nkkUcIhUJkZ2dTW1urcuv37duHxWLh5ptvprKykpSUFE6ePMnOnTsxm81885vfJDk5GZvNxuHDh1XFnS9+8YscO3aMrKwsXn/9dYaGhggGg6xfv56WlhZMJhMHDhxQs7gFBQWMj49jMBg4efKkqiQVHx+P2+1mfHxcXWtxcTH19fUA81Ijamtr6ejoIBqNcvToUTWQKy4uprGxkWg0Sl1dnUplSk5OpqenRw1yATUohtODeq/XC5yu9KIN7MfGxtT9mpqaqnoMaPX9I5EICQkJamA/OzurHq8di0QialCt1+vVYC0cDqta8zqdTgUZoVBI9VjQ9ivA6Y2mWplWLUgCsNvt6vugvb1d/T0jI0OtQBw7dky9F1VVVSo96dSpU8DpQWFJSYka2GvvRXx8PAkJCbhcLtUJGVD9CLSULe3camtr2bFjBz6fj7179xIXF0c0GqW0tJRHH30Ur9dLXV2dKj2q9agIBoMMDw+r8qUul4tXXnkFo9HIihUrqKmpwWq1Mjc3R319PSdPnuRrX/uaavD15ptv8vTTT5OWlsZ9993Hli1byMvLo6enhz179tDZ2clXv/pVbrzxRmpra9m7dy8PP/wwVVVVVFZW0tbWRk5OzjUVEGh0Oh0OhwOHw6FK7B46dAi73U5BQcG7TnhEIpFLsjJ65j4DLaiM7Rtzrb23QpzLtTF9KMQVFg6H8Xq9lywt6J280wqB3++no6NDzVDm5eVx3XXXUVxcfM0GA5FIhHA4jNvt5q677uLnP/85HR0dVFRUUFpaitVqZc+ePTQ1NaHT6SgtLWXJkiV4vV4ee+wxfvOb3zA5OUlycrKqad/d3c3Y2Bg5OTkkJyeTkpJCe3u7qtqSmJiIwWAgGo2qzatxcXEUFxerz1PbmKvNumsbZ3t6ejAajeTl5WGxWFQO+uzsLEajkaqqKrUBtrm5We0hqaioUCtJbW1tWCwWjEYjS5cuVZt5tcGmNhjSyqSeOnVKzVjCf61QhUIh1fRL2+jrdrvV7H9CQoIKAlwuF/Hx8QCkp6erQfDY2Ji6d7TXhNOVqbRgVxsAa4NyLa1CCwJCoZBa/TCZTCr40dKaANW3AMDj8ZCQkACcHpz7/X71PNogbm5uDr/frwIPbZPnxMSEumfMZrPaSHzw4EFV3jcjIwMAs9msAihtoG4wGDCbzYyOjqqZX20Dt8/nY3h4WAUlOTk5GI1G+vr68Hq9RCIRMjIy1AD/6NGjKoUrMzNTrZw0NDQApwOlqqoq9Ho9wWCQU6dOqVQWo9HIqVOnaGxsZHp6GrvdrsrMTkxM0NTUBJwO5JxOJ4cPH+ahhx7igQcewG63U1ZWRmVlJaOjo5w4cYI33niD/Px8KioqWLlyJW+++SY//vGP+eUvf0k4HFb3x7UoISGBqqoqtm3bRnp6OqdOnWLXrl10dXWpgPxMl7o7s/b9F5tOpK0ayD4D8UEgAYEQ53FmWpDX671kaUHv5FyNyVwuF01NTezbt4/Z2VlqampYu3Yt2dnZV0XZ0Ivl9/u5++67+e1vf6uaden1erWRVcul1zb8eb1eWlpaOHnyJG63W/3p6+sjJSWFnJwc0tPT1Wc2MTFBfHw8SUlJhEIhJicn1cqKw+GgsrKSuLg4ZmZmVLOklJQUli1bxuTkJG63m1OnTqkZ5bKyMtWZt6Ojg5ycHGw2GytWrFD7Bvbs2UNmZiZGo5Hs7GzGx8cJh8Nq/4HWCEurytPS0qIG5FrTrGg0itlsVp+tVmIzEomoJmsGg0EdDwQCZGZmAqcH5NqM/8zMDA6HA0DNiMPpdCWt7n1SUpIakMcGE1qwo+3L0GiVgrQKQJrYIEALDqxWKxMTE+q5ExMTgdMz8TMzM8DpqlFaD4zMzEw1wJuenlbXn5ycrF7P5/OpgCQlJUV9n2rXYDab1XPMzc2pICgxMVFVKBobG1PNyHJychgYGFDHtVQth8NBc3MzXq+X0dFRSktLsdlsJCYmMjIywtzcHMFgkNzcXOx2u+oToZ33kiVLcDqdDA0NMTExwfT0NAUFBRQVFZGdnc2hQ4cYHR1lbGyMtLQ0bDYbCQkJDAwMMDMzg9vtprKykoyMDFJSUujp6VHlVrXO062traoqjl6vx2azYTQa1XuuDWAbGxu55557ePjhh6/pgWtcXBxFRUVs2bKFiooKRkZG2LFjB83NzczOzs577OUstSrpROKDSFKGhDhD7ABDmy19L2VD3y/tl0wkEmFsbIy+vj5mZ2fJyspi3bp1aiB3rYpGo7z99ttMTU2xcuVKOjo6GBgYYGxsjJqaGlwuFw6Hg87OToLBIHNzc+Tm5jI3N8fs7KzqSKvlYofDYRITE9Vs/Cc/+Ulqa2tJTU1lfHycxsZGDAYDK1eupLCwEJvNpppZTU5OcsMNN5CTk0NxcTHHjx9nYGCA8fFxPve5z6nc8RMnTjAzM0NXVxc333yzqphz/PhxPB4PR48epaioSM3C9/T0qNni9PR0BgYGiIuLU/n02oqElueuDWYLCwsZHh5Wm4C1meqKigrGxsYAaGlpAU7PgObk5DA4OAicTqsBVIlTrfKQ9nVa9ZvYlDeYv39jZmZGHY8d7AcCgXN+lrHfD7EVYbTH+/1+9dx6vV49ZmJiQh1PSEhQAUxnZ6c67nQ66e/vB6C1tVU9d0FBAR0dHYTDYVU+VDuudWWenJwETgdHKSkpjI2N4Xa71epDYmIiMzMzaoOz1WrF6/VSUlJCe3u7WpXRgqKKigq2b9+Oz+ejvr6ezMxMxsfHWb58OY8++qjqOpyWlobf78dsNnPs2DG1sbqyshKfz4fRaFTXuGHDBkpKSkhISODQoUPU19cTFxfHpz/9adauXUtiYiLd3d20tLTQ19fHbbfdRltbG0VFRezcuZMjR47Q19fHf//v/53U1FRKSkpUn4S5uTk++tGPqjKnnZ2d9PT00NjYyMDAADt37qS0tJS1a9ee83O92mlBtRZYaylUDoeDgoICteH7cu+hOjOdKBwOq9VjKVsqrjUSEAjx/wuHw6qSSjgcnleKbiFpteGHhobQ6XTk5eWRlZWlZm6vVX19fczMzJCcnMyzzz7LxMQETqeTrVu3kpSUhN1u56mnniIUCrF27Vquu+46lar16KOPEgwGycnJYeXKlXg8HgB27dqFyWTiIx/5CEuXLsVqtdLd3c3bb7+NwWDgH/7hH3A6ncTFxdHc3Ex3dzc2m43bbruNgwcP4nA42LlzJ729vUxOTvKnf/qnHDt2DJPJxK5du1Szq3Xr1qmOxfv378fn8zEzM0NGRgbj4+P4/X66u7uB07PfWodfrZwnnB7sa7Po3d3dasBdXl5OXV0dAKdOnVID4pKSEjXT29zcrN7H9PR0tTLQ1dUFoNKatN4GbrcbOD0g1gYkWlMxOD0g1p57ZGREDWq0ZmOAGlQD83KxY78fYgMFbZZfp9Op6wyFQqSlpanZW+28tOfUPl9tRt9sNqsVsqGhIfVepKWlqcBGS6UBVDdl+K9AKRqNUlhYSENDA6FQiIGBAXVeOTk5tLe3Mzc3p85da+w2MTGhAjk4nS6kNV47cuSI+plQVlbGoUOH8Hq9ah+KNsB/8skn8Xq9HD58WL3XhYWFvPLKK4TDYdUJOhwOk5+fz9NPP00kElGD2MTERDo7O/njH/+I2Wxm2bJl1NbWkpKSwvj4OEePHuXkyZP8/d//PVVVVVRXV/Pyyy/zn//5n6Snp3PfffexefNmVaVnz549dHR0cMstt7B+/XpuuukmDhw4wGOPPUZlZaXaPJ+Tk6NSu641SUlJ1NbWUlZWppr7aStuycnJC3IOsYEBoPYZaKlh76XstBBXiqQMiUXtzLKhZ6YFLWQwMDs7y6lTpxgZGcHn81FWVsaGDRvIy8u7ZoMBLcianJzk7rvv5q677qK3t5eKigrKy8uxWCzs3r1bzW6XlZVRVlaG1+vlkUce4Te/+Q3j4+M4HA5SUlKYmpqitbWV4eFhsrOzSU1NJS0tja6uLpqamjh27Jiqja/T6Th69KjKla+qqlK/nA8cOIDP58Pv95Oenk4kEsHr9apKMOnp6TidTlXGs7u7G71er3LNtU3dWlpTYWEhkUiESCTCwMCAWlGqqalRefBHjx5VA+usrCw1IO3u7lbnm5SUpAYVfX19ahChDS4BtZoQu5Fd29wOp5t7ac8dCATU18bHx6v3QjtvYN7m4ZmZGfWcsStRsXnasSsB2sBLr9erFKBIJKI2FcfFxakgwOfzqaDBZDKpc9FmzrXHa+eiDajOfP3Y4CS2+pF2vgaDgd7eXuD0wExr3GU2m9VqSiAQIC0tTZ17V1eXSv0oLCzEaDQyNzeHy+UiEolgNptxOBwYDAY6OjpwuVyEw2FSU1NJTk5Gr9dz9OhRlTJSXl5OQkICer2et99+W63IlJSUqJUubVO50Whk9erVRCIRPB6PWg0xGo2EQiGampo4evQoMzMzpKSk4HA4SEhIYGxsjKNHj2I0GklJSSErK4v9+/fz4IMP8pvf/IakpCTKy8tZunQpk5OTtLW18frrr5Obm0t1dTWrVq1i586d/OQnP+Gee+5RpWyv1XQXi8VCaWkp27Zto7CwEK/XS3t7O62trRdVtvRinFm2NDadSOuCfK2+v+KDTwICsShpP6hjy4YCCz6bo3WEPX78OIcPH1abFh0OB06n85qeVfJ6vfzsZz/j+9//PoODgyrI0jroajnP2vK63+/n5MmTNDY24nK58Hg8eDwe+vr6SExMJDMzU9XJn5ubU3XytYHg9PQ0o6OjtLS04HQ6KS0tJTk5mZmZGcbHx5mcnCQ1NZWKigo1i97d3c3MzAyJiYkUFRWpJld9fX3Y7XYSEhKoqalhfHxcpYukpqYSFxdHRkYGk5OThEIh+vr61L6B/Px8JiYmCIVC1NfXq7x5m82mZspjc9tjN3zGzuh7PJ556TMabUY8Go2Snp4OnB6ITE1NAacHwbEN6LQBeTAYVAN4rYmadlyj7V8A5g2iYv8e+3htQH7mQEcLWrRBEKA2PmvXFht4aEGGtrIAp2d3teeMLTep7YnQnke7fq28qvZ+AipFSnusFkxofSjg9H2jvV9aKdtQKMT4+DhZWVnExcWRlZXF+Pi4aryWlpamPquenh61AbqoqAi73Y7X62Vqaoq5uTnsdjtZWVmkpKRQV1fH2NgY09PTpKWlUVhYiNPppLm5WfXLqK2tVauCe/bsYWJiQgXFZrNZNYHzeDzMzMywdOlSFSRox91ut9qYrDVM0/pH2Gw29Hq92jOj9ZloaGjg29/+Nvfdd981XW/fYDCofR35+fl4PB527txJfX39vLK6l1vsCrM28aQFBtreHCGuJtfmtKMQFym2MoT2S+9KpAWFw2GGhobo7+8nFAqRk5NDVVUVJpOJjo6O81bOuNpFIhHefPNNPB4PS5cupauri+npaSYnJ6mursbr9ZKUlKRSZrxeLzk5OaoW/pEjR/D7/WzevJm1a9eqEpbNzc0YDAZuvfVWli1bRlJSEjMzMzQ2NqLT6aitraWkpASTyYTH46Gnp4eRkRFuvPFG8vPzycnJoaOjg97eXoaGhvjc5z6H3W7HbrfT1taG2+0mGAzy6U9/mr6+PrKysmhoaMDtdnP8+HHWrVvHyMiIqvEfDAaZmZmhpKSExsZGrFarSjeZnJwkKSlpXtMuOD0I1UpfaqtRcDr3XUvP6evrUwOFyspKDh06BKBmvOF0Coo2+NdShuB0+VBtgKwNoHU6nWpmpnXOhtODc+31tYEx/FfaD8yffY+dlY9dIYi9T2ODVy3w0YIcn883rxKL1iE4Go3OC3wSExPV12qz+QB5eXkqWGhra1PHS0tLOXjwoCpZq8nNzaWlpUV9Hto1JCUlqcZg2jWlpKSoaxocHFTnkpubS29vr6oOZLPZmJmZoba2lt27dxMIBFRH62AwSFlZGc8//zzhcJj29nYyMzNxu90sWbKEffv2EQqFVCAApwORxsZGANasWUN1dbXqotzd3Y1Op2P9+vWUlJSo1LYTJ05gsVj4zGc+w5o1a1T1rJaWFvr7+/nkJz9JZ2cnxcXF7Ny5k2PHjjE4OKjS8oqKihgeHqazsxOPx8Mtt9xCbW0tRUVF9Pb2qpW6wcFBdu3aRUFBARs3buRapKXAlZeXMzs7S29vL4cPHyYhIYHCwkIyMjIW5Of++dKJtA3fkk4krhayQiA+8M5MC5qbmyMSiagZs4UMBnw+H+3t7ezdu5fBwUEKCgq47rrrKCoqmlfT/VqboYvd/Pjss8/y+9//nrGxMTZv3syNN96IzWbjrbfeYt++fSrfevPmzczMzPDoo4+qOv9r1qxh5cqVRCIRtm/fzoEDB0hOTmb58uWsWbOGwcFB3nzzTZ577jkMBgMZGRlkZGTQ0dFBW1sbXV1drFq1CqfTSU5ODgcOHKCrq4u6ujoqKytV06rdu3erFYh169ZhMpmwWCzs2LGDubk5pqamWLJkCTqdjnA4TH19PdFoFKvVSlZWFjqdTnW51foBaIPpyclJNciOTfcaHBxUqTwlJSVqEHDy5En197y8PPWexm6k1SoLAfM20moz29q+E0CVCdWOx87QawKBgHrN2CAgtlJLbBlbbcYf5m82jk1li11FiL2XY1cRtOOx5xU7IDpXChCgeiwAaiUA5u+tKCwsVNevbUaORqOq+lIkElFBg9YhGk6voGifl9VqVSlGvb296nzS09MxGo1EIhGOHz+uXkdLQwuHw+zatUttZF2+fLm6D/bs2YPZbMZsNrNlyxZmZ2eZnp7mxIkTaoXL4XDQ2NjIyZMn1WpTVlYWGRkZ9Pf3c/z4cUKhkNo0q5UZ/cMf/kB8fDwrVqxgw4YNjI2NceTIEV588UVKSkpYunQp27ZtY+fOnbz++uv85je/weFwsHnzZq6//nr6+/vZs2cPr776KmVlZdx0003cdNNNHDt2jCeffJLf/e53uFwuGhoaGB4e5loSW2XIZrNRWVnJtm3byMrKorW1lV27dtHZ2XneDfOX2jt1QY5dSRPiSpGAQHxgnSstaCHKhp7rPLQBwP79+/F6vdTW1rJmzRqysrLOCkjO7Np7tQqHw4RCIYaHh7nrrru46667mJiYoKKiQtV737t3r9qkW15eTkVFBS6Xi0ceeYT77ruP6elpnE4nSUlJTE5OcvLkSQYGBsjLy1NNiTo7O2loaODIkSPYbDZVp//o0aNqALts2TLi4uIwGAyqNOvc3Bz5+fmqVOWePXswGAwqVSMajeLz+Thx4oTaN5CQkEA4HGZqakrl9mdnZ2MymYhEIkxOTjI3N4fBYKCsrEzNend2dqpf+LGlM/v6+tS95nA41Ex0W1ubyvmPbcA1MTGh7kstpQhQg32YPyCPLTmrvaZ2j8PpAbk2UA8Gg+rxsbn6sbP856ssFLsqENudODYIiP1a7TGxteC15mNwOsCI3fOgXX/sucReW+xzn+/7dmhoSF2/lqZlMBhUmohWjUp7TW2AGwwG1ebT2NSrSCRCWloaOp1OlbDV3lstPUyrAKY9NjU1Ve1R0fqVFBUVqf0Eu3fvVoO/1atXY7Va0el0vPXWW+p4aWkps7OzuN1uTpw4oQK8NWvWqC7THR0dwOmgzefz0dDQwKFDh5iZmSE1NZX09HTsdjvDw8McPnwYg8FAUlIS2dnZ1NXV8cADD/Cb3/wGq9VKZWUl1dXVuN1u6uvreeONN8jIyKCqqooVK1Zw9OhRfvKTn3DXXXep7tXXwuD1XFWG4uLiKCwsZMuWLVRWVjI+Ps6OHTtoampSq2sL4cyypVpgoBW0uBZ+/osPHkkZEh84C9FN+ELPY3R0lL6+Pubm5sjOzmb9+vXzBnrnci2sELjdbn75y1/i9/v5sz/7M7UB0ufzMT09jclkIj4+Xr3vs7OzNDU1EY1Gqa6uZnZ2Fr/fT29vL4mJiSon3+v1otfrGRgYwGQykZCQgNFoZHp6mkgkQn19Penp6SQlJeF0OvF4PPh8PgYHB0lNTSU3Nxe9Xo/b7VapQ8nJyaSlpaHX65mdnSUYDFJaWkpiYiIlJSVqkN/a2sqyZcswm82qTn4wGGRoaIjy8nImJyfJyclhaGhIbfbMzMzE6/Vis9lwu91qpj45OZmJiQlMJpNK35mbm8NkMqkBlTZo1gaFWoCiDQZSUlLUIDc2IMjIyFAz2rHHk5KS1ABdG9xEo1EsFot6Xm3AfeZgRBObGhQbEJyvvGjswCV28BX7nNrx2E3CJpNJrTrErkokJCSoVKbYKkcOh0MN7GPzwLOystR7EZv6pK1uxA6uYldIYjcyayVI4XSqldVqJRgMqnKx0WhUHZ+bmyMlJYWWlhYikQgul4v09HQmJiaw2+20traqjfQpKSl4vV6Gh4dVxSRtQKpVEdOqRWVlZam/79q1i/HxcVVas6CggFAoxIkTJ1SPg9WrV9Pb26s25Wula1NTUzGbzVgsFnp7e9V7u2TJEo4dO4bNZlP7ZqxWK1NTU5w4cYKsrCyWL1+uUlhi9xnk5uaqSZSOjg4eeugh8vPz+bu/+7urutjBOzUm0+l0anXR7XbT09PDvn37SElJobCwEIfDsWAlpiWdSFwtrt7vZiHeAy0FIXbTVuzy7EIKBAIMDAwwMDCAwWAgLy9PzSheCG0T2tUmGAzyxhtvEA6HWbJkCV1dXfj9flwuF9XV1ej1ekwmE93d3aqkZFZWFgaDgYmJCY4dO0YwGGTTpk2sXbsWg8GA1WqlublZfX7Lli0jNTUVl8ulZkerqqooLy9X1XO6urowm8186EMfoqioiIyMDPr6+ujt7WVwcJBPf/rTpKSkYLVaVa+B2dlZbr/9dtUc7OTJk2rV5kMf+hD9/f1YLBba29vx+/1MT0+zYsUKDhw4gM1mo729nWAwyOjoKNnZ2XR0dKDT6eYN9LTSkKFQSA3EEhMTVTWj2BKkWVlZ9PT0EI1GGR4eVp93dXU1Bw8eBFCzwAD5+fkqhUhLh4H5tfq1MqKA2jegrZIBqjOztncjdqCsPSZ2IB87gD5fmtD50u1iH6NdszYrqq0saeLj49WAPLYsqd1uV6VGY69Z2x8Ap1dgYo9r6VRaqVE4nW6l7fvQAqW4uDhsNhtTU1PzAgm73a4Cnv7+/nmpXNr+Dm01CE73h6irqyMQCNDS0oLVasXn87Fq1Spee+01gsGgGrhHIhGysrKoq6tT1agyMzPx+/1kZmayY8cOwuEw6enpatNyf3+/6tC9cuVKqqqqVEO6rq4udDoda9eupaysDKfTyY4dO2hoaMBsNvOpT32KdevWYbfbGRgYoLOzk7GxMW677TZ6enrIzc1l3759HD16lLS0NL74xS/icDhUM72uri7sdjuf/OQnWblyJenp6fT19dHR0YHP52NgYIBDhw7hcDjYtm3bVTdwvdDGZHa7naVLl6qypSdOnCAuLo6CggKys7MXJOiJXUXTvke1SQMtrXWh97mJxUfuMHFNi+0m7Ha7r1haEJyelT158iT79u1jenqaiooK1q9fr2bYLpSWX3q16OjooKuri46ODn7/+9/zzDPP4PP52LRpEzfddBMAb731Fnv27MFms3HdddfxoQ99iKGhIR5//HEeeeQRXC4Xq1evZs2aNXi9XrZv387evXvJyMhg+fLlLFu2jN7eXt58802eeeYZTCYT2dnZqm78qVOn6OjoUAOTvLw89u3bR1tbG4cPH6asrAyLxYLJZGL//v24XC7cbjebNm1SlVl27typUj9qamrUSszBgwdVozAttz8cDtPY2Khm2LXOu3NzcyoPPS0tTeW5u1wutRKgBUFwet+ANviN3QegzfwDFBUVqb9rpSgB9ZpnPj62tnpsEBA7u68N7M+c2dfOK3awHxsExO4niA1KYx8fm8oT+/yxew5iB/zac8amKWl7eM58vtjvk9juyLHnFbt5OLbi0MjIiPp77HunBQnRaJScnBz1+trnpdfr1Xs6Ozurgob4+HhVPrWvr08FTQ6HQ+3dqK+vV8dLS0vVvbN//341IF27di16vZ5gMMju3bvViuXKlSuZnJxkamqKQ4cOqft0y5YteDweRkdHOXXqFGazmYSEBNVpuaGhgf7+fjIzM1Vn7p6eHurq6giHwzidToqLi2lubua1117jD3/4AzqdjpqaGjZs2IDb7ebQoUO8+OKL5Obmsnz5crZu3cquXbt46qmn+O1vf4vVamXLli1s3bqVyclJdu/ezWuvvUZ2djYf/vCHueGGG2hvb+fJJ5/k6aefZmxsjJMnT84L3K6099qYzGw2s2TJErZt20ZxcTH9/f3s2LGDlpaWeffi5SZdkMWVIgGBuCZpqwHaxlCtgsqVKBs6Pj7OsWPHqKurQ6fTsXr1alasWHHRy85XQ8pQOBwmEonQ0dHBXXfdxc9//nPC4TDl5eWUlZUxOzvLgQMHOH78OElJSZSVlVFeXk5fXx+PPvoov/jFLwgGgzgcDtLS0ujv71f7A4qKikhLS8PpdKoBzokTJ7Db7cTFxaHX6zl06JCqPrNixQr1ue7du5fZ2VlmZ2cpKipSaTY7duxAr9eTmppKaWmpuj8OHTqEXq9XrxcOh9Xqg5YLbrPZiEQizMzMMDY2htFopKioSH0Ow8PDzM3NnbUPQJu91ul0pKamquO9vb1qYJuUlKSOj46OzktTie03oIkdwCQkJMzrM6CJDQhi03e06jXwXwPyaDSqUtR0Ot05qwKd716LfWzs659vz8G5Uom0ATLM38hsNpvV8djcbS3H/8zXiS27er5VDO29MxgM885LC5QMBoMKJkKhkHqtuLg4FRyEw2EV5On1+nn7CRITE9HpdKopnfacdrtd9TLQukMnJibidDoxGo00NTXh9XqJRCLk5eWRlJSE0WjkrbfeYm5ujnA4TFlZGTabDZ1Ox9tvv63K0G7YsEEFH9o+g2g0qr4HXS4Xx44dQ6/XExcXx7p161R35La2NlVlKhwOc/LkSQ4fPszExITaZ5CWlsbw8DB1dXWqZ0NmZiYtLS3cf//9PPDAA0SjUbX/R0vbe/vtt0lISKC8vJzq6mq6urr4yU9+ws9+9jOmpqbUz48r6Z1Sht6JXq8nJyeHDRs2sHLlSubm5ti1axfHjh1TaV0L4czGmFrZUtlnIC4XSRkS15RzdRO+EmlBoVBIlQ0Nh8Oq2U/sAOViXelNxWNjY9x7771YLBY+9rGPqTxXLfhKS0sjPj5eHZ+ZmeHUqVNYrVaKi4vVZkptf0BqaipOpxOv16saepnNZpKSklT6QyQS4eTJk2RkZJCWlkZ6erpa8RkYGMDhcJCfn4/RaFSz8e3t7aSmppKamorJZFL7EkpKSkhOTqawsBCXy8Xs7CwdHR1UV1cTHx9PcnKy2hw5MjJCZWUlo6OjZGVlMTExQTAYpK2tjYKCAlwulyo3qW0OdzqdDAwMYLFY1HGXy0VCQgJutxuDwaBy+bWym9pgOHbfQOy+C01paalaJYjt1FtTU8OBAweA+aVG8/PzValIrcMwnA4atMFsbI6+FuTE9hvQekPA+UuNnq8SS+x9GvsYbRCjVfiC+fd17DXHpgzFrnhkZWWp7s+xqwJFRUWcPHkSmJ9KVFJSwvHjxwmHw+qaDQYDqampDAwMzAtYrFarOhev16sGzVqKF5zek2AwGAiFQqSmpjI6Oqo+6/j4eLxer6pwFYlEmJ2dJT4+nkAggNlspru7m2g0itfrxel0qntDa3amBbDBYJCOjg6Gh4fR6XTYbDaKi4txuVx0dXWpvRSrV69WM9Vvvvkm4+Pjqua+1kPj+PHjTE1NqRWI4eFh4uLiOHr0qOpinZycjM1mw2w209PTg9vtxmKxUFFRQU5ODhaLhY6ODnX9MzMznDx5ksTERDZu3KgGqQkJCVgsFqampvD5fGpWe3h4mJ/+9KfY7Xa+8pWvzKsWtZAuNGXofLRAPzU1lbm5OXp7ezly5AhWq5XCwkIyMzMXtGwp/FdqrPbzRLogi0tJAgJx1dMGFYFAQFXi0FYDFvoHodfrpb+/n8HBQaxWK0VFRaSnp1/SXwxXYg+B1+vlrbfewmq1Yrfb6ejowGQyEQ6HqampITU1lUAgQHt7O5OTk9x0003k5OSQmppKZ2en6vCr9Q9ITEwkEonQ3NyM1WrlE5/4BCtWrCArK4vBwUEaGxtVpZ7KykrC4TBzc3N0dnYyNDTExo0bWbJkCZmZmfT09NDd3U1fXx+33XabCkiGhoYYGxvD7Xbzp3/6p/T19ZGSkkJbWxsTExO43W4+9KEP0dvbi8lkoqenR+XOb9iwgb1792K1Wuno6FDBQVlZGQ0NDcDpmXttiT4rK4ve3l6i0ahK3zEajSQkJDAzM4Pf71ebZFNTU3G73aojrTbYLikpobm5mUgkojYma8e1nPjYGvtlZWUcPXoUQJ0TnE5Z0XLkY1OJEhMT1YA6tmGXNuCPRqPzgoBz7RuIi4tTg87zbSqOnfmNvU9jU39iU4Zig4PYY9r5xJY01Wr6w3+twGjXrA3yY4MA7f4AVJAAqP4Q4XB43kpOeno6Q0NDZwUkdrudkZER3G63Ol+n08nc3JxK39GuOycnR+370PL44XTfiBMnThAOh1XQptPpqKysZM+ePYTDYTo7O7HZbPj9flasWMGrr76qepJoQXZSUpJqUqjN2GslR3fu3Ek4HFab6i0WC93d3TQ0NKi0oNraWuB0QNPe3k40GuWmm25S30/79u3jyJEjmEwmbrnlFjZv3ozRaGR0dFStnH3iE59g69atJCcnc/z4cQ4ePEhCQgJ33HEHOTk5WK1WZmdnaW9vR6/Xc+utt7Ju3TosFgtjY2O0traSmJjIwMAALS0tmEwmbrjhhnn3yOX2XlOG3onVaqWiooIlS5YwMDCgej/k5+eTl5d3SSaCLkTsJmQtnUgL0LTfhxIciIslKUPiqqX9wItNC7oSsyJa5ZiGhgYOHDiA3+9n+fLlrF69+rLMEi3UHoJoNEpbWxsjIyM0NDTw1FNP8fTTT5OYmMimTZu4+eabGR8f580332THjh1kZ2ezefNmPvzhD9PQ0MBjjz3Gfffdh8ViYdWqVaxbt47+/n62b9/Orl27KC0tZdmyZWzatIm6ujrefPNNnnrqKVJSUsjKyiIrK4vGxkaam5vp7e1l6dKlan/A7t27aW1t5eDBg1RUVBAfH4/ZbObQoUNMTU3hdrvZsmULFosFs9nM7t27VXfWpUuXqrSRAwcOqP0BFRUVaob86NGjhEIh1YUWTpfCbG1tRafTkZycrFJKvF6vGng7HA6VguNyudTg2el0qsGOViEGTjcd07S0tKjHxNbSj90AG5sTH7up+EKq/yQkJKi/a/dPNBpVx88sUXqu75/YQfv5gtLY4+erPqRdf2zKUOzj4+Pj51VW0Y5rPQDOfL7Y64/dZxCbbhS7zyD2vdNSqYxGowqYYt8XnU6nVlcMBoPq/hwMBtWKSXx8vHr84ODgvOBPux+am5tVIJSXl6eOHzp0SF1LVVWVmuDYu3evmsXeuHEjOp0Ov9/PwYMHiUQiGI1Gtc9gYmKCw4cPYzabsdlsbN26lZmZGYaGhmhpacFsNmO320lKSqKhoYH6+no6OzvJzMwkNzdXbbw/fPgws7OzZGZmUlRURF9fHy+88AIvvPACMzMzrF27lrVr12I0Gtm/fz8vv/wyNpuNlStXsmnTJpqbm3n44Yd54IEHmJub44YbbmDz5s0A7Nq1i9deew2LxcJHPvIRtm3bxtTUFE888QRPPvkkXV1ddHd3z2uydzldbMrQOzEajRQUFLB582aqq6uZnJxkx44dNDY2ztucfrmd2QU5HA5LF2TxvklAIK464XAYr9dLZ2enqsyizYBoy9ILQZvJPXz4MCdOnMBqtbJhwwZqampISkq6bOdxuVcItNml48eP87Of/Yyf/vSnJCcnU1JSQmlpKQMDA9TV1dHQ0EB2djZLliyhvLycxsZGHnvsMe6++25sNhtpaWmkpaXR3NysAovy8nJSU1NxOBwcPnyYpqYmDh8+jMPhwGAwoNfr2bdvH3Nzc8TFxVFbW6sGeHV1dczNzeH1eikoKFDVcLZv345er1ebJbXjBw8eVMedTiehUAi3283Ro0eJi4sjMzNTVY2ZmZmhv78fo9FIfn6+2uA6Pj7OxMSE2megzb5pedBacKB9HiMjIzidTpUyoQ30pqamcDqd6HQ60tLS1EB1YGBA5YDHxcWp2e/YngCxAWV8fLz6d+ws9pIlS9TfYwcescdjVwtic+61Mp1a+hLMT9+JHWDHBhuxs56xg/PYwCL2Po0NYt9pVQDmpzGlpKSo47FpT1qjMWBeU6zi4mL1dy0g0+6DM89XS+GB0++5dk1aNSA4nSalbYhOSUlR5+DxeEhKSkKv15OVlaWCg2g0qspyJicnz1uN0fZ9aKVstU3pWvnc5uZmPB6P6lvgdDpVSo+WUldYWEhKSgpxcXH88Y9/VPsMKisr1fO//fbbqtv6hg0b1J6Ut956S6WDlZWV4fP5cLvdNDc3q34GGzduJBqNMjk5qXpwmEwm4uLiOHbsGMeOHaO7u1uly+Tm5jIyMkJ9fT2Tk5OkpKTgcDiYmJjgV7/6FY888giTk5OUlpayZMkSEhISOH78OHv37iUQCLBkyRJKS0vxer38x3/8Bz/+8Y/Vatvl+jmnPfflSunRVpvWrFnDhg0bANi/fz+HDh1SqWULIXYDspaSqAWKsZ3BhbgQEhCIq4I2a6Z1E/Z6vTQ1NREOhxe8m7Df76ezs5O9e/fS09NDTk6OSmGJnYW8XC7nCkF3dzff/e53uf/++1X6lZYXHQwG1QAlEokQDoeZnp6mo6OD3t5epqenmZmZYXp6moGBAVJSUqiurlbpA1NTU4yOjmKz2cjIyMDv9zM1NaXSBrKzs1mxYgWJiYm4XC4GBgaYmJggIyODyspK4PTgtbu7m56eHpxOJ2VlZZjNZjwej9qvkZaWxtKlS/H5fHg8Hjo6OvB6vSQkJJCenk4gEMDn8zEyMqJmcLV69YFAgM7OTux2uyp7qg3QpqenycjIQKfTqbz2aDSK2+1W5xcXF0d/f78qC6hVrYmLi1NpJH6/XwUBWgUsOD2brN0/2uAPTg/qtfu7p6dHffZVVVXqc9P2CQDqXGB+ilFsZR0tCNA2lQIq9xjmByGx6T3n604c+/jYe/N8TdJiAwvteOxjY18nNsCJ3VQcu29Am7UHOHXqlPp7dXW1eu7Yx+fn5wOn32dtw7DJZFIrM1ozMTi9gqAFRbFpSunp6aqreU9Pj1qlqKmpURVftOZ1Op2ONWvWMDs7q+4Zi8WiGt7Nzs6q/SIWi0V9jw0PD+Pz+dT3XmxjvLm5OYxGI6mpqdjtdk6dOsXQ0BButxubzUZpaSnp6el0d3czPj6O2+0mOzub/Px8MjMz2blzJ8PDw0xMTJCUlERRURHZ2dmcOHGC8fFxpqamqK6upry8nJycHPbt28fo6Cjj4+NYrVZSU1NJTEyc971fUFBASUkJaWlpdHV1MT09jcvlwuPx0NnZqfYeaAPyhIQEkpOT8fv96j2PRCK43W5+/OMf84Mf/GDevpFLRRsIL8TvjcTERGpqati2bRtpaWk0NTWxe/duuru7531vXU6xXZDdbjenTp1S1Ylif84L8U4kIBBXlJYWFNtNGFBBwEJWqpiZmaG5uZn9+/fjdrupqqpi3bp15OTkLGju66W+bpfLxUsvvcSxY8fo6OigubmZEydOkJyczLJly/joRz/K6Ogozc3NHD9+nKysLPLz81m2bBl1dXXU1dXx+uuvY7PZWLt2LbfddhtDQ0M0NTWxb98+ioqKWLlyJbfccgvNzc00NDTwxhtvYDKZqKioYM2aNYyMjNDR0cGRI0coKSlhyZIlbNy4kdbWVjo7Ozl06BA2mw2n00lOTg4DAwMMDw/T1dXF0qVLSU1NJS8vj7a2NsbGxjh+/DhFRUXEx8cTHx9Pb28vHo+H6elp1VzMarXS3t6O1+tldHSU0tJSNZvW19enltaXL1+ufqFqM5c6nU4NKsPhsBp422w2VeUnEAiomWun06mCALfbrYKAjIwMde/EDjZjZ/abmprU37X0JUBtqIX5qUSxx2Nn8bUBfOxM/Pkah0UiEfW1sUFu7AAmdgXsfCsB5+smHNspOfY5Y6ssnUtsIBG7chEbNGjvM8wPDrTgTGtsp4kNJrTPS2v6Bczb2G2z2VRq0PDw8LxSo1oKkNaUDE6vVphMJqLRqMr7B1i1atW8Sl1ao6mtW7cSDocJBoP09fWpGV6t8Z3H46G3t1fd18uWLcPtduNyuRgbG1OpS4mJibS2tjI4OMjIyAhZWVmkp6eTmZlJf3+/aoaYkZFBbm4uk5OTNDU1cerUKdxuNytXrlSld5uammhubiY+Pp6lS5eyYsUKTp06xZ49ezhy5Ahzc3N8+MMfZv369UQiEerq6jh69ChWq5WPfOQjbN68mYGBAXbu3Mn+/ftVI7/i4mLi4uJobm7m5MmThEIhrr/+elauXEkwGKS5uZnm5mZ6enrYuXMnr7322rwg9P3QPoeFzKc3mUyUlJSwdetWlixZwtDQEDt27ODkyZPzNutfbtreCe3ngFadSNKJxLuRgEBcEZFIRJXv0zZeaqXztP0BCxEQRKNRxsbGOHr0KEeOHMFgMLBmzRqWL1+uUkgW2qVIGdIGIjMzM+zbt4+HHnqIRx99lCVLlrBlyxY+8YlPcOLECV5//XVef/11amtr2bp1K7fccgsvv/wyjz/+OD//+c8pLi6mtraWDRs2cOjQIXbv3s3bb7/NunXrqK6uZtOmTbz22mu89dZbPPjggxQWFqqByf79+2lpaaG1tZWNGzeSlpZGdnY227dvp7W1lQMHDqjKP3FxcTQ0NKgmYtdddx1ms1ntD3C5XExOTlJVVaXSXQ4dOkQwGMRsNlNRUaHy1Y8cOUIoFMJsNqtBot/vV52Sk5KS1ABbWw3S6XSkpKSowabH41FVetLS0tTA1+Vyqb0subm56v3u7+8nOTlZpRhpxsfH1X2UkZGhBp6dnZ3zBuTafe7xeOaVz9Ro3YxhfiqR1sNAp9OpQUckEpnX80B7fCQSUYNdvV5/zspBsalBsQPy820ePt8G49h+A9p5a83q4HQXYu147IA9NpUo9v3VUoN0Ot281CDtdYxGo0rdiUQiavBuMpnUakkgEFDH7Xa7WlHQKmdpZWVjU4C0UqM2m009j1a5CE6nOGnnlpCQoFJ6WlpaVHqY0+lUlXa0vStweuNz7D4D7bg2UA8EAhw4cEAN8NavX4/BYMDr9argw2g0Ultby9TUFGNjYxw6dEh1Cd+2bRszMzMMDg7S1dVFXFwcCQkJZGRkcOzYMerr69UEQFZWFtXV1XR2dnL06FHVNC03N5dQKMTvfvc7XnnlFdra2li3bh3Lly8nJyeHXbt28frrrzM9Pa36jIRCIe69914eeOABWlpaVNCQnZ3N22+/zWuvvcbk5KQ6brPZeOyxx3jkkUc4fvw4ExMTqkLTxVrIFYIz6fV61ZV+1apV+P1+du/ezdGjR5mcnLzsA3LtfjlXOpFWoU/SicS5SEAgFsyZaUFabqzBYDhnWtDlDAhCoRC9vb3s37+f1tZW0tLS2LhxI+Xl5fNmIK+ES5EytGPHDn70ox/xq1/9ipycHIqLi1myZAn19fU0NDRw6tQpCgsLKSkpoby8nLfeeovf/e53/OIXv8DhcJCUlERKSgoHDhygv78fj8fDkiVL1PGdO3fS3t7O8ePH1YbacDjM7t27CQQC2O12Kioq1OZeLZ9YGxhrZRp3796t+gFkZWURiUTweDwcO3ZMbfhNTk4mFArhcrloaGjAYrGQk5NDUlKSOq6VAS0sLFTVkcbGxhgZGVFpF1oXUJfLRXJyMiaTibS0NJX+MTY2RlpaGnq9HrvdrgZ609PTrF+/HpPJREpKikoL6evrU4GI2WxWKUM+n4/c3Fx0Op2quhKNRvF4PGoAGJu+o3Wl/f/Ye+/ouO7zzvsDYAqmoffeCwECBEEABCtIiqIK1WVJtmw58WvvxptN3s1mc7z7npR14uS4ZOMiZ91tWY4lqzdKFCmKvQAgQRAEQfQ66JgZYAbAFEzB+wfP7/GAERXZkWTJ4XOOjuWfBjN37tzfvU/5FlgLZQmfIgwPD6+RIA1fh2t7S000YC2fQJlrhRcNWq1WEvJw06UbGZbdiDcQHjcqINS+VkpHcA0ypP5dyWrCtYnK9d8NrikuqfcNhwYVFxcD1/ZzeMIePsVR51Pp/8O131QdV1JSEgsLC6yuropjdUREBBUVFcIDmJiYQK/XExkZSVVVlcBclpeXiY2NJTo6eg1kyOfzibSskqdV3dmYmBj5DAVJMhgMWCwWtFotnZ2dLC0tCTwuPT0dvV7PpUuX5PrIzs4mOTkZvV7P8ePH5fVFRUUkJCSg0Wg4fvy4GDWWlJQQFxdHZGQkb7/9tqwXFBSIwtfZs2fFNK2+vh6dTofb7aalpUXWY2Ji6OzspLu7m46ODuLi4oiNjaWgoACHwyHqO7GxscTFxREVFcXjjz/O008/TU9PDwUFBeTn55Oenk5XV5cUH3l5eeTl5RETE8PXv/51vvrVr64x6ftNQ/3mv0t3X9Vk2LBhAzt27MBkMtHe3s7Zs2eZmJj4wJ5t4aZ/6jjC5blDoRB+v38NnOhm3Ay4WRDcjA8hVld/7SasYEGrq/+2m/D1BkPvR7jdbvr6+jhz5gxzc3MUFRXR2NhIbm7uGiWT32X8thOCzs5OvvzlL3Pw4EF8Ph9erxePx4PH4xH4jt/vl3VFPnM6nfK/SnoxPT2dbdu2ScI9OTmJ3+8nPj6eoqIiUT7p6+tjdnaW7Oxsdu7cSUREBPPz8wwODhIIBMjIyKChoQGv14vD4aCnp0d4A0pxxeVyYbVa0Wq1JCUlUV1dLc7TPT09+P1+LBaLdNjdbrdwGEwmExkZGcI7GRgYEAKn4jYool1DQwNarRaj0cjw8DArKys4HA5KS0uFtK74AT6fTxxmtVot58+fF0yuUg5SKk2KOKoUcoLBIJOTk6yurhIXF/eOqkRpaWny0J6ZmZHfu7q6es3vqSKcYKucd2GtKk84JCn8WlZd+fA1Jb96/Xo4ZONGxUF4hCdc4RMH9Z7Xm6Gp119PQH6n4iS8MA8vDrKzs//N9XCzt8LCQvkO76QaNDc3twYapApHJQUL186/SqYuXbok67W1tbjdbrxeLy0tLeh0OjQaDbfccgs+n49AIMDk5KQoo5WUlIi/xtjYGEajEYPBQG1tLUtLS5KoKdftQCDAxMQEbrcbv99PSkoKZrOZyMhI5ubmZKKUmJhIfHy8yPM6nU50Oh2lpaWkpqYyPz/PzMwMCwsLJCYmUlRURGZmJm1tbYyOjmK329Hr9dTU1JCdnc3Y2BgTExPYbDbS09Opra0lLy+PS5cuMTY2JkVuXl4eiYmJ2O125ubmmJ+fJyYmhk2bNpGRkYHVasVms+FwOOR/JycnWV5exuv14vP5iIiIoKCgQKY8ap95PB6efPJJ/u7v/k6kZd9r/C4gQ+8WBoOB0tJSdu7cSXZ2NkNDQxw/fpz+/v73DSalIhgM3rAQut4FWV1vN83ObgbcLAhuxgcYKrFaXFz8rdyE368JgVLU6OjooKWlBb/fT01NDbW1te+7h8D7Eb/JhGB2dpY333yTsbExOjo6BNZTVlZGQ0MD999/P5cuXeLixYucO3eOyspKwe8fOHCA5uZmnnvuOdatW0ddXR0PPfQQFy9e5NKlSxw5coT6+no2bdrEQw89xIkTJ2hvb+f5558nJyeH0tJSNm/eTF9fnxRZdXV1FBcXs3XrVjo6Oujv7+fNN98kIyODlJQUMjIyGBkZYXJykoGBATZu3EhCQgJpaWkMDQ0xMzNDe3s7BQUFGAwGoqOjGRsbEzJzdXU1Op2O6OhoBgYGWF5eZm5ujrq6OpkyjY+Py0h8w4YN8gBsbm6WLnVlZaVAjDo7OwmFQhiNRoGpBINBBgcHpcunkselpSVsNpuoCamkWSV5cC0xVcn++Pi4ONkqzLr63dR6bm6uJM1KBx7WJsR2u106feEJfDg+PzwhV8mxRqORJFhNbtS6CjWlg7Vk33dyHr4+3slvIPxYVldX5T3NZrNc1yoRhGtJeLhhmVoPnxaE7webzSb/rrgIUVFRzMzMyHGrCYHZbKavr0/eOzMzU9SBFC9BGYRFRkauMUnTarUCDZqampLELSYmRlyFr169Kt81Ly9P+BhtbW3CRVm/fj0ajYZgMMiFCxeAa3t869atBAKBNYpZGo2G7du3iwHjxMSEqADV19eLv8bo6CgGgwGj0ciGDRsEUjczMyOqRvHx8fT09DAxMcHc3BypqamkpqZSWFgo3h4LCwukpaWRmZlJIBDg1KlTgutvaGigvLyctLQ0Ll68KNKaGzduZP369SwtLfHGG2/Q2tpKb28v99xzD42NjWRlZXHs2DEuXLjA7Ows9913H1u3bkWv1/Pyyy9z+vRpmpubaWhooKSkhNzcXM6dO0dbWxsTExPcfffd1NXVkZycTHNzMxcuXKCnp4fu7m4OHTqEy+V6x2sxPNS5/6gUBCqUytm2bdtYv349TqeTEydOcPny5ff0vd5LvBf/hXDZ0ptwopuh4qYx2c14XyPcSfHf6yb87y0IgsEgMzMzWK1WVlZWyMjIoKysbE3S81GMcNOmdzpnyiU5PT2dV199lTfeeIPNmzdz3333MTMzw9atW3nttdc4fvw4oVCI3bt3s7i4yO7du/nhD3/I66+/TmtrK5///Ofp7u6mtLSUV155hZaWFhYXF3nkkUcYHx+nurqaZ599lpMnT9LZ2cknP/lJOjs7iY2N5dixYwwMDOB2u9m/fz/j4+OkpaXx5ptvMjAwwNzcHE1NTQwMDIim+fz8PImJidTV1XHo0CE0Gg2nT5/G5XKxurpKVlaWuBZfuHABv98vkImOjg78fj+XLl0iFAphMpmIjY2lr68Pn88nibTFYiEyMpKZmRl8Pp8YR6kE0ePxsLy8LG6zZrMZt9sthWtWVhbR0dGkp6fjdDql25+Tk0NkZCSxsbECI3E4HGzbto2zZ8+SlJQkMJ2RkREKCwvp6+vDbDYzNzcnKkbp6elMTU1hMpkEdjI9PS1uxgpWB9ew9Q6HQ2B26iGdn58v5NjwqUBJSQmXLl0ScrS6VpKTk5mbmyMiIkIUd9SeVEm/+l8Fb4G1U4Eb7ZlwaML1MIXw/4Vr0znVmYyNjZVjCf8OmZmZksCHQ4MKCwvFpC1cQUkVOOHdzXDCsoJp+f1+YmNjmZycJBQKiRrW4uIixcXFDAwMiOqP0WjE4/Gwbt06WltbgWvXTVJSEouLi1RXV3P48GH5rUwmE16vF5vNtkbRSPERlIM2XIMtKRiTUoIByMjIYHp6Go/HQ3t7u5z7vLw8mWC0tLSIZ0NFRQVXr15dA+mJjIxkw4YNdHR04PF4uHjxosBH8vPzuXLlCisrK5w7dw6tVitGggcOHMButxMIBATiVFhYyEsvvYTP50Ov14vi0pYtW/jBD34gLsbJycmEQiFSUlL4wQ9+gNfrxWKxiCfJpk2b+MY3vsHk5CQJCQnU1dXhcDjIzc3l7//+73E4HFgsFu6++24uXrzIhg0b+P73v09PTw/Jycnceeed9PT0UF5ezre//W2Z7O3duxebzUZGRsY7Jr/vpynZBxGKC5OcnMzS0hKjo6O0tLQQExMjPKzftpi5HjL0bx0HIFMxpQKlrgVVNNyM/xhx85e+Ge9LqPFjuGzoe4EFvVtERkau6VK+1/D5fAwODnL27FmsVivZ2dls2bKFwsLCj3wxAL++Sd+oS/PMM8/w93//97z44ovk5OSQlZVFbm4uJ0+eFBWe3NxcsrKyyMnJ4eWXX+aFF17giSeeICUlRWAKJ0+exG63o9VqycrKkvVTp04xNjbG8PCwdMZ9Ph/nzp0TrLpSw/F4PLS1tREKhbBYLCKbuLCwwMWLF4mOjqa4uJikpCRZ7+npkaRDJWsOh4PR0VGMRiM5OTmYzWYCgQA2m42pqSmMRiNFRUVoNBoCgYA4x8bExEgnWcGS4uPjiY6OJjExEZ/PJ3yCkpISTCYTMTEx2O123G43DodDHFYTEhKwWq0C52hsbESr1aLX6yWRXF5eFnKn0Wikra2NlZUVnE6nQFMiIyMZGhoS3LUqRlZXVyWRVyoygMihwrVkXz2Aw3HGGzZskN8/3JE33PgsXFknfLqgJgSKqwNrO/vhhmYq2Ya1RUD468OL9PB9/U4eBkpFTP27mm6Ev184nyG8+68MxWAtBEjxBlZXV9dAScrKygBE4lIdhzr/8/Pz8rlxcXEixTgwMCCfn5eXJ+pAly9flt+itraWhYUFvF4vFy9exGAwCDTI6/VK80Gn06HX66msrGRubg63243NZpOpwrp163C5XLhcLvx+v8hymkwmWVNuxcrrwOVy4fF41nh/TE5OikdLTEyMGKH19vayuLhIIBAQcr/BYKCrq4vFxUX8fr/wdZTRn+IflJSUkJWVhU6nE15CIBAgLS0NvV4vEwRV3FRUVMi+Pn36tKzHx8czMDDA6OgoZ86cwWQyYTKZyMnJIRQKMTMzI6piJpMJi8XCD3/4Q1588UWOHz9Ofn4+WVlZpKenY7Va6e7upr29ndzcXDIzM0lLS+P73/8+X/7yl3n77bd5p/ioFwThYTabqaioYOfOnSQnJ9Pd3c3JkycZHh6+IVTv3eLdIEPvFtfDiRR0SxWwN6cGv//x8dgxN+MjGwoWpNyEFRTg/XAT/k0nBC6XS6Qwl5aWqKiooL6+noyMjA9VNvTfG+9k6nT69Gm+8Y1v0NXVxcLCgvyjnFU3bNjA/Pw8TqcTp9NJKBQSPfDR0VFsNht9fX2YTCYKCwu5++67sdls2Gw2enp6SEpKIiMjg9raWkZHR5mdneX8+fNER0dTUFDAvn37BC7T0dFBUlISeXl57Nq1S97n/PnzREREkJ6eTlVVFV6vVwqAxMREUlNT2bBhgxz7pUuX0Gq1xMXFkZycLK7UVquVlJQUYmJiSEtLEyWq/v5+ysvLRRpS8R2UO7Fer8dgMDA8PIzX62V+fp6tW7ei1WrRarVcuXJFurWbN2+WYrWtrQ2v18vy8rJIkK6urkqhEx0dLWo+q6ur9PT0CG8gfPKgkv3ExESBjijyPFxLNtV1OD09LQWBem+45kOgCKdFRUVy/V++fFn2kuqKw6+T/fAEINyQKTIyUpKKQCAgn2kwGKTYdrlc8t43KgLC9094kR6Ofw7/23AlJFWEREVFSXHg8/nkPcNdi8PfOxxCoVR6IiIi1kwOlOKQIuPCtcJEFQ0Wi0UmMeGwLZ1OJ0WDXq+X4mNyclKOMT4+/h1diPPy8uTedOHCBZnk1dXVSRPj/Pnz8p0bGhpYXl5meXlZJlk6nY7NmzfLHhkdHUWj0aDX66mtrRXp2omJCQwGg+zbhYUFbDYbi4uLIoGbkpIisrs+n4/U1FTi4uIwGo1MT0/jcrnECC0hIQGHw0F/f78USOvXryczM5NQKMTw8DAOhwO9Xk95eTk5OTlMTExw9epV5ubm8Pl8bN++nYKCAvx+P729vczOzqLRaNi9ezdFRUXMzMzQ1dXF1NQUNpuNmpoaKTSUZ4LH42Hfvn3yPsPDw8zOzoq6kJpSqXuay+Vi06ZNog7mcDhYWFjA5XJx+vRpvva1r3H58mW5Lm40Xf0oh06no6CggB07dlBSUsLMzAzHjx/n6tWra9S3/q349xZD4XAiQGRLb/IMfv/jJmToZvxWoTCu/15Y0LvFeykIlNus1WplaWmJ9PR0GhoaJIH4OIY6h6Ojo0xMTFBTU8Phw4e5cOECCQkJNDY2EhkZye23387jjz9OV1cXhYWFbNu2DZ/PR21tLf/7f/9vWltbsdvtfOYzn8HtdrNr1y5ee+01Ojo6WF1d5YEHHiAYDHLrrbfy1FNP0d7eztDQEJ/85Cex2WxkZ2fT2trK0NAQTqeT+++/n6WlJUpLSzl9+jTDw8OMjY2xe/du5ubm0Ov19PT0iJ76jh07cLvdxMTE0NHRwcLCAna7nY0bN0oSOjIyIiTKoqIi+vr60Gq19Pf34/V6JWG5cOECERERXL58Ga/Xi8lkoq6ujhMnTgDQ0tKCz+dDp9NRXl5OR0eHJGyRkZEYjUYKCwtpa2vD7/dz8eJF6cRaLBbp/qoETCnBKJfj9PR0UTdaWFgQVaLMzEzhE6gkZm5ujvr6ei5cuEB2drYQX/v6+sjNzWVwcJD4+Hjphk9PT0uilpiYKD4DY2NjMhEJdxZWHf2IiIg1UpsKXhIRESFJcCgUIicnR6BbKslWBller3fNJO69yIu+kyMxrIUY6XQ6PB4PGo1GXh/+PRISEsQRWHEylOpNe3s7sNZ7ID4+ntHR0TWJXrh0qt/vF6iP0WgU3wi73U5mZiaTk5Pk5eXJpMFms2E2m0U9SynaeL1e0tPTsdlsVFRUcOTIETkGBS+bnp6W867X6wVKpBJmuMbhUE7CHR0dUkyUlJTQ1dWF1+vl9OnTkrxt2rSJs2fPEgwGBaYUGRlJfX09Z8+exefzScGt0+nYuXMnb775Jl6vl76+PlnfuHEjp06dIhgMCtwnIiKCwsJC8QJQzsxK3UtJnq6srJCWlobP56OqqooDBw6IAIGawiUmJnLo0CHhg9XX1zM9Pc2mTZv4yU9+wvz8PFFRUdTU1LC4uEhGRgZPPPEEi4uLGAwGHnnkEc6cOcPWrVv5zne+IyIAjzzyCO3t7VRVVfGP//iPjI2NERMTw6c//WmCwSB1dXW88sornD59GovFwsMPP8zRo0fZsGEDTz75JGfPniU2NlaM17Kysj42E4LrQzljp6enS7F4+vRpacIkJCS863M2FAq9LwIZioOh7gkKCvx+NfxuxkcvbhYEN+M9h8LMrqysiFyZIsJ9EDeGdysI/H4/k5OTjI+PiyZ8VVXVR0Yp6LcN1SUPBoP85Cc/YWhoiEceeYQ9e/ZgNBqpq6vj6aefZnR0lLy8PG655RaSkpKoqKjg61//Ou3t7QwPD9PU1ITNZqOsrIxnnnmG7u5uYmNj2bFjhyT1v/zlL7l06ZJgfYeGhoiPj+fQoUNYrVZiYmLYuHEjNpuN+Ph4IS/7/X4KCwsZHx8HoLm5mcXFReLi4sjLy6O1tZVQKMS5c+dYWlrCYrFIIu33++no6CAYDJKSkoJer2doaAi/38/g4CChUEj0/K1WqygH6fV6EhIS0Gq1jIyMCJlYmTR5PB7cbjdLS0s4nU4sFgsGgwGdTofdbheoREZGhjgf+/1+ZmdnKSgoEBy/6uj7fD527NjBzMwMcXFxTExM4PV6GR4e5o477uDQoUPo9XpRCFpYWGDr1q2cPn2auLg4Ojo6WFlZYXJyktzcXIaHh9HpdAJx8fv9xMXFMT8/T2RkpEhvajQatFotfr9fICFwTYL0/PnzIoEJiJxkc3Mz8Gv1odXVVSFvw68x+koGVal8qQTeaDQK9j18v5nNZoEQhXfu1fkDbkhwNhgM4sYcjlNW7xXe8UxISBBCcLhcal5ennT9FScCrk1UFGRMFQ0ajYakpCScTidut1sgS+GcDzV98fv95OTkYLVaZeKj1WpZWVmhpqaGCxcuEAwGaW9vJyYmRorpV155hVAohN1ul6lGaWkpBw8elK52QkICPp8Pg8Eg5zQxMZGYmBi0Wi2Li4tSlJlMJvR6PSaTSSYISrlHna/e3l4pMlJSUlhaWiIiIkL4B6urq7IXvV4v7e3tUnjl5+czMzOD0+mkr69PfsOysjLGxsZwuVy0t7cLxKSoqEiMy86cOUNUVBQ6nY66ujrOnz/P/Py8kJ/1ej1FRUWcPn0ap9PJm2++KQTsbdu28cYbbzA5OUlUVBTx8fFotVoqKyv5/ve/j81mY3V1lfXr1wOwZ88eXn31VS5fvkxUVJRM+7Zs2cJXvvIVenp6mJ2d5bHHHsPv97Njxw5aWlo4duwYbrebffv2odVqaWxs5JlnnuHtt9+mrq6OLVu2YLfbRf704xhxcXHExcVRWlrK2NgYly5dQq/Xk5ube8PJ9/sNlwrnAylumyoIw5//N4uDj398PEvom/GhhroBKFjQh9UleKeCYHl5md7eXs6cOYPdbqekpITGxkZycnI+9sVAIBDg8ccf52//9m8ZHh6WEb/ZbKalpUU6qmrdYDBw6NAh3njjDU6fPo3BYCAqKgq/38/ly5fx+/2UlJRgNBqlm3r16lVsNpuo7QSDQYEQKPlDhReenZ1lbGwMrVYrWHWfz8fk5CQjIyPExMRQU1NDdHS0JL+zs7NYLBaqqqoEImK1WpmamsJisVBYWCjJ1/T0tEwQCgoKgGuJ8sTEhHgEpKWlEQqFpDNbWlpKSkoKKSkpOJ1OFhYWmJiYID8/n5iYGGJiYgRKYLPZ2Lp1K3FxcSQmJjI4OMjk5CRjY2PU1NQI3ru3t1eu7T179qDX64mOjqa9vR2Px4PdbmfTpk3yADx//rwkUaWlpcC15O3KlSuSFMfGxgJr3YwTEhIESuR2uyUpzs3NlQf4+Pg4Op2OiIgIysvL5doYHh6WB6/iKqh1uPawDp+KqX2jigt1btXn6/V6SRCXlpbe0UFYGbPBWlWi8AifCqj3Dicvr66uykQjHKakjAjV61WEJxbhfAbVoVbJsArlyaB8IABJbuHa76IScK1WKzKt09PTcixqL8E1foY6dzk5OQQCAQKBgCTCERERbN68WQoqReJW2v0LCwssLS3R29srELbGxkaWl5dFBUir1WIymcjOzmZiYkKmYbGxsaSlpZGXlyfQoGAwiNlsJjk5mejoaGw2m0yBEhISyM3NxWKxMD8/z/LyMtHR0UJWVXvA7/ej0+nktePj4zgcDpHzzcnJwWKx0NXVJQRmk8lEUVERZrOZ3t5e7HY7KysrpKSkUFZWhsViob29HZvNJq9PS0sTg0Gn0yk8hvLycnQ6HW1tbVLkajQa+Y5KeUmj0RAfH09mZiZer5fW1lZR1TKZTLz88sscPHhQio+kpCRSU1Pl3tPc3Cwci4SEBNra2vjLv/xLfvGLX7zjtftxiujoaEpKSmhqaiI3N5fR0VGOHz9OX1/fGnge/PYcgvcS4XAi9fy46YL8+xM3C4KbccMIBoN4PB7BswYCAekIhGuHf1ChCoLV1VXsdjuXLl2SZKy2tpaNGzeSnJz8se5MhEIhXn/9dX7+858zMzPD9PS06IWnpqZSVlZGUVER09PTzM7OMjs7Kx0vjUZDX18fY2NjnDp1isrKSqqrq7n//vsZGhpifHyc06dPU11dTWlpKY2NjXR1dTE+Ps4bb7whpmR33HEH4+PjTE1NcebMGSoqKigpKWHv3r2MjIwwPT3N22+/TWpqKtnZ2VRWVmK324VPUFBQQGZmJuvXr2dmZgabzUZzc7N0txITE6VzPzY2Rk5ODrGxsSQnJ+NwOHA6nQwNDZGXlyf8gOnpaex2Ow6Hg927d2MymTAajbS3tzM3N4fdbqeyshK9Xi+d1MXFRXw+Hzt37kSn00lyorwY1q1bJ9eU4gdotVrWr18vEqTKQdhsNovbr9/vZ3R0VGQoLRaLEIxXVlbQaDRkZWVJIulwOKQznp6eLonn7OwsJSUlaDQaSkpKBO7S3d1NWlqaTLpUp3hsbEw051NSUqSIm5ubk/2nPlMZXsG1xEol80qpSa2rRN3r9a7hE6hCZnFxUfZTuA/BjRIMVQQAa2BHik+g1+uli7+0tCRFe1JSkhx7OIfBZDJJUqEIthEREWuIyarw0Wq1QrBeXl4Wr4CUlBQplJxOpyjR5ObmCv9gZWWFrKwstFothYWFcoxKkSoiIoKZmRn5LUwmk3S6JycnBQ5UUFCA2WxGr9dz8eJFOQfl5eVER0djMBjo7u4WXseWLVuE16GcsyMjIykuLhbndlX8GQwGtm7dKgpGquOuiPcLCwtYrVaGh4cxGAzEx8dTX1/P/Pw8s7OzOJ1O4RkkJSUxMjKC0+lkeXmZlJQU4uPjSU5Oxmq1Mj8/j9frJTk5WWRgOzo6sNlsLCwsUFVVRXZ2NomJiVy9epXZ2Vl8Ph8VFRUy0Th79iyTk5NMTU1x6623UlpaSk5ODi0tLUxNTTE/P88dd9xBWVkZ8fHxHDt2DKvVSl9fHzt37qS4uJiSkhJaWloYHx9nbGyMhx56iMrKSoEvjo2N0dXVJWpicXFxTE9PMzU1xdjYGFu3bqWkpEQgeFNTU1itVsbGxvjhD3/IyZMn3/E6/rhEVFQU2dnZbN26lQ0bNrC4uMiJEyfo6OhYM+X7oOFS4QTkcNlS5b1xszD4eMZNyNDNWBOq6lf8AHVz+V3gBSMiInC5XOIdkJmZSXl5+cdCKejfiv7+flZWVkhISOD111/HbreTl5fHnj17mJ6eJioqiqNHj+J2u9m4cSM7duwQsu3XvvY1hoeH8fl87N+/n9jYWPbs2cMTTzzBxMQESUlJ3HHHHVy4cIFdu3bx+OOPi9HQtm3bCAaD5OXlcfToUZk67Ny5kzNnzlBcXMzhw4eZm5tjcnJSjJdUMq6gNrW1tZw/f57Y2FguXLggUp5FRUV0dXURERHB4OCgQGPKysro7u4mKipKzMbgmmKMSuqUqkZMTAwlJSUCkWltbSUYDBIdHc26des4ceIEfr+fs2fPEhkZicViISsrS6RJrVarGIKlpKTQ3d3NysoK58+fx2QyYTAYiI2NxWazsbS0JNwAo9FIRESE+GYotSODwSAmSna7nfLycsbHx0lJSWF2dpZAIMDg4CB33HEHhw8fxmw243A4WF1dZXZ2li1btnD69GnS0tLo6uoiEAgwMDBAdnY2VqsVk8nE1NSUwE7MZjPLy8totdo1qjtKJnRxcVGS6eLiYukYKwhXIBAgOzubq1evAr+G4QQCAeLj4wXnrUzAQqHQGjiAepiHJ/vhcX1H/53+XU0UFLRA/X6qmzkzMyOfmZmZKZj/cMhQZmamdP1Vlz8yMpLk5GSmpqakKwnXihoFRZmeniY5ORmPx0NGRgYOh4NQKMTQ0JCY1VVWVgrP5PLlyyQlJTE/P09TUxOvvfaawMAsFgt+v5+ioiIOHjwIXCs+kpOTxWVYkfeNRqNAg1RRHxERwfbt25mbm8NoNEoxERERIS7BkZGRHDt2DK/XS1RUFFVVVczPz6PVarl69aq8ZsOGDSIl2tzcLP4RtbW1HDt2jJWVFdra2oBrxVJDQ4PA9tR5V9AdxcVxu91Cuq+qqqKjowOv14vL5UKr1RIVFSWGZEqaNykpCbfbTW1tLcePHxePkMTERAKBAEVFRbz44ot4PB6WlpaoqqrCarWya9cuXnrpJSYmJvB4PFRXVzM9PU19fT3/9//+XyFAP/zww5hMJu666y5effVVzp07x+LiIvfccw/x8fHcfffdfPe73+XChQtMTU3x1a9+lbGxMTZv3szFixc5fvw46enp3HnnnWRmZlJdXU1LSwsvvvgiZWVl1NXV0d3dTXJy8hozu49TKN5SYmIiy8vLjI6O0traisVi+UAnBO90HPBr2VI1OQsEAkRFRUne8HFu2v1HipsTgpsB/BoWFO4mDPxOyENer5eBgQGmpqZYWloiNzeXrVu3UlBQ8LEuBhT8YGJigu9+97t897vfZW5ujtraWmpqajCZTLzxxhucP3+eUChEdXU1GzduRKvV8pOf/ISf/vSnHDp0SFRBkpOTeemll7h69SpLS0usW7eOzMxMEhISePHFFzl58iSHDh0iNzcXk8mERqPh2LFjzMzMYDabycvLEzjRiRMnxJk0NTWVyMhIfD4fbW1t+Hw+MjIySEtLIzIyEo/Hw6VLlwTmkJCQIB1zBefIzc0lPj6eUCiEy+ViYGAAuKa3brFYxKFYSYpmZGRgMpkIBoO4XC7cbjfx8fFkZWVhNpvx+Xw4HA4WFxcpKysjKysLvV6Px+PB4XCQlJREbm6uKPYouFMoFJLOps/nw+VyMTc3x/r160lOTiYtLY3p6WnGx8cZGBiQQkK5GS8tLTE/P8/u3buJjo7GYrFI0qQKJmUcdf78efx+PysrK5SXlwvR8+LFiwQCAZaWlgRKFAwGJfkNdzMOx5Ln5OTIvpuYmJB/X7dunVxTqgiIiIhYY3ymJgRRUVFrJEgV5jgmJkbeTxGL4ddQJ1hL6g3fd+EwvnBnYfW36hqBf93RV6HT6WQCEQ55CJcaDZdRVTCpiIgIKRIiIiLWnAvVIdVqtQJ9CocGxcfHo9FoWF1dFSIuXLtWleRnc3OzQLYaGxulELx8+bLcC2tra8UlWBUZFouF6upqFhcXsdvtLC4uEh0dTUxMDLOzs0xMTDA4OCj+BLm5ucLdcDgc4nS9bt06rly5wszMDJOTk2RkZJCVlUV5ebnA2lRBkp6ezsaNG0VS1Ov1kp2dTVJSEsnJyYyNjeF2uwkGgyQkJJCSkiLSpEoWOiUlRSYCnZ2dwlfIzMwkNTWVYDAofBg18dJqteJ/oBK/4uJi4uLiWF5epqWlRbTws7KyGB8fZ3x8nMOHD4vUaHl5ueyBw4cPiydIUVERzz33HKdPn+bpp58mOzubrKwsNm3axPDwMJ2dnTz77LNkZmaSnZ1NfX093/ve93jiiSf453/+Z7Kysqirq2PTpk3Mzs7S0tLCCy+8QEFBAfX19ezYsYPm5ma+9a1v8fjjj4sD9G8jb/1RCSVn29TURGpqqiiyDQ0NrZEC/qDjetlSpU50E0708YmbBcF/8AiFQjKqXl5eFmyv6g59WIXA6uoqTqeTK1eucO7cOdxuNykpKSQkJJCenv6xVYxQYbPZ+Id/+Ae+9rWv4fF4JCFaXl4WcmNsbKys+3w+Ll68yNmzZ5mZmZFEc3p6mvn5eWJjY6mvr1+z7nK5BHOsuoIDAwMCBdizZw9+v1+USUKhEPHx8VRWVoqaiFJASU1NFay0x+Oht7dXzHRqamrkfbq6uvB4PCQmJkoy7vV6GRoaIjIyksTERIqLiwVrqhR2VEKjuo6Tk5MUFxeTmppKcnKyQJJGRkZIT08nJSWF2NhYlpaW6OvrY2Zmhs2bN5OQkEBCQgJjY2OMjY0xMjIiRYdOp2N2dlaSt507dxIdHS1qSAsLCzgcDkpKSkQLX/kKhEIh4Q1ERERIAqmgJ3AtqVfwjtjYWJEgVb4ECuqjrl1ldAaIOhFcS1ozMzPRarVs2rRJHpxXrlwhNjaWyMhICgoKBNYzPj6OVqtFo9EITEiZCQFSzKljVIWC0WiUQmF+fl4KBVWIqXV1vOHypjeSPQwvFNQ0IxQKSXEQ7vy7uLgoRUB8fLwco8vlkkIlvHhRr1VqVOr75OfnExERIfh2uFaYlJSUCGRIkZBDoRAVFRXitaHI0ApuAgj8RZ0js9lMVFQUo6OjksgUFhYSHR2NVqvl0qVL8hspDoOaiClI5ZYtW4Q83d/fL1h4ZXg3MzODw+FAp9NJMaE6vSsrK8KhUZwaNVWLiYkhIyODnJwcZmdnuXz5shQe+fn5eL1eZmdnZYKSmJhIbm6uqDq5XC65LtV9VRGSFfciPj4et9vN+Pi4KHcVFBSQkJDA9PQ0w8PDUvDV1NSQlJSEy+ViZGRE7m11dXWkpKQwPT3N0NAQbreblZUVKioqiIuLw+l0imhAZGQkO3fuJDExkZmZGTme5eVlTCaTkP/DuU9btmzBaDQyMTEhfAhl9nbu3DmZpCg+kMViIRAI0Nvbu2Z9fHycv/qrv+L//J//s6a4/TiGVqslPz8fs9lMZmYmc3NznDhxgq6uLrnuP4y4EZzopgvyRz9uQob+A0Y4LEhV7x+EbOh7CeUaarVacbvdZGRksHnzZgwGA6Ojo2u6lB+3cLvdHDlyBIvFInKSkZGRLC4uUllZKUnr8PAw0dHRuN1ukStcWVkRO/uWlha2bt3K9PQ0W7du5e/+7u9YXFyko6OD7du3Y7VaKSsr47nnnmN+fp6XXnqJhoYGEhMTqays5JVXXsHlcnHq1Cm2bNnCwMAAlZWVvPjii0LMra6uRqfTERsbKw7E6gE+MjJCYmIiPT09uN1u7HY7hYWFkjgqN12Px0N+fj7j4+NoNBqB06iuvjKAUpABo9HIzp07OXnyJJGRkQwMDGC329HpdNxyyy3Y7XaCwaCoCkVFRdHY2Mjo6CihUIju7m6BWZSVlTE0NCTrRqMRvV5PfX09Q0NDBINBBgYGMBgMaLVa8vLyuHr1qhhTZWVl4ff7SUhIEPnIUChEcnIyFotFIDZer1cmK8p1dmVlBbvdTkFBAdHR0YJVV8e+d+9ejh8/TnJysnS31XShra1NpCgDgQDnz58nJSUFm80mRmnqHCvytkajEchV+DheJfuhUIjc3FwcDgcajUaSaXV9Wa1WtFqtJAlKnvJ6dZxwj4Hwh3h4cX69wZjX6xXYFVxL1BVUKCkpSYoGBXNaXV0lOzubK1euANeSc7UeHx/P2NiYOKjCtQnH5OSkwKsKCgpwOp0kJCSILOnU1BTJycnMzs5SWloqsp89PT3k5+czNjbGjh07eOONN4BrBYlyFS4rKxNokMfjIT09XfT61eTGYrFIMTExMcHy8jIRERHk5uYyPj6OXq9nZGREOBDKVTg1NVUcuJXKztjYGNHR0SIJGgwG2blzJy+88AImk0l0+TUaDUVFRfT39xMMBrFaraL2o7rnSk0rMjISg8FAcXExR48eFYdwJTrQ0NDA22+/LWRgo9G4xs04GAyKqlcwGCQ7O5ve3l68Xq+sq4KqpaVFJstlZWVSYLe0tOByuQQuuLS0RGZmJq+//ro0K/bv3097ezsbNmzg+PHjIkF82223cfnyZaqrq3n++ecZHx/H7/fz53/+53i9Xurr6zl69Cg9PT14PB7+7M/+TCY3Bw8epKurC5fLRWNjI0lJSRQWFjIzMyNGiw8++CCNjY1YLBYmJycZHh5mfn5e/BM0Gg179uy5IZH+ox5K1resrAyn08no6Chnz54VEnpSUtKH8py/Hk4U7oKs4EQf90bf71t8PK/4m/FbxfVjPEVo+6BkQ98tlDLE+Pi4jJbT09PX3IR/U2Oyj0IorHJ8fDx9fX386le/IjY2lr/4i79gx44dxMXF4XK5RCnjf/yP/8GOHTvEPfeJJ55gZWWFO+64g6amJhwOBxkZGXz/+98nFApRW1vL3r17RQr029/+NouLizidTrZs2UJnZyeJiYmiUZ6cnMzmzZvp7e0lLi6OgwcPCgymvLyc7u5ucSxdWVnBYDCwbt068QM4f/68FCjhmvr9/f2EQiHS09NFIz4UCkkHLjk5mczMTKxWK6FQiMHBQQKBAImJicTGxtLf308gEKCzs1NgJYmJidhsNnw+H729vdLZXrdunbxPe3s78fHx6PV60tLS6OvrA2BgYIDy8nIWFhYoKiriyJEjhEIhRkZGBCcc3iF3OBwUFxezsLBAfHy8mBrV1dUxNzeHVqvFbrczMzPD7OwseXl5UkxMTEyINOmnP/1pnnvuOVFpUVOZXbt2cfToUUwmE62trfh8PjnnV65cEeiR3+9nfHxclGIiIiKYm5sTIqtKpt1ut0Br0tLSGB4eZnV1lfHxcUnWCwoKRL5U/U6BQEAw94AUAar7ru4Dap+p7i2shfKES5CG79Hw+4bFYpFCQE0cwqVOVYKskuqFhQURDFCRlJQk/z+cT6CkRpXbNSBQLfUeSkEoLi5OOvvKfyEQCJCVlcXY2Bg+n48zZ85gNBpxu91s2bJFeClXrlwhOjqaQCBAbW0tr776Kqurq4yMjIi7cVlZGVeuXJHEy2g0iunW1NQUERERFBcXy1RLOW4rjsLi4iKFhYW0trbidDpZXFyksbFRJm3Nzc04nU48Hg933HGHcH7Onz8v3g4VFRWiKnTu3DmRkt23bx8nT57EbDaLmZoivSt5X8Wd0Gg0lJeXMzQ0xOLiovA4NBoNBQUFTE1NiaCE+h1LS0uFhKyuE71eT35+PsPDw7hcLhwOB2azmdXVVWpra+nr62NychKbzSbFx/r16zlw4ABzc3OMj4+zbt06gsEgW7Zsoauri87OTiYmJigpKSEqKopt27bxwx/+kO7ubq5cucIf//Efs7i4yPr16+ns7OT06dN0d3fz2GOPsbKyQmFhIcePH+fUqVOkpaXxrW99i1tuuUW8Ko4fPw7An/7pn7J//350Oh0Oh4Onn34ajUZDXl6e8EfC3cA/DhHOIYiNjaWqqkpkSzs7O0U1LiMj40MresI9Dd6JZ/BhiJTcjH87bpZn/wFCuQkrsqQi+v0u+AFLS0t0d3dz9uxZ5ufnKSsrY/PmzWRnZ/+rm9PHsSBoaWnhH//xH/nOd75DSkqKKGcMDw9z7tw5Ll++TGZmJsXFxZSWltLX18eTTz7J448/LoooycnJLC4ucu7cOUZGRsjKypL16elpjh49ytmzZ5mYmCA+Ph6dTofNZuPSpUtCmFTr09PTdHZ2YrfbMRqNgueenZ0VXH9VVZU8wGdmZqQrmZOTI+Zcs7OzIolZUlIi6zMzM8zMzKDX6ykoKECn0xEMBpmbm2NxcVGgDDqdjpWVFebm5jAYDIKj1mq1eDweSfaUO2pcXBxWq1XgMXV1dZSWlhIKhZiamhJ4Qn5+vhQIPT09Im9aVFREamoqTqeT4eFhmcKoBM7tdjM6Osr8/Dy5ubmYzWZMJpM4pk5OTsr30Wg0XLlyBa/Xi9frpaGhgaioKLRaLV1dXfj9ftxu9xo5UAUxio6OFly8Oo+AwFIAwa/DNb8BtR8V10Oj0VBdXS3v3d/fj06nk0JahdKoVwpLKsLVhJSzsdvtFt34tLQ06fRPTk5KMqESbFhbHFzvVaBCJeoqUVafqRLHxcVFwfYr3gkgiQGwBvOckJAgalrh7sTl5eVERkZiNpsFGhQREUFVVZVIV6rCR6PRkJKSAiCSmoBwagDZB6rLr45FTS0iIiKorKyUCZHVahW34YaGBuGmTExMiAqQXq/HbrczOjqKx+PBYDCQnJyMXq/H6XTS1dUlsJWsrCxGRkaYmJigq6tLZEZra2uZnZ1lZmaGixcvigNxZWUlXV1dIv+bkpJCQUEBt9xyC6OjowLrUepfGzduZHJykvn5edxut7iSp6WliRiA3+8nNjaWnJwcYmJimJ6eFsdzpWoUFRXF0NCQOB+rva3UztTrLRYL6enpcg6dTqeQYEtLS0XBSBWPsbGxYqbX0tIisKOUlBTy8/NxuVycPXtWoFTJyclcunSJlpYW8YBITEwkOzub2NhYhoaGOHnyJFFRUSQmJpKTk0NnZyf/9//+X5544glcLpfcl2NjY2lvb+f48eN4PB5Zj4yM5Bvf+AZf+9rXpOnwcQnF3wgPvV5PcXExTU1NFBQUYLVaOXHihPBJPqwIly29CSf66MXNguD3NBQsyOPxCD9AqVJotdoPtSJfXV3FZrPR3t4umtObNm0S/OmNjuPjUhB0d3fz5S9/mVdeeYVAICDdj/n5eVZXVykqKhKpwZWVFebn58WF2OVy4XK5WFhYYHh4WB74mZmZLC0tsbCwwNDQEGazmaSkJPR6PQsLC2ISpHTBGxsbcblcsp6enk5eXh5lZWXMz88zPz/P6dOniY+PJz8/nw0bNuB2u3E6nbS3t5OcnEx+fj4VFRUiEdrW1obBYCAzM5OsrCxWVlakkxgfH096erpohitsf2ZmpvgEeDweFhYWGBsbo66ujtTUVFJSUpiYmGB2dpbh4WFycnIElrO0tER/f7/4DaSnpxMbG0swGKS7u5uhoSFSU1Mxm81otVrRdfd4PNTU1GA0GsX8ye1243a7yc/Pl4fj2NiYFMKbNm0CkOREKe3k5uYSCoUIBoMMDg6SlJQkyYaasHk8HmJiYkhJSRGdf5WMK8UiBf+Yn5/HYrGg1WopLy8XRRplBqfT6SgtLZVEvb+/n8rKSnQ6HbW1tdhsNgKBAG1tbcTExIjKjs/nIxgMinSqVqvF5/OJOICSTI2KihLiscfjEYlIs9ksZmAK5gLXEni158LheuEJRjhMKNyrQCX7UVFR0uUPNwlLSEgQtaDh4WEpWrKysmSiEG6iFgwGCQaDBAIBYmJiJNlW0yKXyyXE66ysLCG5joyMiM9EQ0ODFBNut5vc3Fyio6NZv349TqeT1dVVvF4vGRkZUrS63W4CgQBms5n4+HhMJpMY06lzGx8fT2JiIsPDwyKNXFNTQ1xcHBkZGXR3d8vvU1ZWBlwrdgYHB2UyW19fL8pRdrtdijmlkKSUqjQaDXFxceTm5uLxeBgdHcXv96PVaklKShII0YULF8SLo6CgAJPJxMzMDB0dHaLGlZOTg0ajYWJiQu4/SUlJZGdnU1xcjNVqFQhgamqqTAAHBgZEejo/P5+0tDQMBgODg4MsLS2JoVp6ejqrq6tcunQJl8uFx+Nh48aNUmh0dHTgcrnw+XzU19eTm5uLTqejpaVF4Is1NTXk5OSQkJDAxYsXZYpyyy23UFBQQExMDG1tbTidTmw2G8nJySQkJGAymRgYGJDXV1VVUVRUtGZd/TM6OorVamVhYUHEHoxGo0AH1XowGMTr9fLjH/+Yr3zlK7KXPsrxbrKjkZGRZGZmsmXLFmpqalheXubkyZNcunRJnlcfRqiJgWpIhkIh/H6/yJZ+HJ77v49xEzL0exYftpvwu0UgEGB6ehqr1UowGCQzM5OKioo1+ubvFh/lgmBubo729nZRBblw4QJLS0v86Z/+KfX19dTX19Pb28vFixfx+Xz88R//MSUlJZSXl9PW1sbZs2clMdm1axfx8fH4/X5aW1sxGo088sgjNDY2kpycjNPppLm5WRKx7du3Y7PZiIuL4+jRowSDQRITE9m6dSsLCwvExcXx1ltvSfGxfv160TBXjqWrq6tUVVUxOTmJTqejt7cXv9/P3NwcOTk5TE9PSzdekY8VjEAltKFQCJPJREFBAWNjY0L+DAQCWCwWwchrNBouXLiA0+nEYDBQX1/PmTNnBNLj8/mEB6AkImdmZjAajYJhVl2kgYEB4uPj8Xq91NXV8eKLLxIIBBgeHpbvU1VVxfHjx/H5fFy9elWgQRs2bOCll14iGAwyOTnJ9u3bmZqaIikpifb2dpGsLC0txeVykZqaKsZTjY2NTE5OYjAYpCBbWFiguLhYcNhTU1N4vV4mJiZ47LHHeP7550lLS6O/v1/M4pqamjh+/Djx8fFcuHCBlZUVxsbGKC8vp6enh4yMDLq6uggGg3R2dgoMRxVAgBCKg8GgEC3h11AigMHBQeDaVMJkMslUUHXDl5aWZH+Fk5DD91v4v4fzCcLNyMJfo4qaYDCIVqsVbpK6bsOhQTqdTjqT6pjg1y7Iym8BkPtXMBgUIzu4BgFTrx0fH5frIj09XZRxmpubSUtLY2pqSuRf/X4/Fy9eFIfrhoYGgQaNjo6SmZmJ2+0WeU4FcVAE7/HxcZn0bNq0iYyMDMxmsxTkLpeLu+++WzgO586dY3l5Ga/Xy759+wiFQtTV1dHW1ibFx0MPPcThw4fJz8+nra2NpaUlpqamuOuuu5icnKS6upq+vj78fj9+v5/t27fz+uuvExsbK3wFn89Hfn4+7e3tmM1m4WuoovP8+fMiPKCK1/Lyck6dOiWJrzLrq6uro7m5GY/HI5MMVTAPDQ3JnjWbzVKQjYyMiMmdyWQiKiqKjIwMmpub8Xq9REdHk5eXR1xcHEVFRXR3dzM9PS1TEr/fT0FBAa+//jpzc3NYLBb279+P0WgkPz+fixcv0tXVhdFo5Pbbb5fmxssvv0xbWxtms5m//Mu/ZN++fWKs2NzcjEaj4X/9r//F3Xffjclkore3l7fffhudTsddd91FdXU1LpeLmJgYkTLdsmUL9957LyMjIxgMBs6fP8/s7CyNjY0sLS1htVrZvHnzGiO/j0q8F9lRZWyXkJAg09ILFy5gNpvJzc0VRbkPI66HEylFKzUdvClb+uHFzYLg9yRUhR0+egvfUB9meDweMboyGAzk5+evUVt5r/FRKwgUFjglJYVXX32VN954g4aGBh566CEmJiaor6/n4MGDHD58mOXlZe655x6mp6dpaGjgmWee4cknnyQ5OZk///M/p76+HrPZzOXLl3nzzTdJTU3lv//3/05tbS0JCQl0d3dz4sQJoqKiuOeeeygvLxcc8vnz54mMjOTBBx+kuLhYHEm7u7vx+/1UV1eTlZXF1NQUy8vLkuxu2rRJvoPT6WR8fFxUW5KSksSIaWhoSB7+8/PzOBwOlpeXJcnMzMwU8ysFoVB68svLy9K1Hx0dJSoqiqSkJAwGg0AWxsfHycrKEpOdEydOsLq6ytLSkmi2l5eXc/LkSVZWVnj77bcpKSnB4XAINjgUCjE3N8euXbsYHx9n/fr1/PCHP2RlZYWDBw8K7yAtLY0zZ87I+1dVVTE7O0tWVhb/8i//Il4QKSkpuN1uUYtRsBdFHrVarQKnqampobOzE4Curi4xKFO66UajUQpEhYPu6OhAq9XS2dkpnePk5GSWl5eJjIyUohl+nSwrozW4hqGfm5sjFAoxOTkpSXb4/picnJSRfHhER0fjcrmEOAzXGgcKQhQfHy/Jo8/nk32XmJj4rzgBsHZaYDKZRIEoHHqQlpaG1WolOjp6zbriEygsN1wrMFSnPLxZoD4nMjJyDZ9AfWdlmqjOWVJSEg6HQxx+4dokRElvdnV1odVqRSu/ra2NQCBAR0eHfH5VVRUnTpwQBano6Gjh7jzzzDNSrKrE2efzCW8gOTkZs9ksPCElP1pZWcn09DRZWVm0t7fT39/PzMwMDz74IDabjQ0bNtDZ2SlmYg0NDaysrFBTU8OvfvUrxsfHmZ+f5wtf+AIrKyvU1dVJR9fj8bB7924uXbpEYWEhr732GnNzc3i9Xr74xS/idrupqKigra1NvC127tzJxYsXMZvN9PX1sbKyIqRiq9Uq8sGKoKymgEr1S60rU8i5uTmB1Wg0GjIyMoiIiGBycnLNenp6Oh6Ph6mpKex2uxTSeXl56PV6urq6sNlsREdHYzKZyM/Pp7Ozk76+Pnp6eli3bh3p6emC6e/s7KS3t5fi4mLS09MpLCzk9OnTHDlyBK1Wy3333UdDQwPR0dHExsZy9OhRvF4vjz32GJs2bRLVsm9/+9vic3PnnXcyODjIunXr+OY3v8ng4CCJiYns37+f4eFhysrK+Kd/+idpZOzbt2+NVPNHIX5TYzKj0Uh5eTnFxcUiv9zb20tOTg7Z2dnvuYH3743rCwM1ofkwzVD/o8dH4wq+Gb91XA8LUnjc3wUsaGFhgc7OTpqbm/H5fFRVVbFp06bfutsQFRX1kSoInnrqKf72b/+W119/nczMTJH/Uxby8/Pzsp6dnc3Bgwd54YUX+NGPfkRsbCxmsxmz2czZs2eFhKtG+2azmTNnztDf38/Vq1eF36F0wG02m3TdVbdUJQWA4KRXVlbo7+9ncXGRhIQEqqqqiIyMZGVlRVQ5YmNjxdVVSYEqbfOCggLpGCtogoLMRERECAlWq9UKdjkiIgKv18vY2BjZ2dmkpaVRWFgoyiyjo6MYjUbKysrIy8tDq9UKrj82NpaNGzdSWFhIbGwsp06d4vLly7S0tFBQUEB8fDxRUVFcuXKFiYkJjEYjRUVFQk4+d+4cvb29XL58mZSUFPR6PYFAgO7ubpxOJ+np6SQmJgqZcXx8HJvNJlCWyMhI7HY7Ho+HYDBIZWWlPHx6enpYXl7G4/EINEU5CBsMBiwWi3z/1dVVkZFU/AAFR/H5fJIoqZH84uKiEOpKS0sFoz86OkppaSlarZb4+HhJbAcHBwXWEs4PULKNSr1KQQWVfKcqBtRrVYFjMpmko2+32wUylJKSIntOKSLBWtfi8OIgHFakOvfhJmkej0e4CKqDD9ckWBWGX5kpqddf3xVUxFi4Nh1RnASFHVfOz0qRyefzkZiYiE6no6KiQrgNfr+f9PR0oqKixGBPnQsl+askftXULTo6mujoaPFEUAZhSjdfFcMRERGSOCsom1IBKikpIRQKsbCwIL+Xgj45HA56enrEiyIzM5PIyEicTifnz5+Xz8/Ly+PNN99kaGiIt99+m/z8fBISEtiwYQM2m43p6WnOnz8v+6KiooIXX3yR7u5uDh48KB4dTU1N2Gw2xsfH6e3tJTU1laysLHG9nZ6eZnFxEYPBIAlhTEwMMzMzayRIk5OT8fv9cr5UQREbG4vT6WRiYkJgTcXFxWIEaLVapQBRLs8Oh4Ph4WECgQA6nY6amhrxbxgbG5NnWnJysngXqEJDr9ezefNm9Ho94+PjDA0NyXXi9/vp6+vjypUrdHZ2YjKZZM+q+2F3dzdms1mu3R/84Ac8//zztLS0kJOTQ2ZmJunp6UxPT3PlyhXa29vJzs4mIyOD1NRUfvrTn/I3f/M3HD58mI9CqGT6eg7BewlFpt6+fTsVFRXY7XaOHz/OlStXPlS1v+t5BqFQ6KYL8ocUNycEH8P4KMGCVMfMarUKFlfJhv5746MwITh+/DhXr17lzjvvZHZ2VvTxc3Nzyc3NZfPmzTz77LPY7XbsdjspKSkEAgEiIiIYGhpidnYWjUZDXV0d5eXlNDY20tXVxezsLDqdjo0bN1JQUEBhYaHoh09NTcmYXz14u7u7mZmZITs7m3Xr1mE0GvH7/bS3t8u1UFRUJPj3np4eeZCWlJQIFltBg+bn50lLS8Pv9wte2el0sry8TGZmJisrK5LcBINBnE4neXl5zM/PEwqFmJ+fF7nBuro6rly5gkajob+/n4WFBWw2Gw0NDaJ+opyPtVot9957L3NzcwQCAfEsWF5eJi0tTaAXMzMz2O12QqEQGzdulERCEXCVAzIg0KOVlRWRGh0ZGZHkITc3l4mJCVEf8nq9tLS0CHm7trZW5BwnJyepq6tjZmaG1NRULl68KFKW+fn5+P1+UlNTOX/+vJiBKb+MhYUF3G43Ho+H8vJyjEajSG36/X7Gxsb47Gc/yzPPPEN8fDzDw8MEg0EuXrzIli1bOHPmDElJSTJFmJubw2w2SxGnoDXK4yAUChEdHb1GWx+uPdjVmtfrlUQ8KipKCkilUKO69arLr3gF6n1UhJOKwyO80FcFhsLIqwd3uLKTUvwJVy0KTzYiIyPXTD/U/Uwdn9/vF4dorVbL+Pg4gUCAK1eukJeXx8jIiGjuh0Ihzp07R3x8PC6Xi507d/LKK6+I+lBSUhIrKyvU19fzxBNPSAGXmJjIysqKTOTgWrGjplpOp1PUd/bu3YvD4SA7O1sgYIFAgA0bNrC0tMTGjRu5cuUKPp+PpaUl7rrrLl5++WWSk5Pp6OgQ9ak777yTnp4eCgsLRVY1IiKCuro6pqenWVhYECnc1dVVKXyV03BUVBQWi4XCwkL6+vro6+uTIjg+Ph673c7ExAQ+n4/S0lKZZKSnp3P58mVsNhvp6enStEhISKC9vZ1QKCQE9IiICMrKymhpaREIkDJ7M5lM4kyuiNyKeD08PCzHqYjVERERtLe3iyzt+vXr8Xq9GAwGOjs7BUpUWVkp+/r06dPYbDYMBgNVVVXExsai1Wppa2tjdHQUvV7P3XffLfylS5cuMTIygl6vZ2VlhfXr17O4uIjD4RApY4PBwG233cbQ0BBzc3OMjIzg9XoZHh4Wf47IyEjxQbDb7TQ1NUlRo54Jdrudy5cvc/z4cbZv305NTc17eby876Gel/+eaYXy8khJSWFxcZHR0VHZR7m5uTIZ+qBDfcb1cCJVLNyEE73/cbMg+BiFwrKqShn4nRUCKysrQkxTsnaq+/Z+xe+qIBgdHcVut1NeXs6BAwekk9bU1ERcXBx79+7lm9/8Jn19fRQUFNDU1ERkZCSbNm3iH/7hHzh37hxjY2P84R/+IS6Xi02bNnH8+HFaW1txOBz84R/+IW63m40bN3L8+HFOnDhBa2sr99xzD3V1dURGRjI9Pc3g4KDoZm/atAmNRsP09DSXL1+Wh/O6detEf7yzs5PIyEjWr18vZGKv1ys46KSkJDE0Urj7yMhI0tLSyMnJYW5uTqAScK2jm5GRIdrwKoFNTU2lqKhIIEQdHR0sLS0RExNDXl6eSDKOjIwQEREhD3DlGjs3NydwGTVh8fl8jI2NsW3bNvr6+igtLeX111/H7/czODhIY2MjIyMj1NbWSkJy6tQp7rvvPlpaWqioqBBS98DAALfeeisDAwM0Njbyne98B6/XyxtvvEFlZSXj4+OUlpZy6NAhKWg3b97M9PQ0hYWF/OAHPxC5zqysLNxuN9HR0aLnv23bNpKTk9FqtYyMjIg06Sc+8Qn6+/vRarVcvnwZt9vN1NQU9913H6+88gqxsbG88cYbLC0t4Xa7sVgsOJ1OoqOjuXDhAoFAQHwYPB6PJM3qGNWDUXXNro9w1Z7wUMm8wo6rUIo74a8P7/7fyG/gRvChcIUgRXK+PtT7hL/2Ru+t+AHw6+IkIiJC/tbv92MwGATCEu5PYDabWVxcFBJ+MBjk1KlTUgQZDAbhATQ3NxMTE4Pf76e+vp6nnnpKzrnJZEKr1bKysiITiIKCApKSkkTHfm5uDofDwc6dO6VZ0NLSwvDwMHNzc/zRH/0RTqeTTZs20dLSIhC8W2+9lebmZmpqanj++eeZmZmhtbWVL37xi/j9fnbs2MHx48dZWloiGAxy9913c+nSJe68807+5V/+BZfLhdVq5XOf+xwLCwts2rSJy5cvS7K6b98+2tvbqaur44033pACvri4mN7eXtLT05mZmRFiel1dHUeOHCEQCAhES6PRUFxczOXLl/H5fFy5coXIyEhJ4gcHB+X7K4hqeno6NpttDdHeYrGQmZmJw+GQ86jX64mNjSU9PZ2hoSEWFhakmFCTxuXlZVHsSk5Olu785cuXxRSwvr6ehoYGjEYjq6urNDc3i4dKfX09MTExWK1WDh8+LLynRx55hOHhYYqLi/nGN77B5OQkRqORz3zmMwwNDZGTk8M3vvENpqenhdOl1WppbGzk4MGDvPXWWwSDQT71qU+RmJhIfX09r732GgcPHsTtdlNaWkpnZyd5eXmkpqb+q33wQYXaP+8XfMlisVBZWSkTuK6uLqKiosjNzRXo6IcR18OJlODATdnS9zduFgQfg1AmYspBFZAq+cOOxcVFrFYrs7OzxMXFUV5eLt2j9zsiIyM/NEt5NYr0eDz88z//Mzabjc997nM0NTWJC+/TTz8thcLOnTtJSkoiPz+fb3/727S3t9Pd3c22bdsksXzxxRfp6uoiIiKCHTt2YLPZKCws5Nlnn6WlpYVLly6xZ88eSS7b29sZHR0lKSmJDRs2YLfbsVgstLS0MDQ0hE6no7q6GovFIth91T2rqakRl10lyRkZGUl+fr4koHa7nYWFBTHmGhsbE2dTVVimpqYyPT2N1+vF6XSKaZUytFIeBuGSiUolaX5+XmBEytW1vb0dl8tFREQE27dvZ2lpifz8fE6cOEEgEKC5uZnbbruNK1euUFJSwsmTJ1lcXCQlJYVdu3ZhtVqprq7m5z//OV6vlzfffJNdu3aJodGbb77JwsIC6enp1NbWYrVaKSoq4sUXX5REXpmimUwmLl++LF2/zMxMnE4ncXFxtLa24na7sVqtWCwWlpeXWV5eFk+AgoICzp8/z+rqKv39/dhsNqKioqivr6ejo0NgMqqrXVZWhs1mIzIyUqYVCscPSGKv9o2Cr4TjfzUajex3ZfilHoYqlAOu4kioUFh5jUazprsfzhtQ3W9FEFXFnoIKhbsTWywWSfBvNDlIS0sTRZ/wYiAmJgaXy4XBYBDegPptVKdZHbvicajzE/45UVFR6HS6NQWEeo1Go5FCQRU+108qVIc9/O/g2gRDGd+Njo4KZKGqqoq33npL4GARERHiSq0masnJyeh0OkwmE3FxcbjdbpEK1mq1JCYmcurUKenOb9q0idHRUYqLiwVLf/bsWfLy8lhaWqKhoYFf/epXjI2N4XA42Lt3L0tLS9TV1dHd3c3w8DCvvvoq9fX1nD9/nttuu42nn36ayclJ7HY7n/rUp8RD4cqVK6ICtHHjRkZGRmhqauLgwYNMTEzgdDr5f/6f/4eVlRWKi4sZHR1lYWGByMhImpqaMJlM6PV6pqamJLlPSUmRqcbMzIzA1GJjY0lISGBiYoKZmRmZDJpMJuEnjYyMyPlX0qRWq1X2ByDncWRkRO4zys25rKyMtrY2geYpI8WoqCja29uJiIgQGeJAIEB5eTknTpwQQz4lxRwTE8PPfvYzvF6vSB0bjUa2bdvGs88+K/yJ8vJyYmJi2LRpE1/5ylfET+FTn/oU8/PzbN++nY6ODk6ePMns7Cy33347LpeL7du38+abb/Lss8+ybt06/uqv/oqVlRWB8X6Q8X5MCN4pdDodhYWF5OfnMz09zcjICP39/WRlZZGTkyNy1h90hBcGgPAM1N78XZir/j7FzYLgIxrhbsKqEIiMjPydXPBKNtRqteJyuUhLS6Ourk5wyh9UfFgTgsXFRb773e/i8Xj4gz/4A4xGIwaDgdXVVTo7OwV2oXDXoVCI06dP09nZSUpKyhq8eHd3N1FRUVRXV3P69GkpMrq7u0X6Fa51SBcWFrh69SpGo5F169aJ7KaSIDUYDKSnpxMMBvH5fLjdbjG1ys3NFTlOr9dLV1eX8BRUl9zv99Pb20tsbCzJycl4vV55WI+OjmKxWOQBr9YVJEN1XCYmJkTKsaqqShJmpVO+vLzMxo0b0ev1cpzDw8PodDruvvtu/H6/qJe89dZbgiuuqKhgdHSU5ORkWltbWVhYICMjg6KiIkZHR4Vrsbi4SGJioiSqyr1VabsrlQyVkCvDJL1ej8fjYWVlRX5PpdSiYBAKX6+gI4p7oNfrCYVC1NTUcOXKFUKhEA6Hg/z8fClWlOum3W4nNTUVrVZLXFycmP4lJSURExODVqsVE7ZAIEB8fDzLy8tYLBbcbjerq6ssLy9TVFQkKkZKXUdJKs7Pz2MwGIQLoMbmUVFRInMLCLcgfN8EAoE1XXEF65mfn5ciIDxRV11zYA3ZOJwYHI7hVe7J6nhVKCw5sIbDoCBDer1eignFsVAQN/V9dDqdFBYqefN4PKSmpuJ2u4mMjFzzHnFxcSwuLq4pTJxOJ4mJifh8PjIzM+nt7WV1dRWfzyfqSwqCqa5zs9ks148qrCsrK7FarcTExNDT0yP7uKSkhPHxcYqKioSkHwgEaGxsFDdhte7z+YQTo9Fo8Pl80kGvqKgQuJYqhsxmM+Pj4ywsLDAwMEBMTAx6vZ709HSRv+3u7hZTw7y8PHH8VWTi6elpqqqqGB0dZXJykhMnTpCdnY3T6WTjxo0cPnyYvr4+BgcHueOOO5idnSUzM5PV1VWZAJaUlIjGPyDn0GAwkJeXh8/nIz09nUuXLuHz+YQorJ5fVquVQCCAVqsVwrHH42F4eFjuDVlZWURERLC0tCSwRuVtsrKygsfjESy74oYsLy+zuLhIZ2enFNuJiYlERUUxNzdHd3c3LpdLpJ+dTieTk5O0tbUJTC0UCuH1elleXubixYsC94yNjSUpKUnkXJWpnkaj4dixY5w6dUoaNEajUXgIS0tLtLW1UVBQIOvd3d385Cc/IS8vjy9+8YsfaFddNSQ+qMIjMjKSjIwM0tPTWVhYYHR0lFOnTpGSkkJubi7x8fG/ExfkdzI7uwkn+s3jZkHwEQt1YSvNatVh+V3Jhk5NTa1RkVm/fv0aUuMHGaq7d3238P0In8/H0aNHpVuusKMzMzNUVFSIDrdan56epqCgQI5LqV+8/fbb7Ny5E61Wy549e/jJT37CwMAAR48eZceOHYRCIRoaGnjhhRcYHBxkdnaW/fv3U19fL6PvoaEhHA4H+/fvFxL2+fPnsVqtolJTVVUlRmBjY2NMTk5SXl5OZWUlcA37PTo6CiASocvLyywsLDA3N8fc3BxJSUkUFhayuLiIy+US1RqDwUBKSopwUhQhNDExkZqaGnp7e9Hr9Vy5ckWw5+vXr+fq1atSNNhsNvR6Pfv27ZNuqsvlYnJyEp/PR3V1tRQN4VCCDRs2iLux0twPBAIkJSVJ92d6epp169YRERHB3r17eeKJJ3C73XR3dwsPoKKigtbWVjweD5cvX2b//v00Nzdz//33873vfY/5+Xm6u7vZvXs33d3d1NXVcebMGXw+H8eOHeOee+7h4sWLbNiwgRdeeEE+d+vWrczNzZGfn89rr71GKBQiLy+P7OxslpaWWFxcZGpqisjISHbs2EFycjIajUb00+GaQpBKepXG+8LCArm5uUxNTZGQkMDo6KjgzFWiHhsbKzyK8O6/6lCHQqE1+HudTiecovBOeLgqT3iopDa8mx9eTIRPCN7p72CtylH4uio8ro93UkcKlzHVarVrknwVRqNRvqu6bkOhEAkJCXK9KV+B2dlZgQxFRUVJoaLO9fLyspxzdV4U3t7v98vvNjMzQ2Jiong2zM3NYbPZqK+vF2L++fPnmZycxOFw8KUvfQm73U5tbS2tra1iAvnII49w5swZ9u/fz69+9SucTid9fX188YtfZGlpiZ07d3LmzBkcDgeDg4M8+OCDHDhwgH379vHLX/4Sr9fL3NwcO3bswGq1Eh8fT09PD16vF5fLxe7duzl48CBlZWUcP35c9pBySVaqXwoaVFFRwcDAgLxOFR+Li4vMzMwQCAQoLCzEaDTKhO3QoUPYbDYx9tNqtWRlZYnbtsvlwmKxYDabKS0tleRdSZNqNBqBPColK4vFQlJSkpzfhYUFIiIisFgs4nOg3I81Go2QfBWxXEGJFPlZr9czPDwsxOK4uDhuueUWaRC0tLTIlOb2228X3f1jx47h8/lIS0sTWOi6det48cUX6e/vJy4ujkcffVTUzsLXm5qaSE5OpqioiJGREQYHB/H5fDzwwANMTU2RmZnJyMgIQ0NDrKysYLfbRVp6165d73vi/l4kR9+PiIiIID4+nvj4eDweD2NjY1y8eBGj0Uhubi7p6em/M9nS4eFhUbC7CSf6zeJmQfARCcWkX1lZkQerGmO/n7j89xJKGnJqagqTyURhYSHJyckfOkRJfd47OS/+NqF0xmNiYhgZGeFXv/oVOp2Ov/iLv2D37t1y8zhw4IAYQ+3atUs6sj/96U9FhWP//v20trZSW1vLU089xczMDDExMdx5551cuHCBuro6nnzySYaGhrh69SpNTU34/X7MZjOnTp1icnKSnJwcdu7cyerqKnFxcRw/fpzx8XGio6MpKCgQB9mJiQkhwNXU1BAVFSX69YuLiwJ/Ucnx4uKiEE9zc3PFqMfpdIoBknKBXVpakoJHqUwYDAYcDgder5eBgYF/NSHx+/1C+ktISCA5OZm5uTl8Ph/Ly8vk5uYSCARIS0tjcXFRFD1uvfVWent7ue222/jRj36Ey+XizJkzVFdXMzg4SFFREYcPH8bj8XDy5EkeeOABmpubueOOO/j5z3/OwsICb7/9Nn/0R3/EwYMH2bJlC9/73vdwu90cOHCA/fv3c/bsWfbs2cNrr72Gw+HgyJEjNDU1cenSJTZt2sTPfvYzPB4PBw4coKGhga6uLqqrqzl69Cgul4uysjJKS0ux2+2kpaXx9NNPs7KyQnZ2tshwLi8vMzExIQmpxWIhMjKSjo4O6fJe/zDy+Xx4PB4pphVPwOfzMT09Ldd6+ARwcXFREmfVLV9dXV1jBqamBLA2Cdfr9fj9fiHiXR+q6FD7S4XRaJSOfjg0J7wJoNPp5LPCX5OQkCDTjfAkP1zuVEX4f1fTAWBN4aPIoLC2OAlXH1PEZDUxUZMe9XoFu1JTIfW5CmqlOFk+n0+Us9RvEF4EpKamSoI8MjKC0+mku7ubdevWER0dTXZ2Nq+++ipDQ0PY7XbuuusupqenKS8vp7e3F6vVyoEDB6ivr5dr9Mknn2RychKn08nDDz9MIBDgzjvv5MCBAwwNDXHw4EFuvfVWzpw5wz333MNTTz2F3W7n1KlTfOELX+D06dN85jOf4f/8n/+D1WolKiqK+++/n6NHj3L77bfzi1/8gvn5eYaGhtixY4dAC8+cOSMuyg8//DAHDx5k8+bNsvcWFhYoLS1lfHxcJnOKl1BdXU1nZycrKytMTU0JjjsrKwu73c78/Dy9vb1rJgJKKlddbwp2FRERIfC0qKgoDAaDwHrU/lLriYmJ+P1+cY9WHXxVPFy6dImVlRViYmJEVQzgzTffxO/3U1payrp16/D7/WzcuJGXX34Zm81GUVER5eXlhEIhSkpK+OEPf4jD4WBubo5bb72VuLg4br31Vt544w3Onj3L1NQUe/bsISEhgVtvvZV//ud/5uzZs3R2dvLVr36VW2+9ldzcXKxWK2+//TZms5n/9t/+G/feey/JyckMDw/zy1/+ErPZTFFRETqdjlAoRGZm5r/ao79NvF/Pyt8kDAYDpaWlQogfGhpaI1uqYJIfdKjCwOVyER0dvUa2NHxqcDNuHDcLgt9hhMOClNRduHvfhym7qRKN8fFxUcvZsGGDjIl/F/F+FwRtbW387Gc/IzExkc997nMUFhYSHR3N9PQ0J0+eJCEhgU2bNsn6zMyMPFQ///nPS6Kr0Wh4/fXXWVhYoKmpiZycHDFjUg9zv99PcnKyaMMrhYz6+np0Oh3z8/NERkZy+vRpeSjGxsYK8XZ4eJjV1VXBIisVnCtXrhAIBIiLixN1mEAgwPj4ODqdjoSEBCElB4NBxsbGBM6ioF+BQIC5uTl5vVIR8vv9TE5OisttRkaG6G2Pj49TWVlJWVkZBoNBuCROp5Pq6moaGxuBa3jxt956i1AohNFo5JZbbmFgYICNGzfy2muvsbS0RHp6Og888ADnz5+nrKyMX/3qV+J2vHXrVi5fvkxFRQWHDx/GbrfT1tbGrl27aG1tZfPmzbz22mtcvXoVn88nCVdmZiYXLlzAbrczOTlJUVGRyDmeOHGC+fl5Ojs7BV9sNBrlXMTGxmI0GkWvXplLqWQnIiKCqakp3G63ONmq6ZXRaESn04mrtAqtVisJ7ezsrOxtBUdSExFA3GgVLDCcT6C4AEpdRr0e1ib14aHVatck1qrrH56Yh/+dKujg1/Ae9VsqM7EbGZOZTCbp6IcXKnFxcXI+ru/0h/ME4FpRoY4xfF3xBpSRnorwIkjdH9X+U4m+KiS8Xq9ANMIbGspwL9zlWZlZqS61CqWSpaBgKvFQ0BdlAKjOqVJzWlpaYmZmRjhCCi4UCAQEeqeS5mPHjknRkJWVhc1mk0LZbrdz+vRpsrOz8Xq9NDQ08OKLLzI1NUViYiKNjY34/X7uvPNOjh49yvDwMAcPHpTkffv27Rw7dkxw//fffz9arZa77rqL119/nd7eXhYWFti1axfNzc3U19dz5MgRhoaGmJyc5LHHHpMC3+VyiQRrdXW1qAy53W5mZmZECjY9PZ25uTm0Wu0ayJC6DzmdTuFt6fV6kpOTBUapnoU6nY6MjAyWl5dxOBwCndXr9SQlJYn/iiKN63Q6iouLpZALX7dYLMzOzsrvpAqN4uJibDYbPT09UvQYDAaSk5M5dOgQfX19eDwe0tPTZcKqoIVer5eUlBRZP3DgAM899xyFhYX8j//xP0RKOTo6mosXLxIKhXj00Udl3e/380//9E+EQiH+7M/+TCbQ/574TT0I3s9QU5zs7GzxrBgaGhLvCCXt+kFHONl4dXVV7rfhcKKPimfERy1unpXfQShYkMJAKgKWGquG4+M+6IJASS22trZy5coVTCYTjY2NVFRU/E6LAVhbEPy20dfXx1e/+lVR2fD5fHi9Xubn59FoNKxbt04SAkWWm52dZXp6WoiDTqdTSKkVFRVs3rxZ1oeGhjCbzYIZt9lsuFwuenp60Gq1lJWVsWPHDhnv9/T0iJb3unXrWF5exuVy0d/fj9PppLi4mI0bN0qSOTQ0hNvtpqCggPXr16PRaFhcXGRsbEwMtoqKigQfPjk5icvlIisri4KCAvR6vajd2O12EhISSE9Pl++sSLMbN24Uze3JyUlmZmbo7u6mpKREFCXm5uZEu1vJpebn5+N0OmltbeXcuXPMzs6Sl5cn8IGOjg5xN87JySE2Nlaw3KOjo4yNjYlmvFarZXp6WrwPYmJi0Gg0REdHCxxGPeQV9MhisWAymaipqRH8ttPpZPPmzSQnJ5Obm4vX65WiafPmzWRmZrJv3z7sdjtut5uuri7BSJeXl+NwOPB4PLS3t4uLtDLgUlKP69atIykpicTEROx2u+zhtLQ0ea1yoYVfkyUVTEMp5Cg9e9X9V1hlrVYrScP1XX7F3VHfV+0V1YkLT9jDIzwxD/cVUMUArJ0EhBcH4bjn8PcPLzzCXxP+t+FxIyiR2uPhn68SQ2BNMqHO9erq6prEXa0rszlVzKmCKhgMYjabMRqNIligZDItFgsxMTEyYZifn0er1WIwGCgsLMThcEhhXFxcTGJiIg0NDWKC5nQ6SUtLIz4+nnvvvZe2tjaZvCmlm9zcXHp6enC73dhsNm677TYyMzPlfRQvoLCwkNTUVOrq6kRhSDl5WywW4Teo76TgYxqNBoPBsEbeU0EAFck/LS2Njo4OrFYrPT09sidLS0uZm5tjenqaCxcukJycjMViEYfj9vZ2jh8/TmxsLDk5OVRWVpKRkSEeIB6Ph8zMTIqKikhNTaW3t5fZ2VnhJOTk5FBTU4PH45HvqiYrZrOZqakpZmdn8Xg8Ip+anp7O7Oys8JtiY2MpKSkhLS2NkZERJiYmRFGqqqpKnNStVqs4WtfU1FBYWCjkZdX4qK6upqCgAK/XS39/Py6Xi8jISPbs2UNRUREej0fWbTYbaWlpJCUlER0dLesul4u9e/dSXFyMXq9nYGAAl8uF0+lkbm5OCpP5+XmBAVssFoqKiqQBp9Y9Hg9PPvkkX//619eY8P2m8WFBht4tlCJUXV0dW7ZsITIykubmZlpbW6Vo/CAjvIGo+BSq0aAmggqJcdPTYG3cnBB8iKHchH0+n1yM70Z+uVEH8P0In88nsqGK1JWWlvahjxvfLcKNSX6TsNvtdHZ2sm7dOjo6OqQ7/+d//uc0NjZSU1PD0NAQ586dw+Fw8N//+39n/fr1ZGdnMzAwwNtvv00oFKKoqIi9e/cSCATIycnhn/7pn1hdXaWmpkbUP9LS0njqqacEkrNlyxbGx8dJTEzk6NGjYoC0fft2SX6PHTvGwsICfX19otKkkvmRkRF5IKqO4vj4uGDLU1NTKSwsFBfUoaEhMb1KSkpiYWFBjgWuqXmkpqbidDrXKAqpJFxBi7q6uoSYmZeXx+DgIFqtlrGxMRYWFoiNjaWqqkoSJZvNJgoj69evl2t1YWFBDLUaGxvp7e0VTfedO3dy7NgxcnNzOXXqlGhcNzQ0cPnyZYEzLC0t0dXVxR/+4R/ywgsvcMstt/DjH/+Y2dlZjh07xh133IHH4+Gee+7hySefxGazcfLkSf7kT/6E559/nkcffZRvfvObDA0N4fP5ePjhhzl27Bj33nsvP//5z3E4HBw+fJgvfOELHDp0iO3bt/PNb34Tn8/H66+/TlNTE21tbVRVVfHKK6+wtLSEwWCgvLycqakpCgoKRCVJwUzUmHp8fFw4LzExMfJwUgRsg8EgCb9Go2F5eXnNQ8lgMMjEMLzjrtPp3hE+ozruihz5Tq8P3z/qd7pR0XCjkXr4628kRxr+t+Gf+U7iANcTk9+JNxC+rq7n8O8Maz0MwqFHDocDQMznFClZFTDKawCQyQ9AUlISUVFR6PV6gcooeUqv10t6erqQ4FtaWti8eTOXL1+mvLyc7u5u5ufnefnll9m2bRunTp3innvu4emnn2Z6epojR47wX//rf+Xw4cN89rOf5Vvf+hZWq5Xjx4/zwAMPcOTIEe677z6eeOIJ5ufnee2113j00Uc5ePAgn//85/mbv/kbbDYbfX193HfffRw7dozKykp++tOf4nQ6uXDhAnv37kWr1fLZz36Wr33taywtLeFwONi0aRM9PT3U1dVx6NAhFhcXmZiYYPPmzQwPD7Nz506R+Q0GgzQ0NDAxMUFcXJwQtDUaDVqtVqRwExIS0Ol0REREUF1dzalTp0SxSRX4+fn50tRQ6kCKF+dyuWS/REZGYjabsVgsuFwu+vr6iIyMFAfquLg4kSBdXV2VdeX/cf78eeDaZKqkpIRAIIDBYKCjo2NNMWEymfD7/Rw+fJiVlRUyMjLYuXMnMzMz4oI+NjZGamoqu3btwmazkZeXx3PPPYfVamVsbIw//dM/Ra/XU1xcTGtrK2fOnCE+Pp4/+7M/E8GHkydP8tZbbxEfH8/evXulYaHX6zl37hw2m426ujoefPBBKdjOnDnD7OwstbW1IvywadMmzGbzO+7Jd4rf5YTgncJsNlNRUSEuyN3d3fT09JCbm0tWVtYHQrBWBXR43Eid6KYL8tq4WRB8wKFGVuH8gHBY0LtFOHzg/QqlXT07O0tCQgIVFRUfmjLAbxPvVWkoGAyyuLhIbGwsL7zwAkeOHGHr1q3cfffdjI+PU1tby+uvv87hw4dZXFzk3nvvZWxsjNraWl599VV++tOfYrFY+G//7b+xdetWVlZWmJmZ4aWXXiImJoY/+7M/Y8uWLYKff+aZZ/B4PDQ2NrJx40b6+/uJjIzk0KFD+Hw+tm7dKusRERG8+eabuFwukeUcGBggIiKCq1evCoG5rKyM/v5+oqKiJJE2m80kJiZKMan06E0mE5mZmUICVA/t6Oho4uLicDqdrKysCOZd4XDVqF7BObRaLenp6UxNTeH1euUcJiUlybhejd+VJrUyQVLj9+HhYW677TZGR0fZvn07P/vZz1heXubChQv85//8nzlx4gT33HMPX/3qV8XAbu/evZw6dYqmpiaeeeYZIYZ+/vOf59ChQ3zqU5/iBz/4AX19fczNzYmhV01NDQcOHGBmZoa33nqLhx56iEOHDnHvvffy5JNPSlK2fft2IRsfOnSI2dlZWltb2bp1K62trTQ2NgpcIlyGNSMjg/b2dhwOB62treKOmpmZyaVLl/B4PLS0tAj212AwMDIyIuRNlZTGx8czMzMjMAQVKuFXSf/18J/rib8qwicE4XviRh33d+INhMv4hifkShb0+r9T7rJqf6kIv1eYzWZJ1sOPPRyGFL5/wwsVFTcyPbvR+o3O0fX+C9d/n3CokTLY02q1ojYESLc9KiqKhIQEpqen0Wq1TExM4PF4mJqakmQ2OjpaPDF6enrIysoSV+uWlhbm5+c5ceIEmZmZLCwsUFlZyUsvvcTo6KjwCTweD/v27RPI0JtvvklFRQW9vb1s27aNf/7nf8bhcBATE8Ndd93F0aNH+fSnP82Pf/xjEXvYvn07Q0ND3H333Xz961+XxPuzn/0sr7/+Ovfddx/f+ta3BLp211130dLSQlNTEz/72c8E2vOZz3wGo9HI/fffz89+9jPhCDz66KMcOXJEfFOUHPGePXtEtndpaUmK25ycHNxuNy6Xi/n5eVHTUipoSvEIkKQ/JiaG5eVl6SArrwOlxqU8TZTZWWpqKnNzcwKtVJPEuLg4rFarGJ6pf8rLyxkaGmJwcBCdTofBYMBkMpGVlSXfqb+/n4yMDPGjmJqa4uLFi+JDEwqFqKur48UXX6Sjo4OkpCQeffRRNm7cSE5ODn6/n6NHjxIVFcXDDz/Mxo0byc3NZXR0lO985ztoNBoyMzO5/fbbsVqtlJeX861vfYuhoSFiY2O57bbbGBsbY926dXz7299mYGCAxx57jP3798t5/ree078LDsF7CTUVz8vLEwnacNnS91Ox8J0KAhXXqxOp3ExdW78rOfePStwsCD6geD/chN+vCYHCKysd+bS0NOrr6z9w2dD3I95rQfCLX/yCixcv8sADD5CcnExSUhIpKSmcPHmS4eFhqqurZT05OZmjR49y4MABurq6xFlZr9dz6dIlhoeHycvLE4KtXq+no6NDulYpKSlotVpRVwgGg5hMJqqrq5mdncXn82G1WvH7/URFRQn0JRgMYrPZ8Pl8Ap0ZGhrCZrMxNzcnI+X4+Hh5qC0sLODxeIiLi8NsNgskST2UY2JiMJlMzM3NCaF4eXmZmJgYkpOTsdvteDwegR4od08Fm/L7/fT391NdXY3b7cZoNDIxMSEQowceeACLxSKdu/b2dlZXV2loaGDLli1MTExQWFjIkSNH8Hg8ZGdni69AU1MTv/zlL0UppL6+Hq/XS25uLgcOHBCy5ubNm7lw4QIFBQUcPXqUK1eu8POf/5zi4mImJiZIS0sTKFEgEBDN9vT0dIaHh5mZmeHMmTPExsbKTf3KlSt4vV7i4uIwmUySeJjNZsF+q66xy+XCZDIJp0dhmxW0R0FFwjvu2dnZDA8Py3mFa/s1MTERm80mBZkKZaAV/vrwh0944a+6WeHa+iqU1vb1JF31N9fvlRtNCsLXw+E9ylkZfk3YhWtdeZX4hz8ww5N2s9ksHfhwGJKCUMGvE3R1D7x+ZH8jmKAiAF//NyaTSeAz179eJf/q9eE8A/XflFO3SjRVsaGUsBTGX5HFlUu2VquluLiYjo4OOQ9qoqBgYep7qCaQyWQSZ2VFwFfrer0ejUZDQkKC7M8LFy6g0+mEhHv69GlmZ2exWq2kpaXhcDioqKiQe4HyRVAa+k888QSzs7OkpKRQWFgIQFNTE+fPn6e/v5+XX36ZwsJCIiIi2Lp1K48//jgTExMEg0H27duHz+dj9+7dnD17lqtXr4rq1urqKpWVlbS2ttLd3Y1Go+ETn/gE9fX1REdHYzKZOHjwIMFgkPz8fKqrqwkGg4RCIWmAqCmlRqMRKKBSHzKZTKIeNTs7K5N0RRhWPAaVyMXHx5OYmIjD4WBiYkKuE4PBIOdJwXnUZCMjI4Px8XEGBgZYWlqSaV9MTAwzMzP09PTINWU0GtmwYQMnTpzg6tWrsn91Oh2zs7Pi3xAbG4ter0ev11NUVERzczNdXV2YzWaBPbrdbp5++mkxiEtNTcXlcpGYmIjVaqW3t5eLFy+SkpKC0+kkPj6e5557jhMnTnDHHXewf/9+3i0+ahOC6yMyMpL09PQ1sqWnT58WeOf74Wn0bgVBeFyvTqSuJyUL/B9RtvRmQfA+h+rkqgeDupn9NrKh/14Ogd/vF0xlREQEWVlZVFVVfWiyoe9H3MicbHV1lZMnTzI5Ocmtt94qmFJFiq2srGT37t384Ac/kPXs7GyMRiMxMTGcOHGC8fFxkaHbuHEjlZWVDA8PMz4+jtfrpb6+Xohz8/PzjI6OEggE0Ol0bNiwQY7l+PHj+P1+LBYLGzduFCzzuXPnpMNeWlpKbm4uy8vLDAwMCMGtrKyM3Nxc3G43g4ODAh2Ki4ujoKAAj8cj2N6oqChSUlLIyspaw3VQEp55eXk4HA4WFxdZWFjA6XRiNBrJysrC5/OJ1ChcgxKVl5cLuXh4eJj5+XliYmJoamri7NmzWCwWRkdH6ezsBGD79u0kJCTg9XqJjIxkaGiIpaUlwdI7HA7p0M3OznLlyhWio6OJiIjA7/fT19dHIBAgPz9f3JAB0fGHa3AYlSA89thjzM/Pc+utt9LR0cH8/Lz83k6nk/LycoE/9Pb28td//ddotVq2bdvGT3/6U5aWlrh8+TJf+MIXeOqpp7jjjjv43ve+x/T0NG+99RY7duxgfn6euro6nn/+eTweDz09PXzyk58UcuCxY8dEglSZkBUWFtLX1ycTmKKiIqanp0lKSmJgYEDccpWZl+KDACLDqO4T108AFfE3nDcQERGxhkAe3glXib16qKlQCfQ7TQrgX3fO1R5TJGK1rj4rvCsffk+6kXxoeLyTfOk7Hev17xcODbqRalH4e4cXJOFqQuHnVK3r9XpRH1Gd7UAggNlsFg18VSiNjo5SWFjI1NQUeXl58tv39PSQn5/PxMQEdXV1nDx5klAoRG9vL/X19QwMDPCZz3yGb37zm7jdbjo7O9m8ebO4EyvBgjNnznDnnXcSHR3NZz/7Wb785S+zuLjI7OwsDz74IFevXmXPnj0y3RweHqa8vByPx8POnTv50Y9+xMLCAl6vlz179tDd3U1FRQUvvvgifr9fyPLK10QVomazmbS0NHp6eqTQj4qKwmg00tbWxtzcHHa7naSkJIxGIxkZGSKd29vbS0xMDEajkeTkZEZHR7lw4QJ6vZ6GhgbS09MBqKys5MiRI3i9XpKTk0lOTgauTZ9GR0eloIyOjpb7gM1mY2xsTK7BpKQkSb7n5+flN83NzcVkMjEzM0N/f79AifLy8oBrBa1SJQqfbq6srAiUyGKxUFVVRWRkJMvLy5w9e1YaCU1NTWRmZhITE0NbWxtWqxWTycQdd9xBfn4+RqOR5uZm8a5oamqirq6OqKgopqen6e/vZ2VlhTvuuIO77roLm83G9PS0XD99fX3SsFCTk/HxcSYmJrjzzjs5dOjQmnWr1cro6CjHjx9n/fr1bNy48V/tq48Ch+C9RlxcHHFxcZSWljI2NsalS5fQ6/Xk5eWRnp7+W0863mtBoOL6wuA/MpzoZkHwPkW4idhvAgt6t/htnXqXl5dFNtRisVBcXExSUtLH5kYRHtdPCCYmJvB6vSQkJPDiiy8yPj5OfHw8+/btIy8vj82bN/Ptb3+bsbEx8vPz2bdvH4mJidTW1vLVr36Vs2fP0t3dzR/8wR/g8XgoKSnh9OnTtLS0MDIywuc//3kh8Z46dYrjx4+j0WjYtm0bTU1NLCwssLS0xNGjR9FoNDQ1NbFz506cTidut5sjR46wsrJCWloalZWVzM7O4nK56OzsJBQKkZGRwYYNG0S1pqOjQwh2yiBrfn5e/jEajWRmZsoIXpHsFNTBbDbjcrnwer2MjIyg0+lESUeN8ZeXl0XhQxHY4BpswuPxiAqKSoBcLpdcuyp5DQQCOBwOioqKcLlcNDY20t3dLTCK++67j5MnT1JaWiqqPu3t7fzJn/wJr732Gps2beLHP/4xCwsLtLe385//83/mlVde4fbbb+enP/2pSKt++ctf5vnnn+e2227j2LFjXLp0Ca/Xy3/5L/9F5Bx/+tOf0t3djcPh4H/+z//Jv/zLv7B7927eeOMN2tracLvd/Kf/9J946aWXePTRR/nJT35Cb28v8/Pz3Hbbbbz00kts3bqVV155hYWFBd544w3uuece3nzzTfbv3y+O1CdPnqSwsJChoSFKS0vp6OjA7XZz9epVUlNTmZ+fp7CwkK6uLoLBoHg0eL1eSU5VYq+SsNjYWIGrvNN1Ht75D39I3cgT4EZQot8WahieqIffL8LXwwuS8NeEH3t4kv9vxY1eFw6HCv9u109HVKhiIHz6oEzIbvQeUVFRxMXFybUfXlAYjUbxKOjv7weuiRQUFBQwOjpKQkKCJKKdnZ1kZ2czOTnJunXrOHv2LIFAgH/5l39h165dnDt3jk984hP87Gc/Y3Fxkeeee47NmzfT3t7OLbfcIl4ZJpOJT3/60xw+fJjPfe5zfPe732VmZoaSkhLuv/9+enp62L9/P3/913/N4uIir7/+Ovfeey+tra3U1dXxV3/1V8zOzlJeXs6nP/1purq62Lt3L3/zN3+Dx+Ph9OnT3H333Rw/fpxPf/rTfO1rX8PpdDI9Pc0DDzxAd3c3DzzwAP/f//f/iYTonXfeyczMDPfeey+vvfYaHo8Ht9vNvffey+LiIllZWUxOTq7psisYT/ikpaioCKvVKkVnZGQkWq1WiOF2u12uLTUVUaaAaj38Pma1WqUjriRLldeBMpRT5oVqaqic3ePj4zEajaSlpYnzuHrv7OxskpOTxRtCyT3X1dWRmZnJ9PQ0zc3NREZGsn79ellva2ujpaWFqKgoHnzwQR555BHsdjuZmZn84z/+o3jQPProozK5+fa3v8309DSrq6s89thjGAwGduzYwenTp3n99deZnZ3l85//PPHx8WzdupVjx47x9NNPs3HjRjZs2EBfXx+JiYlSaH1UIUPvFtHR0ZSUlIhs6cjICH19fWRnZ5OdnU10dPRv9H6/aUGg4nqewfVwov8IsqU3C4J/R7wfsKB3i98EMrS6uorD4RC31pSUFDZu3PihSX19UBH+EJ+ZmeGf/umf8Pl8/Jf/8l/YuHEj8fHxJCUl8cwzz+B2u6mtraW2tpbY2FhSUlL43ve+R3t7O1evXqWmpobR0VEyMzN57bXX6OrqYnV1lfr6esbHx8nKyuLVV1+lubmZ5uZmUaoJBAIMDg7icDgwmUxs27YNh8NBMBiUbn8wGCQ3N5e4uDhxy1WJdX5+PlNTU8zPz7OwsCBQDAUDcrlceDwecapNSUkR8zCv1yvE75iYGNxuN8vLy6KKpLwAlpeXRQLR4XCg0WgwGo0CeVG8AbPZTGpqKkVFRfT19eF2uxkbG+P+++/HaDQSHx8vBkUAKSkp3HLLLTgcDtavX88vf/lLVlZWKC0t5bOf/SydnZ3cfvvt/MM//AOTk5MsLS3x2GOP8cYbb3D77bfzyiuvcOHCBYLBIJ/5zGc4duwYDz/8ML/4xS/o7u5mcnJSOvJZWVmcPHmS7u5uAB588EEmJyfZvn07P/zhD2lra2N0dJTbbruN2dlZ1q1bx6VLl5icnKS9vZ2tW7fS09NDeXk5R48epbe3l1/84hfiIpuYmMjLL7/MzMwMra2tUmjl5ubS3NyMzWbjhRdewGKx4HA4iI6OFliVIm8D0iVVCiVqr2u1WoGdKNw0IM0Bv9+Pw+H4V0l3uJFYePymChjv9B43uoeEd9/D/7uahsFaOJBSrFHfR0V4Mh/ORQhfD3dCfi/H9k5xo3MR/gC//rXX/zd1fsI/VykEhUIhdDrdGo6FmvSZzWYhbkdERIjJlNPplCmKVqtlamqKQCCAy+USjklMTIzA6To6OsQZXBFS1TWnmgGlpaU8/fTTzM3Nce7cOUpLS4mKimLdunX85Cc/YXZ2lqmpKZlYbNq0iR/+8Ic4nU5iYmLYvn07V69epaGhga9//etiqqec0G+99Va+853vyD3iU5/6FAcPHuSBBx7gueeeY2RkhMTERD7xiU/Q2trKJz/5Sb7xjW8wPT2N1+vl85//PHq9nltvvZUDBw4wODiIzWbj0UcfxWQyUVRUxJUrV5iYmECj0bBhwwZqa2ulGG5tbSUQCJCeni6F1dLSkkDplFqWEjwIh+MpHwglTQrX9qKC5Ki9qpLiuLg4DAYD8/Pz+Hw+UWKyWCzSxVcmd3q9npSUFGJjYxkZGWF6elrWFfdqdHSUgYEBUUAzm80UFBRw7NgxBgcHiY+PJyYmBovFgsfj4amnnhKyf2FhIQaDgbq6Og4cOEBvby8ej4f8/Hz0ej0VFRX8/d//PT09PYyNjfHggw9SU1NDY2MjIyMjnD17ltHRUe68805qamrYsmULp0+f5oknniA9PZ2//Mu/xGAwfOQhQ+8WykxMeVqMjo5y4sQJkS19r6qHv21BoELd366HE6mmzu8znOhmQfBbRLh8Vbjs3/vtJvxeIEMKzqAwzpmZmZSVlX1oZiAfdIQXBGpzrq6uCvwlMTGRlJQUec3i4iIDAwP09/czMDAg5mLaOW0AAQAASURBVE92ux2z2UxKSgrbt2/nrbfewufz4XA4mJqawmAwYDQahQSnkj0F0XE6nQIx6u/vJzk5WTqIS0tLohyVmpoqiebg4CArKysMDQ2RkpJCenq6vI/H42FxcZGYmBhKS0vFDMflcrG8vIzFYiEvL09k+hQ/QKfTkZOTIzwChYXX6XSkp6fL3yu8vcFgID8/n6ioKBYWFrDb7TLluPPOO7l8+TLp6ekCG4iMjGTbtm1UVlbicrmIi4vj1KlTBINBSkpK2Lx5M+Pj46xfv55nn32W0dFRPB4PVVVVeDweiouL6e7uZm5ujqGhISoqKhgdHSU7O5uLFy/S39/PCy+8QGZmJsPDw8TFxYmuf0REBImJiURHR2M0Gjl79izDw8NYLBaio6PlNampqaSnp1NaWirn3ev1YrPZcLvd4viroEdNTU1cuHCB4uJiRkZGRG2mqamJ4eFhSfBVJ76kpITJyUnS0tIEuuDz+aiqquLSpUukpKSIm7PP5yM/P5+xsTHi4+PXkHBjY2Nxu93odDrp8K+urqLVauU6vp6sqwzIwkN1qK7vpKtC453ItGrfhL9/eNc+vPsers4TrmykYErXvz78Hhf+7+ESpOFJ941IwOHJ3jsVBuE8hxupEoWvX2+AptSewmFV6nNVwqDRaORvFIl/ZWUFg8EgnIn5+XkhzhYUFEjB6na7SU5OxuVyUVxczOnTp0VOUpm0JSYm4vV6CYVC4hWi0+moqanhwoULAh3LyclhaWmJxMREuXYXFxfl/qJ8EJRSTWFhoZD7lbSiXq+nra2NyclJ2traZEqluseKOxETE4PX6yUnJ4dnn32W6elpOjo6yMvLw+12s379eo4cOcLs7CyDg4MUFBSwsrJCbW0t3//+9xkZGWFlZYWGhgamp6epqalhYGCArq4uxsbGqKurw+l0kp2dzcTEBBcvXiQiIoKmpiYaGxtZXl6moKCAAwcO4Ha70Wg0InOqDM/UuVff0WAwCH8Krl3LSiltcnJSoETR0dECV5qfn5d9rSBJZrNZJJtVsZebm4ter2d5eZnBwUGWl5cxm80UFxej0WhEdloV+QkJCSQkJBAIBLhy5Qrz8/PigRAMBrHb7XR1dYkim+Jm6fV6+vv7xaxRq9XS2NjI0aNHGRwclHUFL+vr6yM5OZn169fL/ULJI4+NjVFSUiLE2PA99XEtCFRERESQlJREUlISS0tLjI2N0draKs/ElJSUd/2O/96C4PpjCS8MlOR1uJ/B71NhcLMg+A0iHBakNuEHyUp/tw6a6hxPTEyInnNqaurHblz4b0V4QRAbG8vmzZuxWCxoNBo6OjrQ6/Xs2rWLDRs2yGj5zJkzjIyMoNVq2b17NykpKdTV1fGzn/2MoaEhoqOj2bVrF2azmfLycl577TU6Ojro7e1l79697Ny5k+joaPr6+ujp6aG3t5fbb7+d7du3Ex0dzcDAAN3d3XKDVryBqakpBgcHWV1dJTc3V9ZnZmYYHByUBF25nipjLwUVyMrKEpdOpdCh0WgwmUziD6BkEFWnS2FolYysSgxiYmLweDz4/X5GRkaIjIwkOTlZkt3ExEQGBgYYGhpiYmKC2tpaDAYDcK27q0ixpaWltLe3C/FSYa7VVETBXDZs2IDdbmfr1q2cPn1atNbVuN5sNgvBeWpqik9/+tMEAgGampq4fPkyc3NzRERE8KUvfYnFxUXKy8t54YUXmJ+fp6uri6985StERUWxc+dOrly5wvDwMBEREfzxH/8xPT093HLLLTz//POMj49z5MgR/vzP/xy3283dd9/Nq6++ytTUFMeOHeM//af/xI9//GPuv/9+fvGLX7C8vExrayt/9Ed/xC9+8Qs2bNhAc3OzkK337NnD2bNnKS8vF/jS+Pg4RUVFjIyMkJOTIypD09PTJCcnC3dDTYKU54DiE4R33sNJtOHwlvAIx76H7wk1oXynvfJOjYQbQXPeqaCAtYl8eHPinWRMr1//TaCO4a8NL05uxHMIP3/h6zeCW4Wvq9eHTwiio6OFKKyKGpU4+3w+LBaLFHpqwmiz2SgsLOTq1asAXL16VbgkNTU1HDlyBICLFy+yfv16wYV/5zvfYXV1lRdffJFbb72Vc+fO8Ud/9Ef87//9v1laWqKtrY077riDy5cvs3PnTv7mb/6G5eVlWlpa2LlzJ52dnRQXFwv/wOl08tBDDzE8PMzmzZt59dVXpRmxc+dO4cj8/Oc/l8nV/v376e/vZ+PGjZKUOxwOUlJShHCvppYrKyts3ryZUChEeXk5p06dkmtvenparml1/iwWCzk5OTL9UETb6OhoVldXuXjxoigIKVJxbm4uk5OTDA4OSgEXFxeHXq8Xv5eFhQXhDqSnp2O328XPICIiAoPBQEZGhpCug8EgGo2GmJgYcnJyWFhYkOONjIwUeVC73c7AwIAk6BkZGVRUVKDVahkcHGRmZoaoqCjS09OFa9Df38/s7CxarZaqqir27dsn1+vx48cJBoNUVVVx++23i3LY4cOH5Vq75ZZb6O/vp76+nmeffZbOzk5WV1d55JFHaGlpob6+nhdeeIGOjg78fj/btm2jpKSEiooKRkZGaG9vx2KxsG/fPvbt24fJZBJfkY8jZOjdwmw2s27dOpEt7enpWSNbej0fUl2b7/c5uJFs6e8bnOhmQfBvhKoKwwsBRUb7oC+Ad+IQOJ1OrFardJ/Wr1//nuTIPq4REREhxLZz587xyiuvkJaWxl/8xV/Q1NREbGwsMzMz/OhHP2J+fp6HHnqIvXv30tnZSVlZGU8++SQOh0N4Bu3t7axbt46f//znDA4O0tbWRkNDgxBlL168yNTUFJmZmTQ2Noo0YVtbG+Pj42g0GvLy8sjNzWVhYUEmDEpWTY20leKFUhFRnUSlQKQenkq9x+fzMTY2RlRUlPADvF4vfr9fuv6qcx7ujupyucSQSN2kvF6vKBklJyczNTUlJPfCwkJWVlZITU0VuJviFWzatAm/309lZSWXLl3C7/djs9l4+OGHuXTpEuvXr+fgwYPMzMxw+vRpvvjFL3Lw4EHuv/9+fvWrX9HV1UV0dDR/9Vd/xc9//nPq6ur47ne/S39/P0tLS3zpS1/i+eefZ/fu3bz99tui5/7lL39ZFFZOnDjBoUOHaGlp4Ytf/CJRUVHU1dVx7Ngx2tracDgcfOlLX8LtdlNfX8+PfvQj2traGB4e5nOf+xwul4uGhgaeeuopent7+dWvfsUnP/lJFhYW2Lt3Lz/4wQ+YnZ3lxz/+MU1NTRw5coSCggJee+01FhYWOHv2LEVFRXR3d5OUlERrayvLy8u0tbWRmprK9PQ0FosFq9Uq0x8F+1KEyHDFCjURUMXT9VKa15OB30vcaGr4mwgQvBPUBtZ22a/3Evi3PvP6Dn34377XY7tRcXKjAuNG6zc6p+ohHv7f1W+iFIjUf1Pd6PC/USpcAJOTkzKtCOcZ9PT0YLFYRElGQebOnz8v3JPGxkaeeeYZAoEAP/7xj9m+fTtXrlzh1ltv5e/+7u9wuVy8/fbb1NfXY7VaaWxs5Bvf+IZMEe677z6sVit1dXV86UtfYn5+nsrKSm6//XYmJibYtm0bjz/+OMFgkLKyMvbs2SPGW3/yJ3/C3NwcxcXFfOpTn+Lq1avcdddd/PVf/zVOp5PDhw/ziU98gu7ubh599FH+3//3/2VoaIjs7Gy+8IUvcPz4ce677z6+/OUvMzU1RXt7O3/wB38gHJ2jR4+KV8Hdd99NKBSSvaMmAsoN2GQykZ2dzejo6Jp75ezsLDabbQ0MVxVzY2NjMv1RnXe/38/o6Kj8Vnq9XpS9lGKQKgRiY2PxeDz09vaK4pHZbCY2NhaXy8XU1NQaXkJqaioRERF0dHQQCoWIjo6W9cXFRd58800iIiLIz88XM8jy8nKOHDkik5L8/HwMBgOZmZn86Ec/kue4UvvbvXs3Z86c4cSJEwwNDYny3a5du3jiiSc4evQo+fn5/O3f/i2333674OqPHj3KysoK2dnZlJeXizDE71soT4vc3FxRdhoYGBDTO+XVED51/CDietlS1az5fXFBvlkQ3CDUDx2uF/5BwILeLdQNMBQKMTc3h9VqZXl5mfT0dBoaGjAajR/Kcfwuo729nTNnzrB161bq6+tJSUkhNTWVq1ev8sorr+D3+3nssceIi4uT5FnZzd95553ExcXh8/lYXFwUDLpOp8NoNBIVFYXX66W9vR2Xy8WGDRuYm5tjdnaWlZUVLl68iMPhENKtUssZGxsTiE4gEGB0dJSVlRXGxsbQaDTEx8cLxt/n8+H3+4mOjiYlJUWkRFVCrzplCker/iYyMlIMvpaXl1lZWWF5eZmoqChiY2PFcVkVAfBrToLNZsPr9bKwsMDq6irV1dUsLS1RXl7O1atXRbVi9+7dbN++nWAwSEpKCgcOHACgvLyc++67j+npaTZv3sxXvvIVbDYbS0tLPPTQQxw9epQ777yT119/nY6ODnQ6HQ8//DBarZa77rqLt99+m7ffflsSHK/XS21tLc3NzeKzcM8990hCMzQ0JCS9//pf/yspKSmkpKQwPDzM3NwcfX197N69m7a2NvLy8mS0v7CwQG5uLlevXhV8slIoSU9PFxWPV199lYmJCd58803ZM2rSEQqFWFxclPVwSUq3272GoKqS3fAxvUoSww2yVKgEOSIiYk3iGt7Vvp5PcKMC4UYJ/DvFjRLwG31uuDpPeEIfzgkIX79REh7+mhsVFuETgN/2e7yX7xce10uyhn/38OMJBALy/8MnOarrGgwG19xz1fuprnr4ulI1UgmqgncpidRwmJzFYuHEiRMsLy/z5ptvijpVZmYmx48fZ3p6mq6uLmJjY1ldXSUjI4Njx47J8WdnZ6PT6cjPz+ett94SczB1fwoEAhw9ehSTycTtt9/Oxo0bGR0dpaamhm9961vMzc1RXV1NdXU1VqtVlIs8Hg8NDQ3s37+fCxcucM899/D444/T399PXFwcd911F83Nzdxzzz38/+y9eXSb5Z32/5Fka5cl7/K+O4kdZ3F2skFCWAKEtbSl0MK0pcy0nQ78aDudTt+2p2/feafLtMN0Zvq2dNpSaFkKJWVpIJCQfXecxfu+y4tk2ZIs2dp+f+TcN4+FBQmExHG5zuEAj2VJfpb7/i7X97p++ctf0tXVxfDwMH/3d39HOBxm6dKl1NfXc/r0aQwGA3feead0UR4eHpaSrenp6WzatIm2tjaMRiNnz56Vyk9COnRoaGjaYL2YkVKr1YyNjcnnRqvVYrVapQKYmPvQ6XTYbDa0Wq2UfgbkjIBGo5G+IXBu7iUpKQm1Wj2NriUom8LlXdCG9Xq9lAkWswyiS5GXl0ckEqG5uVlKHQuZ29OnT9PY2CiNDMUQdFZWFjt37mTXrl1yADo5OZlTp07x29/+lqysLAoLC0lPT5dqSf/2b//G2bNnufvuu1mwYMF7Pl9XItRqNXa7HbvdLuc6Dh48SGpqqlSdgg8vIVAilk40U2JwpRVqP0oIYhBrIgZvO+Ze6osrOMCHDh1CpVKRl5dHVlbWh+LuN1shtKh7e3u56qqrMBqNWCwW+vr6pAxoZ2cnlZWVaLVaSkpK5HxAR0cHlZWV2O12UlJSpGa9SqVi0aJFXHXVVaSnp7N7924GBwc5ffo0S5YskZz1mpoaaT+flZVFdXU14XBYDtKNjY1ht9uprq6Wg8cjIyMMDQ2h1WopKChAr9fT2dmJ1+ulo6MDnU5Hfn4+Op1ODtR5PB4ZGOTn50vzrpGREVnVys7OlpQhodIhWtxiwxIuxSkpKZSXlzM2NkZiYiK1tbVMTk7S2dnJ2rVrGR8fR6VSMTU1JecG7rnnHoqKimT34Pnnn5cV0NzcXAKBgPQDmJiYwOv1kp2dTUdHBxkZGSQkJDA8PMy+fftYsGCBlNrV6XTSXE0ERWq1muLiYmlGJIb+1Go14+PjJCUlUVlZSTAYlGZpq1at4vjx4+Tn59Pd3S039bvvvhun08nKlSsl/aGnp4dt27ZRX1/PokWLePHFF2VSLahBV111FSdOnCAcDjM4OMgdd9xBX18f5eXl0g3V6/Vy1VVXUVNTQ0pKihy0Hh8fZ9GiRTQ2NmK32+nv75cbgs1mw+PxoNPp8Pv9sltgsVhkFyq2iq40yREQvPCZAvh4EJtTvGq8MlhWBtXxuP/K4/ECfOX3UiYt8ZSA3isZiEd7iidNGjsgPNPrxYYt1nHl68RAsFDCEUGnoPeJYE8kfC6XS2rHFxYWcvr0aeAcvSotLQ2/3y/pfQA9PT3k5eUxMjJCdna2nDMQa1NPTw+rVq3iyJEjRCIRWlpamD9/Pm1tbVRXV/Pcc8/h8/kYGxvjuuuuo6+vj8LCQp5//nlUKhX9/f0UFBSQl5cnZY2F2IAYPHa5XPL5EspiqampZGdnk5iYiEajITk5meTkZNxuN3q9XgY1k5OTHD58mPHxcYxGI2lpaQwNDVFYWEh7e7uUVbbb7TidToqKinj66ac5c+aMTCjOnDlDTk4O4XCY+vp6dDodS5YsISMjA4vFglqtZseOHUxOTmI2m8nJyZGUrY6ODrq6uuQ1F1X7wcHBaf4ZYnZASKWKREBQMXt6eqSaT0JCgnRkHxkZYWBggGAwiFqtlnLPg4OD0tMgISGBrKwsKioqiEaj9PT0MDAwACAr1JFIhK6uLikDbTKZWLlyJZOTkxiNRvbt28fY2BgWi0WKNCQkJHDgwAG55t18881y4FyIJUQiEe644w7MZjM2m41Tp07J7zUwMCA9LCYnJ3E4HHJG7K8BVquVRYsWUV5eTk9PD6dPn5YF20tJnYpHJxJMkiuJTvTXE1m+C5S0IJHZXwzZ0PcLn88nFzCAsrIy0tPTr5ib6mJCGGZt3bqVF198kT/+8Y9YLBa+8pWvcOutt6LX65mcnOSFF17AaDTyyCOPsG3bNrnxC0fhhQsXsmHDBjlMtm/fPnl848aNOBwOEhIS2Lt3r9z88vPzyc3Nlcoevb29mEwm2bp0Op1yoFtIdJaVleF0OhkdHaW1tRW1Wk1SUhLl5eVyaLi1tRU4F7QkJyfLAULxj06nIyUlRQ43Cx6tqIqpVCo5ONzf349Wq5XSfWIj7O7uZnJyUipiiKE7MYBsMBgoLy+ntrZWbpLCH0AM3U5OTjIyMsJNN93Evn37uPnmm3n22Wdxu920t7fz1a9+lWAwyOLFi6mtrZU0mmuvvZaqqio2bNjAkSNH6Ovro7a2lh//+MdMTk5SVVXF8ePHOXXqFO3t7WzevJkVK1ZgMploaGigvr4ej8fDf/zHfxAIBKiqquLgwYPs3bsXk8nE97//fdasWcOCBQs4evQox48fZ3BwkC984Qv84he/4LbbbuP//b//JxPABx54gKeeeop169bx9NNP43a7ef311/nCF77A7373OyorK3nllVekEowwSktKSpIGZ8LHQjjVNjY2yq5QRkYGQ0NDaDQaWa2cmJiQ6joajWbGDoJAPJ+NC5UcvhDqUbykId57KAN5ZVVd+fp4A84XgnjfK978Q7xzNNPr3+u9hZGgoJeIqr9IJgRdRCSGnZ2dWK1WfD4fNptNUokGBwel+3FxcTGHDh0CkLK8Q0NDrF+/nv/8z/8kEolIF+DOzk5uuukm/uu//otgMMhTTz3FnXfeSU1NDbfddhvf//738Xg8rFixgltuuYXx8XFCoRB/+ctfUKvVbNmyRUqBLl26lJ///Od4vV6qq6tZu3atpBseOXIEOJesbNmyhbGxMdavX8/vfvc7RkZGGB0dZevWrVJZq6mpiUAgQGtrK0uXLiUtLY1t27bx6KOPysHdbdu2YTAYJC1PdGUFrUcIAMC5+6SqqoqOjg7pCyAkSJOSkuR6J4Zy9Xq9pN1NTk7KZEusuaIyK7xNRBFF+H80NTXJ48nJybIrePLkSeDcOpyZmUlSUhJDQ0OcPHlSKhJlZWVhsVhwOBzyvFksFoqKiuS80IkTJ5iampJ7Q2ZmJk6nk507d0oJ6hUrVhAKhcjOzubw4cN0dHSQmprK8uXLgXNeLC+88AKdnZ2kp6fz0EMPSVpVf38/f/7zn0lISOBv//Zvufvuu0lKSqKnp4df//rXqNVqSktL5TzBwoULZ7zP5yr0ej1lZWUUFxdLN+q33nqL3NxcWZS7FIilEwn1uCuJTvRXnRCIoTxB67gctCDld3E6nXLQNDMzkyVLllBTU0NycvJfZTIQDofZvn07+/bt48yZM9xxxx2UlpZis9k4evQoBw8eJC8vj09+8pOUlZVhNps5efIkb7zxBsFgkOrqaoqKinA4HHi9XmkytXz5cql57Pf72b17N16vVzpeis5MR0cHarWalJQU8vLyGBwcJBwO097eDpyrmgoXXDGIFwgEMJlMpKamMjExIY+LANFoNMoOlJgRMJvNcmMTx6emptBqtej1esLhsNz0RMXSZDLJdrX4uaAlmUwmWltbZZehuLiYtLQ0ioqK0Gq1Uiv7uuuu484772RwcJCCggKefPJJxsbG2L17N1/4whfYt28ft99+O7/73e+oq6tDq9XyyCOP8PTTT3PrrbfyzDPP8Prrr3PmzBm+8Y1v0NXVxfLly3n11Vc5cOAAIyMjfP3rX0ej0bBmzRr279/Pjh07OHjwIN/+9rdZv349mZmZ7Nmzh/3792O1Wvmnf/onXC4XS5cupa6ujjfffJPDhw/zta99jYqKClJTUzl06BBHjx6lr6+PBx98kMbGRhYuXMjjjz/O2bNn6e/vZ+3atfT19ZGZmckrr7yC2+3mrbfeYunSpTidTikHOT4+zrFjx8jKymJiYgKNRkNHR4eUac3NzZWVyOHhYUKhEIODg1KNBt5W5hGUAnFc/Ds2aL0Q+s+lQLzBYCVtRvk3xCYB4nfiJQ2zGbHXIl63QSQHsVXpoaEhYLo6U1JSklShEpVkOEeNOXv2LJFIhFOnTqHX65mammL+/Pn8+c9/JhgMcvDgQdllKikp4amnniIQCPDCCy+wbNkyhoaGKCkp4dlnn8Xr9VJeXs7ChQulj8jTTz+NRqPhmmuu4frrr2d4eJjS0lKeffZZ6fJ9zTXXyOvz5JNPEo1Gueqqq7jrrrvo7e1l8+bNPProowwODmK327ntttsYGBggIyODxx57DL/fT2VlJZ/61Kc4duwY9913H9/85jepr69Hq9Xy0EMP8eqrr3LTTTfxs5/9jI6ODgKBAI8++igul4vq6mo6OjrkLNWGDRvQarW4XC78fr9UAhMmVaLqrSzWie7j1NTUNJ+JhIQEqcglaEfCpVy8XlAFNRqNPD45OSlnENRqNUajUa6xYpZBo9FIx2GXyyW7ASJpyc7OZnx8nNOnT8sii16vx2KxcObMGcbHx0lOTsZsNpOSksL8+fMJh8OcPHkSk8kk943S0lL27NlDbW0tNpuNrVu3Ul5eLjs0L7zwAl6vl82bN1NeXo5OpyMSifCjH/0Ih8OB0Whk2bJlF/tRmfUQJna9vb0sWrRIypZmZmZSWFiIzWa7ZN/lSqUT/VUmBELqTUgWiqn0y0ELEuokwtI+JydH0l+UBhl/TfB4PPzxj3+UwZVw22xoaMBoNFJdXS0Vhfx+P/X19XIYV1S2/X4/HR0dJCUlUVFRgcViYf/+/XLDMZlMFBQUkJCQwODgoKzGJycnU1ZWRiQSobOzU5r2pKamSvm93t7eaTKgQh1IyIm6XC55PCEhgZ6eHikPKqpaOTk5sqI+NjYmN6GsrCwGBwcJhUIyGEtISCAnJ4fBwUFJoxHHS0tL0Wg09PX1TXMnnj9/vlQA6erqwu1209vby4MPPsjVV18tJVKfeuopmchce+211NTUcNVVV/Hmm2/S3NwsfQgikQhbtmzh4MGD7Nu3j66uLu6++26ysrIoKyvj1VdflfSJ1atX09rayvz583E6nZw+fZru7m4+9alPYbPZSE5OxmazyaqcxWKRrpWCs3vw4EFuv/12KdOYnp7O8uXLsVgskuah1WrZuXMnjY2NAJKiI1yZ4dxchei0TU1NkZaWJjsz4jWhUIi0tDQZ9AiJTUEfFBrqgkIjpAeFaZWSWpOYmEgoFEKn071Dx18MGs9kSjbT7EC8xOFizBMojyuDX6U/gfL7KxMd5euVlfjYtvn7+b7xXnuhcwPnO38gAkbxM6WMdDwKll6vl74FAmJQNhgMSjdw8f3EEKsyeRofH5ezG+KeEfQyg8GAx+ORXifR6Dnn6/b2dlmpFs9Famoq1dXV6PV6bDYbiYmJUiqzpqYGvV4v6SbhcJi8vDwpk5mRkSGDpImJCV566SXUajV33HEH5eXlJCYmUlVVxW9+8xvZISspKWFsbIyUlBR++tOfSlrdhg0bUKlU3Hzzzfz5z3/m7NmzmEwmNm7cCMC1117Lr3/9a+rq6mhtbeVLX/oSfX19ZGdnEwwGOXLkCFNTU2RkZFBZWSnVYurr6+V9mJycTFZWFoFAQNItlddEUInEfSoU19LT03E6nbJ7JzwNcnNz6e3tlbNWQtGtoKCA8fFx+vv7pcSkkCd1u93yuDBPKygoIBKJ0N/fLz0tUlNTKSoqYnJykt7eXvnZYmjabDbj9/slhctgMLBs2TJJFx0YGMDv96PT6fB6vWi1WkKhkJTSFhLjGo2G5uZm6Skj9odf/vKXWCwWObfx1wJxXVJTU2VRrquri2PHjmE2myksLCQzM/OSVepjE4PZ7oL8V5MQiIX9YrsJv1/4/X76+vqkGVVBQcE7btRYHvFfC5qamnjzzTfR6XTMmzePSCTChg0b+Mtf/kJtbS1er5dPfvKT+Hw+6RBZU1MDwKJFi9i0aRPhcJienh7OnDkDwJIlS7jmmmsIhUJ0d3dTV1eH3+/HZDJRVlZGSkoKbW1tDAwMMDQ0hMlkYt68edKopq+vj4GBATn8tXTpUnp7exkZGaG9vV0a4cybN4/+/n6Gh4dpa2sDzgULQtUn1lMgKytL+iSIwWIhy6fRaPB6vYRCIXp7e6UahqhQiQ1CUImys7OlGlFnZyc+n4/09HTmz59PfX09KSkp8mdOp5O8vDzJbRedDhF8m0wmGeQUFxcD0N7eLlv3U1NTDA4OotfrWbBgAd3d3QSDQckbFrrRDodDbpIlJSXce++9pKSkoFKpcDgc+Hw+tm7dSlNTk1QK6e3tRa/XU1BQwP33309SUhIajYampiYsFgubNm1i/vz5VFRU8Mwzz+B2uzlz5gxf/OIX+dOf/sS1117LH/7wBwKBAGfOnOErX/kKv/71r1mxYgVvvfUWk5OTtLW1sW3bNt544w3y8/NpaWkhFArR398v5wZsNps0LhIqLo2NjSQnJ08zoRIBh0ajkVrlfr+fpKQkPB7PtLkBJf1EQDmcqgyG4wXRF4MaFO94rN+A+Cxl4K8MwpWvuRjfN95rz2cu4nxeP9Px2NkNUfWN9WoQevYikfT5fFLT326309zcDJw7hzabjVAohMlkkuuAmEXyer2kpaVRW1sLnJMmXbJkiazO/9u//RvRaJRTp05xyy23UFdXx4oVK/j3f/93QqEQe/fuZe3atQwMDGA0GmlqakKn03HTTTdx//33Y7VapTyuVquVjto5OTkUFxfz+uuvS5rMPffcI5V6RkdHZUJusVioqKigtLRU7pc6nY7i4mLOnj0rA2/hiN7V1SUV2ISxWEpKiqTuiBkp4RK8f/9+GhoamJycZMOGDaSmpuL3+5k/fz5nz57F4/FgtVrlPJfRaJSCESJpE54kY2NjTE5Oym6MWKMnJyelozGcSxDEoLVwYRZ7rJiTcrlcnDlzRgZsRUVFcpZB7CXi70xOTqa1tVXSLgUNUygqnT59mkAggE6no7S0lLy8PHp6ejh69Khcc1esWEFFRQVGo5HGxkbq6upISEhg1apVLFq0SM6ANTQ0yEB327ZtuFwuLBYLf/jDHxgYGCA5OZkHHniAffv2YbVa2blzJ2azmZUrV8r1+68BsR4ERqORBQsWSNlSISWen58vh/EvBZTFZmUsKrpdH6Z8/YVgzicEIiv7sNyEL/S7CLmxkZER0tLSWLRoEVarNe53+WtMCOx2O8uWLWNycpI333yTzs5OAG644QYp77l9+3ZqamowGAysWrWK5cuX43K5cLlc1NfXo9frWbNmjXSwdLlcnD17lmAwKNuyTqcTj8dDQ0MDKtU5U6z58+czPDyM1+ulvr5eVhyERKjQ/j59+rQ0x4lGo7jdbikDKviwwtgpGAwyODhIYmIiBoNBDi8KPmxCQgKJiYmo1WrZFvf7/VKTW3lcVBSFuZWAqHCJAL6npwePx8PExIS0theDvSIp6ezs5DOf+QxHjx7ljjvu4D//8z+l6+/DDz/Mb3/7WzZs2MAbb7xBU1MTPp+Pf//3fychIYHKykqeffZZWlpaSExM5P/+3/9LQkICy5cvZ9++fRw4cIDTp0/zH//xH3zyk58kMzOTSCTCwYMHsVgsVFdXs3TpUlJTU6mtrWXnzp0AbN68mTvuuAOr1YpWq+X48eMYDAaqqqqorq5Gp9Pxq1/9ipMnT3Lq1Ck2btzIW2+9RVVVFc888ww9PT24XC42b97Mq6++SklJCb/73e9wuVzs3LmTa665hl27dmE2m9m9ezcTExM0NTWxdOlSampqSEhIkBu58BUYHh5GrVbT2tpKKBRieHiYnJwcyRkXUqOCYy4qmkrZyni0HCVmE40Ipq89ysB/LncsRSVPqRok3KeBaUo3FotFGteJuQJxXHSl+vv75bnLysri2LFjAJJeEw6HKSws5LXXXgPglVdeIT8/n5GRETZt2sQf/vAH/H4/Wq2WZcuW0dfXx9KlS6UzeygUYs2aNWi1WtxuN0eOHMFoNPLFL36RO++8E6vVitPpZO/evZjNZq699lqqq6sxGo1MTk5y4MABdDod//AP/8CnP/1paWj5xhtvoFKpuOGGG9i2bRuDg4PceOONPPTQQwwMDNDZ2clDDz2E2+2mvLxcdguOHz/Opk2bSElJ4cEHH+Qb3/gGAwMDdHR0cN9992GxWNi8eTNPPPGElPi0Wq2Sqimen0gkQnJyspT4VXZXxNonkhdxj4rASuyzAmJtjUQiDA4OyvdRSpOKBEcoFen1elkg6Onpka7FQvlNCF2Ew2ESExOlUVlbWxstLS2yqCO6MA6HQ1JNhUmaxWKhvr6esbEx9Ho9OTk5zJs3T8qcCk+DrKws5s+fT0ZGBm63m1/96leEw+cMSTdt2kRfXx+bN2/m2WefpaamBo/Hw+rVq7FaraSkpFysR+OKQDxTMqVcuJAtbWtrIzs7m4KCAjmDdykQ2zUQiYEQ4rgcTBWBOZsQCFqQqGKIVuHlSAQikYg0TPH7/WRnZ0ud4ffC+bgVzyW0tLTwve99j56eHu6++26Sk5NxOByo1Wp2797N2bNnGRsbky3zaDQqh96ys7Mxm824XC4AaQ8vAm7hSup0OgkEApKuMjQ0hNfrxeVyEQgEMBgMUltedJSmpqZISUkhIyNDmvYI4y/hXCl4rqJlbTKZSEtLkzJ0okoseKUej0fy/wHZZRgfH5czLVNTU2g0mmnvHwwGZbKQmZlJSkoKSUlJnD59WtJ/br75Ztrb27Hb7XR2dtLe3k5nZyfJycl85jOf4dSpU9x+++386le/oqurC5vNxkMPPcTrr7/Ovffey5NPPsmOHTtobGzk//v//j88Hg8LFy5kZGSExsZG3G4399xzDxqNhquvvprDhw+zc+dOjh49yje+8Q2qq6vJyMgAzvGo3W43GzZsYMmSJSQlJVFXV8cTTzyBTqfjkUcekf4IwlAtFApJ86BoNMqPfvQjDh48SEZGBkVFRfLciu8iBjlFst/Y2Ci9HZS63I2NjXJg12Qy4fF4iEaj06qLok0PbyvtaLVaEhMTZbAvaCGiwyiqluJaxtKA4j3Dl2ueIB7VRqnOEyuVOpNsZ+w8wZVcvIj1XZjJLE6ZHIigH84lAV6vV3aTlMfFeiQSSEDKAwtlIeX7Cyfg5uZmqb+flJQk1bXa29ul4Z9Go+GXv/wl4+PjbN26ldzcXKxWqyweiJmp3NxcMjMz6evr4/HHH0ev1/ODH/yApUuXyjmlrq4uEhMTWbt2LcuXL5dUpt/85jcArFu3jm3bttHS0sKWLVt48cUXmZycZM2aNWzbtg2n08mCBQv45je/ydjYGEVFRXzmM58hOzubu+++m//8z//k6NGj+P1+7r//frZv3866det46aWXqKurQ6VSkZKSwtVXX43P5yMtLU0O+6enp7Ny5UpGR0cZHh5mZGRErpFiLbRarQwPD8t7UhxPSkqSSTsgedxmsxmPxyPXU9EhTU1NlZKigKQnpqamMjk5idvtnlYoSk5OZmJigtHRUTmMrNPpsFgsRCIRuru7pdyszWYjPT1dqqGJe0koXYnusUhuhANyT08Pra2tcr0RcwMHDx7E7XbLzxRqS8FgkCeffJIzZ87w3e9+V67Fcx3v5dQsukpCKayrq4tDhw6RnJxMYWEhaWlplyw+nI10ojmXEChNxC43LWhqakq6CWs0GvLy8rDb7RckG3qlb7IXiuHhYbq7u+nv76e2tpby8nLJfd29e7cMLlesWMFVV12FwWCgoaGBjo4OXC4Xq1evloZibW1t9Pf3EwwGsVqtlJeXYzab5XGn04nNZqOsrEwaCwmZUZVKRXJyMgsXLqSlpYXR0VGZmKSkpLBw4UJaW1ulMVk0es6AKjc3F6/XKylAPp9PzgCMjY1NSybgXMCQmJjI6Ogo4XBYSoqKioXY1EUAmpCQQG5uLpFIhJGREXp7e+nr68Nut7Nu3ToaGhqw2+2cOXOGhoYGEhMTWbFiBfn5+YRCIebNm8exY8fo6emhu7ubqqoqwuEw1dXVNDQ0cOzYMXw+H9XV1ZKzazQasVqtAHIGIDU1lXA4TGdnJ6+88go333yzHJpOSUmRcxuCeiSk/lJSUhgdHZVGMtFolNTUVLZs2UJfX5/k2kejUTn/0dLSIjdon8+HxWLBbrezfPlyXn75Zckpvummm+jt7aWgoICGhgYikQjj4+OsXbsWj8cjDcfgHK2jsrKS8fFxUlJSZDVfyAxqNBppDgfn+PSCv6zX62WlWCQWYuhQJAbKame8AdsLMey6GFAmH/EkSJXUIKGSFHs8XhKjfM8PM9GJd94uxsyFUAhRdkdEgDHT/IfBYJBDg+L1Op1O/r7L5Zo2q2Gz2aRggCgcTExMUFpaitvtJjU1Vd5zIqEXJmKCatLf38/SpUtpbGyU8waio1VYWMjSpUulJr6gmSxfvpyFCxfK7ytkdf1+P4WFhdL9XXQ2582bJyviwnvB7/eza9cuSZ1KTk6WGvgi8E5KSpJ7XFpaGo8//jhDQ0OsW7eORYsW0d/fz/Llyzl58qT0HVi4cCE9PT3y3LzxxhtEo1Gqq6vlM1pWVsahQ4dkciXkRAVVaHJyUg54i5mfyclJJiYm5Nop3NrFGizWWrVaLV2Thd8PvE31hHMdIHFcq9WSnZ1Nbm4ujY2NdHV1yc5CZmYmeXl58ri4R+x2O+Xl5TidThoaGqTIRE5ODmVlZQwPD9PQ0CDnCcrKyrjqqqtQq9U4HA4phVxVVcXKlSvlfdDU1EQkEqGvr4+VK1dKOegzZ87gcDiwWq3ShfqvASJROx8kJSVRVVUlZUvPnj2LRqOhoKCAnJycSybvHitbGksnupTx65xJCI4dO4ZaraakpOSy0oLgXBDX09PD4OAgVquV+fPnS7rGheKvjTK0cOFCqWpht9v5n//5H4aGhmhra2P16tXSFKa+vp7h4WEyMjJYv349eXl5TE1N0dTUJNv0OTk5rFixgtHRUfr6+jhx4oTki65YsYKxsTH6+/s5ceKEbAlnZGRgMBgk9eTIkSPo9Xrsdjt6vZ7e3l6cTicul0tWcDIzMxkaGpIceI1Gg8FgwGazyeM9PT2yoicCxVAohMfjkZ0rg8EgaQBCplL8jqhqixkIMUQ4MTEhdceHh4dllSolJUVWGURbW6/Xs3jxYo4ePSo7GVu2bMHhcMiZAK/Xy8jICNdccw2RSISKigr8fr+UZdXpdFJNRyRQfr+fiooK7r//ftLS0lCr1bS1tWGxWLjrrru44YYb5GD48ePHGRsb46GHHuKBBx5Ar9eTlJREbW2tHIi+5ZZb5IDwW2+9hcvl4qqrrpJVHDE3MDg4yC233MJbb73F8uXLefHFF/H5fBw9epTrrruOAwcOkJ2dzcGDB+WQ5fr16zl48CAmk4mzZ8/KgKK8vJyWlhZJqQqHw4yPj2O32xkcHESj0dDb2ys7NMnJybISLOYGYilD4t/C6EoEgAKimnip1HjOh5+v3JiUtBnl8fMJsD/MrseFUq7Od1g7Hq1LmQgof085TyCqeeJ5FcfFZi8UbQS1SMyOhcNhioqKpDRpc3MzOTk5eDwe5s2bx5tvvgmcoxJt3LiR1tZWtmzZwhNPPCH9Ce644w4cDgfl5eXs378fh8PBt7/9bTZu3EhRUREDAwPSFOvRRx+Vz2koFOLo0aM4nU42btzImjVrKCgokNQXrVbL7bffzv33349er0en00n39Z6eHrmfhUIhhoaGmJiYIDExkXvuuUdSiUZHR/F6vfL3CgoK2LJlC7/4xS9k537p0qXs3r1bzmkoi3jimcvIyJDfwWg0otVq5eCtgBieDYfD07o0YqbB7/fLZ1scF10/McAtjovOrlAWi0aj8rhQGBKFIIPBQFFRES6XC6fTKWlJyuMDAwPSuFLIUJtMJjo7O9m1axdwrgikPC7EMoqKili7dq2km+7YsQOv10tBQYE8rtVqeeqpp3C5XAwPD/Oxj32MrKwsqqqqKCkpmfG5mIt4rw7BTBAzHsXFxQwMDNDV1UVLS4uULT0fJsfFgHieYulEYr5A7OcfJuZMQvDf//3fpKSk8K1vfeuyzQeMjIzQ09MjA4nly5fLSuj7xV9bh+CVV17hmWeeweVyMW/ePFkF0mq1HDp0CJ/Px/z58yktLSUSiWA0Gjl06JB0/RWBeCAQYGhoiOHhYUkvSUxMlA6Tw8PDknIkeKTC3MVsNstNR6g2DA4OYjQa5aYlqARiLkUMAQuqmlB8UHL9hWKIqA4JhMNh+Y84LjSMxT9i+Em8x+TkJJFIhBtuuIHm5mays7NpbW1lfHwcn89HaWkpGzZskHSDmpoaotEox48f55FHHuHll1/mxhtvlG18t9vN97//fSwWC6tXr6a7u5t9+/bR29vLww8/zNKlS6moqGDHjh3s2LEDm83Gj3/8Y5xOJ9nZ2YRCIQ4dOkRSUhKPPPIIt912m2y179ixQw7fbty4UXotnDp1ioSEBFavXs31119Pe3s7ZrNZeh1kZmayatUq6uvrefrpp6WEqhjEzs3NZefOnfT39+N2u0lPT8fn82EwGDh16hQ+n4/e3l6ys7MZGxtDo9FQW1tLKBSSpnIioOjt7ZXXyWq1yoBCUBBCoRApKSmyQhnLURbBvlKZR1nJjk0GBGabNGe8oPp8Zghmm5xqPCi/Yzy1JWUCp+yOCMM5mG7cZrVamZiYkImkQEpKihxAFxVpOFedFPeSkjIkpEnD4TCtra2StpOens7evXsJBALs2bNHGuJlZ2fz8ssvMzQ0RENDA1u3bmXlypUcOHCAl19+mZKSEu68805WrlxJdXU1IyMjnDx5EqvVyoMPPsi1117LvHnzOHr0KC+88ALFxcV861vf4sYbb5RUmAMHDqDVavn7v/977r33XklZee6554hEIqxYsYKVK1cyPj6OzWbjrbfeks7vX/jCF+ju7mb9+vV8+ctfZnh4mPLycm6//XbMZjMPPPAA//qv/ypNEO+77z5MJhMWi0V2a+Hcc7Vw4ULcbjdFRUXSyExQ80QCoXzORCAl1OeUyYYowghpUjFIDuf23KGhIUKhkFQqEtd+eHhYBmliWDoxMZGenh45hC7orBqNRh4XXRUhytDZ2SmffSFfbTab6e3tlS7XSpnqkydPSjU0m82G0WikpKSEoaEhOjs7sdlsJCUlEQ6HsdvtvPLKK3R0dHD69GmKi4vZvHnzBT4lVybizRCcD9RqNTk5OWRnZ+N2u+ns7GTv3r1kZGRI2dLLSSe6FIPHcyYhMJlMUqHlUiIUCjEwMCAHj3Jzc1m4cOFFm17/a5ghiEQi/OlPf2Lv3r1Eo1F8Ph8TExP09/fLqnBxcTGHDx/G7/fT39+P3W6ntLQUOLehCs3/qakpioqKSExMlGo6Ql5WtAE7Ojpk4ByNRqXUaHt7O16vVzr5iuOtra14vV6plpOYmEhBQYEczhUUIGFkMzo6ysTEhKSuwbnqjzCuikQiknIiBsrHx8enHRedBLE5iBai8BOIRqPynPT09NDY2Mj69eux2WxyA9u7dy+JiYncd9993HTTTYyPj3P77bfzy1/+kn379tHX18fHP/5xxsfHWb16NcPDw7KT8olPfILq6moWLFjAyy+/zJNPPklqaipf/OIXKS0tJTs7m4SEBDweD729vWzatInS0lIsFgtWq5WzZ8/idrvJy8sjMzMTvV6PSqWipqYGtVrNmjVryMzMlPMRfX19suNgNpsZGxvjX//1XxkcHKSsrExew4mJCVnJEZXYSCTCxMQERUVFDA4OkpeXJ/ndYjhbrVbLxE953yUmJmIymaa52oqgXllxBKZt+MrgUfx3bPKuNKqZKamfLQF0vC5FPHfieN87XqA9mxE7N6DcgGOPA++oSIv7ZmRkRB7X6/XydcokQBSHIpHINDdZESyGQiF8Pt+0eRS73c7o6CgGg0EWAVwuF6mpqej1elJTU2lubiYcDuPz+ejo6OC1116jsLAQq9WKzWajtbWV9vZ28vLyWLRoEZmZmXLOoL29HafTybXXXktOTg55eXmcOnWK/fv3U1JSQnV1NaWlpTL4FQZ8mzZtYsGCBbIb/7Of/YxQKERBQQHLly9ndHSUjIwMXnjhBcbHxwmHw2zcuFF6lfzbv/0bfX19pKam8ulPfxqfz0dZWRlDQ0McPnxY+qSIcxOJRKSPjN/vZ9OmTXR1daFWq2lqapImbfD2HJBSBUlcR0Fz8vl8cm0W0rCCkqic6RIeMQMDA3JdEM7OFouFrq4uucYIWmRRURHNzc1SzlS8vrCwUB6Hc89dSkoKhYWF+Hw++vr6pCpZVlYWOTk5km0gYhubzSadkT0eD/39/UxMTJCZmcmiRYuoq6vD5/MxMDAgHeW3b9/O9u3bueOOO7j66qvfz2NyxeCDJAQCYu8XCXF3dzcnTpzAaDRSWFiI3W6/5LKll6ooPGcSAqFGcKng9/vp7e2lv78fk8lEcXExGRkZF/1Gmcsdgmg0SkdHB1NTUzz33HOcOHGC3Nxc1q1bh0qlknQeEVivXbtWGkPV1tbKFrXdbmfLli1SOeDkyZPodDqys7NZunQp/f39NDc3c+bMGUkNEklDc3MzLpeL0dFRKaun1Wppbm7G6XQyMjKCSnXOij4zM5Ouri6CwaAc8BLdh56eHkkNElUoYTAknIgBuWmIgWVRaRYDcEo+spiBMRgMpKamSk5wfX29dMktKipibGwMk8mEz+ejtbUVg8HA1q1bpVSd8LV47bXXeP7557HZbHJwOjc3l/LycnJzc6Xpjlarpb29XSYNlZWVcmHKycnhmmuuITk5GZ1OJ83ShELT6Ogobrcbt9vN+Pg44+PjZGRkkJqaitFolBuewWCQSUggEKCvr08aEM2bN4/h4WHOnj2Lz+fDarVyzTXXUFdXR0VFBX/5y1/w+/2cOXOGDRs2cOrUKUpKSqitrSUQCNDS0sK6des4deoUaWlpdHd3yw20uLiYvr4+qcoSDAZxu91kZGRInwgRBAeDQYxGo3R/FseFK6mo/CnNrJS8e+XxmYLumSRIBT7sZEH5ufEMxWKHaUUAFe97KQPk2ZwMvFtCM5OEqugswtvnTelGKo4Lw6GpqSl5XNw7gpoikkohFSzeXwSbDoeDnJwc/H4/RUVFHDhwADhHJVq8eDH9/f0sWrSIN954g3A4zIEDB9i4cSPNzc2sWLGC48eP09HRgcfjYdu2bcyfP5/Ozk6pcnP99ddTWlpKVVXVtPXHbreTn59Penq6VGWz2Wx4vV5JexVJC5wrZKxbt07Ki4qk2+PxsHPnTiYmJtiwYYOcSxD6/kJhx2g0yjXoueeeY3h4mNtuu43h4WH279+PwWAgJSWFffv2oVKpKC8vx2azya7wrl278Hq96HQ6rFarpP+ICn6sh4ZI8pQJmsFgkLSv0dFRec0NBgM6nU4O+IpzpNfryc3NZWBgAJfLJQeVDQYDeXl59PX1yeMqlUpKXg4PDzM4OMiJEyfk64VHy+DgIIODg9JdedmyZdhsNpqamjh+/DihUAiz2SwV2err6zl06BChUAibzcaaNWswm82o1WqOHz9OW1sbSUlJbNiwAYvFQjgc5tChQ5LSVVxcjEqlIi8v7/0/QLMYgs56sSA8fUpLS+nr66O1tZWmpiby8vLIy8uTxbe5gjmTEJjN5mmScB8GhLxkT08PTqeT9PR0lixZIgcuPwzM5RmCY8eO8Zvf/AabzSY5/aOjo+zcuRO1Wk1VVZU0awkGg7z++uuSL5+ZmUk0GmV4eJiBgQFJ6cnLyyMSieB0OqXPAyBNZMbGxvD7/bS3t6PVajEajej1erxeLxMTE7S1tU3THAdkpUW0ik0mk6T+CGlP5QCQcBAeHR2VA7XK40KzXiQOSlMiwUUWvGUhgeh0OuUAsghoAoEAVquVwsJCaXZz6tQpKdkn3HrFBjM4OEhTUxPf+973yMzMZPXq1TgcDqnHvWLFCqxWK7m5uRw9epT29nbGx8f57Gc/SzAYJC8vj3A4zKlTp6SD5i233EI4HGZycpI9e/bgdrupqqrioYcekmpQBw4cQK1Ws2HDBm6//XY8Hg9ms5nXXnuNwcFB8vPz+cxnPsORI0ewWq288sor+Hw+GbQUFRXJ+YCBgQHy8vLo6urCbrdLGtnY2BgFBQW0trZiMpmoqanB5/MxPj4uJUIFJ1m4m9rtdtlJUKqTCAUoce0FlKZdyrVGOTegrCArj8ejBl0uCdJ4nxvPUCwe5UkJZfdlNiNeJ0N5XGksp0yMBGVIJOwCWq1WUoaUEMeFyIWA2WyW957yWqSkpMhhVCGfLJ692tpaSUlMT09nbGyM/Px8SZ8ZGRnh5ptvJikpCZvNJjund955J1qtlk2bNnHw4EG2b99OW1sb3/72t6XbrcPh4PDhw6SkpPD1r3+dL3/5y+Tl5VFTU8POnTvp6uri29/+Nhs2bCAvL49QKCQpf5s3b+Zzn/scAKmpqdTV1REMBmlsbCQrK0sOKjc3NzM8PIzf7+cLX/gC7e3tXH311bz44osMDg5y5swZli5dSl5eHtXV1QQCAWnoNm/ePLlGigRNqegTCARwu93T7lOxjgo1IuUxQLqRC8qQSHiEKWTsceFeL3jqwiQxGo3S1dUlu7gWi0XOGtXX18v7JykpSX5XoYynPC6KHOL9rVYrycnJALS1tUkfBLPZTFpaGuFwWHbNRcEqLy+PyspKXC4X+/btk8PdlZWVLFu2jB//+MeEw2EefvjhOTlbIJL1i42EhAQKCgqkJLBQ7svKypJD+R8mLpUU6ZxJCJKSkqZxOi8mwuEwg4OD9Pb2EggEyMnJoby8XAaMHybmcocgGAzi9XplEGuz2SgsLJRVdaHxHQqF5EBNJBKRZl12ux273Y7L5ZKKPoJnaTab5aIsVGuUQ2FiNiAQCJCYmEhaWto0h2ChGpSeni6r9uJ9QqEQVqtVbh6C1w/nqksajUa+hwiSjEajPB6JRGTgJRIPQQ1SVhzFDINICgKBAEajUbqIFhcX09/fLwOHr3zlK1JCUJjT+Hw+fvGLX/CpT30KvV7PXXfdRV1dHfv27cPlcvG3f/u3dHR0sGzZMp588kn+9Kc/cejQIb7zne/gdDopLCxkYmKCU6dO0dXVxd///d9zww03SIO0nTt34vF4SEtL4+qrr8blclFRUUFqaipwLnBev349cI4f/eSTT8ph8OXLl9Pb28u8efNkxcpisbB48WJaWlrYvXs3IyMjDA4OyvOrVqslBUEZqEWjUUn10mg004JTcVyv18sKLiDnBESSJY6LdURUfMV7KauOykq6OC6SOfG8Kl9/JSIhIWHGIF+ZKJyvI/BswvnMQ8S6TIt7LV7CdyHHo9GonB+Ac2tGJBKZpjImIAoGTqdzWvciFAoRDAaly7m4f998802GhoYoKChgw4YNLFq0iOzsbLlnTU5OsmLFClasWMEbb7zBa6+9Jh3M169fL2V9BR0zGo2yZcsW5s+fz6FDh9i+fTtFRUV84xvf4Nprr8VkMhEOhzl69ChqtZply5Zx5513Mjk5SXp6Oj/5yU/w+/2UlJSwadMm+vv7KS4u5oc//CEDAwNUVlbywAMPsHfvXjZt2sT/+T//h8bGRnp6evjmN7+J0+kkNzeXqakpOQd1/fXXc9111+FwOPB4PLS2tsq1WVxf0dGKpbqJDl7sWiv+DmVCLByNlcdFJ0h0Un0+nwxCExISpDP04OCg/D2NRiMdk4eGhmSXVLxHRkaGlL7WaDTSZyYpKYlgMIjT6SQYDMokRMifCsEKsU4JCevW1lbZmTIYDJSUlDAwMMCvfvUrtFotlZWV55XgX4m4GJShd4NKpSI9PZ309HQ8Ho+ULRWxS3p6+kUP3JWdyw8bcyYhEJSJi4nJyUkpG5qYmChlQz/MGy4Wc3WGQCj8ZGdnS0pPf38/CxYsYOPGjQQCAZqbm+ns7JRDuGVlZRQUFHDmzBkGBwdpaWlBq9VSWlpKYWEhp0+fxuFw0NbWJluzVVVVsoPgdDql+sPixYtxOBxSflQpNWo2m+nr65PGNGq1mqSkJIxGIw6HY1rrWVRgRkdHp6kDieMjIyPS0VZAcNlFMiECSKPRKJMY5XGDwUB2drasWAn7+t7eXj7+8Y/j8XhISkqSXg0+n49AIMCiRYvo7OyksrKSp59+mtbWVrKysrjtttsoKyujqqqK559/nqeeeop9+/axbds2MjMzpbKCRqPB5/ORkpJCZmYmycnJWK1W+vr6GBsbo6ysTGr8p6SkcNVVV73jOgsub29vLw6HQ252Op2O+++/f9prHQ4Hjz/+uDR/E8OYg4ODVFVV4XK5WLp0KS+88II0CFuyZAktLS0kJSXhcDiIRCKyWzA8PIzRaJRVQL/fL+VSRXIG5xJTnU4nZebE5i/UmcSmPlOVPza4vFRSdR8U8QL2eFKjyqBYCeVGdT7ma7MBF7q5zpQUiY6fgLgPYju64rhWq5VzMOK4wWBArVZL40x4W5o0HA5LU0UAl8slZW+Li4s5fvw4cK6zdcstt1BTU0N6ejo1NTVShrerq4uBgQFOnTrFpz71KQCqqqqoqqoC4KWXXpJBaWtrK11dXWRlZU3b34qKinjkkUeAczNJQjq4qamJkydPUlpayrp166SZljA8A0hLSyM3Nxefz4fJZOKxxx6Tspjz5s2T0qFPPfUUR48eJRKJsHTpUsbGxli2bBnPPPMMNTU1ZGZm8vnPf56Kigqps//0008zPj5OUlISeXl5MtHv7++XHUABQesQMqQCYi5icnJSrtuAVD4TxpXK11ssFtxu9zTp6ISEBPLz8+XrvV6vTEoKCwsZHBxkfHyc1tZW2UkuLy8nISGBhoaGaceLi4sxGAzU19fT1tYmE4eCggIqKyupra2ltbVVOkfn5eVRVVXFqVOnaG9vZ3JyErPZTGlpKdXV1cC5Gbvm5mbZdc/KyqK9vZ3i4uI5R3n5sBMCJSwWCwsXLpSypXV1dajVagoKCsjNzb1i9gIlrrxvHAfCGOZiwOPx0NPTw9DQEMnJyVRUVEie5KWGskI5FxCJRJicnOStt97iBz/4AYFAgBUrVlBQUCBdnF966SXJkayoqJCc1qamJpqamrBarSxatIipqSkpEdbY2IhKpcJsNlNYWCjNYE6ePIlGo8FisZCZmSmPi2qTGDTz+/34fD5cLpdUpLHZbPK44MTDuQ1Go9FIidDh4WFZBRKKFqFQCIfDIas3yqq13++fJiWm1CMX95gYZBSV7bGxMaampsjLyyM1NZWhoSF0Op1UlhABt1gM1Wo1paWlBAIBKioqaGhokFV1t9stzY1El8Tr9bJo0SLuvPNOcnNziUbPuX2qVCqysrJYvXo1fr8ft9vNwMAAY2NjTExM8OijjxIIBN6hc33kyBEcDgdLliyhubmZvr4+HA4HX/nKV3C73RQXF097fV1dHf/1X//FkSNHiEQi5OfnU1ZWhsfjITc3lxMnTsiK6OLFi6mrq8NisXDq1CmZcNlsNnw+H1qtVrqITkxMkJ6eLnm9QpYVphcR4vHllZSfmShA0Wh0WrdAmTQoOfVKzIaunzJgV37/WIdecR5mCn7F785kZHYp5VQ/COJdi3jJjTge+zuicCP+ERDPs6CTiGMqlUqea0EfFLM1onswOTkpuwcJCQmS/igS20AgwPLly3n11VfxeDzSxbi7u5v09HROnz4t1dTGx8fJzMykqKhIfrcbb7yR8vJysrOzefHFF6WvgZDmraiooKKiQr5+/fr1lJSUkJKSws6dO+np6ZEJc0lJCUVFRfKz4By15Y477iASiZCZmSl9D4aHh2lvb6evr0+aMIrh5AULFtDc3ExRUZFMhjQaDS0tLQwNDZGXlydnBoTkczAYZGBgQM4ECBoPIGlGyu6BuDdjqUQJCQmyyi48DQQFKBAITOvgiLkyQQXr6uqS191ms6FWq/F6vXR0dMjnQBRtvF4vTU1NsvIraJq9vb10dHTIbpEwZuzp6aGjo4POzk5UKhVJSUlSaKGzs5OXX35Zfp/CwkIpW9rQ0IBWqyUvL4+1a9dis9kYHR3l6aef5q233sJisbB8+XIMBsNliW0+DFzKhEBAq9XK+9/hcLxDtlTMCn0QfEQZukBYLJZpEmIXCsFH7+npwePxkJWVxYoVKzCZTB/Ctz1/KCuZVzqi0Sj/8z//Q0NDA1VVVbKFevbsWanHL9q3fr8fj8dDc3OzDOgFH9fn89HY2IhWq5XVW7VaLXmkQvddVEEnJycZGxuT3EyxAYtqvBhUE9WSUCgk+f6iciwW73A4LGVGExMTJc9fBAkiyBc0ImVFUBkkKaUOlYGjstqcmJhISkoKxcXF1NfX4/P5GB4e5uGHH5aeCl6vl66uLunK+8ADD1BfX88dd9zBj370I7q7uzl06BCPPvooTz/9NDfccAPbt2/n5MmTjIyM8KMf/UgOHrvdbg4ePEhmZibf/OY3ufXWW6V+986dO6X76Kc//Wk8Hg9Lly6VSQkgh7NTU1P5wx/+QG9vL3q9nk9+8pM4HA5WrVqF1WqVdCKBiYkJfvOb3zAwMCArlpmZmZw+fZqpqSmysrLkRj81NSUNfEQbXcDj8Uy7lqIaKAYGRaVWmYAJKANAZTtdeW2Uz6HyeCzNQLxPvET+cicDsYgXuMf7/sqAN95rroRkAOIbtMWTIFUeVyaIyvOgPB6bJIkgdCb341jJUiE5KdRyBKLRqExsT58+LYMFk8mE2+1maGiIQCDA/PnzZSBbX1/Pk08+ybe+9a1p32fevHkAbN68GYPBwIIFC9i5cydPP/001dXVfOc736Gjo4OcnBxMJhM5OTkAXH311bJyXVNTw4svvkhJSQnf+9732Lx5MykpKSQmJnLgwAFCoRArVqzgC1/4AuPj41RUVPCzn/0Mr9fLvn372Lp1K6mpqXz2s5/lu9/9Ls3NzRiNRh544AE5OLt9+3YcDgd+v58bb7yR5cuXk5GRQVpaGj//+c/x+/0YjUYWLVpEfX39NNWh2AHx2ERgpuPiZ+LaKxWJxLlTdnaElKnoVAhakqAXiSRafC8xWyY+r7u7WxYnRACp0Wjo6uqSHQdhgBgMBmlpaWFqaopgMIher5eUVOGNIAoYBoOB8fFxeZ+YTCYMBgPp6em0tLTwxz/+kc2bN3PrrbcyF3A5EgIBtVpNdnb2NNnSffv2kZ6eTkFBwWUrKl8I5lRC8H46BKK6IHTIc3NzWbRokZQcvNyYS5ShYDBIc3Mz7e3tZGdnU1FRgU6no62tDbfbTSQSwWQyMW/ePLRaLW1tbZJyE41GKSkpwWAw0NTUhNvtlgGgqJgIOVFlhaqyspL29nbcbreU/BQ8QDgXxApdepVKRUpKiqSdCCk/QHI6xYIuqnvCoVM4DcdyhmPpP3COliEqS8qfieBW6RorFCg2b95Mf38/VVVVOBwOXn/9dcLhMNdffz233norPT090rDI4XCQlZXFPffcw6FDh/jEJz7BM888w86dO2lra+PBBx/E6XRSVVXF+Pg4HR0deL1evvCFL7Bu3TpJi9u3bx8TExNkZGSwePFi3G43paWl0r1TiUAgwGOPPYbD4eDee+9l3rx50pinvLz8Xe8L0fpOT08nHA5jNpuxWq0ySBKSid3d3ZL6A+eCTpPJhNFoJDExUfKsx8bGsNlsMllUBvKCSqbRaKatF+K+EK8REEFFbCX5Sgn2LxRKatBMgdS7YbbIqL5fxFtn4/GtlfeVcp1WHhfnRBQglMeVDsBKKAsTImkVDulCQUd8lhjQt1gs5OTk0NraKmezcnNzcTqdhEKhd3QHYpGdnc1dd90FnJu5mT9/PosXL+bll19m+/btLF68mIcffli+PikpiRtuuEH+7UKi+NixY/zlL38hNzeXr371q1IZzmg0ygR/7dq1XH/99QwPDzNv3jy+//3v43K5KCoq4p577sFkMrFt2za2b98uTQW3bduGSqWSJmYHDhzAZDLx1a9+la1bt0q60+7du6fNZ4jvJ2YGYpP9hIQEKVctoBSBUCZuiYmJ2Gw2XC7XO44nJSXJoWalbGlycrLcX8TviJm1qakpXC6XFJMQrtJ5eXnU19czOjoqfRSSk5OnHReJhs1mY9GiRZJCK5yO09PTKS8vZ2RkhJaWFgKBAFqtVs4UzJ8/n66uLlpbW8nNzY17X1xpuJwJgRI2m40lS5bg9/vp7u6mtrYWvV5PQUHBO2h5swlzJiG4UJWhiYkJent7GRgYkJw74bI6mzCXVIa0Wi233HILDQ0NHD16lDfffJNgMEhKSgqbNm2SKjjHjx8nISGB9PR0rr76ajo7O+nv7+fkyZPA2/z8rKwsWQ06ceKEXGhzcnKor6/H4/FIqbeEhASp6e31eqWetkajISsrC6fTic/nY2RkRG4gYsMW2tRCP9pkMqFSqaTykLKNrKRQKIdNldKFygBAWZVUBiTC0CwxMZGcnBwaGxvp6OiQ0oHp6elMTk6SlZVFXV2dHIjOyspiamqKkpISRkZGaGxs5Pe//72s8NlsNjIyMsjNzcVqtUoTNovFQnJyMtFolObmZpYsWSLPj8Fg4G//9m/f9dqKypVIdB566CFCodB7JtaDg4Ps3LmTBQsW8NJLL9HR0SEroIsXL2ZkZASTyURDQ4MMNq1Wq2yrC+lPOFdZE9QLpc67cIQV31FcHxHkxgayMynPiI1mpmfxSqHHxAvY41GDlPME8aRJ48mRnk8CcSUi3jkUncJYzCRjKoIB5X4lKsaiownnks6kpCRCoRCRSESadIkuqkhCxL1+9uxZqqqqGB4epqCggDfffJORkRHUajXV1dUYDAaeeeYZbrjhhndVxluzZg3Lli0jMTGR55577h2c/FiUl5fzve99D4Ddu3fLdaO3t5f29nZKS0tJSUnBYDCQkJAgB2OFyIPVaiUYDGIymXjmmWekO3FxcTENDQ3k5+dLOc/e3l5ycnKwWq2kp6dz4sQJXn/9dVmtt9vteL1emeCLgowS4vlWrgWCmik6KkpPA3GPh8NheQ0EdWdycvIde4DZbJaJgaAqRqNROYfmcrkYGhqatp4ZjUZGRkYYGhpicHAQlUol5V47OjpwuVzyuMViYcGCBdJn54033pADx0VFRWRmZtLQ0MBbb71FNBrFYrGwdOlS9Ho9dXV17Nmzh5qaGj7xiU9w0003SdGHuYDZkhAIGAwG5s2bJ2VLOzo6aG5uJi8vj/z8/Aua4fiIMnQBMJvNciGId0OIQKOnpweXy0VGRgZLly6VlIfZiNnAN75Y6Ovr49e//jV1dXXk5uZSWFhIV1cXTqeT/fv3yw1CpVIxNjaG0+nkwIEDUo9fKPt4vV4GBwenmbWEw2F53OPxyLasoBkJVQaxwCvlAPv7+6VKhJD7FCZhwnFSyR1WHhcbj5JqoOT/i/cSVaDYKqT4/dhgIi0tTQa9ololOhAajYbrr7+e/v5+1qxZw759+6SW9n333cfzzz+PxWLhwIEDUiLtoYceki318fFxOjs7CYfD3HvvvWzatAmNRoPT6aSxsVHKdT7yyCPS8Ou9YDQa+dKXvsTQ0JD0LXivZCAUCvHwww/z2muvEY1GKSoqkpvp1NQUZ86cIRgMYjAYMBgMcsZifHxcJnlKl2Clxns8ZRhlMKukacVLzJTP30zDouLvmOn1SsyG6nm8z1dWR5XfX3nelEPVyveJ97uzORmIdy3iDVor75lYSslMAX+8BFG8f+z9IV4f+zt6vR6Px/OO7yrWrlh6rMFgoK6ujqmpKYaHh7HZbLJ6ffToUZ5//nkSExP5/Oc/zw9/+MO450d8BsAtt9wiRRvOBxs3biQ7O5v09HQOHTpEQ0MDExMT3HTTTSxfvpyUlBSSkpLo6upiYmICjUbDZz/7WSkQ8Ktf/UoWMux2O4sWLeL+++/n8ccfZ2xsDJfLxR133IHT6WTx4sWcOXNGKrQJSWqLxSKT2VjVJuVaHXtcKECJ/xf/iBkEsU6If4sZMrEWKeWgxf2v3FPErJaIUYSIxOTkpJw7S0hIkB3kQCDA2bNnZWHJZrNJOlBDQwM+n0/ui+FwmEAgQFtbG52dncC5REPMmDU0NMjOksViobi4mDNnzvD666/T1NTE//k//0ca513JmG0JgYBGoyE/P5+8vDycTiednZ3ScbygoOBDla6/EMyZhEAE9T6f7x0BfjgcxuFwSA3ynJwc5s+ff0VM2M8FylB3dzdvvvkmSUlJjI2N4fV6cTgcpKSkkJWVxdDQkBzeDYfD5OXlkZCQIFVmRNCh1+vJzs6W1zEQCMh5gZycHDo7O5mcnJQLskqlkglGrHa4xWKRi7TYpIU0qeCfi4E0OFfxFH4FM7WeRRVPea2EbKioHiqlGpX/rzyuVqsxGo0sWbKEI0eO4Ha7mZiYYOvWraxatQqVSsX69ev5/ve/j9frZeHChXzxi1/k8OHDXH/99fzgBz/g0KFDDA4O8o//+I+kpqZy1VVX0dXVxd69e+nr6+NrX/sad955J+np6TidTnbu3Inf7yc3N5ePfexj0gPAYDBc0HXOysoiKyvrPV/n9Xr5wQ9+IGUDxXkbHR2VCkRJSUmyGuf3+6WcX0JCgjQKEpQgvV4vFZHEcTEvoNFopgW2SnqW8lqJxCy2IxcvGY8XXF/o62cbzqf4EOvuO1MiNZsR71qcjzdDPN+CeEZvQgZXdKiUx8V7xL5ezMuIQFe8v3KmQHncYrHI42JdikQikmIkOmaiWNHf38+nP/1pFi9ezFe+8pV3VUMxGAxSreZ8oFar5VzCmjVr8Pl85ObmcubMGZ577jlycnJYtWoV119/PRqNhoyMDH71q18xNjbGokWLePDBB2lra2Pz5s18/etfp7+/H5vNxj333ENiYiJ33HEHf/zjHzl8+DADAwP8/d//vewMt7a2sn//fkKhEAaDgUWLFnH06FFZTImVb1Suw7FD9kp5YgGlDLHYS8T1FQwFZWdBXDOx94jBaTE8LtYs8R6ie5KQkCCTDfF+JpOJrKwsuru7mZiYkB0lg8GA3W6np6dHGisK+VNB7RQdF9FdsNvtJCYmMjg4KIU0/vKXv+Dz+di2bRspKSnnfb1nG2ZrQiAgYpK0tDS8Xi/d3d0cPXqUpKQkCgoKpFqXEpdy75gzCYEwhlAmBJOTk9JNWEzbZ2ZmzuobJhZzoUNw8OBBnn/+eebPn89NN91EZmYmdXV10mgnKyuLTZs2cezYMQYGBmhoaJDBXnl5OS6Xi+HhYcbGxqTudmlpKSqViubmZsbGxuQMgtFoJCMjg97eXqn0I7T+MzIy6Ovrm9bKFS1ewRcVLWBA2tkLDwBRqRFVH1EFEq+PpQYp2+znU4EWgbHH4+Ho0aPk5eWRnJxMWloaS5cu5amnnpLKIuvXr2dgYIC1a9fy61//msOHDzM6Osq6desYHh5m+fLleDweRkdHaWxsZNu2bVRUVEiDn5qaGoLBIH/zN39Dfn4+fr+fnJwcli9f/iHfDdDY2Mj27dvxer1s2bJFGpC53e5pSirFxcWMj49LYzgBvV4v2/uixS/OpV6vJxKJyE0Y3qZjCAUR5TVITEyUm7VyCDweZkOl/2IjXkVbacQWe8/O9Pp4EqRzCRfquRAb8ItuY2ywKUQQxECqgBC18Pv9054B5eC8oAypVCrpQp6UlERbW5tUNyouLiYjI4OMjAyCwSC7d++mubmZu+66i4KCgvd9Pt4NKSkp3H333QA0NDRQVFREQUEBTU1NvPHGG2RkZHD11VdTUVGBy+UiMzOTV155BbfbjUqlorq6GrPZzLJly/jhD39IR0cHycnJ3HTTTfT09LBs2TLq6uo4fvw4WVlZbN26FafTycTEBHq9nhMnTsxII54pQYO3r2PsvS2kk2NnwUTBJxwOT6MoWiwWotEoPp9vWodHUBp9Pp/0L4BzSVdGRgYDAwPvoDra7XYp8yzeS6fTSdnsgYEBmpubZdehoKCAUChEX1+fVN5LSEigrKyMefPmcezYMZqbm+VA+erVq1m+fDlvvPEGQ0ND5OTksGXLlg903S8XRGJ3pcR3ZrOZiooKysrK6O3tpbGxkcbGRilbquywX6ph5DmTEIjKotfrZc+ePfzsZz/j7rvvZt68eVRWVpKcnDzrJ7xnwlyYIVi4cCErVqwA4De/+Q0TExNUVFRgMBhoaWnB4XDw8ssvS3k9u90uqxfNzc0yoM/MzGRkZESa0YhWrJBNE67BYkDcbDaj0WikO3FfX9805QfRHRBGMUI6VBwXg8bwdqdmpg1eLERK/m8s4gUMsddWUG10Oh3RaFRWiux2O1qtVg5RZ2VlyVkM8XsAK1eulAmBSqWSXgd5eXkUFBTg9/txuVz4/X7Zov7a175GJBK5qJbv74aysjJWr15Nb28vx44dk74RwplTBETiuEqlkhQg0doXyVkspUcEALEVW2XlThm4Xii1Za4kA8rzpryflXMDShUmpTxubGdFQJlAXIkSpO8XF9IZmUmyFGYeXFar1TMGtIKuIs61KGwkJibidrtxu93SuV2tVkujLK/XS1tbG1VVVVRWVlJdXU12dvYF/KXvHwsWLOD73/8+Wq1WihX4fD6cTifhcJj58+dLUQGhsb9q1SqysrKkKIFKdc707+DBg/h8PoqKinC5XHK9zM7OlvQbk8kkZaCVMqQQn/oX28ERx2MLO+K1ymsmzOEikcg0x2pBWxWda7GHiC6B6Or09PTItS41NRWfzyf9W0SXR6yNk5OTnDp1SiY1qampGI1GhoeHpcu18LOw2Wxy4Fi4LJtMJhYtWkRCQgJvvfUWTU1NrFq1itzcXNnduRKhLAxdSUhMTJTJ8tDQEJ2dnbS2tpKTkyM9geCjGYILQjgcJiEhgY997GMMDAxw6623snz58vPiP89mzIVKW3t7OyqVivz8fDl0297eLjmbIqufnJwkGAzicrkkD1y0VUUgK9q2gAx2A4EAJpNJDuKKoF0Ymik1wpXBo6gOi/9XHlfyRuFtS3TRehYQr49tR8N0WoAS8SqKiYmJmM1msrKyWL58ObW1tVKFIhwO89nPfpaamhqysrJ46qmnaGtr48CBA/zzP/8zxcXFbNmyhZaWFo4fP04gEOA73/kO4+PjZGRk0NPTw+HDh4lEIqxZs4YvfvGLBINB5s+ff8kTZaF4NDU1JSugQj1IydUVENSt2KFtmL4JKJ8TcX5jg1FxLWYz1/9SIN6aEm/gXRn8xOtwKROIeLKscxXv576ZaR1Q3uPxKtixgas417FJhVjvlFKmKpVKKs90dnZy9dVXc+ONN17Q936/0Ov1AKxduxaTySRpPgcOHJDdgg0bNgBQWlrKE088wcDAAGvWrOHLX/4ytbW1XHfddTz66KO0traye/duPv3pT7N+/XpuvfVWjh07Jo3JhDNybW0tDoeDiYmJdyT/F7ruCbpP7P0ce1xcH9ExVg42iwKSkKyODWKF6pHYG0VSIwqDQg5bJCBiPxRFL5XqnOGdmGsYHR2VvjeCGhaNRunt7ZX3k1arpaysjNbWVrq7u8nPz7+g8zJbcKUmBAJqtRq73Y7dbmdsbIzOzk72799PamqqNOX7sHHFJwQul4tf/vKX/Od//ieBQIBVq1bxL//yL1c0D06JK32GIBQKsXfvXpqamkhNTeWaa67h7NmznD59mpGRESk1On/+fDo7O2WFKxqNYjKZqKiooLm5GY/HI2lBQuFBq9XicrkIh8Oymm82m0lMTJQ63aLNLmT+xIKqpPmYzWapa6+sBomFRSQBYsGPdbSNlROcadDw3bjWKtU5h2SLxUJ/fz+NjY24XC62bt1KSkoKhYWFVFRU8M///M80NDTgdrv51Kc+RXp6OrfccgtnzpyhpqYGgE996lOMj4+zcOFCOjs72b17N2q1mi9+8Yts3ryZSCRCWVnZRTFLuRCMj4/zP//zP/h8Pk6dOoXL5ZLnoaCgQCaCIqgU+tpms5nx8XF5vYT3gPCqULoKA5IyJF4vfq7T6aaphyg3D6VCjJKbDVcOL/7DwLslrrHUq1hcjKHi2aZU9G5B/0xJP7zz/AgloZnmjYBpspUw/X5Wvl4EiqKSLGA0GjEYDLJbKmC1WsnMzCQxMZGBgQEptbljxw727t1LaWkp99133yXpEiYkJEhqoslk4rrrrsNut9PV1cXzzz9PUlISq1ev5sYbb2RwcJAFCxbwk5/8hJ6eHhYvXsw999zD4cOHuf322/nJT35CXV0dY2NjfPWrX5UUUrvdzksvvYTb7Uan01FYWIjD4cDr9c64PsN7z4cor5lI3ERQrzwugn6lDLUQsxCD4qLDqewICzU7UfwQsqXiWorjYmbC6/Xi8XikNLVarSYtLY28vDzOnDkjFaYSEhLIyMiQVF2n04nX6yUrK4vFixdTXV1NR0cHR44cwWKxsG7dug/x6n94EDMds00p8v3AarWyePFi5s2bR3d39yVzPb7gT9m7dy8//OEPOXHiBAMDA/zpT3/itttukz+PRqN8+9vf5pe//CVut5u1a9fy3//935SVlcnXuFwuvvzlL/PSSy+hVqu58847+fd///cLmnJvaGjgscce44knnmDlypU89thj/NM//RO33XbbnEkGYHrAciVSnsLhMJs2baKoqIi6ujreeOMNJicnSU5OprKykpaWFnw+HydPnpSKQdnZ2bS1tTExMcGJEyfkMFZycjJTU1N4PB7Gxsbk8JfNZpP28+Pj49OqLaLzIFSDxEIuzIAEZUi03ZVdALHAiPdSJgbxroUyoIxHrZjpd8bHx6VKhkajobCwkFAoRGNjI/X19aSmppKfn8/g4CDFxcUkJiai1Wrxer3Y7XaysrIk77CrqwuHw8HHP/5x6Y6ZlpbGvffee7Eu6wVj+/bt/PjHPyYYDHLddddRUVEhK3cdHR3ydTqdDpVKJVvsSmqQGOgT1wzeGaQpN1p4+3rEo3LFq5TP9UQgXockntSo8rgSyvOvlCCN95oLwWxKBuDC6GLnM6CsROx5E/dvrCmlOJdKjXwRJAoZXpEICAqk0MEXw/gWi0Xq1Dc1NXHkyBGSkpIoKSnh6quvPu+/8WIgPT1dSho3NDRgtVqx2WyMjIywZ88eLBaL7JoGg0EyMzNpbm5Gr9djMpnkmlhSUsJ///d/s2vXLsxmM+Xl5eTm5sogvr+/f5qK0EyIRxma6Xg0Gp12fwrKaaxalHJPUcq3ioFjMfAsEhVBJRLrXKw8qaDADg0NTVPfE12CoaEh6cditVopLCyks7NTypkKymlJSQlDQ0Ps2rWLEydOcNddd7F161aqq6sllfRKw2wfKH4/0Ov1lJaWXrK/64Kvus/nY/HixfzN3/wNd9xxxzt+/oMf/IDHHnuM3/72txQVFfGtb32L66+/nvr6etny+NSnPsXAwAA7d+4kGAzywAMP8OCDD/L73//+PT8/Go1yxx138Je//IVPfvKTHDhwgCVLlgDwL//yL+/LnGw2Q2S7ghJ1JSEQCPD973+f119/HZVKRWZmpuQ0ilmAaDQq9am9Xi+jo6MEg0EZdCckJEgqkQj2NRqNpPWEw2GpTqOsDAguamJiolyUBadeWc0RG6+Sbx5LVxHvF6/6P1PAE09ONB5E67a6uloOxbndbsk7dTgcfO5znyM/P58bbriBI0eOMDQ0hMPhYNu2bXR3d5OcnIzD4WBoaAitVotOp+Mb3/iGHDa8nMjNzZXD24IjGQwG0el005In5YYZS82aKYA934rtXMT5yGTGe73yXCqD/VhjPRGQKhMqZSAkZnFgelBrMpkk/115LZRysErEe1biJS7vNsg7F3Ah97VSDU1AyWdXQhQ2nE4np06dory8HL1ej81mOy+FsA8TCxYs4Nvf/rbUyxdzZCMjI+Tk5JCTk0NFRQXPPvssQ0ND+Hw+PvGJT1BUVMQNN9zAd77zHSYnJ2VwbDKZZIArBCzOF+9nXYntFIt/xyYI4t9iXxP7k9gzxP4Hb3ephVKeoLImJibKxEEIYYhAXtCXAoEA7e3t0unYbDbL9+7s7GRqaoqEhASSk5M5ffo03d3d/P73v+fee+/ly1/+8hVXgJyLCcGlxgVHmDfeeGNczmE0GuWnP/0p//zP/yytsJ944gkyMzN58cUX+cQnPkFDQwM7duzg2LFjsm34H//xH2zdupUf/ehH7znkpFKpeOCBB/j5z3/+DsdUk8l0xSYEhw4d4vTp02zZsoXi4mJ5XNzgV9Lm5/F4+POf/0xLSwtnzpxheHhYDnstWrQIvV4vLdnF8FNubi6tra34/X48Ho8MwM1mM2q1WgbGYkBMDAwLtQaRHIjZA1HhF68XCjRCqlS5eCsHg2E6/1y8T+yMwPkkB+cTlKrVarRaLZmZmVIh4tSpUwCsW7eOW265hWAwyN///d/z8ssv89Zbb6HT6bjnnnvQ6XQsWrSIuro6du3ahclk4utf/zqf+cxn0Gq1FBUVzZpFPTs7m8rKSnp6ehgdHZ0WaIouhnCHhrcTKjGoGnsulS7QSghubezx2GusRLxg9EKPX2pcaBU6XpI6U+Uf4jv0KoNxZQVbGezPNAwrgqBYxOsswPkNgMbD5bxO8RKWeMdjqWsCShUsJZTdz9j3MRgM79gHReA3NTUlfTy8Xi8TExPY7XaWLFkyK7TQ09LSAFi6dCl/8zd/g9lsZnR0lD//+c8YDAZWrlzJjTfeyMDAABs3buS73/0uZ8+eJS8vj4cffhiDwUBKSgoNDQ3U1tai1WrZuHEjVVVV0shrpvmMd8P5rAOxczXwNtV0puPKAofYs8QwsnL/EQm3mJcTlBgxaCrU1ESHQhjWud3uaQ7MFouFgoIC6UovjODmzZuHyWSirq6O8fFxjEYje/fuZXR0lEWLFnHzzTe/p5/MbEG8hODkyZMcOnSIjRs3UllZeRm+2QfDFSs72tHRgcPh4Nprr5XHrFYrq1at4tChQ3ziE5/g0KFD2Gy2afKG1157LWq1miNHjnD77be/5+ds27ZtxuPCnOxKQV9fHz6fj9LSUrZv386ZM2cwm83TEoJ4Ac5shJD5bGpq4v/9v//H4OAgFRUVXH/99dIka/fu3SQkJJCVlUViYiItLS2Mjo7KYFCj0ZCWlobT6ZTW7kJ9KC0tDZfLRSAQkPbtcC6gEBUUkQCIgSyh6axUoBEVmVg+eezx2MqO8sEU/x3v+PlAp9ORk5MjHTj7+vooLCykqqqKSCTCvHnz2LlzJ4FAgL1797J27Vr8fr9U6Dl06BBnz57l85//PAsXLiQpKYns7GxKSkrez+X7UNDa2kpPTw8vvfQSu3btIhQKSWMcQWNQSu0Jwx7RPVIGlsqKtTIQjTefEa8iHosLrQbOhmTg/eK9vruSt69MJpVyurHHY+V3L/Sz3+v33uv3L9brLybiBZznqzYmOiOxVWdR+Y+lpohkTNBPxOuTkpKkUaPw9UhMTCQ1NRWz2UxnZyeBQIDOzk4qKytZvHgxlZWVl0x9KB60Wi2bNm0CYGRkhMWLF2MwGAgEAjz33HOo1WrWrl3LNddcg8ViYfHixfz2t7/l+PHjpKamsnbtWiYmJrBYLJw8eZKBgQHgbbOunp6e895TZxKLiCciIQpIAsqBY2XCJwJ7kRj4fL53UIaEMIagCxsMBnndRTENkG7zo6Oj0tdFpVJhMpkwm804nU7GxsY4ffq03BerqqpwOp2cPXtWzmXl5eVx1VVX0dLSwm9/+1vKysrIz8/HbreTnZ09a4pL8RAvIdixYwe7du0iGAwyb948GhsbyczMJD09/TJ8y/eHK1J21OFwALyjcp+ZmSl/5nA4yMjImP4lEhJISUmRr3m/sFgsM1amZiOcTic//elP8fl8PPTQQ2zevJmkpCSWLl36jtdeKdKjf/zjH3nrrbeoqqqivLxc6iHX19cTjUZJS0tDo9HgcrkYGBiQi6fQiRdKECIJEDx5MWw1MjIiF01BKRFSn4JjrlQUEl0D5cMUSwFSHlfOB8Qu9h9GcBgMBunu7paJiFarpby8nGAwiM/nIzU1VUqNGgwGcnNzATh9+jRLly6V3z81NZVvfOMb7/t7fFiora3lvvvuw+FwkJmZKYOTYDBIR0fHjHMx4XBYzgfEIpZPLXChwddcR7yKZjwqkZIypAxARdUy9ni8hED5mUrK0Pl8h9nSdZktiEePi3eOZuq8RKNROTegRDAYxOFwyO6kVqslOTmZn/3sZ4yOjjJ//nxeeOEFcnJyPvgfchGQlpYm17e2tjaZGPl8PhoaGqTkqNFolAO66enpaDQa0tPTmZqakvKmYs7sg9xrF7oXKF2uZypSiABeQAhfAFLBTuxnSmELMdQsZhOEd4/FYiEQCDA1NcXo6KikwSpFNRobG+Uea7fbCQQCuN1uXnvtNTljsmDBAnbs2EFXVxd33333tELvbITolMRi/fr1TE1NcdVVV/HWW2/x5JNPkpeXx7e+9a1LJrX9QaCkNn/YuLJI6e+BK61DAExb2KxW64ySX1eK9KjL5cLtduNwODCbzcybN4+uri4GBwcJh8MYjUYyMzOlOoJog4pgWOkAKRY35bCWsp0qHnwRVIr2bGJi4jR6iDiufKhiN9Z4SjMfNsRnpqSksGDBAnw+HwsXLuTZZ58lEAjg8/n4xje+QUdHBwsXLqS1tZWzZ88yNDTEbbfdxsMPP4zZbJ5VQ/SRSIRf/vKXHDt2jCVLlsj29PDwMDqdDqPROG24770GUmfSEX8vzIXgMt4zH4+Drzx/yr9dGYArk13l+yspQ8r3V/LPlRuS8r9jlWxEAKpMBiwWCx6P5x2qQeK7xSYJ73YvzDRorOwcKTEX/A8ulLb2bh3l2PMaS8sTSmtjY2M8//zzHD9+nFtvvZU777zz4v5RHwAlJSU8+uij0ovh7NmzhMNhurq62LBhAykpKZSUlLB9+3a6u7uZnJzk2muvZWJigpSUFI4fPy6r8ZcCsR3LmaSold0CpZKRkC0VcwNCXEPM1ilFLpTHRRcpGn3brV0U14SQRiAQQKPRYLVasdvttLW14fP50Ov1pKamSjdjh8MhO/izHfHmLEtLSzlw4ACnTp0iLy/vkgbYVxouakJgt9sBGBwcnDagNDg4KAd/7XY7Q0ND034vFArhcrnk779fWCwWRkdHP9B7XCqkpqbyyCOP4PP58Hq9nDhxAo1Gw6ZNm1iwYMG0114p0qMbNmzAarXS1tbGX/7yFxITE1m9ejVZWVkcPXqUgYEBaQ5mMBgwm8243W5CoZCkjRgMBnQ6HW63+x0a2sqkQUiwqVQq9Hq9rJ7EyoYqZeSUCkDAedFJPkyIQb6FCxfy+uuvS7fge++9l/7+ftauXUtPTw/79++no6ODhx9+mDvvvFNan8/Glufg4CDPPPOMVIlav349Z86ceYcLp16vR6fTyY0m3kBqrATjTIFfLC87Hp3rSkK8ezKeWpIwL4pdJ2IDYmWHTECZHCjfXxlAxhrACSjNyJRBgzJ4Fx2fWFWWmah5M7n4xn4XJVQqVdzO0ZWaDMQrXCgRe1wkP7HXPykpSa6hyvOXnJws/V1EQmixWCgsLGTNmjW89NJLnD17lrGxMW655ZZZVUkV3kLBYJDbb79ddlCffvpp/H4/KSkpkla8ePFifv/739PY2EhaWhrXXXcdp0+flhKklxLvJkEb+zyKBEBpPieKXYJGJO4BjUYj/QuEbG0kcs43JykpibGxMTl4HI2e8yew2WxSsnR4eBi1Wk1qairr1q3D5/Nx4MABDAYDDz30ENXV1ZfEwf6DIl6HoLm5mWPHjpGcnMx1113H1772NTIyMmbVPf1uuGJnCIqKirDb7bz55psyARgfH+fIkSNSWmzNmjW43W5OnDjBsmXLANi1axeRSIRVq1Z9oM83m8309vZ+oPe4lBBJk9/v58Ybb0StVk+bHxC4EjoEY2NjPPHEE4yNjbF27VrWrVtHd3c3hw8fZmxsjFAohNFoxGazSblJYURlMpmkZJ5wYoTp/MtoNCqdaoXSkOgaKLWelfxOcc6U3YR4g6WXEnq9XqoqtbS0EA6HycnJYWJiguuvv569e/dSW1uL3+/npptuIicnh9zcXOx2Ox//+Mcv63d/L6Snp7Nx40a0Wi3d3d3U1dXJ1rTJZJIbllJSFKYH9fFofxdKGbpSk4H3i/d7X8c7T0p34pk6avDOIH8mHfcL+a7x1rl4cwZz8Rq/n78pXvKjLKgoIQpnQh8/ISGBQCBAU1MT7e3tVFdXU1lZyQ033DBrA6fExEQpeS68BwKBADqdjt/+9rc0NTVhs9m46aabGBoaIjMzU5qXiWBZKd96qRE7ozbTDIJSlSgYDEpVInHdlF11AcGjj0ajOJ3OaTMFojswOjpKNBpFr9djt9sZHh7G5XKxY8cO0tLSKCkpoby8HKPRyK5du+ju7uaf//mfZ7WKT7wZAjEcnZycTE5Ozqz+G2bCpexmXHBC4PV6aW1tlf/f0dFBbW0tKSkp5Ofn8w//8A/87//9vykrK5Oyo9nZ2fLBXbBgATfccAOf//zn+fnPf04wGORLX/oSn/jEJz7wINOVSBmCc1XxT3ziE3F/fiXMECilPevq6ujp6cHpdDI5OTlNFm9qakoG9GIhm5iYkHJpImCfSRpU2QoVx2MHvMRrxXspEwDl6y8XBG9XSHBGo1GSkpJITk6mtbUVp9OJ2+3G5/PhdDopLi7mmmuukdKssx379+/nT3/6E8PDw9MCCTEMF8805nInaVcK4tFglJV6JeJx+ZXdFuW5F/QemE4lUm5KymuoTAhsNhsulwuYHuwo31OJeBSg86FFKTHXJUg/TAjKSSwtr62tTdIWN27cSEVFxWX8lu8Nq9XKN7/5TcLhMHv27MHtduP1ehkcHJTc/ZKSkmldSovFIjn4l3NPmKkjNNN8m/K4oIWJYF88A2J/E/+tfB9l90DQiwT1Sqj4JSYmMjExwfDwMBqNBpvNJjsQs51mEy8hsNls3H///Zf+C10EzHQ/fJi44Ajj+PHjXHPNNfL/H3nkEQA+85nP8Jvf/Iavfe1r+Hw+HnzwQdxuN+vWrWPHjh3TbJefeuopvvSlL7F582ZpTPbYY4994D/GbDZfMUPFF4IroUOg1+uprq6mrq6OU6dO0dzcTDAYJC0tjezsbJqamqYNBuv1eqmiEOsNIP5e0QEAJB9SVESEMoIyOVAunGITEEmEOHa5IUy1MjIyWLx4MT6fj9tvv53HHnsMp9PJq6++yne+8x1ee+01Vq1aJYfEZjNCoRB//OMfpVxdd3c3oVAIvV4vOx8jIyPA28GnME2aKYiNFxBeCc/Bh4HYOQAB5TDwxMSEDLBjuy0i+FcG4IJDLNrs4vXKwF2n083oMaAM4pXvKZIBODcIOjIyQkJCwrT3FN8l1uhMXPPU1FScTuc7/vbYeyJeQhMvybjchYAPG/H+vnjPkslkktQTZSc1OzubxMRE+vr6CIVCNDU18YMf/AC9Xs9tt93G9ddfP2sDQ51OB5yjQ33uc5/j1KlTbN26lb/7u7+jr6+PEydOcM899/D000+TkZEhpa8vN2LnCcS/Yw3RlMfFOiBm7MRMQewMgqAfAbIApVar0ev1qNVqSRmLRCJShrS/v5/+/n6cTic2m43KykpWrFgxa6+7wFz1IbiU65YqOodWyd///vf85Cc/YdeuXZf7q1xUnD59mpSUFKkyM5sgWtJnzpzhu9/9Ln19fZSXl2M2m6mpqZGtSUBy3nt6eqSUqHiIRUtUDDzC25QhUcGJHSSOrZwoXzNbK4bJycmkpqaSlZXFoUOHCIVCFBcXs2bNGmpqavjbv/1bpqam2Lt3LwsXLmTbtm2zvjp3+PBhPv3pTzM8PIzVaiUnJ4fBwUHcbve0QFKtVqPT6WbUvY9X5Z3rgdzFQrzzFy8gjId4cwPKQFv5nsrrE6+Cf6GJnPisC/29j+6Vd0e88ykG/ZX3j6B3ZmZm0tLSgt/vp7S0lD/96U8z0lpnE/bv38/27dvp6+vjYx/7GKdPn+bFF1/k6quv5vnnn2doaAidTsfmzZupr6/H7XYzNjY2K+6d2Hs4tqs9U8VYPPti71TOJohugejKi2OCipuYmEhRURFerxe32y0/LzMzk5UrV9LX10dnZyfz5s3jX//1X8nOziYhIQGTyXRpT8x5oL6+Ho1Gw7x58y73V7loENdPp9NdkmRn9nMQLgDx2uNXOmYrZejw4cP84Ac/YGJigm3btpGamiolRYVihaBxBQIBhoaGZOtRLGLK1qY4Dm8r8CgXx3hB/kwL5myDRqMhJSUFj8dDd3e3pAAJlaGxsTGp+uDxeNDr9RgMhlmb2CiRmpqKzWaTyV9bW9uMQX8kEolrgvXRHMAHw4VKIcZW6AWUQX2sQspMUK5N8TYskfi/22cpEesPcr746F55d8Q7nzN16fx+P4FAgLGxMRITE6UPzGwwL3svCNEKoWpmsVhQqVR4PB6SkpIYGRlBq9XS3t5Of3+/lD0fHR297Ott7D0cW/SayQMhVlBBUHGV+6lSdU90GUSHfWhoSHr4GI1GST88evQoWq0Wg8FAWloaL774Iq+++ir5+fn8r//1v2Zd4B0KhWbtvMsHwaVURZp5lb9CYbFY8Hq9c25jmG1UidOnT/OnP/2J+vp6urq66OzsZM+ePWRkZLB8+XISExNxOp34fD6MRiMmkwmVSiVVgESFQvyjnA1Q8hWVzsTwTtm22FkC5fHZBpvNJucGRBB0yy23sHTpUh588EEpz3ry5Em2bdvG2rVrycvLu+wb1PkgJSWFpUuXkpmZKTmp4jokJiZiNptn/L14MxGzvTV9qWE0Gqf9v9jkledVqIfEvn5qakpuksqqnt/vlw6kSUlJ8rjX65XnX1AwYPo1UdKWlJ+lTDBE4Kg0NFMet1qt05IB4bxqNpunPb+CahrrlipeHwvxnWMTmL/WeypeIhfPfdZqtcpChRhAFTr/K1eufMe9OBsRDoepqKhg8+bNXHPNNZw8eZLBwUG6u7v50pe+xOLFi/nUpz7F+Pi41PDPyMi4Iv6290Ks1LboDADT9ksh6R2NRmV3SKVSYbPZJM1vdHSUpKQkVq9ejclkYvfu3fT19dHV1cWJEyf44x//SFtb22X+i9+G6IR8hPePOdUhmMszBLMlMAyFQjz11FM0NjZy88038/GPf5wzZ85w4sQJ9u7dS2pqKlVVVej1epqbm+nv75fBvqiKj4+PT5sNUFq6K02OYjWbYz0IZuoizFYItYeysjLUajX33HMPP/zhD/F4PLzwwgvcf//91NfXc/fdd3PmzBneeOMNdDod99133+X+6nHhcDjYs2cPBw4c4IUXXmBycpLExETy8/OZmppicHBQKmMAUiJWBI7KwPJCFGr+2jAxMSGr6cp5Aq/XO+N8gBjSD4VC07qmPp9Pvk5w/GG6Eo3SS0AZsCsDaqFnLr6DgN1ux+FwoFKp5HsEg0FsNhtutxutViuPj42NyXkB5XeM/ZvEnEAwGJR/U+yQsiiYKAerY9fLv9Z7KpaHLs6Dcs5iJulY4SYfDoelj8zjjz+OWq1m2bJlbN68edZ2C7q6unjttdfQarVUV1fz2c9+lqSkJDZv3sy//Mu/0NjYiMvl4qGHHuI3v/kNZrNZ0qJmM2aiEsWLC8R6KoaIlfMEooMgaLsmk0mq+w0NDUlFooqKCnQ6HTt27GBiYoKsrCzWrVvHsmXL6OrqYs+ePVx77bU8+uijl+oUvCvm6gzBpcScSgiuJKfiC8FsogxpNBoWLlxIJBLh7NmzHD16FLPZTH5+vqw6nT59momJCekgrKw2iaqEMgAUAc5M7dCZEDs3MNshOiHJycl0dXWhUqlwOp0UFhbS09NDcXExu3btorOzE7PZzD333ENubi46nS5uJfRyIhKJ0NDQwN/8zd/Q2tqK0WgkOTmZ0dFRVCoVfX19cZ1WL5Qy9BHOQQTnsUmUMmBWQrwudj0UrxPJQCyU10er1cr3Vz5nyv/WarWyAyCGgUWSL+4BoewSSw8Sr4/9ju/1N8UqFonPmYn68hHeRry1cqbzFgqF6OnpISEhgcTERBITE7Farfz85z9namqK1atX8z//8z/k5ubOuu6LmGPS6/VoNBqefvppjh07RiAQoLKykoGBARYsWEB9fT29vb1otVrS0tLo7++fFbLU5wslTTb2Goh9VHnNlUU40SWIRqP4fD7ZiRfH/H4/9fX1mEwmDAYDJpNJGpi1tLSwbt065s+fT2Vl5aX7g98Dczkh+Igy9D4gdIVnUpm4kjGbKEOBQACVSsWCBQvQaDR4PB6Gh4fx+/1kZWVhMpmkxryoQCQmJspEQMltFJV+UbF4N67kTDKjMy2Esw3CbTItLY2ioiKpnuR0OiktLaWoqAiz2YzH42FiYgKHw8Hu3btZs2YNn/vc52YVJzIUCvG73/2Om266iZ/97Gdy2DsQCDA1NYVer3+HJjbEpy18hA+GeLSP5OTkGY/HU6tSUiWUCYeS0hUvIVCqxynX3Xg0MUFbir0nBNUnHjUodqMXvz9XA4DLhVgan1CAMxgMTExMyGfe5/Pxj//4j9x4443s2LFjVgXRSUlJfOUrX6G8vJxXX30Vl8uF3+9nbGyMzMxMCgsLKSkpYWhoSK7HFRUVWK3WWbXexkM8qe148qXiuOgKiOPiGRIO5mq1moSEBBlvCHqr1WolMzOTsbExhoaGGBsbw2azUV5e/o5h9MuJuZwQXCrMqQ6B2IS8Xi8pKSmX+dtcPMwmylBbWxs7d+5kcnKSyspKli1bRlNTEx0dHVIZJC0tjdzcXBobG2X1T61Wk5SUxNTUFB6PRy5CwDuoQQLvx7FztkAM4Y2NjeH3+3E4HKSlpbFlyxZpRPazn/0Mv9+P0Wjk7rvvlgv0iy++iN1up7y8fFZc96mpKXp6eujr6+Ppp5+mrq6OyclJrr76ag4cOEB3d/c0ycmEhATpQg3Tq//xdPQ/wjmIzT62+yVoHbGuwoKOo3SkHR0dlXQc5XGPxyOHiZWeLUqKkcVikbQRJR1IeQ2V/62s1mdkZDA0NDSNGgSQm5tLb2/vtO8SiUQk9UdJXwoGg5JCVFhYSGdnJ8A0SpD4HHFcnJPYQekrpYN4uaGkmymfzdTUVEZHR5mampLdHYvFQklJCevWreP1119ncHCQp556Cr1eT2FhIbm5uZfdLyUSieBwONi5cyehUIi77rqLa6+9FrVazS9+8QsaGxvp7+/ny1/+MuFwmNTUVE6cOCHXsKSkJPR6PU6nc9YU4pSYafBYCSWdaCZJU1GYC4VCkjKkVqvxeDz4fD5UKhVGo5H58+czMDBAW1sb4XAYvV5PUVERxcXFTE5O8uqrr5KVlcWqVas+sIfUxcBcTAgu9fo1pxICMbzq8XjmXEIwGxYmEfDb7XbGx8c5duyY9BewWq2kp6dL/WKxwYuOQTgcxuPxvKOqfz5VjisRoVAIh8OB0WhEr9ej1+vJyMjgxIkThEIhDAYDy5cvx+FwUFhYyO7du6msrOSTn/wkAwMDZGdnk5KSclkpcBMTE3R3d+NwOEhOTqaqqooHHniAJ554gomJCX7/+99Pc4kW9JFQKDTNAGgmethHmBnx1LIErUO5Duh0Onmex8fH5Xm2Wq2SjqOcD1AG5MpgXxlgKwN5JVc/XifOaDTK9xLvMTU1Ne2zhHv8+Pj4tBkF8d4jIyNSylStVst7vrOzUx7X6/XyHIjPEd9LnJOPkoH3B2VnR3nexD2kdMX1eDzU1tbS0tLCsmXLyM/P58EHH6SsrIyOjg5aW1vJz8+noKBg2lD6pUQkEiEvL4/Vq1cTDAZZv349jz32GA6Hg0WLFhEMBqmoqGDXrl2cOnUKi8VCeXk5TqeTUCjE1NRUXIfn2Q7l9RNdeSWU+69IGvx+/zR5y4SEBILBIA0NDajValJSUsjMzMThcNDd3c3g4CDj4+NkZmZit9uZmpqaFcH4bPgOHwYupcrQnEoI1Gr1nJQevdwzBH6/n56eHgYGBhgaGqK/v19WjgC5iE5NTUkHRKEmpBwIFkoGf00QBmzChE20ZoUh1DXXXMPChQt57bXXiEbftprPy8uTetKXGmNjY3R3d+N0OqVylNlspq2tjZ///OfU19cD7wzu4wX7s6HLMRcR6y8gnrV4wUw8jr0yCYg33J2YmDjNn0AEkcp1SVm4iHcvxPtu4m+JvVfE8Qtd/z5KCN4fZjpnoqKs/FkwGKSmpgaVSsVPf/pTfvGLX7B69WpGR0fp6Ohgz549ZGdnU1hYGJc+9mEhGo1iNpux2+20trYyPj4uv/tNN91EQkICw8PD01R33G637DKJebcrEe8mv63sPMaqhsV2JUV3QVD4xNCxMJz0+XwykThx4gTt7e3k5+eTn59/2WhXczUhuJSYUwmBmI6PHTq70nG5OgRjY2P09PQwPDws1WL8fj9nz57F5/OxePFi1qxZw/HjxxkdHZWa1fn5+Xg8Hvr7+wkEAnKxEYGwMjEQVYzZ7iNwoRAdAZVKRXd3N9FolOHhYe6++26Ki4s5fvw4r732Gg6Hg40bN3LDDTewceNGXn31Vfbs2cPExAQLFy68ZOdDJCPCvTM7O5vVq1ej1+t56623eOqppxgfH6e+vh6v14tGoyE9PR2tVktvb6+UuxOIp3P/Ed4fhMpQrAGZqOKnpKRIyoMIiLxeL+np6QwPDwPIzpTf759WqReV+Ugkgs1mk+8zk0cATOeZK5MSi8WC2+1Go9FMSz4EJUjpLgxv3yPKDgW83clQuhYrqURigF38rSKQUVJfPkpCPziU6kMiwUtMTCQ7O5uJiQmcTifRaJTDhw/zxS9+keTkZL7whS+wbNkyPB4PHR0dHDx4kPT0dAoLC+POtlxMiL1kYmJCCjUsWLCABx54gNraWgC5vn7+85/nmmuuweFw8PTTT8ugt7S0FKPRiMvluiBTv9mGeBTcWEqRkCYVXQK/349GoyEnJweAgYEBnE4nGo2GjIwMVq9eTWdnJ83NzYyPj3PjjTcyOjpKKBSivb2dnJwcCgoKLnkiOFcTgktZRJ1TCQHMTenRSzlDIALXnp4e3G436enprFy5kh/84Ac0NDSwefNm7rzzTk6fPk1LS4ts95eXl2M0GmlpaaGzs1PKnYkWpNCmvxI8Az4IkpKSpKlPd3c3ycnJFBUVEQqFSE1N5cUXX6SqqorPfOYzTE1NMW/ePI4ePUpjYyMajYZ169YRCARYvnz5u8rKXSwIvm1PTw/BYJDc3FwWLVokK0MDAwN861vf4uzZsyQmJlJYWEggEMDpdOJwOKa9lzKAUCYD8Vx0P8K7QxQCVCrVNLMwpQSpKH64XC4ZQOv1eknjGR4elgG2kAUFZPIeDAbJy8ujp6dHvo8IsK1Wq0wmlLQS5X+npKQwMjKCWq2W9KVwOExZWRktLS3o9XpJHwwEAhQVFdHR0TGNUjQ0NCQTGjFvAOcoK+I7Ko+Pjo7Ke0ppbjbXxCQuB5RVYmVSJ5K3YDBIV1cXcM5bJS0tDZVKxauvvko0GqW3t5fnnnsOi8XCokWLKC8vp7Ozk+PHj5OUlERRURHp6ekfWpAj1pmkpCS2bt1KR0cH1dXVPPvssxw+fJh169Zx66234nK5WLFiBT/60Y/o6uqiuLgYrVaLyWSit7dX/u1CqWiuxBQzSZfC2xr+wrVaqExpNBosFgsLFixgaGiIvr4+Xn75ZbKzs1m2bBmrV6+mtbWVo0ePsnnzZj796U9TV1fHvn37yMjIoKioiOTk5A89qBVdrI8Sgg+GOZUQiA7BXHl4BS4FZUhw3nt6eohEImRkZLBz505cLhcPPvggmZmZOJ1O2traOH78ODqdDqvVitfrZWpqiv7+fjQaDePj49OCv2AwKCsP5ysreiVjfHx82qKkVqtxOp3odDrJxTUYDBw/fpyuri7KysqwWCwYDAb0ej2NjY0MDAxgMBhm5IBeLIRCIfr6+qS0YH5+Pna7/R3qLyaTiezsbFpbW0lISKC/vx+fzzdjgB+PkvJRMvD+oJQJVGImCVJ4m/OtrMJrtVoZeCsTOGW1fnBwUB5Xzg0oqUQ6nU5+rl6vl5VTsdZGIpFpQX5LS4v8LmIOAKCjowN4J3VIdCV6e3tn1MsXyYCAuKfidTE+wvtDvPVmpm7f2NgYPp8Pi8Ui5wUKCgqmKUXp9Xrmz59PSUkJPT091NXVkZCQQFFREdnZ2RddgUzJnzcYDHR1ddHR0YHJZMJoNJKUlER7ezvNzc3U19dLR2MhtSm8VABppnml0odiEasUpizMieKTUA1S+hWMjY3R2toqfybOo8vl4rXXXqO6upqMjAzsdjsNDQ384Q9/oKysjKKiImpqajAajRQWFs64v1wsiPVgLiYElxJzTg8w1rRmLuDDpAxNTk7S1tbGwYMHGRgYoKioiDVr1mCz2ejv76e/v58dO3bgdDpZuXIlgUBADg4XFhZSWlpKKBRiZGRE8t/1er3kEQr+vNJlWODdMt8redZApVKRk5NDeXk5SUlJeL1eqfxy44038sADD3Dy5Ena29s5evQoixcv5vrrr2fTpk0cOnSI2tpa6urqPpQOweTkJK2trRw4cICRkRHmzZsnVSJmWqx1Oh3V1dVSRcLj8Ug+sZjZiXcOPsKFI955i6fcEk96VGyM8e4fpTtxvLVFeT/MJAQQ+7vv9V1iIWRQ4/1cKWmqRDxvjnif/5Hs7ftDvPMmxDui0SjBYJCxsTF0Oh2FhYVUV1fPeA8nJiZSXFzMxo0bZZdoz549tLe3X9TOjtK88ujRo9TW1nLs2DHuuOMOrrvuOrKysqipqaGtrY3a2lq+/OUvc+ONN0oxEiFNWlZWRmZm5pwuXikLdUpzUDHfJpKlYDDI0NCQ7B4uXLhQdhu7u7tJSkpi0aJFNDc3s3//frq6uujp6aG0tJSrr76anJwcWlpa2Lt3r1QjvNgQ69BHCcEHw5zqEABzskPwYVCGPB4PPT09sl1fVVWFzWaTi3laWhpbt27F4XCwY8cOamtrKSsr45577sFisXDw4EHeeustJicnZUchLS2N1tZWKV0mpEaDwSA+n+8d6gfvttheiQuxWq3GZrMRCoXo7+8HID8/n6uuugqLxcLAwAC1tbX4/X7uu+8+7HY7GzZsYPv27bjdbrKzs7nzzjuZP38+69evv6gdAp/PJxUiUlJSWLx4MTabLe7rx8bGePPNN2lpaeHxxx+XVeTExERSUlKkIofyWVNWna/E6zcbENvSF/+v7AaINU6ogcQeV0qKKt2KlcWS4eHhaQo+SjdjQccxGAzyeiq51MprbjKZZJVeqSxVUFBAV1fXNBoZvO2EnJmZKe+pcDgsv6NybkDZXVB2H/x+v/yOynsuXqDxUYfq/UF53pTULHH9dTodNpuNkZER+c9PfvIT3G438+fPZ/Pmze9QGlKr1eTm5pKTk8Pw8DAdHR20tbWRl5dHYWFh3CTwQr+zWq3mlltuITU1lfXr17N//36ef/55SktLuffee6mpqeG2227jV7/6FceOHaOgoIBNmzYxNTVFfX09g4ODqNVqrFYr0WiUsbGxObemiT1aJHYajQaTySR9JsR1NhqNlJaW0t3dzfj4OPv378dkMlFZWcnq1avJycnh8ccfx+FwsGHDBu666y5KSkpkEaOgoID8/HwGBwfp7OyktbWV3NxcCgoKpnmgfBCIhGCuJf+X2mtpziUEc7FDIChDH/TmEIOjPT09jI2NkZWVxcqVK2d8KE+fPs2rr75KUlISpaWljIyMkJ+fz6uvvkptbS0+nw+NRiP5yqJ9HA6HSUxMlJWGiYkJ2YJ8Nzm0Kx2imj86Ooper0en06FWqwkGg7S0tLBo0SJSU1MJBAKkpKTw0ksv0dbWRnV1NcnJyUSjUQwGA7t372Z0dJRNmzZ94A6B2Mi6uroYHR0lMzOTFStWxK3qC4TDYR599FH+/Oc/A+eCOKPRKAfLlRQTJeZKa322IN4zIjbqUCgku4eJiYnyuNfrlQGzskCiXBfT0tLkfIAywE9PT5fXV0nrUToSKxMIZRKQnp4uaUmCZz4xMTFtRkHQkAYHB+VwsJKj7XQ6ZfCZmJgoP1P5XZReFh/dc5cGM1GzJicnGRwclFRIvV6Px+Phu9/9Llqtli9/+cv8r//1v2Z8P5VKRUZGBhkZGYyOjtLZ2cnevXux2+0UFRXFNdF7LyiNt4R0JkBJSQmpqamkpaXhcDg4efIkWq2W9PR0LBYL6enpkhKrVqvR6/WoVCo5DwZzcxZKafIZiUSkEp4YNlapVExOTtLe3i7Pg0ga6urq6OnpYfXq1ZSUlKDT6SgrK+PkyZPU1NSQl5dHXl4ecO562O127HY7brebzs5O9u3bJ43i3q04dT4Q8wMfdaY/GOZcQjBXh4rh7cGfC0U4HGZwcJDu7m45oFdZWfmu8mA+nw+v10skEiErKwu73Y7H42FgYAC/3084HJbVcPE6QQ3S6XTyNeI7i8VUcBNh7iywWq1WSreJhTQvL08mSmLG4uqrr8Zms2EwGGhpacHhcHD27FlWrVpFW1sbU1NTtLW1MTo6Snd3N93d3dTW1nLVVVddkJSbGAzv7u5mYmKCnJwc5s+f/5664HV1dTz66KO4XC70er2Uig0EAtNkJ5X4SN7x8kI8S7HVcfFcxVsLxaAvTKckKgNvg8EgOw3xqu96vV7yy5XvqVT8Ed2yWAiloFjKkrjPLvS+mivryWxH7HkW655arZYFoFAoxK5du3juuecoLy/nZz/7GVlZWTO+X3JyMsnJyXi9Xjo7Ozl06BCpqanvayB1fHyckydPUlBQQEdHB01NTUSjUVmQKSkp4Q9/+AP9/f00NDSwadMmFi5cSG5uLrW1tYyOjmI0GrHb7RgMBjnzIv5utVo967xU4t338dbmeI7G4m8Tx0WSFwgECAaDUuDAarVKrwafz0dnZyfp6elkZmYSiUQYGxt710Fsm83GkiVLmJiYoKuri2PHjmGxWCgqKpLKfBeKuTxQ/FGH4ANA2S6fK3i/CcHU1BR9fX309vai1WrJz88nMzPzvN6joqKCNWvW0NPTwyuvvEJXVxcGg4Hq6mry8/M5evQoTqdTSiHm5+fLzxNDp2JuQASWsYNMc2XzFufAZrOh0+kYHx+XG1FWVhYrVqwgPz+fF154AZfLRWtrKzfccANer5fVq1fzox/9iMHBQfx+P7fffjs+nw+73c6Pf/xjOjs7WbNmDatWrXrP7xEOhyWvU3gZZGdnn7dz6N69ezl16pQ07lm8eDF1dXXTqsAqlUo+Y7G0r48CsksD5ZCuEjO5GStfr5SCFQGckBoVNB1lsBPvWipfo0wIlMcF91hpHAZINaFYWVrRFVBSg5Tvp+z8xn5OPA+Dj3DxoHy2lbQcYRgXDAblOpGSkkJFRQUjIyOyO3ny5Mm4CYGA2Wxm4cKFlJWV0dXVRU1NDSaTiaKiIjIzM88rMNq/fz9/+ctfGBkZ4eGHHyYQCJCTk8N//Md/sG/fPmpqanjooYfIyckhOTmZJ554Qs7O3XrrrbS1tXH48GG6urrk35ednY3H45m1zIN49328hDp2zVbSEhMSEqbNhwSDQbm/B4NB+vv76evrkxKkV111FV1dXezfv59QKMTAwAAbNmyQQ8XvBqPRyIIFCygtLaW3t5eGhgaampooKCggJyfnghyvxdzDXMNHTsUfEGazmYGBgcv9NS4qxI0uqAHvBZ/PR09PDw6HA6vVSkVFBSkpKReUaT777LM8/vjjqNVqsrKyZEuvs7NTVgJFVcfr9dLX1ycHiGF6dUK5YCkTgrkCUV3xeDxSZchisUhqw7FjxwDIyckhEomQnp7Om2++iUqlYsWKFeTl5RGNRrHb7bz55puYTCZWrFhBZmYmY2NjpKWlvevnB4NBqRik1WopLCwkMzPzghfILVu2sHv3bhobG2loaJhGx9DpdNLuPt7G+FFAdmmgTAaU/gRKN2NR2VMWSPx+v6zcKyVInU6nfF6F2zjwjusv/l9JH1J2FMTcgEajkZ8ZjUaZP38+jY2N6HQ6qSbk9/ulR4KS1jQ+Pi6DfOV3V95zSsrQlawTfyVhpmdbUEzg3P0RiUQIBoO4XC7279+PxWIhPz+flStXsmLFivP+LCFjXVxcTG9vL42NjTQ3N1NYWEhOTs67FrTS09NJS0sjNzeXSCRCTU0NDQ0NFBYW0tDQQEFBAUNDQxw8eBCr1So9FbKysmhqauLkyZNoNBpSUlIIBoNMTEzgcDhQq9UkJCS8w6BtriDWtEypCBiNRunr65OvE6pSbreb119/nfT0dObPny87KH/6059ISkoiKSmJW2+99T0/OzExkaKiIgoKCnA4HHLOIC8vj/z8/POaKwmHwxeUQHyEmTHnzuBc7BAoTb3iIRqN4na76e7uZnR0dJrD7PkiFArx61//moGBAfR6vdx4hYeA0GQWi4ZGo5FJgKg4igFo0V4UrxMdgrkUNMZbQEXlQ61W09jYiN/vZ3x8nIqKCrKzsyktLeWPf/yjnDlYsmQJCxYsYMGCBZw4cQKj0YjP52Pp0qWYTCby8/Nn/Hylg7TFYnlfiZ/A+Pg43/ve99i3bx+Tk5PyXhPvFQqFLqtb9keYGUp/AgGVSiWDd+VaqKy+KyVIlcmBcj4kLS1NGoYpKUOxA87iPUXQEA6HpxmiNTY2AueCd6UhmnKGQdnVEEF+vHU8HmXjow7V5YMwt1MWfASdZHh4mOTkZP7v//2/51XQEkhISKCwsJD8/HwcDgft7e20trZSUFBAXl7ejDTKiooKli5dysKFCxkcHJR72b333svk5CSFhYX09PQwMjJCJBLhxhtvJCUlhezsbE6ePInP58NkMrF48WLcbjeNjY3TzDWVa/5cSAyUz4sI6JW0XtExEOu/KAqJuCIajUqvISEwAudYDd3d3fzjP/4jy5cv56677nrP76JWq8nOziYrKwuXyzVtrqSwsHCaMlos5mqH4CPK0AdEUlLSnJshgPjSo5FIhKGhIbq7u2V79Hz44jNhdHSUU6dOMTQ0xJYtW7jhhhs4e/YsNTU1+P1+srOzWbp0Kenp6Zw4cYLe3l6ZCBiNRqLR6LRNPJYyNJegfEgjkQhms5nVq1fT1NTE4OAgx48fJzk5mbVr10r1phdffJGpqSm8Xi8f+9jHMJlM6HQ6fvvb3xKNRikpKeG2224jLS0Nl8vFc889h9fr5c477yQlJQWtVovRaMTj8dDd3c3Q0BDp6eksXbr0XRfLd0N9fT0//elP6erqkgpRcG4jsNlsjI6Oyo1AQMkP/wgfHuI98+8V+MYLVGK1/wUElx/OVf8FlUdJ6VFW3+LJjooCAcQf9o23NisDkJkC/nj3XDx34o+Sg0uDmc6/VquVrtWhUIjx8XH+/Oc/U1tby8KFC/nqV79Kbm7ueX+GMlAcGRmho6OD9vb2aUo14+PjqNVq6urq2L9/P52dnTz66KN88pOfRK1Ws3fvXp599llsNhvf+c535Fzbm2++yenTp7FYLNx7772UlpYyPDzMkSNH8Pl8aLVaysvLycnJ4eDBg/KZmCudbmViI4p48PbaI36m1+ulSIjH42FiYgKj0cjKlSsxGAwcPXqUkZERUlNTWblyJZWVlUQiEWprawkGg9x+++3nTXdWqVSkpqaSmpqK1+ulq6uLw4cPk5ycTGFhoTTDU2IuzhBcDs+mOZcQzEXZUXhncCD4fL29vajVavLy8sjKyvpAD4WQGu3q6mLPnj2cOnWK9PR0rrrqKlQqFb29vezduxePx0MwGJSDp4FAAL/fP03hQdkVuNIXzZkgqkQiEQqFQuzduxeNRoNOpyM5ORmj0ciRI0fQ6XSsXbuWvLw8JiYmMJlMvPzyy9jtdj772c9KrmU4HObNN9+kvLycW2+9lYKCAkZGRhgdHeW//uu/SExM5JZbbmFqaoqsrCxWrVr1gWTbotEoP/rRj/jzn/9MOBwmKyuLyspKent7GRsbmzYkKganBS3gI3z4UD7v8Sh48ZIGcTz25yLgVlbwRXU3EolgtVpl0KMM6pXJgXIzVh4XhmUqlWpaYaCkpIS2trZ3zA0IlSGlNKkyGVB+d+U9pwz2P5IavbwQ51+r1cph4qmpKZxOJ2q1moyMDNLT0xkZGeHQoUPU1NSQnJzMd77znQv+LJVKRXp6Ounp6YyNjdHR0cG+fftQqVS89NJLmM1mbr75ZjIzMykoKMBqtXLs2DFcLhdVVVVyhk6ss1NTUxQVFTE4OIjdbqejo4NDhw5JBSQR+AqBB3jbA2Mmo7a5ACEMIrr9cO5ZUkqJGwwGSRfbt28fSUlJlJSUsHz5cqLRKK2trRw/fpz169dz5513smDBgvcdl5jNZiorKykrK6O7u5szZ85IWqwy3vmIMnRxMOfOYFJS0qwd/vkgEAG2kiZiNpspLy+fMWN+P2hra2PPnj2YzWYyMjIwmUz4/X5aW1uZnJzE7XbLB0+0EIPBIJFIhISEBPlwKluOczEZENBqtajV6mk8Zo1Gg9lsltxU0ZoOhUIUFRWRkJCA2WzG4/Gg1WoJBoPMnz+f3Nxc9Ho9Q0NDJCUloVarqaqqwu1209/fT3NzMzqdDo1Gc8GqQ/GgUqmorKxk7969TE5OMjExweDg4LQgSwSiHznCXl7Ee47idRDEceXPbTabHPwcHh6W1zYnJ0fSfQRFCM6tpWLYWLm+KN/TarXKDoOgAkWjUTlPoFKpaGtrA84FUYKelJCQIH9vYmJimp/Au/1t8FGwPxsx0/oQiUQYHh5mdHQUq9WK2WzGZrOxYMGCD/x5VqtVKtW8/vrrtLS0YDAYuPbaa1m6dCm5ublMTk7Kz7fb7dJnYGJigtHRUUKhEIWFhdKrY2xsjEAgIDsSwjtmbGxMKuapVCoMBgPBYHDWqQ2dL5TFhZl8T5T7t+ikKKnAgUBAUok0Gg0TExM0NTWRlJSEVqslGo1itVrJyMigvb2dzs5O5s2bR3p6+vv+zlqtltLSUoqKihgYGKCzs5Pm5mby8/PJz8//iDJ0kTDnEgKTySQ573NJkzYajdLR0YHH4/nANBElxIBVWVkZLpeL3t5erFYrCxcuZGxsjJqaGlkpFhWacDhMX1+fpAvpdDrJexeqBGLWIHZTnwutfJH4BINBWV3Ny8tj3rx5nD17lqGhIYaGhigsLOTqq68mPz+fpqYm9u/fT0JCAtu2bePuu++msrKSY8eO8eKLL5Kens7//t//my1btjB//nwOHjzIr3/9a1JSUvjc5z7HrbfeSmVl5XmpDZ0vRDCYlpZGT08PHo9nWpdHOUj6ES493u+zEu93lGpRyk6qSAbgnEKMeN6VVCKdTieDPuW6Gs+YTvgQCH8NUVEVswqxwdR73WfxONvxztGH6e7+Ed4b4n4RajWjo6NYLBbsdjuZmZkX7XOMRiPbtm3DYDDQ39/PyMgIu3btIhKJkJKSwnXXXYfb7WZqaoo//OEPTE1N8dWvfpUvfelLDA8Pc/LkSfbs2YNGo2Hr1q188pOfZGBggKNHjzI0NIRGo8Fut7Nw4UKOHDkyTVkvISFhxj1utuN81IeU+7eQIBV7PCAVxOx2O4FAAJfLJbsIdrudlStXkpWVxbFjx1Cr1QwNDdHa2srw8DDXXHPN+/aZ0Gg00thuZGSEzs5O2tvbMZvNH9jU7iPMwYRgLnUIhJ58T08PExMTpKSksHr1atm2vBjYtWsXf/jDH6isrOTrX/861113HZ2dnTzzzDO0t7cD59x2i4qKqK2tZWhoiKmpKVQqFbm5uYRCIRwOBx6PR2bpsZt0LN/+SofYABITE7Hb7fh8PoaGhnA4HGg0GqxWq9TP3rt3LykpKaxZs4bCwkJMJhMul4vDhw/T2dnJjTfeyMmTJykuLubEiRM888wzpKamcu2115KdnU1eXh6BQIATJ07g8/lYtWrVB050Jycneemll3jjjTfYvXu3VOUS0qmTk5PTDHnEz+bCtbuScD7n+/3OGcSjPCgDfKVDurICHK9bEK9l/15/R7xgX/m3KX+unDOI995XWpB2pSOWUy+6pklJSXK2zO12c/z4cf7u7/6O66+/nhtuuIFrr732A3O/A4EABw4cwOl0cvPNN1NUVMTo6CiHDx9m+/bthMNhHnzwQRYtWoTP55POut3d3SxcuJDy8nLgXBX6lVdeYWJigoyMDAwGAy6Xi5GREd544w00Gs3/z957R0l6lXf+n8o5V3Woqs55evKMJiEJZQQILWIBCbBlbDAYs4vTrn/eZcHeo2WNDV5jnDA2IBwwkkCAAGGlAYXRzGhST+qZzt1VnbtyzvX7Q+deVbdmQGEy9T1HB/udDm+9XXXvfZ7nG3A4HGi1WlZWVq7aCcG5IDrRtdayYgIgJsTFYhG1Wi33pOXlZWZmZtBqtbhcLjZv3sypU6dYXFzkBz/4AWNjY9xwww309PTgdrv5u7/7OxYWFjAYDNx+++1v+n4FfSyRSHDixAmWl5c5cuQI7e3tb9hc45cd11xBcC0Ekwk/32AwSLVapaWlBaVSicfjuaDFAEBnZyc9PT0MDg7yk5/8hK9//euUy2UMBgMul4t4PM7y8jKhUIhCoSDFyoVCgVgsRjablYeFWpeCtcnEcG1t0qKDXpuxILpGRqNRdktLpZJcSB0OBy0tLcRiMXK5nMxraGtrY/v27QwNDRGLxdBqtfj9fhoaGtDr9SQSCaLRKJFIhGAwyLPPPkt/f//rsvKDlxf5WCzGv/3bv/GFL3xBCvFMJhMKhYJMJrOqi7z2e+u48nAuncH5ioRah5/av6fX65VWo7WFgtFolF9fe/ippZQJkTusdgWqTSeupdTVUolqaQtiirBW5HguXEsHsWsFv0jILqiUxWKRmZkZvvKVr/D973+fv/iLv+DWW2/FarW+rgNctVrl6aefZnl5mT179hCPx0kkEuTzebZt2ybd7xKJBLlcjpWVFbZv387ExAT5fJ50Ok0mk0Gj0dDa2ko6naZcLpPP56VWymg0yjUckNRPnU6HRqO5pvYzsW7U7t3CFGRtqOj8/Lx0ixLPIhaLceDAAZkw7nK5KBaL/OAHP8DpdOJyuejp6cFkMtHe3n5B791qteJ0OrHb7Wi1WoaGhjAYDLS3t9PU1HTVU4nqlKE3AYvFQjqdviopQ/l8nmAwyPz8PAaDgc7OThoaGlAqlZLHeKEhOsGBQAClUik3da/XK731xSFBr9fT2NjI/Pw8qVRKTgTE6FQsnCqVSnYXBe/wWoFarcZkMpFMJuWmYjKZ2LJlCxqNhpMnTzI/P8/S0hL9/f3cfvvt6PV6jhw5wujoKKOjo/zmb/6mTIt+6KGHOHr0KMPDw/z2b/82FouFt7zlLRw/fpx9+/axbt06/st/+S9oNBq2b9/O/v37eeihhxgcHGTbtm2vebGLRCJ88pOf5NChQ/I9JT4ftVqQOi49LpSF4bkO0iKnAF7h+AO4XC6pD6hNEm5sbJTWo7VfX3sAql1Xa6extZbPohgAaGhokNqE81GJagPTXg9+Xhrr67lex4XF2udcLpdJp9OruOfVapX/83/+D7/3e7/H3XffzRe/+MXX7I4XCoV49NFHWVxcpLGxkY9+9KOMjo6yfv16Pve5zzE/P8+9997L//gf/4PR0VHcbjd//dd/TSQSIZ/P8+53v1sGOH7rW98in8+zceNGbr/9drLZLGfPnpXhki6Xi507dxIKhRgbG2NhYUG+BqvVSjwev6rXTvG3WivoF4VA7URcWJAKK1abzYbT6WRpaUk2Yo1GIz6fD6VSydLSEmq1mtHRURYWFqSN+YVGpVJBp9PR09NDZ2cnc3NzjI+PMzo6SltbG36//3VZ3v6yQlG9xlbH5eVleWh9PR78lxPJZJJgMMjy8jJOp5OWlhZpVSkwPDyMwWD4hel/rxVjY2Pkcjn+7u/+jr179+JyuXjve99LPp/n6NGj0mrUbDazadMmisUiR44cIZvNyoW+1nGhVCrJsWOtqPFqXijPhdqNTqPR0NLSQjgcJp/PU61W0Wg0OBwOPB4PkUiEpaUldDodTU1NqFQqurq6CIfDnDhxQmo1QqEQt9xyC7Ozsxw4cIAtW7Zwzz33cPDgQTo6OshkMpw6dYo777yTnp4eHnroIbZv38673/3u13zfx48f5/7772d+fp6Ghgb8fj/Dw8OrDn3wSsLstfZ3u1pwOahZtUVDLWo1AbX3VZsOXDuNqP1snM8+9PWgfqi/+qHT6c5pStDU1ERPTw8jIyPE43HWr1/PQw899JrtSEulEl//+teZm5vjN37jN/jhD3/I0aNHuf7660kkEiwuLnLDDTfwla98hampKd71rneRy+V46aWX8Hg8HDt2jEKhwK5du+REXgQ8wsshkkajkaWlJWmfqlKpMBgMOBwOpqenpU3ntfheFAUPrE6mViqVWCwW8vm8FGCLa7t37yYej3Pq1Cny+TxOp5MdO3awceNGMpkMDz/8MLlcjl/7tV/jnnvuwW63nzdj5/ViaGgIq9VKZ2envFatVlleXpbay1qb2qsB4rnr9fpL1ty+5iYEoghIpVJXdEFQrVYJh8MEg0Hi8TjNzc3s2LHjvG/WWj7vm8XU1BRf/vKXqVarrFu3jlgsxuLiIt/4xjcol8s0NTXR3d3N0tIS8XicI0eOyK6AEAwLKozwqK8dLwqNwbW4UAqBlehwRqNRKbBSqVRotVoUCoUcQYtnIhyJaqc9QrBmMBjYtGkT4+Pj0rYvGo0SDAZRKpXo9XpSqRTpdFo6YwwODr6u++7r6+O+++7jhz/8IZOTk6s6uKIbJETSdVw+XMxi4HyfSY1Gc86CoPZra//v2oN+7eSg9mvEe3YtRDHxWg77r0X8WMeVjbWp2oKOs7i4yNLSEhaLhQ0bNnD//ffj9Xpf889Vq9Vs2bIFQKanp9NpSauMRCIkk0nJfS8UCmzZsoWlpSV5LigWi4TDYZqamqT+RTSzisWiDMwTU4tqtSrd9gwGgwziulYm4Gs/e8KCVKPRyGm/eNbiHCD+polEgn379snrfr8fj8fDxMQE+/fvR6/X4/F4aG1txePx8Jd/+Zc4nU4+85nPYLfb3/S9VyqVV2lRFAoFjY2NNDY2EovFmJ6e5vnnn6exsZH29vYL8nsvNi41y+WaKwj0ej0ajeaK1RGUy2WWlpYIBAKUSiV8Ph+Dg4O/0EbyQrpmqNVqNBoNuVyOubk58vn8KopPsVjEbDaTz+dJJpNyUVSr1ajVanK5nOTF1yYZigUDXr8ryNUCrVaL1WolFovJZ+N2u1m3bh2RSITR0VESiQQGg4EtW7awc+dO8vk8Bw4cIBaLEQ6Hueeee9i0aRMdHR08/vjjBAIBtFotH/3oR2lvb+eOO+7gL/7iLzh69CjBYJBPf/rTrFu3jltvvZW/+qu/Yv/+/VQqFfx+P7Ozs7S3t//ccWilUuELX/gCX/3qVyXVC14pMtcGj9Vx7aC2y1/7eaxNJ65dK2upRLWHuVrHqXOlCsNqW9PaYqCWhiS+vlqtyhyCWgju8tW8RtRxbqzVmonD5dDQEMFgEI1Gw6//+q//3J+RyWSYm5ujvb2d733vexw+fBi1Ws2HP/xhXnjhBarVKt/61rdYXl5Go9Hw//1//x8//elPecc73sHnP/95jhw5woYNG/joRz8qHfW+9a1vEY/H8fl83HrrrWg0Gqampjh16hTFYhGj0ciWLVtQq9WcPHmSeDwuOfcej4fl5eWr9v1aKyZeu18LPaD4u6lUKtRqtfzbiYaXTqeTCcZijRAWpMKuVdiVp1IpZmdn5RnkQoWJ/aJgMrvdLm1qZ2ZmOHToEBaLhfb2dhobG69oevmlvLdrjjJUrVZxOp388Ic/ZNOmTZf7diQKhQJzc3PMzs6i1WppaWmhsbHxNX8gJicnyefzF8TDOZlM8tRTT5FKpfjWt77F1NQUbW1tbNiwgUwmw6FDh1heXpbUkebmZpRKJbOzs8DLB0yRTpzJZKS93LUoHhYQwTu141OPx4NOp2NlZUVa0RmNRpqamrDZbExNTUmRcFNTk9xY9u/fz/z8PP39/QwMDLC4uMi73/1uHnnkEaanp3nXu96F3+/niSeeoLe3l0qlQiqV4sMf/jCZTIbnnnuOu+66i0OHDnH48GHuvPPOc0bDLy8v88ADD/Diiy+SSCQIh8NymqPX62X3rBbX6mTnaseF+Lu8FrFxLWqtSWt///noQ7VYG0ImcL6vvxCoFxJXD4RFpNg7NBoNbrcbu93OXXfdxR/+4R+ec8L/V3/1Vxw7doz/9J/+EyaTiX379nHPPfcQCAT43ve+R0NDA+l0mkAgwAc/+EGefPJJ9u/fz9atW9mzZw//8R//QUdHB88//zxzc3P09/fT29vLiRMnSCQSrKysUC6X8Xg8tLW1sbS0xNLSkjzo6nQ6vF4vy8vLJBIJ+ZlQqVQoFIqrLq/ltawrteFfYo/TarVSq1mtVlGr1XR2dpJIJAiFQnKy4Pf72bNnD8VikRMnTrCwsMDmzZu55557cDqd3H777RckU+fAgQO0tbXR3Nz8mr6+WCwyOzvLzMwMSqWStrY2fD7fFRVuJs5Zr1VXcyFw5bz6CwgR/HQlIJ1OEwwGWVxcxGazsW7dujdkiXUhJwRPP/00Dz/8MB0dHdx1110y6v2xxx6jUChQqVSw2+2USiWi0SjhcFgWB7VjX5E7IDbhq1HI/VohXrOg/whaUCQSkdMSrVaLWq0mFouRyWRkRoHZbJaJxsLOTYix0+k0s7OzPPvss3JzFG5AOp2OxsZGZmZmKBQK0g60ubmZlpYWXnjhBcnlPHz4MC+99BK33HILra2tnD59mpdeeonvfe97kj63bt06wuEw8/Pz552g1YuBKxMX4u9yvvXjXMUArHYcOh+taK29sLjP89maXkxKWr0YuLJRW7DVTps6OjowGAxMTk6yuLhIOBxmcHCQ7u5uNm3axKFDhzhy5Ahve9vbyOVycs3bsGEDo6Ojcq0Vk2uhIRShkNVqlWQyyQsvvMD8/DzNzc1ysi3es+VyGavVSiqVIpVKkclkCAaDFItFSRHN5XIyuVir1crrorFyobrdlxJr15VzFQi1joHVapVsNiv3fY1GI2nCgUBA7m0ul4tKpcLs7Czf/e530Wq1eDwedu3axQ033MDBgwdlNsWNN974pl/HL5oQrIVGo6Gjo4O2tjYWFxeZnp5mfHxc6gx+WTMNrrmCQKFQXHbr0Wq1SiwWIxAIEI1GaWhoYPv27W9K03AhNQTCBqxSqbBv3z7Onj1LLBaTnWORwphIJCiVSqvGe5VKRR5cFQqFFA/Wds/h2uvWiRGx1WqVHXuhldDpdLI7srS0RKlUwmazsWfPHgwGg/TfLhQKuFwu3v3ud7OwsEB7eztf/epXiUQiqFQq3vOe91Aqldi9ezf/63/9L2ZnZ6lWq3zwgx8kGAzS1NTEX//1XzM/P09bWxvvete7aGtr49Zbb+VLX/oS+/fvR6VS4XQ6+cEPfoDb7aa/v5+ZmRlKpRJnz56lWCyu6mpdi9OcOn4xzickrp0K1H5+z6cnqJ0wnS/I7nzTgmttjajj56P2by3WnnK5zNTUFBqNBpvNhs1mY2BggJ/+9Kf8+Mc/5td//dd58sknOXLkCEajkQ9/+MM8//zz3HDDDfzHf/wHjz32GIFAgI9//OMEAgFaWlr46le/ytmzZ8lms3z2s5+ltbUVq9XKP/7jP7K4uEi5XOYDH/gAk5OTtLW18aMf/YiJiQnMZjPXX389arWacDjM4cOHSafTaLVa2traKJfLzM7Oks/n5dpvtVrR6XSrqJhXM8Rnu9YcpPbvJgopURBUq1X0er1shhWLRYrFIolEApPJhEajQavVks1mJT1ZWHCL/y4EXm9BICBSqZubm4lGo0xNTfHcc8/R1NREe3v7BQl/fTOoawguAGrt7y4lKpUKy8vLBAIBcrkcPp+P/v7+CzLyqXXuebNwOp0ynfbkyZPEYjGsVqukIx0/fpx4PE6pVJLORvPz80QiEVkIiA9fqVSS18Sbd21xcLVDoVDIyUgsFpOFUEdHB7FYjGg0ypkzZ1AqlVitVrq7u8nlcrz44otks1kcDgd9fX0YjUa8Xi/f/OY3yWQy7Ny5k5tvvpnp6Wk2bdrEd7/7XXK5HE1NTdx+++2cPXuWTZs28Td/8zdShHfDDTcQCATo6uriwQcflK5aN998M2q1mp07dxIMBjEYDLJYE9axtd7SQhhex5WFi0nZqi0Aa4uB2iLgfMnDa6llAhqNRv5bbTFwLktRWF2IXKo1ok6Du/IgGiziPZDP5wmFQpjNZiqVCmq1Gr1ej16v57bbbsNkMnHdddfx4osv8sMf/lCGOgaDQbZu3cr/+T//h/3799PZ2cnNN9+M3W7nxhtv5Mknn+SRRx6hoaGBt7/97Zw4cYL+/n6eeOIJTp48idvt5uabb8ZgMFAqlXj++edJpVJYLBb6+/splUpMTU0xMTEhO+I+nw+NRkMwGJSaGdEYulZMGWoTmMWeUSugFuJhePlzr1AocDgcWK1WOdGuVCpYrVa2bdtGOBxmfHycpaUlTpw4wfbt2+ns7HzDicVr8UYLAgGFQoHT6cTpdJJKpZiZmeHAgQM4HA7a29txu93XLPuhFvWC4AKgWCwyPz/P7OwsSqWSlpYWmpubL+gI8c12c9PpNEtLS2g0Gv7pn/6JJ598EovFws6dO7FarQQCAc6cOUMikZAdkVAoRCKRYGxsTH7AhSAMkN0DcU041VxLEK9LTEUENaharTI3NycP2hqNBoPBgEqlYnx8XD4vrVaLyWQilUoRCASYm5uTG4tOp2Nubk4KlMVBXRSWgm4kujVKpZJcLofH48Fut0shl5jm2Gw2PB4Pk5OTRCIRhoaGmJyclC5IopOTSCRedRird2uvDFzMg+v51o/aIuBctA44f2pw7ee99ntri4DaA/nl4FjXi4ErA7Xvodq1xul0kkgkKBaLJJNJDh48SCwWo6WlhUKhgM/nw2QySXc2seY1NjbidDpJJpOrKEAOh4Nyuczi4iImk0muncLUYXl5WTZMisUizz//POl0Go/HI800MpkMIyMjssNtMpmkXk6k7daac5TL5VXhXtfaWir2fPHaxDMVUwLhHBWJRKhUKjgcDmw2G0tLS/z0pz+VdCG3200kEuGFF17gueeeQ6lU8sEPflAarLzR5umbLQhqYTabGRwcpKenh0AgwMmTJ+WZyOv1XjJq2OVYt+oFwZtANpslGAyysLCA2Wymt7f3olWSb4YyFI/HeeCBB2TQVVdXF21tbaTTaU6cOCEpLi6XC3i5W7OysiL9l8WiKGxGxbhU8OkBuUgLXO1dOXH/YtohRFI2m41kMilzB9RqNWazma6uLubn5wmHw1QqFfR6PV6vl/Xr1xMIBCRdR6VSsWfPHpqbm6lUKjz33HNy03vHO95BJBIhl8uxd+9eisUinZ2d3H333aTTaa6//nr+8R//EYCtW7fynve8h0gkwuDgIJ/97Gc5c+YMgUCAH/3oR8zOzqLRaGhoaCCTyRCNRsnlcqsOebV/o2ttA6vjjeF874PX0ow43/dezetAHRcO50rVBqSrlUKhwOPxoFKpOHXqFKdOnWJ6epodO3YwNDTE4uIif/Inf4JGo2FgYIATJ07w1FNP4fF4+OhHP4rX68Xn83Hw4EEOHz5MIBDgYx/7GG9961tpbW3lJz/5CdPT00QiET7xiU/Q2dnJ4uIi+/fvJxaLkUql2Lx5M5s2beLEiRMsLS2RyWSkm1BnZyejo6Pkcjl5vjAajTidTmKx2KoOeq17z5WOc+3VwmGodg9UqVRoNBo5PRBNMmE/qlKpJN1YFAYqlQqLxYLdbpeHa51OJ5tXKpWK3//93ycQCHD33XfzR3/0R29I2HshCwIBrVZLd3c3HR0dLCwsMD09zdjYGK2trbS2tl4QMfQvQp0ydAFwsTUE8XicQCBAKBTC4/GwZcuWi841eyOUoXA4zKOPPopKpWJlZYVMJkMsFkOj0dDW1sb09DRLS0tUKhVsNhtdXV2k02mWl5dRKBRoNBrUajU6nY5MJiMPtOKDICxKaylDv8hD/GpB7f2LhMZiscjKygoKhQKj0Uh3dzczMzOk02mOHz8ux8l+v59AIMDs7Cyzs7N4vV42b96MVqslk8nws5/9DKVSye23384tt9wi6WUPPvgg2WyW3bt3c+utt1Iul3E4HHzjG9+gUqnQ1NTE9ddfLycSX/va16hWq3R1dREKheQGKgo2gGg0uqpbW7vQX+1/ozpeH85XpJ+P43++668lgOx831tLMarjlxe1jlW161E4HEan08nu8/z8PN/73vdkiNipU6f40Y9+xL59+/jYxz7GjTfeSFNTE08++SQPPfQQVquV+++/n1KphN1u5zvf+Q7Hjh3D5XJxzz33YDab8Xq9HD58mBdffBGNRsP69euBl6ddk5OTrKysoNFoaG5uprW1lZGREUKhEPPz86hUKlwuF01NTVLQnE6nZXNMNM2upvX1XPe5tpARxY0wyhAWpGJCUCgU0Ov1mM1mSSGKRqMoFAp8Ph+tra2Mj48Tj8dlorDf76dcLssJ+ezsLN/4xjfQarW8733ve80BYuIeLlbnXuQq+Hw+QqEQ09PTTE5O4vV6aW9vv2h5V7U07EuFa7YguNAuQ9VqlZWVFQKBAOl0Gq/Xy65du2Ra78XGG6EMiQ6Ky+Xitttuo7u7G5/Px3e+8x0mJydpaWnhrrvuIpvNcvToUX72s5+Ry+VQqVQ0NDSg0WiYn58nm81KmovJZJKON8KH+GqfBpwP4rXVCqt0Op20mBsfH5eLn8FgQK/Xk06nOXny5KriyWg0SkGVyWSS/FilUsnk5CTVahWXyyWtTU0mE4uLi3g8HtRqNSqVSv7OI0eOEIvFaG1tlZtOOp1mYWGBcrlMPp+XmRFr+ay1/t91/PLhfJ/RtQXjuWg/tddrmxO176Xa4qD2e2vXrnoxUEctBK1SUMnK5TKZTAZ4uajUaDSkUilKpRLT09PSwKJarXLq1CmeeeYZ1q1bh8vlkmulCA1bXl7GbDZLR6BoNMrCwgLZbHYVPWVubo5kMonVasVisZBMJimVSiwtLRGNRlGr1ZhMJlQqFblcjnA4LCcHRqORfD4vPfjFWn0uX/9rAbXrQLValZQsYbJRLpelg084HCYajTI+Pk4wGMTv9/Oe97yHYrHI8ePHeeqpp9i8eTP33XefzJZ4+umnqVarbNmyhY0bN76me6rN1bmYEBMsj8dDMplkamqKF198EZfLRXt7+xtyj7zScM0WBBeKMiRizYPBINVqlZaWFrxe7yX3q30jlKF169axZ88e4vE4Dz/8MMvLy9x8881s2bKFarVKIpHgqaeeIpvNksvl0Ol0WCwW0uk0yWRyVQCZCBkRtm+1hwMRTFaLq52TXsuPBOTh3mq1SloQvHwIcjqdNDY2Mj09LSdTZrOZjo4O/H4/ExMTLCwsoFAocLvdcqEbGRlhbGwMjUbD5s2bufvuu+Xv+853viMFWW9/+9vx+/24XC6ee+45isUiN998M9dff71M49Tr9VitVpm+eS47yGtN7F3Hhcf5bERrr5/PTex8lMFrwX2ljouHWl3JWuvafD6P1WrFZDJRrVax2+1s3LiRgYEBnnrqKY4fP87i4iJf/OIXUSqVZLNZEokEL730EgqFgo997GP4fD7cbjenT59mZmaGYDCIVqtlz549KBQKhoaGiEQixONx+vr6uPnmmxkdHSUYDEptl91up6+vj0AgQDwel9oxtVqNy+UiHo/L6YDA1b4Hnks3JKYDokmWSqUkXUij0VAqlcjn88zMzMjiSOxLMzMzLC8vo9frsdls9Pb2SlvZgwcP0tnZycaNG2loaKCzs/M13+elKghqYbFY2LhxI729vQQCAYaGhjAYDLS3t9PU1CQ1F28GdQ3BBYLFYpHJmG8U+XyeYDDI/Pw8BoOBrq4uPB7PBflDvxG8kQnB2NgYiUQCt9stq/d8Po9WqyWVSjE/Py95fuJAubKyIjvLIokYXk4eFV8rutW1CbdrOZNX80IIq+9fr9fLZyfEvk6nE6/Xy/j4OOFwWI66+/v7sdlsjI2NMTw8zMjICG1tbezevRutVsvy8jL/8R//QbVapbW1lW3btuH3+0kmkzz22GMolUre+c53csstt9DY2Mjk5CSPPvoobrebP/qjP+Id73gHhUKBhoYGPv/5z5PNZtmxYwenT58mmUyucoE6lwi0jjpeK873vqm9XtcN1HEhUduAAWQmi1Kp5MiRI/zf//t/OXjwIF6vl9/7vd8jHA7T1tbGwsIC//Iv/0I+n+e3f/u3ecc73gHAoUOHeP7559HpdNx999287W1vIxwOy+6uTqeTurpCocDi4iI/+clPZPNm+/btzM/PEwgEOH78OEqlEoPBQE9PDxMTEySTSUmxFftlbZ7M1Yy1mo/aa+L1AlJPVyqVMJvNMs24UCjIjAar1UoikaBcLhONRkkmk+j1eln0ibOEy+VieXmZ6elpSeV6LfcpGpOXGnq9nt7eXjo7O5mbm2N8fJzR0VHa2trw+/1oNJpLfk9vBtdkQfBmJgTJZJJAIMDy8jIul4sNGzZgt9sv+yhIcC2FwPW1YN++fRw4cIAbbriBu+++m/n5eaLRKE899RSRSASdTsf69euxWCwcOXKExcVFisWi9NVfWVmR6bbikHkuodS1ShkSi4zo/AjtgAhnGRkZkRMUi8WCSqWS4iNhnSd8qkdHRyXPVK/Xo1AoMJlMzM7OUqlUcLvd6HQ66ed89OhRTp8+TVdXl5xO5PN5pqencblclMtlQqEQ4XCYhYUFSqWS1H0AdVpQHVcMrtX1oY6LByESFTTKcrlMOBzmsccek9k4KpWKVCrFxMQEPT096HQ6yuUyhw8f5uTJk1itVnp6etDr9dINaGpqinQ6LdO5NRoNoVCImZkZ1Go1brcbq9VKJpMhEolw6NAh9Ho9FotFuiCl02lOnz6NWq3GYDBI2mahUEClUq3aq681iHNQ7eurPY+kUilUKhXNzc3odDqCwaCkE1mtVnbu3CltXM+cOUM8HueGG27gne98Jz09PZw8eZIzZ87Q1dX1ugqCyx0Kp1araWtro7W1VRY0tUFnr1UPUYu6huAC4fWKioWYKRgMEo/HaW5uZufOnW/oj3ixsDY+/LXgzjvvlAmQjzzyCPF4HLfbTV9fH9FolNnZWc6cOSMPk263m3Q6TTabZXp6WlKGRKquqPpruwRiTHg1iah+Ec5lHadWq+X7QXTiVSoVOp2OpqYm6Ustnpfdbqe3t5dkMsnk5CSZTAatVsuGDRvYuHEjpVKJyclJFhYWSKfT3HLLLdjtdnw+H0NDQzKsp7+/nzvuuIObbrqJs2fPcuzYMSwWCzt27ABe6dhotVo0Go28tzrquFJQfz/W8UYgusbCya1YLK6yvw4EAhw+fBilUsm73vUuPvnJT3LkyBECgQDBYBCVSsX69ev51V/9VdLpNCqViunpafL5PH19fdx0003y58zNzVEul8lms3R1daFUKhkdHZXUWb1eT0dHB9FolFAoRKFQkPoxwR3P5XKrGjGioXQtUOZqTQQERVi8LkEpFk6DQgwubLhNJhM6nY5YLMbevXtRqVSYzWba2towGAw888wzJBIJvF4vN910E3fddRd79ux5zfd2JRQEAgqFgsbGRhobG4nFYkxPT/P888/T2NhIe3s7drv9Nf2cy3WeuiYLAovF8pomBMKrOBgMSh/cwcHBS2In9XpRO0J9Lchms/zoRz9i79698sBvMpleJa4SfvjCMUD4QYvDrrASy+fzq6xGxWK9lv8JV/8BoHYBF9xI0R0SMBgMOBwOIpEIgUAApVKJzWajs7OTSqXCxMQEBw8elMKr9evX09zczOjoKENDQ6hUKjo7O9mzZw9er5e9e/cyNDSEzWbjfe97H9VqFbfbzcrKCs8//zwTExP81//6X7njjjvw+XwkEgkpIDaZTCQSifOKQOuoo446rlaInBWtVovNZiOVSpFIJHA6ndxzzz2Uy2UsFgtf/vKXmZ2d5bbbbuPtb3878LKr1YMPPkixWOQtb3kLb3vb21heXl5FDerp6eGWW24hGAwyOTnJkSNHUKlU2Gw2duzYQS6XY3x8nLNnz1KtVtFqtfh8PpaXlykUCoTDYWnYoNfrJYXmWll/a52g1hY8oiEo9h4x1VEoFGQyGZkb0dTUJHUgxWKRVCrF3NwcjY2NmEwmyuUyxWKRF198Ue65HR0dr6n5+XqapJcSdrudzZs3k8lkmJmZ4dChQ1gsFtrb22lsbLzsrJNz4ZosCH7RhKBQKDA7O8vc3BxarZbW1tYLJgS5WKiNEv95SKVSPPPMMxQKBU6fPs3CwgINDQ3s2rULjUbDyMgIo6OjFItFHA4H27Zt4/Tp00xNTcmDvE6nkymltXoC8QYWXYC1WFsIXO1UAVGEiQVedDtEbPvy8jKVSgWdTofZbEapVMoQNxHprtfrUavVBINBuXHo9XpZnJ06dYqzZ89KlyK73U4ikWBkZIRoNIrVapXTibm5OWZnZ3E6nQSDQdLpNKVSSf6+eq5AHXXUca1BNDcKhQKRSASFQiHXSOGwlkwmZQMrn88zPj5OPp/nhhtukA3CkZERSWnx+XzYbDYKhQKpVIqhoSHy+Tw2mw2j0UgulyOdTjM0NIRer8dgMMgudy6XY3FxUa7lYjIr9kUxYb6aJwPn20vWWouXSqVVQmOhtRMWpNlslnK5LHNxNm3ahNvt5ujRo0QiETKZDBs3buT6668nFotx8uRJotEoR48e5Qc/+AF6vZ7bb7/955q4iCnSlQqj0cjAwADd3d3Mzs5y9uxZRkZGaG9vx+fznffe65ShCwSr1UoqlZKHJIF0Ok0wGGRxcRG73c66deuuKquo8xUElUqFubk5PB4Px44d49vf/jYOh4M777wTp9PJ8PAwTz31FAAtLS3s2bOHM2fOsLy8zN69e+WBUqfTSSeaXC4nu/+1vEhxTSwM5zv0X63FgHittSNRhUKBVquVDkxiVKzRaNDr9bS3txMIBEilUvJrm5qaaGtrk8J0kdewfft2dDod1WqVo0ePEo1G0Wq1dHZ2smPHDvr6+vjJT37C/Pw8qVSKD37wg+h0Onbs2MGPf/xjXnrpJV566SUZAANX/0SmjjrqqON8qFQqr9pvcrkc/+///T9pctHa2sqNN96Iy+XCbrczMzNDPp+npaWFD3/4w5w9e5bJyUlJDTKZTOzcuRONRsPKygrHjx8nk8nI9dztdjM2NkYoFJJ++m63m/b2dmZnZ6VgtlqtSpOJZDK5al0We0St+cbVgvPt32vPVMJtSKPRrHqtwolQoVCg1+upVqvk83lOnTolD8AdHR309PQwPj7OiRMn0Gg0tLe3c9NNN7Fu3ToeffRRlEolbW1ttLS0kEwmaW5uftV57UqdEKyFmHq0tbWxuLgog85aWlpoa2tDr9df7ltEUb0GTxMHDx7krrvuYmJigmq1yuHDh9HpdESjURoaGmhtbb1oYRIXE/v27WP9+vXYbLZV15966ikeffRR1q1bx913383XvvY1GbISDAalHZvwv89kMnJR0+v16HQ6isUixWJRJtnW0oXEwgdIcbHoxNSidrR4teF8dCeNRiOfgxAWAzgcDtRqNbFYbFVsfVdXFwDz8/MysMbhcNDd3Q3A6OgoiUQCvV7PunXrpGDtzJkzLCws0NHRwU033cTIyAh9fX0cPnyY48ePo9fr6e7u5vjx46toWucLhqqjjjrquNZwriwVo9HIxo0bGR4eplQqccstt9Dc3Mzc3BwDAwM88sgjhMNhenp6aGlpIZfLsbKywtjYGMViEZfLRX9/vxQoC2qoyWSis7OTUCjEwsLCq6ymhT03IAsDsZeey4b7at4bz2UmYjAYpKYDVj8DQbMVVGOhJ9DpdFKAbTQaaWlpkYGdgGyW9fb20tTUhMPh4Dd+4zf4+7//e0KhEL/5m7/Jli1bVt2HaPJed911l+aBXCBUq1Wi0SjT09OEQiGamppob2/HarXK94oI6btUuCYnBCKY7B/+4R/46le/SigU4ic/+Qm7d++WYSRXI85nPZpKpYjH40SjUeLxOH6/n2q1yv79+0kkEnR1ddHd3c3Y2BinTp2iUCigVCoxGo14vV7C4TDZbFby/4R9WiqVWiUcErzI2u55rQXp1UhTqe021C7WYuMRr1dwR41GI9lslnQ6LUOWTCaTpFjNzc1JzYbFYpHBdadPn5Zfr9PpaGxslNzU2sXS5XKxsLDA2NjYKovXZDLJ8PCwLErEtGjtxnO1TmbqqKOOOs6F2n2vNktFrVZLHduJEycoFovSInpkZIRgMEhjYyMul4t0Ok0ikeDo0aMUCgXa29vxeDyEw2GZWyDWd61WSzabpVAoMDIyIvdKrVYrJ8TLy8tSf2c0GkkkEqvCycS91dJurtYQT3E4XZtBIHQDoklYyy4oFovSea9UKsniwGw24/P5WFxcpFqtEggEMJlMbNmyhebmZs6ePcvc3ByhUIibbrpJuuklk0mSySSJROJV93cliYpfD4QgXRSX09PTHDhwAIfDQVtbGy6Xq04ZerOIRqP867/+K/l8ni996Ut85CMf4eMf/zhWq/Vy39qbxvkoQzt27JCiqW9961v89Kc/5YYbbuADH/gAe/fu5dSpUxw7doxSqYRGo8Hv9xOLxYjFYnJSUBu9XigUZDqxWMTEQna+mPOrbZGDV3fXxYInuJG1G49Wq8VsNksbVkDSiJqbm5mYmJCx7kajkebmZhobGxkZGSEWi1EqldBqtTQ3N9PZ2Um1WuXIkSOS2rZr1y656B44cIBQKIRer+fuu++WEx3h4wznD3u6Gv8OddRRRx3nw/nWOrF2i4N3Q0MDLS0t7Nixg3/6p38iHA7z4osv0tvbS2trK+l0mpdeeolsNsvMzAw7d+4kk8kwPj7O4uIi+XyebDZLY2MjAwMDBINBab5RqVQwGo309PRIB75a8bDL5SKRSFAoFFbtKVqtVu4ntWvz1TjZFe5OtWyB2jOBKAzEM0kmk9IeVjAKIpEIyWRSPjORzfPCCy+gVqulrvG2227j+PHjnDlzBovFwsc+9jFOnDjBpk2bXnVfV2tBUAuTycTg4CA9PT0EAgFOnTpFV1cXPT09l/Q+rhnK0OTkJH/1V3/F1772NTZu3Mj+/fuZmJjA4/Fc7lu7YDhy5Ag+n4+mpiZ5rVgs8vnPf55gMMiHPvQhNBoNTz75JLlcjueff56FhQUZDGI2m4nH4xQKBVlp2+12KdgSlT28wpsXH2TR9RbXhcVYLV6r8PlKg+B6KhSKVTQohUIhdRXiucDLhYPb7Safz0thL7w8Qh0YGGBhYYFQKCTFTi6Xi4GBAebn55mbmyObzWK32xkcHARedsU6fPiwLAI2btyIXq9nx44dfPe732V6elo6O9U6CcEbC6yro4466rhaca41z2w2SwebrVu3cv3113PixAnC4TBnz56lWCzi9XrZsmWLpHmeOHGCTCaDyWSiq6sLk8nEyMgIkUiEcrmMVqulsbERu93OmTNnpJmERqPBbrdTrVaJRCKrOugajWaV1k5ATC5q95GrBWunHQJarVZakdfaktZSkIXmQKvVotPp0Ol0lEolksmkdHIShUA4HCadTmMwGOjs7GT37t2o1WruvfdeTp48yeOPP87OnTv55Cc/ueo+xsbGyOfzrzm34GpALfvgUk4JLhg5qVwu85nPfIaOjg6Z7PvAAw+sehNVq1U++9nP0tzcjMFg4LbbbmNsbOxN/d79+/fz3ve+l4GBAZaWlvjpT3/Ks88+CyD58NcKxFiuFqL7IMaVIyMjnD59mgMHDsjgFb/fT19fn7TOLBaLmEwm3G63HKcKepBwGFIqleTzeTKZjOSyiUAtUSDAaiV8rbOCKA6udIj7FJHr4ppwj6gVj5nNZqxWKxqNhmg0SiKRoFqt4nA4cLlcqNVqhoeHWVxcpFwuYzQaaWpqolwu89JLLzE9PS3THH0+H0tLS5w8eZLTp09LnqXX65UBZCdOnJDPOpVKrbJ2E8+2XgzUUUcdv0yopasKpFIp2ZxJpVKcOnWK0dFRdDodHo9HCluPHj3KiRMnpO+9wWAgn89z5swZhoaGUCqVNDY2SvvQYDDI2NgYer0et9stG2iCaqTVanE6nej1eiqVikzdFQdggVwut2rifqVDUFWBVdON2kTgQqFAPp+X2kSNRkOlUiGTyciQNnFdWI1ms1m8Xi9Op1O6OQkzjsHBQZqbm1EqlSwvL7N//37Onj3L+Pi4POOcq6AqlUpX/YRgLQTt7KqlDP3Zn/0Zf//3f883v/lNBgcHOXz4ML/+67+OzWbjU5/6FAB//ud/zpe//GW++c1v0tHRwWc+8xne9ra3MTw8/IYU1slkkve+973cd999Mi4akOO91xNOdjXgXN13jUbDzTffzKFDhyiXyzz11FOcOnUKj8fDLbfcgsFg4OTJk1KMarfb2b59O5OTk9JFQfwcg8FAuVyW/sGCRy8ERaJDIu6l1n5sLa50AVWtOK1WJyEmBbULuBBeq9Vq2RES110uFzqdjkAgIJ+ZRqPBarXS1NTE3NycDAszmUz4/X4cDgejo6PE43H5Xn3LW95CKpWiUqlw8OBB0uk0MzMzUtMByK5TvQj45cbVyEOuo44LjbXroMgPmpqaYmRkBHg5j2fnzp3SHvr5558nHo+TyWTweDxs2bKFhYUF5ubmyGQy5HI5rFYrvb29zMzMkMlkZGNMuMHpdDoSiQS5XE5OAzwej2wgiaJAZP+IyUDt/dYGel6JON8es7aoEa9fFBC1Kc1iQmAymQDkszx79ixGo5EtW7ZgNBo5duwY09PTLC8vs3HjRtatW0c4HObIkSPMzMxgs9l497vfzcaNG7npppvOea9XYnbU1YgLRhm66667aGxs5Gtf+5q89p//83/GYDDwr//6r1SrVbxeL3/wB3/Af/tv/w2AeDxOY2MjDz74IPfdd98b+r0ixrwW1WqVpqYm/v3f//2qU57/PJw+fRqTyUR7ezuAdEV44IEHGBsbY/v27Vx33XWyG720tASA0+nEbDazvLxMJBJBrVaTTqdldS8oQMIaTEwEtFqttB+tfZuIDvXaav1qoK+IznrtpEXoJ2ppUIIPabfbyefzq2xsNRoNTU1NLC8vSxcFhUKBzWaT4u3aiYvf76e1tZXp6Wnm5+cpFAqo1Wo8Hg/r1q2jUqlw5MgRkskkTqeTwcFBzp49y8rKiryf2sCbOuqoo446XoFoxIgprwgPa2tr4/jx46RSKZxOJzt27CCZTK6iBhkMBnw+Hy0tLYyMjMjAMZVKhdPppL29neHhYdLptOTRG41G7Ha7nAaLvcHhcADIZk9ttg+wqqkGrOLcX6k4X+KyXq9/VaEjGmW1OUbCeUjsnSLR2Wg0yslKY2MjDoeDeDxOJBJBo9HQ3NxMd3c3mzZt4umnn2Z0dJRt27bxwAMP4PF4MBqNAJw4cULSvq4ViPfZpTbBuWATgj179vDVr36V0dFRent7OX78OC+88AL/7//9P+Dlqn1xcZHbbrtNfo/NZmPnzp3s37//DRcE5wt1MJlM19yEoPbAffDgQb797W/jdrsxGo3S6WZoaIiZmRlyudyq9MRyuczy8jLpdFq6KYiOhjjsajQajEajPDSLQ634IAu+YK2vsnAkEl2RKx1rQ1YEN7+WXiY+iOVyWSY3i6Axm81GMplkfn5eHtYtFgtarZZCocDx48cpFovSm9pkMhGLxZibm5M8U6vVisPhIJvNcuzYMcxmMxqNBrPZjN/vZ2VlhWQyKbtIwKvu70reQOqoo446LjbWhmeJYkCYQ0QiEdxuN36/X6bJDw8PE4/HMRgMNDc3E4/HyefzzMzMMDc3J2mesViMZDLJysoKsVgMnU6H2+0mlUqRyWRIpVKrArjC4TDFYpFYLCZ/v1arlX78onEk9surador9hpx2BdnALEnCa2daKhls1npMqTVauXrFyFm4qyiVquJx+OyGel2u6VlabVaJZ1OMzY2Jg09jEYjOp2Of/zHfySbzfJbv/Vb9PT0XBOi4isFF6wg+KM/+iMSiQT9/f3y4Pq5z32OD33oQwAsLi4C0NjYuOr7Ghsb5b9dKCgUCmk9ei1hfn5e8hlnZ2eZmZlBqVSyZ88eNm/ejNVq5cEHHyQcDtPd3c2NN95IIBDg8OHDkgYkFsJ0Ok0oFJKdcEGXESPPWgGxoP/ULriCRrTW+vJqOayK1yvGvvDyvRsMhlVR7OKaeEbCZUitVst0YbH5wMtFm8FgwO12o1QqmZ2dlQuWmCAUCgVmZmZIJBIolUp8Ph/btm2T/tinT59+VcZDLa6G51tHHXXUcTFxvmmpsMTMZrOcOXOG3bt3y+yhI0eOkEgkSCQS2Gw21q1bRzabZXp6mkQiQTqdlgFSJpOJSCQitXfpdJqGhgbJiS8UCtJT32q1yglubain0WiU14ToWXDrz2XMcaWhNoOgWq2SzWbl/i/2evH6BNsAXv4bxONxeYYwGo2ykBB7W3NzMxaLRU7ajx07hs1mY/fu3djtdk6dOkUgEEClUvHBD36Q/v5+nE4nQ0NDRKNRZmdnqVQq7N27l1tuuUUyJ64VXA6tyQUrCB5++GH+7d/+jW9961sMDg4yNDTE7/7u7+L1evm1X/u1C/VrXjPMZvM1NyF44oknOHLkCAqFgne9610Ui0XGx8f5+te/TrFY5L3vfS/ve9/72LdvH2NjYwwPD8vgEI/HI92FVlZWSKfTklqlUCgIh8NkMplVC5Tg04ugFbE4/Dz+45VOaRGOCWIxFq9HrVZTqVTke0aMoF0uF6FQSAanqNVqbDabTFhMJBIyrt7tduP1ehkdHWVubk7yLe12OwMDA0xPT3Ps2DGKxSI6nY6Ojg45EXj88cflmPpK3yTqqKOOOq4GCLc90Qzr6enhhhtuYHx8nKWlJQ4cOIBWq8Xr9dLX18fp06dJpVKMjo7KbvbGjRuZmJggFouxtLQkp7+tra2cOXOGfD5POBwGXj53eDweIpEIpVJpVeCWQqGQmjXRXT9X0NqVhHNpAWt1hGq1WtKgBJtAsDZqcwlKpRI6nY6mpiZSqRTRaJSFhQUMBgNKpRKXy0WpVCIajfLkk09Ksfa2bdu46aabGBoa4oknnsDtdvOe97wHn8/H9u3b+fznP8+zzz6LWq1+VWBZHa8fF6wg+O///b/zR3/0R5L6s2HDBmZmZvjTP/1Tfu3Xfk1aZS4tLdHc3Cy/b2lpic2bN1+o25Awm82kUqkL/nMvJ7q7u1lcXKS9vZ2HHnqIyclJvF4vDQ0N8oP3/PPPMzExQTablaJXkUAcDoepVCpYLBaZdlypVAiFQvIwKmyuhMBKFAEGgwGNRiO1BwJrF7TabrtI+L0SUBsyJiC6/qLgEfcuqEGJRIKlpSU51rVarTK05vjx43IE6vV6UavVRKNRTp48KfMe3G63HJcODQ1RrVZRq9VYrVbsdvsqKpEoTMSIGc7vVV0XldZRx/lxtUwp67h4ECwF0fQRFNAzZ86gVCqx2Wy0trYSDofJ5XLMz8+zsLAgrUbL5bL0zD927Bgmk4nW1lZSqRShUEiGZYnDrHA5ElQi0UwSOjAxdRdUInGIFv/VinSvBAgK7FrUNgNrgzZ1Op105CsWi7IwMBqN0gExnU6ztLSE0+nEZrOhVCrJ5XJkMhmZGG2329FoNCQSCebm5uRzXbdunQyZy+Vy/PSnP6VYLLJu3TrGxsbo7Oy81I/ookKcCS41LpgvZCaTeZXNZK1NZkdHB01NTTzzzDPy3xOJBAcPHmT37t0X6jYkrrWCoFwuo9fr2bBhAzt27GBpaYmVlRWZ8uf3+zl48CBTU1Myd2D79u1YLBZisRiJRAKNRoPT6aSlpYVsNks4HGZpaUke+EVktuiSixGg0Agkk8lVoVzi77uWMgS8yrv/cmOtiNhoNMrXJcaewh1Io9EQCoVk6qTNZsPpdFKtVmWqs1qtxmQyyc1DuAnBy9qYrq4uqtWq3DiKxaIMXfF4PCwtLRGJRCgUCvJvuGvXLiwWi7zP83WNrpRNo446rkTUi4E6arn5DoeDt7zlLQwODkqx6/LyMqFQiJaWFrZu3YrVaqVYLMoJusFgoKOjQ+YbxGIxgsEgBoMBj8eDyWSSFpsrKytotVp5oIWX3Y1CoRBGoxGr1YparZYW4fl8Hq1WK2284ZVO/JViSVpbDNSe64SertaRr1AoyD1O5BCIibuwFLXZbBgMBiqVCgsLC5KK1dHRIbMI4vE4yWQSr9fLpk2bJMtjZGSEkydP0tfXx7Zt21AoFCwvL7OwsMCdd95Jb2/vFfPcrnZcMJehD3/4wzz99NP8wz/8A4ODgxw7doyPfexj/MZv/AZ/9md/BrxsTfr5z39+le3oiRMn3rDt6M/D/fffj9fr5dOf/vQF/bmXC5OTk3z2s58lHo/zx3/8x5RKJZ599lkOHz7MyZMnKRQKNDc3s379es6cOSP5daVSCb1ez+bNmwmHw4yPj8tKXhQCKpVKcuZFdW8ymVCr1fKDDqs5bbXUFnFdcA2vVAiBdalUkgue6MyL7nwtjUin09HV1cXU1BTJZFLyJl0uF16vl7Nnz64a/VqtVvr7+wkGg9J9QqlU0tDQQFNTE+Pj4zL1UnScnE4n09PTLC4uyudcP/DXUUcddVwYCM67RqOhtbWVlpYW5ufnmZmZkS44ZrOZ/v5+xsbGiMViskHk9XppbGzk9OnTZDIZub9ZLBb6+/sllUhMi51OJ01NTUxPT8tuebVaRavVSo3e2mm0sLm+Utf9WotxeKV7XTvBrt379Xo9RqNRJj/Dyw3EWlFyNpuVkxu9Xs+mTZsol8ucOnVKFhZarZbe3l78fj9Hjx6VDdDt27ezc+dO7rjjDmZmZvjc5z7HwMAAX/ziFyXz4WqHCMA7n2nOxcIFKwiSySSf+cxn+N73vsfy8jJer5cPfOADfPazn5VCk2q1yh//8R/z1a9+lVgsxvXXX8/f/d3f0dvbeyFuYRV++7d/G6VSyZ/+6Z9e8J99OZBOp/mLv/gLlpeXuf/++/nrv/5rhoeH5cFVHHSj0SihUIhKpYLb7ZZBYkIQm8lk0Ov1OBwOcrmcHNkJq1Gj0SiTi2udgzQaDVqtVn6tgBBIrb1+paHWoUkUMDqdDrPZLBd08W9WqxWVSiWDx4QFWEtLCwArKyvy2Wg0GlpaWkgkEqs0GDqdDpfLhUajke5OwiLX7XZjtVrlSHqtdZtAnfpQRx111PH6cb61U6VSodFocDgc2O12wuHwqmRii8WCx+Mhk8kQjUZlwSBoRlqtdpVRhF6vx+fzEY/HWV5eBl4R4jqdTtLptJy4i6LEarWucq+rvbcr2XVIpVJhNBqlQYmAMN6oPS+IKbwwJUmlUlJQLexGdTodoVCIUqmEyWTCbrdLO9J8Pk80GpX23C6Xa5Vgu1wus2vXLj7ykY/wpS99iV27dvHJT37yqghDfS246guCKw1/+Id/yMrKCl/+8pcv961cEMzNzfG3f/u3nDp1ire+9a289NJLjI2N0dDQgNfrJRaLsbCwQDQaRaFQSIHrwYMHJV1IjOzcbjexWIxYLCZt0ATnP5lMyi65SqVCp9NJdwHxVhHOAWs9leGV9MgrZWE7F99eTAQED1Ic4sVoN5/Py0VcZBGIxToWi1GpVNBqtVitVnmwj8fjwCv6A7/fz+LioqQFiamL3+8nm80yNzcnF7ZfdL911FHHG0P981TH2veA2NsMBgMtLS2Uy2UWFxflHqfX62lsbMRmszE7OyutScV0WDSRxF6pVqtxOBySPiMyCITboU6nI5PJrDKmEB3zXC73Kh9/uHKmxOfLSRCFVa31qJjAwyvJzPDyfmuxWORUXrgxNTQ0oNVqiUajKJVK2VDzeDxs376dqakpIpEICoWChoYGmpubMRgMzM7OEo1G2bJlC319fTzzzDPccccdfPzjH5eUrasdokCtFwQXCA888AAnTpzg61//+uW+lTeFlZUVzp49y/T0NF/+8pcJh8O8853vZNu2bbz00kscO3ZMiqG6u7tZv349S0tL0l5NhIp5vV6KxSKhUGiVXZgQeM/NzclRZm0SYa3lmPjQw8tv2Fp/4nO9jS7nZnwu9wYhclrbyRdi6lQqJYXUQnDscDiIRCLk83lUKpXcSLq7u5mbm5M2pMJlqLm5mTNnzsifYzQa6evrw263Mzo6ysLCAvBy8eH3+wmHw8zPz9cnAXXUUUcdFxlqtZrOzk7UarVMJxbT356eHgKBADMzM5LqYjKZWLduHZOTk0SjUSqViuxau91uJiYmVtGAhGYgHA5LzUC1WsVms0lqbrFYlPRQMeHPZrOrCgPhhnelHc9q93TRRBShZbVnh7XaCHiZNtTa2io1HILKJdwOy+WydHESLkN79uzBYDBw4sQJpqamqFartLS0sG3bNjZv3swzzzzDz372M7q6uvjUpz5FQ0MDW7ZsWaXFuxohmo6XOl/hmi0I/vIv/5KnnnqKhx566HLfypvCl7/8ZV588UU2bNgghTQbNmzg6aefJpFIYLFYZDLg8vKy9EsuFArY7XY6OzsJBAKkUikpCnY4HBiNRmKxGAqFgmw2K12GhIgqnU7LD7kI6tJqtZL6UovzueGc7/qlhhi91fI0RfdGdCgELUilUtHY2IhWq5VFkhjf9fT0EAqFJMcUXvaZ7urqIplMsrS0JIsNjUZDW1sblUpFOlmI7pPb7aaxsZHR0dFzjo7rqKOOOuq48BDTbZfLRVdXFzMzM0SjUQqFgqS5eDweOcUVtFCz2YzX60WpVDI9Pb1KO9bQ0IBer2dyclJOBjQaDV1dXYRCIenuJ+ypHQ4H6XRa/oxqtSqn8VdCwGdt9sBanIvWJNgHuVxO7mXiGQiXoVr7VTFFsNvtRKNRGcJps9kwm834fD5GR0dJpVIYjUZZZLndbnK5HKlUilQqhc/n48Ybb+TFF19k+/btZDIZZmZmeN/73se999578R/URYIooi5HQXBp5xGXENdKMJnL5cLhcFAsFllZWZE8PMFpvP7665mdneXQoUNEo1E0Gg0mk0n6Ic/MzBCJRORCpFQqsVgsBAIBmWYsPnQqlUrapgkBkBDbiqAXQIqRhTh3bRde/P+11y/XKFR0L2qnH8JNKZvNyveIUqnE7XbLEJpUKkWlUkGn09HY2Ei1WiUYDMpUZ5PJhMPhwGQyEQwGSSaT8usFPzUej8skRtHx8Hq9LCwscOTIkZ8bPlZHHXXUUceFhQjYnJ+fJxqN4vP5GBgYIBAISDe+XC6Hw+Ggs7OTSCRCNpsllUoxOTmJzWbD6/WSTCaJRCLkcjlmZ2dxOBz4/X7Z5c7n84yOjmI0GiWNRUyTQ6EQWq0Wu91OsVgklUpRLpdXhX5djn1S/M7arr5gBYgiQPyvXq+Xz7J24mEwGGRCs6BPCftzcV4Q2rxisYjP55PC6mw2KwPOmpqaZLZDLBYjEomQyWTYs2cPer2eF198cZW1+cLCAi6XC6fTicPhuKTP7mLgcjUIr9kJwUMPPcSf//mf87Of/exy38obRrVa5aWXXiIQCPD888/zxBNPoNVq+S//5b+QSCRYXFxkfHxcUlQsFgvr168nHA4zNja2SsSzfv160uk0Q0NDFItFSf0RH+x0Oi2pMmL0qVAoSCQSchEQNqPiYF27aIj7vVKwdjohihiDwbCqO6NWq9Hr9ZhMJtkpqrVO8/l8LCwsSPs0IRZraGhgZGREUolMJhPt7e243W6Gh4flyNhqtdLb24tarWZkZIRIJCK7RYAsrK4ki9Y66qijjmsRWq1W+t/DK+FajY2N9Pb2kkqlOHv2rKQSNTY2sm7dOqanp5mbm5MucQaDgf7+fqanp+U0XaFQ4HA4cDgcLCwsUCwWZcdfr9djt9tJJpOrdANCYyAacQJXYmBZraU4vFJErNUNCs2AyB8QTTmhoxPiYPGzDAYD119/PYlEgtHRUak/MBgMbN68mWKxyMjICJlMBpvNxubNm/H7/bS1tRGJRPjmN7+JTqfj3nvvZXBwkA0bNrBu3brL8IQuDERBptPpLrlI+potCH70ox/xB3/wBxw6dOiq9agNBoN8/vOfJ5vNsnXrVkZHRyVd5dixY+RyOdxuN52dnXg8HiYnJ5mcnCQej6NUKunq6kKlUjExMSFzAfL5PAaDgfb2drnACZGPTqfDZDKRz+elBac4/Av+vPgg10KMOl8rLmYH5FyBKufaBIQoymw2S5cJYaXW09NDJBIhFArJBc9sNjM4OMjKygrBYFAu6sIaLZVKsby8LA/2okAQz1/YrAn/6XA4LMXb1+hHsI466qjjioNYc7VaLQ6HQ1Jm4WVtV2dnJ6lUSk7Rxbrt9XpRKBRMTExIWqjJZKKjowOdTsfZs2dJp9Nyz2xubkaj0TAzM7Mq68bhcBCPxyW9Ruw9er2ecrm8av8Se++VUBiI57B2rxfNtlqDDlFoCaqxoMaKYDZBARLPUiQW6/V6BgYGWFlZIRAIyAZcf38/Pp+P+fl5eQ6y2Wxs27aNQqGA1+ulra2NF154gZaWFh544AFMJtPleExvGvWC4CLgueee4wMf+ABnzpy5aguCeDzOl770JdLpNO9973v5+te/zosvvoher5eiE6PRKJOI4eUqXYhny+UyExMTpNNpaXcpFjKhKRBUIjH+E+NLWO0OUCt6EjZjoltSCxHAciW45wi721qOvkqlwul0kslkVoWS6XQ6Ojo6WFpaknas1WoVi8UiuYu1kwWTySQ9j6PR6CqNgKASLS8vy+ep0+loa2vDYrEwOjoqx6F11FFHHXVceqhUKhoaGujr62N+fp7Z2VnpGmS323E6nSQSCRmipVQqV9ljinVfHIhNJhNarVY6FtVet9vtTE1NybwCcfjVaDREo9FVQl2NRiNprpcS59qjz7efi4N9rS5PhHUqFApSqZS8f3GO0Gq1VCoV6dRnt9vlWaZarcrGnMPhoK2tDaVSSTKZlIVUuVzGZDKhVCpJp9MyM6lQKHD33Xfzzne+k4cffpjW1lZ+7/d+75I79FwoXM6C4Op8Yq8BJpNJWkderahWq/h8PsbGxjhy5AiLi4vkcjl6e3vp6+tjYWGBsbExFhYWUKvVtLW10dfXx+LiIkeOHCGTyUhvZRH5HYlE5IFe6AwEp1IUE8KetFgsysVKLFRi/Ff7bEVwiXBVONf1S1kMiE5GbVqyWq3GarWiUCiIx+OyCyMWbKPRKN0lhDuQ2WzG4XAwMTEhw1JMJhPNzc24XC5Onz4tqURWq5W+vj4qlQqjo6PMzc1RrVYxm810dnbS2dnJmTNnOHjwYN1R6JcY9WyJOuq4MlAul1lYWCAUCrF582Y2bdrEmTNnCAQCLC0tEQqFcLlcXHfddaRSKcbHx4nH4yQSCRwOB5s3b2Z+fp7FxUUSiQSxWAydTkdvby/z8/NSdyeaTz6fj0QiQTqdltx7kVdTKpVIJBJUKhWZZKzRaFaFmF1s1BYlYo06nw6wXC5Lvr8oJMrlMvF4XE7aDQaD1ApEIhE0Gg0dHR0YjUZZZImv9/l8NDc3y0ygM2fOYLPZ2L17N0ajkZGREamHbGtrY9OmTXg8Ho4cOcLY2BjBYJATJ06gUqloaWmRhV0drw/X7IRgbGyMgYEBwuHwVRdWkU6nmZycZGRkhC996UuEw2FuvfVWduzYwQsvvMCmTZt45JFHWFxcpKWlha6uLvL5PMePHycajUpLULfbzaZNmzhx4oQUR4nrJpOJhYUFueCIzoXZbKZYLEpP5trqX3j0n8uT+FzOCJc6aEUsQLW0plrRtHB7EFZpQkgtFmJBi2poaMBsNhMMBuVz0Gg09Pf3k0wmmZ+fl8/LYrGwbt06otEogUBACsMsFgttbW3EYjEWFxdXpVZC3R+9jjrqqONyovbgKxpeOp2OlpYWtFotMzMzsuEjGjsqlUo64FSrVQwGg3QfGh8fXxVY1tXVxcLCApFIRB6YlUqlpCmJvVS42DkcDpLJ5KrMH3hZZ1AoFF5Fhb2YON/eLZ5ZbbNPTAvK5bJswAkxcq1ZSbValRMH8ZxXVlaIxWJoNBr0ej0NDQ0MDAxw+PBh4vG43JPdbjfbt2+nUCgwMTHB4uIiPT093HbbbZw9e5a3vOUtPPnkkxw6dIj29nb+4A/+AL/fT29vr2QKXC0Qz1WIrS8lrtmCYHFxkebmZhYXFzEajZf7dl4Xvva1r/H888/T2dlJMBgkHo8zODjI/v37CYVC3HHHHUQiEVZWVhgYGODYsWOMjIyQTqcxGo34/X6ZgCuoLuIDGI/HyWQyMmwFXuZN6nQ6WQgITYEQ4aZSqVctRqJwWMsn1Ov159QZXGzdgEhkrv19YpESi77gjfb29srDuyiIhK2cEIMJXqcQEIdCIRKJxKqoe2FPF4vF5CJuNptpb2+nWq1Kezph3yruZa04q4466qijjkuL2nW41lNfmER0d3dLK8vaXBmn04lSqSQcDpNMJiX/32az4XK5pOscIHn0zc3NTE1NyQm0oK66XC7GxsZkg0kUB8CrtAQi9fdSFgaiUFq7twrrUOE8WHvdaDSSTCallatOp5PuQ+l0mmQyKVkKFosFi8UiA8cKhQI2mw2NRoNWq8VkMjE9PU2xWMRut7Nhwwa6u7sZHh6mu7ubfD7PCy+8QGdnJxs2bODEiRO0trZiMBhYWlri/e9/P+9617su2fO6EBDngstREFyzMxURTCG8bK9kVKtVHnvsMUZHR3nf+94nr7e2trJx40ZGRkbkOE58MN1uN/Pz8+zbt09GfPt8PlpaWlhcXGRpaQlA2p61tbXJ7rZwPdDr9dKfPxQKAS8frg0GA3q9nkKhsIrfqNPpJA0nlUoBr16ozlUMiNd4oSE+LCIrQFzTaDQolUoKhcKqD5fg/NeKfIX3sUKhYHJyUi7MNpsNt9uNRqORC7lILW5ra6NYLDI5OSndKMxmM36/H7/fTyAQkD/LarXS399POBxmfHx8lcNQHXXUUUcdlwe167BWq2VwcBCNRsPIyAiJRILh4WH6+/vZs2cPMzMzzM7OkkqlZP7PwMAA2WyWYDBIIpEgk8mQSqVoa2uT2oN4PE46nSaTychw0FgsRiqVYmVlhWw2i91uR61WS1tSkQkk9IFisiwc7S5UQ+m1NOkEhUkc9oUjXm0hIHQAQmuYz+cxm80YjUYKhQLlcploNConLcLeu1QqsbKyQiKRYOPGjXR2dsrziSgaenp6GBwcZGFhgXw+z+TkJJFIBJvNJo1U8vk8sVgMt9vNddddx4033si+fftYXl5GoVAwNDTEj3/8Y2644QZuvPHGN/XMrnVcsxMCIeQ8cuQInZ2dl/t2fi7S6TSf/vSnmZ6e5iMf+QhdXV2MjY1x00038cADD3D27Fne8573oFAoeO6554jH4wwPD5PJZPB4PGzduhWXy8XU1BQnT54kHo+j0+lYt24darWaw4cPk8/nUavV0s6rtbWV6elpMpmMPKQKBxyRplibPCi+t3YkWOtAdKkFUBqNZpVVpxBSV6tVOZ6El4sYs9m8it8oXIdEQJsQk4nX2d7eTjqdlq5BopszMDDAwsICwWBQLs4ul4ve3l5mZ2eZnZ2lWq3i8Xhk90ehUHDw4EFZQNVRRx111HHlQdiG7tmzh2QySSwWY2lpSVJaWltbaWho4NSpU5JmajQa6enpwWg0Mjw8vCqPprm5mWq1uirgUuy9oVBIGk4UCgUUCgVut5tCobBKkCvop+VyWe7VApc6+FPsj0LMC6wKIRP6wrXNOTExEHQqlUqFzWajqamJqakpuccWi0UsFgt79uxhbm5OirA9Hg/bt2+nsbGRmZkZhoaGiMfjOBwOBgcHMZvN3HnnnUxNTbF3715uv/12fv3Xf51nn32WHTt28Pjjj/Pd736XPXv28L//9/++ZM/rjUKE24kpzKXENVsQVKtV7HY7jz/+OBs3brzct/NzUa1WefrppxkfH2fPnj08+OCDZLNZfuu3fotYLMbRo0d5y1vewj//8z/z9NNPYzAYaGxspKmpiXg8zszMDJlMRjrieDweVlZWmJubIxqNkslk5EFXCGoLhQLpdBqVSoXP5yOXy8l/E3QZUSAI6pH4oNd+yNd2KYQbwNrrF0pMea6fU9tJgVes2sxmM5VKRQqghWuQ3++XC5HgQDY2NtLa2sr4+Li0SFOr1TQ0NGCxWAiFQpKGJRa0/v5+FhcXmZubk4u6xWKR9qRCbFbPGKijjjrquDqg0+mwWq20tbVJO1HRZDIajbS2tmK322UBIDjxYqocCoUIhUKS/uNyuaSpRDQalb9Hr9fT3t7OxMSETPJVqVTSw184+9U2txQKxaum8BdKq3c+lyHgVYWHMNhIp9Py34R2QqVSkclkVl03GAzY7XYqlYpkL1gsFknP0mq1BAIBKpWKNEFpb2/HYDAQCoVYWloik8nIwDjh5jQ3N0elUuG+++7jbW97GwcPHuTWW28lFArxz//8z/j9fu677z6effZZdu3axY4dO970c7rYqBcEFwHVahW/38/Xv/519uzZc7lv5zUjHA7z53/+52SzWT74wQ/y+OOP89JLL7Fu3TrK5TL79u2jq6sLr9crOxVCyOp2u7FYLCwtLREMBimVStjtdin6EYl/4kMo/ldQhoToR3gCi6oeXunAK5XKVR0MQHIv1y4aYrx5MQ7EolshuPm1DgmCwlSpVOQ9ORwOrFYr8XicVColD/xutxuDwUC5XCYcDpPP5+Ui3tzcTDQaZX5+fpXLUGNjI3q9nng8LqcIVquVrq4u0um0DKsR9yCKDiHKrqOOOuqo48qBaHwJ4a+g5VgsFvr7+ymVSkxPT5NIJNDr9fh8PkwmE6lUSh5WBSuhvb0dvV7P7OwssViMcrmMwWCQ2oNUKiULBjHBdjgcLC4uyuaVWq2WgV9C0wevBJaJffViHN+0Wu0qGq6AYAnUXheWosViUT6D2uulUkkWByKBWKFQkMlkKBaLMhC1oaEBk8kkm4+pVEpadTc0NBAOhwmFQjLczGazsWXLFo4fP044HOaWW24hkUgwPj7OO97xDjZt2sS3v/1tWlpa+J//839KXcbVAKFp0el0l/x3X7MFAUBfXx9/+qd/yu233365b+V1YXR0lJ/+9KcYDAa+853vMDk5ycaNG7nppps4ceIE3d3dPPfcc4yMjNDe3s6GDRtYWVlh3759JJNJyaF3uVz09fVx9OhRGWhWKpVwuVzSZlNYjQrxkFarJR6PyymBEFsJ+7Dat8v5Fo5LgbVhaCJUTVi9AdI32mKxoFAoWFxclGNLk8kk49FF10an02G32+np6WFxcZFAIEC5XEaj0eDxeOjt7WV0dJRQKESxWMThcLBhwwYMBgP5fJ6jR4/KUDi3201LSwujo6OrdBh11FFHHXVcufD5fKumxdVqFZfLxa5duyiVSsRiMU6fPk0ymUSn0+H1emlvb+f06dNEIhFKpRI6nY7Ozk5MJhNjY2PSahTA6/Wi1WqlhkBkA/l8PvL5POl0mkQiIe/HYrGg0WjkhBrOLfa9GFg7NRBngtpGX+05QTQG11J2xesU7AG1Wk1nZyfhcJhEIiF/ZkNDAxs2bODUqVPyHFIqlXA6ndx6663o9XoOHz7MwsICu3btYmBggNnZWTZs2MBjjz3GxMQEW7du5R3veAeZTIZ3v/vdNDU1XdRndKEhHA8vhzvSNV0QbNu2jd/5nd/hnnvuudy38gtRKpVYXFykqamJJ554gn/6p3+ipaWFLVu2MD4+jtfr5Yc//CETExPs3LmTW2+9lZMnT6LRaDh27BhjY2PkcjkZ7T02NiYpQLlcDoPBwKZNmwgGg6ysrJDP56VbgRDbig6JWGTsdjsAyWTyVd3/WoFxLS6md/K5xFRiwSkUCtLZQdCdbDabpOwImzSxUAu7M1Hk2O12WlpapNVoqVRCpVLh9Xrp7e1lbGxM2odqNBoaGhrw+XyyC6TX6+WiKDQFc3NzZDKZejFQRx111HGVQPD2Ozo6sNlsjIyMoFKpJNW2oaEBj8fD9PS0tPkWkwG/38+JEyfkxF2j0UjDidHRUdLptJxiu1wuzGYz09PTcs8UtCSdTienC4Knb7VapU322rwfeHMi41pNwNrrQjdQCzGFP9d1QdUVRY0I2BJnhkQiIfdorVaLz+fD4XBw6tQpisWiDGxraGjA7/dz+PBhstksZrOZdevWsW7dOgD6+/v5zne+w+joKBs2bOC2225jdnaW7u5u9u/fTzqd5nd+53fYunUroVAIn893VYTU1guCi4S3vvWt3Hvvvfzqr/7q5b6VX4iHH36YvXv3cuONN7J161b++Z//md7eXmw2G0888QTNzc1MTEwwNjbGtm3bCIfDjI6OynGkWq3GZrORz+eZm5uT+QsOh0MKeUTRUS6XsVgsWK1Wcrmc9D4WvsEmk4lyuUwqlVrFVxRuTYLvKGAwGKTX8Fqcz8ng9diQnosjKSg4a21FRQBZJpORLkNKpRK/30+xWJRdllKphFarxe/3U61WicVikiKl1+ux2+1YLBYpsBbJiE6nE5/Px8rKyioqUUdHB729vQSDQSYmJojFYm/49dZRRx111HH50djYSEdHB16vl6GhIemCIwoAi8XC9PQ0yWQSvV4v7TV1Op10GioUCrJBZbfbyWQyLC0tUS6X0Wq1qNVqHA4HhUKBxcVFGQQq7DpFpxxWd+jXTudfb2FwPu3BufYqUZDkcrlXWZBaLBby+fyq6+IcIajHwpbbZDJhtVrRarWEw2Gy2SxarZbm5mYAmSMUj8cBaG5upqmpCZVKJRucIrht06ZNlEolRkZG2Lx5M06nk3g8zr333svQ0BDRaJSPf/zjfPvb32Z0dJQPfOAD3Hzzza/p2VxOCNbG5SgIrlnbUXjZK/9qcXeJxWLEYjGi0SiJRILe3l5uvfVW9u7dSywWo7u7m1/5lV/hG9/4BidPniQSiUiRTXt7OyaTiWAwyNzcHMlkEqvVSnt7O1qtlsOHD8vKWwh4hGVXoVCQ+gDBWQuFQpIyJMJaKpXKKmGxUqmULge1FmSAPKj/vITi13M4XrtoCT6gWICEfahKpSKfzxONRuVYUugqxLMVi5LD4aC5uZnl5WVWVlbkIu/z+Whra2N4eJiJiQmq1So2m40dO3ZgMBhIp9McPXqURCIhuxsbN25kZWWFZ555Roa/CQhqU70YqKOOOuq48lFLR11ZWSESiTA2NsamTZsYGBhgaGiISCTC6OgoHo+HLVu2YDAYWF5e5vTp0ywuLsrp8q5duxgfH2dlZYVQKEQsFsPn80lDilgsRjqdJpVK0dDQIC1LY7GYbGoZjUb0ej3pdJp0Oi33l7VT+tc7ITifEFnsVWspQOKQLppxxWJxVcffZDJJ0bNIaBYGHFqtVhqWrKysYDQaaWtrY2lpiWq1ytLSEvl8HqPRyK5du1heXmZ2dlaGuvn9fgYHBwmFQrLhdvToUSwWCxs3buTDH/4wjz32mLRmv/POO3nxxReJx+NEo1FisdgqGtaVjss1ybimJwT33nsv/f39/Lf/9t8u9638QkQiEYaHh+nt7eWLX/wiw8PD3H///ezYsYMf/ehHtLe38+KLL/LII4+gVqvZtWsXjY2NBINBTp48STgcRq/XMzg4SHt7O6Ojo4yPj5NOpykUCuh0Ojo6OlhaWpLCJdG56O7uZmlpiXA4LD/8gqMoFgQhJhKjPhEEtvbtU5tgWIsL0SE3GAzSB1n8LuEIEYvF5CKu0+nQ6XQ0NTVJezexWNrtdvx+vwwNE4LflpYW+vv7OXv2LIFAQPJAhUBsZmaGdDotBcdiQTt79iyxWAytViuLELHAXcqU5jrqqKOOOi4ctFotjY2Nq6bQhUJBagymp6dJpVKS2mOxWOjs7GRpaUlOj3U6HT09PbS2tnLs2DFCodCqlHu/3y9dhoTFtzDAEGJlQQ8yGo2YzWYZkCn2U9FJvhiBZeebOtSmE4vfK5qESqXyVanFGo2GpqYmjEYjU1NTkr4r6Lpi0lIqldDr9VgsFjZs2EBTUxOjo6OcPXuWcrlMc3MzmzdvxuVyMTMzw6FDh9Dr9XziE5+gsbGReDzO+9//fr7+9a/z1FNP8ba3vY33v//9zMzMsHXr1is+kwqQusXLIYS+pguCj370o9hsNv7kT/7kct/K68IPfvADDh06xF133cWjjz7K3r178Xq9vPWtb+Xw4cM0NDQA8Nxzz0n1vtlsxmKxsLKyIkVJ1WoVr9eLx+MhEAiQTCZJJBLSZlOj0cgxnPA41mq1OBwOMpkM6XR6lWuA1WqVtJvat83PsyZTKBRv2mVord+yQqGQImJB8xETDaPRiMFgkHoC4eTQ09NDNptd5QhhNptpaWkhm80Sj8dlwSNEwXa7nampKckT1ev1tLS04Pf7GRsbo1wuy+e8detWnE4nR44cYW5urm41WkcdddRxlUOv19PR0cG2bdsYGRlhZGREJugaDAY6OjoYGxuTwVlarRa3201HRwfz8/Oyqy6oq263G4BAIEAul5P22D6fj3K5zNTUlAwmE4GXiURC2lqLw3Xt9Vqszed5o69Z6AnX/mxhTCIgQjwBEom6xaKXAAEAAElEQVTEKldCi8WCVquVQmtRBAmKlAhng5ddAM1mM21tbczMzLCysiKnC8JOPRQKSQqvyWTine98J4FAAIVCweDgID/60Y9IpVLce++97NixgyeffJJ3vvOd3HDDDW/qeVxqCLtaca66lLimKUPCFuxqw1ve8haOHz/O448/TiqVQqVSodPp5CE9lUpJ2y6/38+mTZsYHh7m5MmT5HI5aWMmXHPOnDlDNpvFYDDgcrmkRmBmZkZ2tc1ms6zYBYVGuPSo1WoymQzhcHjVfQqu/tpCQIwH115/PVMCcTAXLgO1EMmItdSg1tZW8vk8yWRS2pMZDAa8Xi8As7OzxONxSRlyu9243W4pvlYqldjtdvr6+jAajSwtLTE2NiapQS0tLfT29rK0tMTBgwdlwqRYbAKBAM8++2w9hbiOOuqo4xpBLpfjzJkzTExMsGPHDm699VZSqRRHjx5lYWGB5eVlNm3aRHd3NyMjIywtLcn9s6mpid7eXsLhMCMjI5IW7Ha72bRpE7Ozs5IinEqlcLlcNDU1US6XWVhYIJvNksvlMJlMOJ1O1Go1c3Nz5HI5qV1b67YnQsPE3vlasHZfFrrBtYJi8b9CIyFyiEQKsVarxWq1ks1mKRQKRKNRWSAJsxLxPfF4nPb2dnn/uVyO5eVlcrkcHR0daDQaaRQSCoUIh8Ns3bqVjo4O9u3bRywWIxgMksvlpK7AaDTKpt9TTz2Fy+Vi+/btF+qtcMlwOXv01/SEQKT/fuUrX7nct/ILkU6nOXDgAF6vl0KhwJe+9CVUKhXvfe97mZiYwGQy8cgjj3DmzBlaWlq45557CIVCLC4uMjY2xvz8vLTnGhwclDSi2jHkxo0b5UIGr4hwDQaDFAsplUq5oFgsFjKZzCqnHFG11nrsr72+diE6H43ofBCjslq3IlGc1HIo1Wo1drsdh8PB/Py8dHDQ6XQYjUYaGhqYmJiQOgmTyYTH46GxsZHh4WGZFaDX6+nr66NarTI+Pi6zCBobG2lvb8dsNjM8PMz8/Dx6vR6r1YrdbqexsVE+Z8GPhPN3WOqoo4466rg6sJaKIw7gjY2NDA4OyryZaDRKqVSiu7ubjo4OwuEws7OzLC0tyfTdgYEB4vG43I+USiVWq5XBwUHZERf7rJg8zM/PSz4+gMvlwm63Ew6HV2UBqVQqjEajDE+D1Tk950ozPp9wGF59IBUi5tq9vTarYe11MRkQac7i5xkMhlWFhKDrdnV10d3dzcmTJ6XOT6lU4vV66enp4cSJE5KW297eTnd3N16vF71ez0MPPUQ4HGb37t3ceeed5PN5vF4v//7v/47NZuMzn/kMCwsLZDIZrr/++svSdX+9qBWbX2pc0wXB5z//eQ4cOMC//Mu/XO5b+YV44oknePDBB/H7/Xz605/mZz/7mezkf+UrX0GtVuP3+1lYWMBsNhMKhTh79izVapWmpiba2towm81MTEyscj1Yt26dTPoDJA3I6XTidDolhaY2aVcImHK53Cp3AxHgVes8JBL1hDtALX6eldm5rq+lBimVSuncIHia8MoCqFarX7UICis3IVISo8rOzk4KhYLUSQiu4vr161EqlYyMjEj6j8lkore3F7VazcTEhPwZABs2bMDhcHDs2DHZ8RD2cqJzc7FsV+uoo4466rh0ENQdnU4n6TjC0U+r1bJr1y7Onj3L9PS07MprtVr6+/uJRCJMTEyQy+VkLlBvby+xWEw2nmqLjFwux+zsLIA082hpaWFhYYF4PL7qEG+1Wsnn86tMLESHXuzdtfuicBmshVKpPOdE+3yTfKPRKDUDtf9uMBgAVu3/arVaNs8SiYTULYr93Ov1Mjs7SzKZRKvVYjAYUCgUtLa2olarGRsbo1QqYbPZ6OzspKuri1AoxPT0NCsrK2g0GtavXy+bbx6Ph2AwiMFg4A/+4A9YWlqSjb4//dM/JZvN8qlPfeqqmBgI6rYIpruUuKYLgr/5m7/hBz/4AY8++ujlvpVfiKGhIb75zW/S0tLCxo0b+f73v09PTw82m429e/fS1dXFW9/6Vv7sz/6M2dlZeQi3Wq2YzWZisZjsJFQqFelMEI/HmZqaolgsYjQa5fhOpVJJX31BLQKIRqOrBEtGo1G69NQuBEK4ey7lvsFgeJXzEJx/AVpbCACrBM0ClUoFvV6PVqsll8vJg7fg9kciEZmYKNyBmpqaSKfTxGIxUqmU5DyKEWwymZRdGCF8cjgcRKNRZmdnyefzOBwO1q9fj0KhIBQKMTs7SyqVorm5mQ0bNpBMJmViYh111FFHHdceWltbGRgYwGg0cvDgQaLRKE6nU+r0UqkUp0+fJpVKYTKZZJNuYWGBcDgsLcINBgNms5l8Pi+7/YC0AjcajczNzZFKpaQuTqfT4XA4VmkMNBoNer1e0ocFG0A0qM5Ftz3XXgvntiAVeQnnavTZbLZVUwqlUilfVzQaXSU0FmcIQJp/GAwGGhsbKRaLqFQqlpaW5Fmkq6sLo9FILpcjl8vJBqKwLBUOTADZbJYNGzbw+7//+zz88MOEw2He+c53Mjw8TDwe57777uM//uM/SKfTfOpTn6Ktre3Nvg0uKgTzQqfT1QuCC41vfvObfOUrX+HJJ5+83LfymiC64F/5yld44okn2LJlCx/96Ef5/ve/Tz6fx2638/DDD5NKpbjxxhuxWq1MT08zOjpKPB6XwR0+n4+DBw+u0ggIG7RAIEAmk5GiFbVaTUtLCzMzM3LEJzQLwCoqjFgglEql7L4LiDTjtdQg8aY+n98x8Kqvr7Uog5cXMafTSalUWpX4KOxDtVots7OzkhpktVpxuVxYrVZGRkbkYd9gMNDe3i6pQdlsVorG2traqFarTE5OEggEZEZBU1MTer2eY8eOEQ6H0Wg0eL1e/H4//f39/Nu//durMgfqqKOOOuq4NuH3+7nnnns4efIkwWBQOsp5vV42b95MPB4nEAiwuLgIQHt7u9xfRkdHCQQClMtlTCYT/f39xONxFhcXJR3WYrHQ19fH0tKStMsUphatra2k02lCoZCk+AqRs0qlYmVlZRWN91x5Beeb0IvvWUv7FfSjWrcleLlpJ9z1ROaPuK7RaKhUKrK5KATVHo+Hubk5aZdaLBYl/XZubg5AGqX09fWxceNGJiYmGB0dJZfL4Xa76erqorOzk9nZWfbv309rayvvfve7CQQC+Hw+br75Zr74xS8SDAb5lV/5Fd73vvfJANMrHfWC4CLiu9/9Lv/7f/9v9u3bd7lv5eeiWq0SiUQIBALE43G0Wi3Dw8N4vV6OHDnCQw89hFar5Vd+5Vekj6/FYuHhhx+mUqnQ3d2N3+9ndnZWxqSLOPSenh7MZjMjIyPE43Gy2SxqtZr29na5sNQuGGKykEwm5Ye5No9ACHgExGJRqVTO6UpwruvnguiE1NKUhMsAILmFgqJktVqxWCwEg0HpMCR4h6VSSWYpwMuFw4YNGyiVSoyPj0tHIavVyubNm4lEIkxPT6/q4PT19aFWqzl8+LDMVFAqlXR1daHT6VhaWiKVSskRrxBVXewo+TrqqKOOOi4dhKud6JSLfUCpVNLe3s7KygqBQGDV1+7evZvl5WUCgYAM+NRqtfT19aHRaDh27BjZbBaVSoXdbmfDhg0kEgmGh4fJ5/PS69/j8VAoFKRQGV6m3fh8PjldqL0vj8cjw0ZrtXaCBvxa7MDPVRSI64C0IBcwGAxoNJpVBiOCYmw2m+VZQuQaaDQampubKZfLzM3NrcoGEtoM8TxFg2/dunW43W4mJiaYnJzEbrfz4Q9/mBMnTnDdddcxPT3Nd7/7XYxGI5/4xCdkAFxfXx+pVEoGzInzxJUK0VAV6c6XGtd0QfDUU0/x8Y9/nKGhoSsysrpSqchFI5/P4/f78fv95HI5Pve5zxEKhWRIlvC+f/bZZzEajdx2222cPn0ao9GIzWbjhRdekMJi4VYgQjqE6ElU4sKbXyQgioUHXh7BiVGgEO0KV4DaBUKj0ayy/RQQfMvXShk6lyOCEBADkntYS2ESC5L48Njtdvr7+xkbGyOVSpHP51EoFHg8HtxuN9FoVHZfxGjT7/eTyWRkQnE+n8dmszEwMEAmk5EuD9lsFqfTye7du1lZWWFpaYlAIEClUqGhoWHV+HLtaLWOOuqoo45rAwaDYRVNd2FhAZ1OR3d3Nx6PB4PBwIEDB0ilUtL+uqWlBYVCwenTp8nn89Iu2+12o1QqmZubI5/PS6vJ2p8tmmB6vR6n00lLSwsnT56UgV/CFASQScCCNmSxWOREfa1F+LkoQ+ej8wrDkbVTfBH6Wrtvq1QqXC4XxWKRWCwmqUtWqxW9Xr+qUafRaLDb7VitVhwOB7OzsyQSCflaRUdfMBf0ej1dXV1cf/31TE1NodFo6O7u5vvf/z56vZ477riDqakpyuUyvb29jIyMsG7dOj796U+Ty+WYnp5mdnYWm81GR0cHbrf7ijwTXu6C4MqXXL8JmM1meaC8klAqlVhYWCAQCKBUKmltbcVoNPKv//qvKJVK3v/+96PVatFoNNxwww2YzWbpUSzoL2azGb1ez+TkJKlUinQ6LaPRGxoaOHXqFIlEQn6wjEYjLS0tnDp1SroPidRijUYjJwXw8nMTlCKhHRAwGo0yHKyWKiOuFwqFVxUDYrFZO7YUhUDtoiLENEIsJVwXxOFbFCtiBCkKh2PHjpHJZKTNmdvtplgsMjo6SqFQkF2V/v5+wuEwwWCQSCSCRqOho6MDv99PsVjk5MmTrKysoNVqpZipv7+fvXv3cuLECXQ6Ha2trTidTrLZLDMzM3U3oTrqqKOOaxy1Gr3BwUG8Xi/hcJixsTFGRkbYvXs3999/P2fOnGF8fJzJyUnm5+dpbW1l165dKJVKpqenmZmZIRKJ4PF46O/vx2g0curUKZaXl6VVZ09PD263m5WVFWKxmLTNdrlcuN1uYrEYkUhEZh+IMDORhyDyhsRBXFiGlkqlc4qMxd68tjDIZrOy2y+MQ8rlsrTqFoLibDZLuVxmeXkZg8FAU1OTtAQVhY1Op6O5uZlsNks+nycSichmpZgM5HI5VlZWKJVKeDweNm7cyPz8PIlEgpWVFZ555hlMJhMDAwPodDpZ9KTTafr6+nC73TQ1NTE1NYVWq2VhYYF//ud/xuPxcN9997G4uMjJkyfRarV0dHTQ3Nx8WQ7eVyqu6QnBqVOn2LlzJwsLC1dENVgoFAgGg8zNzWEwGGhra8Pj8aBQKDh58iR/8Rd/gUKh4Hd/93eJRCIolUoaGhr4whe+QKlU4u677+b06dOcPHmSeDwuNQJtbW0MDg4CMDIywuTkpMwj2LJlC+Pj40xPTwNIsZHb7Uan00nKjeguWK1WyuWy7PyLxUOEjIluBrxiPaZQKF7FL6y9vhYqlWqVHZm4L41GIzsd8HJhYrPZUCqVLC4uUiwWpUipsbGRWCxGNBoFkFajPT09LC8vS56ioB0NDAwwNjYmo9CtVit+v5/m5mYpBhMx8QaDge7ubiKRCHNzc/h8PkwmE3Nzc6xfv55gMMjx48df9douRBpzHXXUUUcdVxbOtbZrtVppZTk9PU1raysLCwuEQiF6e3tRqVRMTU1JNyCDwcDWrVsBmJubIxAIkM1mUSqVNDY20trayqlTp2TnXXTB1Wo1MzMzZDIZOf32er2oVCqWl5flnqzVavF6vRSLRSKRiCxghCZQcPYFftEeLfjsAkKTIJp7tZQkrVZLtVqVWoLa6UC1WiWRSMgzmGi2hcNhYrGYNA9RqVSsW7cOj8fD0NAQ6XRa6ix6enrI5/McP36c2dlZNBqNFB/ffPPNuN1uHn30URobG/nsZz/L0NAQLpeLTCbD3/zN3+ByufiTP/kTvF6vpCpNT09TqVRob2/H7/dfEZakYkKg1+svy5n1mi4Ipqen6ejoIBKJXNY/diaTkSIjh8NBa2srdrt91R88l8vxgx/8AIDGxkb+5V/+BafTyX//7/+dn/3sZywvL9Pf38+XvvQlhoeH8Xg80hFH0I6ETVdDQ4MUHIdCIaLRKMViUSYihsNhKpUKyWRSpv75fD6WlpZIJpPSvUccvkUwWbFYlIviWkqPgOAInitGfa2TgVKplKnItVMFlUqFw+GQ9mliIVIoFLjdbnK5HKlUimKxSKVSwWw24/f7WVlZkXkK4jn29/czNTUlfZ6VSiXNzc309fUxPT1NJBIBkNSjnTt3MjIyIhercrnM4OAgN954I4cPH2Z0dFTqBsS9wrlF03XUUUcddVw7EHo5cRhWqVS0t7fT39/Ptm3beOSRRwgGg+j1eiwWC36/H5/Px/79+6VFtkqlwufz4XK5GB4eJhwOSx69z+fD7/dz5MgR2YUXVp0ej4exsTHpMiQCRdVqtWx0VSoVSqUSJpMJvV6/yq4bkEnBgtIjcC6XIUDqBtceE2022yo2gFKplDTifD4vzwVCW2ez2fB4PHIKILR6Go1GagNyuRx6vR6HwyGt1FdWVlheXpa0ofb2dtxuN4uLiywsLBCLxdizZw+f/OQnOXToEP39/fT39/PFL36RSqXCRz7yEU6fPo3L5eKuu+5aNQ2oVqssLS0xNTVFOp2mtbWVtrY2aahyOVAvCC4iwuEwbrebQCAgbTUvJYTbQDgcpqGhgdbW1tekdD927Bhf+9rXcDqdvOtd7+Kv//qvCYVCbN68mfn5eU6ePMmtt97K/Pw809PTMs7bYDDg8/nI5/PMzMwQCoVQq9W4XC7ppzw7O7vqgycO8MvLy9KuU6/XY7PZSKfTZDIZufjpdLpV12vfOucL4xIjy9rxpFgkBF1I/ByVSiWTDoVlWrVapaGhAZPJJEekxWIRjUaDz+dDrVaTSCRkPLrRaJRpzCLpUASWWSwWGhsbJXczGo3KYJSuri5aW1sZGhriyJEjqNVqenp6aGxsBODo0aOEw2GUSqUsdoxG4zltV+uoo4466rg2IXJwRHdfNIX8fj8DAwOyAz01NYVCoeD666+nq6uL2dlZTpw4wdzcHAqFQuoCcrkci4uLJJNJyf+32WwoFApSqRQrKyuSGuTxeDCZTFLnVi6X0el0aLVaGhsbWVpakpkFwoGoNiQMXsklEBP5WohQ0NpJwvmuK5VKzGYzWq2WeDwu/02lUslwMkE5Fq/L7XbLAkMEeopGpcjwCYVCwMsNPeHONDc3R7FYRKvVYjQaGRgYQKlU8tJLL7Fr1y4MBgMnTpygr6+Pj3zkI3zrW9+iUqnw+7//+7/QarRarRKNRpmamiIcDuP1emUg6aWG+BvVC4KLAOFre+bMGXw+3yX5neKNPjMzQyqVkhW/Xq9/XT/jqaeeYnR0lHK5zLe+9S2y2SzveMc7aGpq4syZMwwODvLv//7vJJNJNm3ahN/vZ2hoiDNnzshxo0j2U6lUDA8Py466Wq2mtbWVUCjEysrKqiAMEYYmOgi1i8faUBK1Wi3DWtYe+AUtaK1uQKPRUK1WX7WwGAwGlEolmUxG5iQ4nU7MZjOZTIbl5WVZrNjtdpqamohEIiwuLkp3ILvdTldXF6dPn161uPb39+NyuZibm2NyclIKiJubm2lubmZubk6mQW/fvp1YLEZ7ezupVIrnnntOZjgI27djx47VC4E66qijjl9yNDQ00N/fz8zMjKQGGY1G3v72t5NKpQiHw2i1Wo4cOUKpVKKvrw+n08n8/DyLi4vSLnxwcBCbzSb3KJFB4HK56Onp4cyZM9L8QliFG41GFhcXJQNApVLR1NSERqMhkUgQi8Xk3i4adrWU39rG3LlCy4TGby21V6VSrbIZrbUjF01Bcc5wOBwyzFT8HkF5MplMq6bter2ezZs3Ew6HJeU3l8uh0+nYsmULvb29Uq/h8/m46667OH78ONdddx3Hjh1j3759NDQ08IEPfIBcLsfu3bvZtWvX6/p7JpNJpqenWVhYwO1209HRgcPheKNvj9eNSqUinarqBcEFRqVSwWQy8cILL9Db23vRf9fi4qKk7rS0tOD1emVl/VogOPHt7e383//7f9m3bx9vfetbMRqNsjP+ne98h1QqxYc+9CGcTieTk5NkMhkOHTokfY9bW1vx+/2MjIyQTqdlF6ClpYWWlhaGhoZIJBKyQBCHbEHDKZVKsvNgt9tJJBLSSUdALABrnXXOZzV6rg6D+PkirASQRUljYyMrKyuyuy+8eUUXRCws1WoVj8fDhg0bmJiYIBgMUigU0Gg0tLe3S4GREFKbzWaampq47rrr+NnPfkYkEpELm9/v56abbmLv3r2S+zgxMSEX7JGREYLB4KpnIQqlczk01FFHHXXUce1AWGfWHqBtNht+v5/e3l6OHj1KoVCgt7dXuvPs2bOHxx9/XO5BSqWSlpYWdu3axc9+9jNCoZCcNng8Hjo7OxkbG2Nubk42u4QAVuzdtdQSt9vN/Py83HNFKKfdbmdxcVFO3AHpSiiEu/BKo07QjWohcgbWNvzWipXFdeEoJILYRNaRTqdDr9fLSb5oMjqdTrZs2cLJkycJhUKyOWi1Wunr62N4eJilpSXUajVtbW3s2LEDpVLJxo0bOXjwIE888QRer5cPfOADRCIRWlpaGB4e5tSpU9x3333cf//9TE9P4/V6MRqNr/nvnMvlmJmZIRAIYLFY6OzslHrPiwlRELyeBvKFxDVdEAi6ySOPPMK2bdsuyu8olUrMzc0RDAZl572pqel1K9dzuRx//ud/zuLiIr/2a79GOp3m2Wef5e1vfztPP/00s7OzNDY2cvz4ceLxOLt37+bAgQMsLy+jVquxWCySLhMIBCQ1yGw209jYSLlcJpvNEo/HJTdRWKXFYjHi8bj8oDqdTvR6PdFodNViIjyBE4nEqgVCaAFEkVGLcwmIBacwkUis0hro9XqZvCj4kEqlkt7eXorFIisrK9JlyGAw0NPTQzabJZFIyMwEjUaDx+PBarXKMawILPP5fHi9XhQKBYVCgRMnTlCtVhkYGMDhcLC4uMj8/DzhcBiPx8Ov/uqvEgwGmZqa4sCBA/L51Aa71LUDddRRRx2/XBCTbvGfaFjddttttLS0oNVqeeihh0ilUrjdbvx+Pw0NDSwsLHDmzBn0ej07d+6UE/eZmRmWlpbkNNrhcODxeFheXpZ0HNE5drlcAFJPIAw1WlpaSKfTTE9PS60CvFwEpNNpSd0BJId/7Z4tzi1rG1w6nQ6DwUA8Hl+1l4vrtZQkcR6xWCykUik5qRCUY3GGEAWSy+XCYrFgMBhkYzWbzWI2m2VTb3FxUeYrVKtV2traWL9+PS+88AJ+v5/169cTCAS47rrr6OjoYN++ffzn//yfCQQCfP/732fTpk387u/+7uv+OxeLRWZnZ5menkatVtPR0YHX671ozkTizHO5dAzXfEHQ0dHB3/7t33LjjTde0J+dz+elY5DZbKatrQ2Xy/WGK8hMJsMDDzzA0tISH/zgB4lEIhQKBd7+9rfzl3/5l8zOzvL+97+f0dFRvv/975PJZIjH46hUKumWE4/HWV5eliIlu91Oe3s7w8PDkrdotVrRaDTYbDay2SwLCwtUq1VpP2owGEgmk6t8jQVdRoh8BUQVWzs+hFfCWdZeFxQjEYRWLpelwwK8EmsuFg+fz0e5XCadTkuLU4PBgNPppLm5WSY0K5VKXC4X7e3tWK1WgsGgXEA8Hg89PT3o9Xqmp6flc9i1axc+n0+OV5988kmy2azMatizZw8vvfQSp06dWqVn8Hg8RKPRegBZHXXUUccvOUwmEwaDQboCCsed66+/Hp/Px6FDh6R1qM1m4/3vf7+0Az979ixHjx6VwuTW1lYSiYSkvIppts/nY2VlhampKWKxmGzmtbS0SP/+VColBbparRZA8u5F193lcskDutjb1Wq1pAC9ljwhcX3tdMBoNGIymUilUvJ7xEReZBYUCgXZVBPagFQqRSaTIZPJoFAo6OnpoaWlhcnJSZLJJBqNhsbGRlwuF2azmampKZaWllAoFNhsNmw2Gx/+8IepVqv85Cc/Yfv27fzqr/4q3//+9/H7/SSTSX7wgx+wceNG/sf/+B9v+O9cqVSYn59namqKUqlEW1sbLS0tr4sB8lp/T70guIhYv349/+t//S/e+c53XpCfl0qlCAQCLC8v43Q6aWtru2Dpd3Nzc9LH9wtf+AKFQoHf+Z3fIZvN8uKLL9LZ2cmjjz7KSy+9RHNzMxs3bkSn00mr0WKxiM/nY3BwkGq1yosvvij5heVyGbvdLicI4o1XLBZxOBw0NDQwNjYmx5y1i1s+n181XlSpVGi1WgqFwqu6C+fLHNDr9asCTsRUQYSbiUVKuDPYbDYCgYB0VDCZTDidTtxuNwsLC5JPKSYIDQ0NDA8PE4vFZPpje3s7DodDejyr1WpMJhN+v5/W1lYOHTpEpVLB7/cTjUbR6/Vcd911HDhwALVaTTQaJRKJ0NDQQKlUYmpqqm4rWkcdddRRxyqoVCr6+/tJp9PE43EaGxsxmUyoVCp27tzJM888g1arlWFbQq82PDwsXXSq1SqdnZ20t7cTCoWYmZmR+2JjYyPr16/n1KlTLCwsAC935y0WCy0tLQQCAeLxuDQB0ev1tLW1EQqFVk0Y3G43RqORZDIpHfbE/avV6lc1us63p+t0OtRqtTzki31Rr9e/6rooDLq7u5mZmZEHfdH4a29vl4WNyD9qbm7mLW95C7lcjqNHj7K4uIjZbGZgYIDOzk5SqRQHDx4kHo/ztre9jTvuuIPx8XHuuusu5ubm+Pu//3t8Ph+f/vSnmZ+fl2FkbxbValUWZ4lEgpaWFtrb2y8YxUdYpYui7lLjmi8Idu3axW/+5m/y/ve//w3/jGq1SiwWIxAIEI1GaWpqoqWlRVpvXmhks1n+5V/+RVpqffnLX2ZkZIStW7eyfv16Dhw4wPbt2zl69CjDw8PodDqsVis2m414PC4jzTOZDDqdjoGBAVKpFKFQSDr1CAuveDwu48/F+NJms2EwGIhGo6tExCaTCZPJJIsMAVHRrk00FIEm+Xz+VdZnGo1Gjh8FT9FisWC321lYWJBThGq1itfrlQd0Iapyu920tbWRy+UIBAKk02k5zWhra0OpVMogNxGKsmnTJrRaLcPDwySTSXK5HBaLhbvvvptoNMrKyooMLWttbeUd73gHp06dYnJyklOnTq36G53Ppq2OOuqoo45rH2tTf5VKJddddx0tLS0MDAzw7//+74TDYQYGBuQBvVAo8PTTT5PJZKQRxpYtW5idnWVsbExq44xGI319fcTjcYLBILlcTppktLe3U6lUCAQC0pHHYDDgcDhIJpOsrKzIxp1Op8Pr9bKwsCAn9iLY0+l0ynNC7Ws6l/uQEA6v1QzqdDqcTiexWGyVBalwMRTTC9EU1Gg0OBwOObEXFCm73U5zczOVSoXx8XFKpZKkETU3N8vziLBF3759O62trZw9e5adO3eyb98+xsbGuO666/j4xz/Ok08+SW9vL/fee+9Fo/fEYjFpad7U1ERHRwcWi+VN/cx6QXCRcdttt3HXXXfxkY985HV/r6gGA4EAmUxGOgZdinHO/v37+fa3vy07CpOTk1x33XWo1WqGhobYtGmTTEnctGkTSqWSgwcPrrI0M5lMshswPz8PvOJDbDAYJMceXv5gOxwOefAWkedqtRqbzUaxWCSVSq3qEogPeDqdXnVdq9WiUCikaBleGR8qlUrS6bRcSHU6HS0tLfKwLyhDVquVtrY2IpEIiUSCZDKJUqmUlB6DwcD8/LzsiNhsNtavX082m5UiYjEV6evro6mpCZPJxI9+9CMSiQTNzc0yhfjIkSMcO3YMtVrNjTfeKBenJ598ktHRUQAptj5fxHsdddRRRx2/fBDmFkJAq1QqufHGG+np6SGTyTA2NsbRo0dRKpXs2bOHrq4uzp49y8jICJFIBJ/Pxx133MHKygpzc3OMj48Tj8dlsm9rayvVapXh4WFSqZS0+xQ+/SsrK3IfF001u93OyMgI2WwWrVYrp+Mmk4mZmRlJ11Wr1RiNRgqFwqrCoJYFUNv4EtkH6XR6VVNQpVJhNptRKBQy1FSpVGKz2TCbzZRKJaLRqCxsnE4nLpdL7vnJZBKVSkVraytarZZsNksymZTW4G1tbezevZtIJMLIyAgbN25EoVAwNjbGrl27WF5e5vTp06xfvx6Xy0WpVOK3fuu36Ovru+h//3Q6zdTUFPPz87hcLulM9Ebo40KIXS8ILhLe/e53c9111/GpT33qNX9PuVyWjkGVSkU6Bl3scLPJyUmOHz/Otm3bOHbsGP/6r/9Kd3c3N998M+Pj46jVah588EFWVla46aab2LlzJ0NDQ8zMzMho89rQk6GhIfL5vFT0+3w+Ghoa2Ldvn3Q1EN194QAgKlRR5et0OukMAK9YlQHSjUhc12g0ryoEAGmBKiYFomPf1NSEQqFgfn6eQqEgD/xirDk2NiYXNBGHXiqVpGhKr9fj8/lob28nn8/LIDaVSiU9jCuVCsPDw+Tzebq7u2UgXH9/Pz/+8Y8plUo4HA6i0SgdHR309PTw5JNPolKpyOVyxGIxGhsbyWQy0sWpFvV04jrqqKOOXx6cb83v7u4mm80Si8VoaGiQe9Qdd9zBwYMHWVlZwWKxEA6HcTqd3H777Rw/fhytVsv8/DwzMzNYLBY2btxILpdjbGyMaDQKgMfjobu7G4CRkRGWl5el1WhfXx+ZTIZQKCSbdlarlY6ODuLxONFolGg0SrValSYjuVxO/gyxd2s0mlV7NLwSOCaswmszgwTtp/a6VquVkwdxDhBnChFCWptmbLFYuP7665mcnGR5eVlOMIxGI9u2bWN6epqVlRUAHA4Hfr+fzs5ONm3axGOPPcbx48fp6urigx/8IKlUioGBAR577DHC4TCf+MQncLlcjIyMsGfPHpqami7q+0LkPwUCAUwmEx0dHTQ2Nr6uwkBYxl9obcJrxTVfEPzKr/wKLS0t/M//+T9/4dcKRfns7CxarZa2tjYaGhou2shpLb7whS/w/PPPc+edd/K+972P5557jg0bNvCTn/yEZ555hq1bt6JWqzlz5gwGg4Hh4WHm5+el447P56NUKnHq1CmCwSClUgm32y3tu4RDj6DdCK/9WCwmfYLVajUNDQ3SvWdtIaDRaFaFlQEy/ERMFQRsNhsqlYp4PC4LBzFK1Ol0LC4uykVNqVTS0NBAoVCQwinhGrRu3Tqq1SpTU1PSDclsNrNz507Jtczn89LGdOvWreRyOQ4dOiQLH4vFwk033STD3ESKo8Vi4Td/8zc5ePAg1WqV6elpzp49i8ViYffu3dIWro466qijjjoEzlUYKJVKmpub2bVrFy+88AL5fJ6NGzfS1NQkp94PPvgg5XIZi8VCNptlw4YNaDQaXnjhBUl9NZvN3HDDDSQSCamNKxaLmEwmOjs7UavVHDt2jFwuJ2k4/f39rKysMDExgUKhkHu02+2mXC4TDoeBVw6dXq+XdDpNOByW3X7xs9LptEwbhlfC2HK53KsmAyaTSVKOxXMRPwcgFApRqVTQaDTSJrVarTI/Py+LJkFh6u7u5sSJEzKZWEzxK5UKExMTTE9PUy6XpdYil8uxfft2ZmZmmJqa4v7776e7u5upqSne/va388ADD3DixAk+9KEP8aEPfejivRlqUCqVpDORUqmkvb0dn88nXZ9+HsRzutjN5/Phmi8IPvGJT6DRaPjc5z533q/JZrMEg0EWFhawWq20trbidDoveTDEj3/8Y/bu3cudd97J6dOnmZyc5EMf+hCxWIwnnniC22+/ndHRUb7xjW9If2LhxpNIJFhYWJAfRmEfmk6nCQaDcjFoaGjA4XCQz+dlwi+8fHgXNmHi0A3IcJFKpbLqulD5Z7PZVUIkhUKB3W6nUqmQTCaleFmMGvP5vBwbKpVKTCYT/f39UqQjhMLNzc04nU4ikQipVErqHmw2m/QTDoVCcgF1Op10dXVRLBbR6XQsLCwwOzuL0+lk06ZN2O12xsbGOH78OAC7d+9m/fr1Mn34iSeeQKvV8ta3vpV4PE42m2Xv3r2v0koIm7k66qijjjrqONe+YDKZeNvb3iapNz/96U/R6XT8p//0n1hZWcHv9/PCCy9w7NgxNBoNN9xwAw6Hg3g8zrFjx0in03R2duJ0OmUX/+zZs6RSKXk4b2hoIJ/Pk8lkiMVisrNuNBrxeDwEg0HZXRf5Az6fjzNnzpDNZqXnvcFgQKVSkU6nZaaO6OgXCoVXhXAajUbUavWq61qtFrvdTrlcJhKJrJoY2O12aVkqAkMbGxslA2F5eZloNIpCoaC5uRmv14tWq5WMhWKxKG3DNRoNc3NzlEolUqkUVquVP/zDPySTyciD/9zcHI8//jg33HADCoWCQ4cOcd99973ukLI3C2GhOjU1RT6fp7W1VVKi/n/23jtMrvJM8/5VzqmrqzrnLHW3UisHJJAAkZMxGDAYJxzG2AMz33js2Z1de2Y9u+vxOsw6jG2sJRiwwZhgISQQklAr51bnnCt0VXVXd6Wu8P2h67yuFhIGDEhCdV8XF3C6u+rUOfWe9wn3c9/v9DeZhOBDxN/93d8xMTHBD3/4w7f9LBgMCsUgh8NBcXExZrP5ApzlnxGNRpHJZPzX//pf6e/v595770WhUPC73/2O3NxcpqeneeONN7Db7axYsUK0GsfGxgS9qbq6Gp/Px9GjR5menkatVqPRaDAajSgUCgYGBoRpm6QZrFKpxJAPILSNpQBeqjZIusORSORtA0Y6nU5IdEoPG5VKRV5eHhMTE8LTQEoaCgoKmJ6exufzMTMzg0KhwOl0kpuby+TkpDB5kx5+VVVVjIyMMDw8LGzMCwoKKCoqYnJyku7uboLBIEVFRaxfv55AIEBWVhZvvPEGHo+HsrIyjEYjNpuNrKwstm3bRiQSoaamBr1eT2FhIYsWLeLnP/85LpcLv98vPofk2phBBhlkkEEGZyPdpFKhUAj/ga9//eu8+OKLTE1N4ff76enpwWw2c+utt9Le3i4C+sHBQUpLS1mzZg0TExOYTCZefvll/H4/WVlZlJeXo9frhc9QIpFArVZTWVmJyWSiu7sbr9dLJBJBqVRSU1ODQqFgbGxMSJGbTCbsdjtarZa+vj4xNyDNGFitVhFww1wqcPp+L1GKJWaAFDdIyYqUYKTHE1JcEolERFyhVCqpqqoS5qcSU8Fms7FixQpUKhWnT59mfHwcjUZDYWEhpaWlZGVlsXPnThKJBDfccIPwG3rwwQc5ceIEW7duZdWqVTz66KPCq+FCIZVKMTExIWRjJZrzuYzSpHuaSQg+JPz3//7faWlp4Ve/+hVw5ub4/X4GBwcJBAJiaEen013gM52Lrq4uduzYQX5+Pr///e85cuQIxcXF3H333bS0tJCTk0NLSwsHDhzAYrFQVVWFyWTi4MGDeL1eUbGQOIm9vb24XC7R8pNMP3p6eoQSD5xZ0BaLhVAoNCeAlxZ6PB5/2+/L5XJh9iVBUh9IJpNCrUjqKlitVsLhsOhamM1m1Go1OTk5pFIphoeHRQXDbDYzb948fD4fIyMjhEIhlEolFRUVLF68mEAgQHNzM6FQCK1WS1ZWFhs2bODw4cP09fVhtVqxWCwkEgk+9alP0dzczNjYGAqFgr6+PjQaDddeey0zMzNUV1cTjUZ54oknxKLs7OzMJAIZZJBBBhm8K6jVaurq6picnESlUvH1r3+dgYEB4S20Y8cO5HI5FRUVhEIh6uvryc3N5ZVXXkGtVuNyuQiFQixatIjCwkL27NnD5OQksVgMs9nMpk2biMfjHDp0iMHBQQAxZKzVamlpaRH7pNFopKioiHA4LByRQ6HQ2/x/pKFkSfEnkUiIfVuCNDCdPjMgk8mE2qK0Z0sD1kajEaVSOcfMTPJCKikpobu7W8wISuqAWVlZtLS0CLqSSqWiqKiIxYsX4/F4aG1tJRwOs3nzZux2O7Ozs5SWlvKrX/2KiYkJrr76aq655hrGx8e54YYbKCgo+Ghu+rvE5OSk8FKQlInSi9DJZBK1Wv2u6EUfBj72CcH3v/99du7cyZYtW/h//+//0dvby+bNmyksLKSgoOCCTXOfD1J77NixY/zHf/yHMObo7e1lwYIFnDhxghMnTlBVVUVjYyNdXV3k5eUxPDzMiRMn8Pl8wlFPGghONzErKSkBYHx8XMiNAkLnPxQKCQOyVCol5Mwk12IJcrkcvV7P7OzsHMqQJAk6OTkpqEGSZrHT6WRiYkJUJWQyGQ6Hg/z8fDo7O4Xkmk6no7CwkNzcXDo7OwUHUavVYrfbMRgMgiqk0+lENaW2tpbx8XGi0Sg9PT3EYjEWLVpEY2MjbW1taDQauru7CYVCbNq0CZ1Oh0qloqOjg+PHj1NWVsY3vvENfvKTn3Dw4MG3dUAyyCCDDDLI4N3AYDBw3XXXcfvtt/Pd734Xn8/H+vXrhfJOd3c3Bw8exOFwUFhYSCwWY+HChbz22mv09PRgMpkoKSlBo9GQk5PD8ePHmZ2dFUO7Wq2WVCpFNBoV+6pURS8oKGB4eJixsTHC4bCQ/ayrq6O9vV0E6TKZDJvNhl6vx+v1kkgkxL4n0Y+k/Rf+nAAkEok58YB03GKx4PV6BfVXMm4zGAy43W5hQKbT6YSHwtTUlFBBlOhFOTk5eL1ehoeHhSFoU1MTNpsNr9dLbW0tO3fuxO12s3r1aoqKimhra6OqqoqBgQG0Wi3f/OY3KSoqIplMXrCK+/kQCoWEUarVaqWsrIysrCyATELwYeLHP/4x3//+90Vw+pWvfIWvfvWrF+yCvxNOnTrF448/Tl1dHVdccQU//elP0el0bN68meeffx6j0UhHRwetra3U1NSwcOFC3nzzTXw+n1AGkJx8pUw0kUhgNpvR6/WYTCaSySSdnZ3EYjHUajVmsxmNRkMwGBTmKCqVCrPZjFKpZHp6es6wsEqlElbo6RrMarUak8k0x81YLpdjNpsxm814PB5BJZLkxbKysvB6vcJRUafTUV1djclkYmxsDK/XK2YCKioqcDgcQmFBkhrdvHkzkUiEqakpenp6GBsbo6ysjMbGRhKJBFlZWTz33HP4fD6qq6tZunQpJpOJRYsW8b3vfQ+/309NTQ3hcBiLxcLx48ffpiaUkRrNIIMMMsjgnSDNHJ7txVNdXU1RUZHw9Onu7qaiooJvfOMbgvayY8cORkdHKS4u5uabbxbmZfv27RPGWpLISSAQ4M033xSV/qKiIqqqqujq6mJ0dJR4PI5arRbFNpfLRVdXl9D8z8vLw+FwiIRBMiJVqVQ4nU48Ho8QDpGCd71ej9/vn6MqKNGN00VDpD1fp9MRi8XE3KE006jRaMT8onQ+dXV1QvZUkhhXq9VUV1eLomYkEhHKRg6Hgw0bNrB9+3bGxsZYunQphYWFJBIJbr75Zp599lk0Gg1f/epXeeqpp/D7/Tz00EMUFxd/9F+Kv4BYLMbg4KBIYsrKyiguLs4kBB803G43P/nJT/jBD35APB7ne9/7Hvfee+9F1xFIx4svvshjjz1GRUUFDz/8MEeOHKG+vp7Ozk5++ctfUlJSwpVXXskrr7zCwMAAHo8Hn8+HTqdj3rx5YvH39PSIYaKcnBzKy8tpbm5menpaGI/I5XJKSkoYGhp623CQxWIRBmbwZ+kxrVZLOBye00aUJEUlvWKp6iBRdSYnJ8UDQ5I+tVgs+P1+pqamxBCNwWCgqKhIJALJZBKdTiekQNVqNdu2bSMQCKDVaqmpqaGxsZETJ05w6tQpYTym1WpF5+T48eNkZ2cTjUaZnZ3lqquu4tSpUxgMBq666ipefPFFAoEAn//85/nlL39JV1cX09PT4rNpNJo5xmwZZJBBBhlk8E6Q9sv0/VNSxbvyyit56qmnKCsr48orr+TFF19Ep9NRVFTE66+/js1mE7TmdevWYTab6e7uxuPx0N7eDkBTUxNlZWUcO3ZMUFoLCgq49tprcblcdHd3Mzg4SDgcFmpCJpOJkZERMfunVCpxOBxoNBomJyeFGahSqSQrKwuj0YjH4xH7oUQblvb6dLENaa4wHA4LqVFpxsBqtc4pWMrlcmw2mxh6BkTsYLPZWLVqFSdPnsTv96NUKgWtJjs7m76+Pjo7O5mdncXhcGC1Wpk/fz4bNmzglVdeIRgM8vDDD6PRaBgZGaG6uprvf//7BAIBvva1r7FmzZqP+Jvw7pFIJBgeHiaZTFJdXf2RKVuejQ8tIRgZGeH/+//+P7Zu3UooFKKyspLHHnuMpqYm4EwW/V//63/lP//zPwkEAqxevZqf/vSnVFVV/VXv293dzb//+7/zm9/8hnXr1rFmzRoef/xxDh8+/EF8rA8VExMT7Nmzh+LiYg4fPsxrr73GmjVruO+++3jhhRfQ6XQEg0F++tOfMjU1RWlpKcXFxahUKjo7OxkeHhYPgKKiIoLBIF1dXQQCAUGxKS4uRiaTEQgERFYuk8koLCwEYGxsjGg0OseKXKfTCf3g9E6B0WgUKkPScZvNhtlsFnKmcKb1qFarsdlsgtKjVCqxWq1UVFSg1Wrp6ekRZmIWi4WKigqUSiU9PT1Eo1Hy8/PFnEd2djbt7e3iARMMBikrK6OhoUGoOWg0GiYmJlixYgUFBQW0tLSQSqU4fvw4ZrOZb3/72/T394vuybe//W2mpqawWCwEg8E5Ji0SMp2CDDLIIIMMzsb5nOutVityuZxQKERhYSH/8i//Qn9/v5jH+8EPfgDA4sWLicVirFixgkOHDnH69Gmys7MJhUIoFArWrl1Lc3MzLpcLk8kkquslJSV4vV5UKhWBQACXy4XRaKSmpga/309fXx8zMzPCHyBdmlRSFdJqtYKiIxmFyWQy7HY7Op0Oj8cjOP0SNUilUgnXYPjzkLFOpxPVf+m4lPAEAgG8Xq+gEkk0Yr/fj9vtFvLgNptNDEQPDg7icrlIpVKUlZVRUVFBMBikr6+PkZERCgoKePTRR/H5fBiNRm666Sa++93v0t3dzac//WmsVitTU1Ns3LjxnEO8FxOkuU+NRvPxSgj8fj+LFi1iw4YNfOlLX8LhcNDV1UVFRQUVFRUA/Nu//Rv/43/8D7Zs2UJZWRn/9E//xKlTp2htbUWr1b7n9xwYGODRRx/lpZde4hOf+ASPPvooCxYs4M033+S+++7j9OnTH7mM6F+Dl156iW3btrF27Vqi0Si/+tWvMJvNNDU1ceLECZLJJMuXL2fr1q1zhn9zc3PRarUMDQ0xPj5OJBLBYrGQm5srnJc9Hg+pVAqr1SpkzYLBIIFAgEQiIQaLJekvqSMgOQ9qtVomJibEcYlGJD2UJM6eQqEQgXxvb6+gDKnVaubNm0cgEBAeCFKrUdJY7u7uJhAIiPNctmyZMB+Lx+P4fD5ycnK46aab6OrqQqvVcvjwYQYGBnA4HNx2220YDAaWLFnC97//fTo7O6mtrRUD5AaDgRdeeAGDwcBXvvIV3njjDd58800hfZqO8xnRZEzJMsgggwwuP7yXPUHy3rnjjjuoqKjghz/8IWq1mk9/+tO0t7cLb6H+/n6WLVvGF7/4RQ4cOIDb7ebFF19kenqa2tpa5s2bB0BeXh7PPPMMoVCI7OxsAOrr6wkGgxw5coRgMCiC7bKyMoLBIAMDA0xNTSGTydDr9WRlZaFUKunq6iIejwuD0pqaGsbHx5mYmCAej4uugc1mIxKJEAqFxKyf1AGYmZkRLANpZlCaR5RmFVQqFVlZWeh0OjE4LbkTFxQUYDabkcvlDA0NEQqF0Ov1FBUVkZOTw9TUlPACksvlZGdns3HjRl599VXy8/MpKSlh//79KJVKHnnkEbq6uujo6OCee+5h1apVH+bX4APFxzYh+Id/+Af27t3Lnj17zvnzVCpFfn4+jzzyCI8++ihwZvo6JyeH3/zmN9x1113v+T3dbjf/9m//xsMPPzyHK3bo0CGuvvpqBgYGLqmEIBaL8fOf/5xIJMLIyAg7d+7E6XRyyy23cPLkSZRKJVqtlh07dmCz2WhqasLr9bJ//34CgQBKpRKz2YzJZCIvL4/Ozk58Ph9yuVyYidhsNrq7u4UCkF6vF/KkkiIRnBkU1ul0JJNJIQsmHbdYLKhUKjGQJCkMFBUVIZPJCIfD+Hw+YaoiuS0ODAwwOTkpBovLy8tRKBT09PTMcVusra0lkUjQ1tYmKE/l5eWsXLlSmK3s379fOAPG43Hmz5/PoUOH8Hg83HTTTSQSCbq6urjxxht5+eWXaW1tJScnh8nJSWE3f+LEibdVeM5X9ckkAh9PZO5rBhlk8F5wvmfGubrJarWapUuX4vP5hKy32+1m5cqVNDU18eqrr7JixQoGBwfZtWsXlZWVlJeX09XVhUqloqWlBZlMxubNm4lGo+h0Onbt2sXAwACpVAqbzUZDQwPT09N0dXWJ7oLZbKampoZAIEBPTw+Tk5MA2O12iouLmZ2dpbOzU5h7SnN/MzMzQs5ckh+VAvTp6ek5cYBOpyOVSs0pTup0OnJzc0XRTxpC1uv11NTUCAqT9Do5OTlUVFTQ398vkoxkMklOTg5r165FoVCwf/9+UqkUN998M+3t7eTn55OTk8Nzzz1HLBbjhhtuECqE99xzzwULrN8PPrYJwbx587jmmmsYHh5m165dFBQU8OUvf5nPf/7zAPT29lJRUcGxY8dYuHCh+LsrrriChQsXntMz4P2io6ODhoYGvF7vRZ8QpFIpWltbUavVGAwGvvOd7+Dz+bj++uvxer3YbDaam5vZs2cPFouFhx56iNHRUYaHh+nr66O/v5/p6Wk0Gg0LFy7E4/GIIaN4PI5Wq6W+vl6YZUjyYZLSQCqVIhgMvm0WQOI0pisNmM1mVCoVsVhMtB6lgR+pAiCZiVmtVoxGI0ajkZGREaanp5HL5UL6zG6309/fz9TUlKgAVFZWUlxczL59++jt7RVOxtXV1SQSCbq7u4lEIhQWFqJSqaisrKSyspLnn38evV5PMBgkGo1y3333EY1G6erqYv369Tz33HP09/ezfv16BgcH2bt3r1BUAsSMSfqcRAYfX2RoYBl81MgknpcP9Ho9sVhsjq6/wWDgpptuIhaLceTIERYvXsyGDRvYuXMnq1atore3l1dffVUU2+LxOJ/73Od49dVX8Xg8RKNRRkZG0Ov1zJs3j3A4TFtbG36/H7lcTl1dHYsXL6azs5Pu7m5x3G63U1hYyPDwsDD9SqVS2O12HA6HCNwlARCDwYDD4WBmZkYU/CQ5UZVKRSQSEXKlgOgCpJuZScPHVqtVDBkDoiNRX1+PUqmkvb2daDQqZhVLS0tRKBS0trYyOzuLyWSirq6OwsJCqqur0Wq1/OAHPyCVSnHTTTdRXV0thFL++Mc/Ul1dzfe+9z26urowGAyCmXIxQ0oItFrtBYtVP5SEQKL8/O3f/i2f+MQnOHToEA8//DA/+9nPuP/++2lubmb16tWMjo6Sl5cn/u7OO+9EJpPxzDPPfGDnMjo6SkFBAW63+31RkT5KtLW18eMf/1i0viQZ0Xnz5rFlyxZSqRRms5nW1lb0ej0Gg4EjR44QiUTE4nU6nUxPT4tBJEC05NxuN7FYTMwPSNy+YDDI5OSkUBMyGAw4nU6mpqbmuBPDGSk1jUbD1NSUaDVarVbR8hsdHWV2dlYMINXW1jI2NobP5xODSXa7nfnz5+PxeBgYGCAcDotho6qqKtxuN6Ojo+IzSvbv4XCYQCCAx+MR1uabNm1CLpezdOlS9uzZw44dOygtLWXDhg10dXVhsVh48803mZmZ4cEHH6S6upre3l7q6up49NFHGR8fR6FQoFAo5jy4JZyvS5BBBhlkkEEG6ZDJZMhksrcVGVQqFSqVShThampq+N//+3+zf/9+li5dyrPPPsu2bdvIz89n2bJlTE1NUVlZyQsvvIDf7+e+++4jNzdXSIbu2rWL2dlZrFYrubm5OBwOQqGQoM/6/X7i8ThlZWXo9Xq6u7tFxd1oNFJZWYler6elpUXs5alUioKCAvH7EsVXpVJRUlIi9t9gMCiYADabjWAwKKr/UichKysLrVbL6OgosVhMzAdIsqKSCaokP6rVasnPz2dkZAS32y0Giqurq1GpVIyNjeHxeIhEIhiNRlauXMng4KDwfBgfH8dsNvOZz3yGAwcOUFNTg8Vi4Sc/+QkGg4FvfetbwnfhYoX0nbmQCcGHIs6aTCZpamriX//1XwFYtGgRLS0tIiH4KGEymQCEbu/FDLVajVqtRqVS4fF4OHXqFKWlpWRnZwujrJtvvpmxsTFOnDiBTCYTQ7jl5eWEw2ExRJRMJsnNzSUrKwu5XE5LS4swAXE6nYJyJAXkEsVIUguQ3Iyl87JarUSjUSFDKnEFnU4n4XAYj8cjXBqNRiPz5s1jamqK/v5+/H4/ALm5uWIo6NChQ8zMzKBUKsnLy6OyspKRkRGOHDnCzMwMKpVKmI/19PQQCoXo6OggFotRWVnJihUrsNlstLS00NnZyeDgIPfffz8Oh4NFixaxdetWmpubyc7OFg7F1dXV/OQnPyEUCnH33XezdOlS9u/fz8zMjHjISZAW5NnJQKa6l0EGGWSQwbkgVXnlcrn4bzjjL5RIJERQvHLlSnbs2MHLL79Mc3Mz99xzDz6fj3g8LiRFi4qK+Ju/+RsGBgaYP38+P/nJTxgcHGTRokXceuutTE9P09bWRnd3Nz6fj+LiYurq6qioqGD79u309/dz4sQJQdVtaGigra0Nj8fD0aNHsVgsFBQUUFFRQVtbG16vl4GBAbKzs8VQr1S5HxwcFMPABoNBSIJLwbsUZ0jFxvHxcdEZkMvlRKNRsc+aTCZqamrE8LHH42F2dhafz8fChQuFbHokEqGzsxO9Xo/T6cRmswl35bfeeotEIsHGjRu57rrr+O1vfyv8GiTTtjVr1qDVatFoNKhUqgv8zbg08KEkBHl5eWIARkJdXR3PPfcccCYwBHC5XHM6BC6Xaw6F6IOAXq9HLpczPT0tBnAuVlRUVPD3f//3qFQqDh8+zJEjR3C5XKxfv5758+czNDTE0aNHBceusbFRGHt0dHQwNjaGVqulurqakpIS2tvbaW9vF/QXvV5PaWkpXq8Xl8slaDuSWoHP58Plcs3hDBqNRqLRqBhElhIBh8NBNBrF5/OJhKKoqEiYhnV1dREOh4VRit1uJxwOc/r0aWKxmOAjVlZWolar6e/vZ3BwUCgeLVmyBKvVKqzbS0pKaGpqwul0olKp2LZtGzMzM8LArLq6mj179rB//36CwSDZ2dnk5eWxePFiKioq8Pv9oroRi8U4deoUu3fvFm7JgOA9RqPR83YFMslABhlkkEEG7wSpmCbNqEWjUZLJJJOTk0xNTfHaa6+xZMkSQaOJxWLMmzePsrIydu3aJZSIdu/eTVtbG3K5nOrqauLxOC6Xi+PHj5OTkyOkRoPBIAcPHsTj8dDb28vVV19NV1cXp0+fZmJigra2NsrLy2loaGBqaore3l6mpqZoa2tDq9VSVFREXl4ePp9PzCAYDAby8/OFqZjL5SIcDqPT6bBarSgUCrxerxD5UCgU6PV6FAqF8Cnyer0olUoKCwvJyclhZGREeCFJ8wGlpaVCcvPw4cPodDoWLFhAaWkpnZ2dwl+osLCQhQsXYjKZ6OjooL29ne7ubk6ePCm8hQKBAIcPHyYcDnPFFVfwD//wD8Kb6VKA1GG6YO//YVCGPvWpTzE0NDRnqPgb3/gGBw4coLm5WQwVP/roozzyyCMATE1N4XQ63/dQ8fmQSqWwWCxs27aN+vr6D+x1P2x4PB6ef/55dDodMpmMn/3sZ0xNTXHddddRUFDA8ePHWbJkCU899RRerxe73U5eXh4ymYy+vj6mpqaEVFhubi7l5eX09vbi9/sFjy8nJ4esrCwGBgbEcE8qlRISoVNTU8KOHM7oDVssljmypZKigMPhYGJiQph6mc1mcnJyKCoqYnR0lJGRETFTID0c+vv7cblcKBQK0QmRhpDa2tpEMgKwdu1aBgYGxKD08ePHSaVS3Hvvvbz++uuEQiFBJ1q+fDl33HEHzc3NrFixgu3btzM6Osq9997LsWPHeO6554SNOyAeZNPT028L+DMdgQwyyCCDDN4tzjWXJFFmJPNPaQ7P4XDw+c9/HpPJxDPPPENDQwPLly/n8OHDXHHFFfz85z+npaWFgoICdDodeXl5zJ8/n2eeeQabzUZjYyODg4OiSr979250Oh1KpZKZmRkWL16MTCbD7XbjdrsZGBhALpcLdZ7e3l5GR0dJJBLo9XqKi4txOBz09vYyPj4uzM8kdT6PxyPkwaX5wFgsNse0TKFQYDKZhKmYpFQk7bOlpaUMDg7i9/tRKBTYbDYx4NzS0iJEUfR6vXDxDYfDjI+PEwgEKC0t5bbbbuOtt95iw4YNHD58WMyqfv3rX2dwcBCTycQnPvEJDAbDhfgKvC9IhdgLyWT5UDoE3/jGN1i1ahX/+q//yp133snBgwf5xS9+wS9+8QvgTJD19a9/ne9+97tUVVUJ2dH8/HxuueWWD/x8jEbjHMOpSwESJ/DgwYPk5+eLaXqn08nWrVuZmZmhqKiI/Px8srKyWLRoEQcPHqS9vZ2ZmRnBE9RqtczMzHD48GEh51VaWgqcoVG1t7czOzsrho4MBgOhUEi0BGUyGUajEafTidfrFXMJWq2WrKwsKioqcLvdDA4OCvlQm83G/Pnz6evr4/DhwyJxqK6uZtGiRezfv599+/aJh1BZWRmLFy9m//79jI2NoVAoSCaTwp1RkhHr6OggOzub6667jmuvvZbCwkKCwSAnTpxAqVSyadMmNBoNV1xxBf/3//5fOjo6GB8f56abbqKnp4eqqip+/etfMzExIR5asViMZDI5ZzhKmvCXhq4y+Hghk+RlcLEjM+x+6UK6b+n7iNQdkII9tVpNMpnE5XJx+PBhvv71r+P1eqmqquI3v/kNp0+fZmBggM997nPs3r0br9fL7t27GRsb49prr+Wzn/2sUPtpaWkhFouxcOFCamtraWho4PDhw/j9flpbW0kkEhiNRlasWAHA0NAQPT09DA0NUVtby9KlSzly5AhjY2N0dHQI6e6mpiaOHz/O9PQ0o6OjgiKcm5vL4OAgoVCIsbExIT4izSlKswbS76vVaqampvD7/UQiEWZmZnA6nVitVmQymehq+Hw+CgoKKCwsJBQKMTg4iM/nw+fz0djYyFVXXcXRo0fJycmhu7ub7u5uotEoS5cuFVSnvXv34nK5uOaaay6pZEDChRa++VASgqVLl/KHP/yBb37zm/z3//7fKSsr4//8n//DPffcI37n7//+75mZmeELX/gCgUCANWvW8Oqrr34o2ZHBYLgkEoJkMslLL72Ey+XitttuY3Z2lng8TmNjIyUlJUQiEQYHBxkaGhJOg5WVlZw8eZLt27fj9/vR6XQ4HA6Ki4vp6emhu7tbKBtkZWVRUlJCd3e3aN2p1Wp0Oh12ux2XyyXUmFQqFSaTiezsbLxeL0NDQyKDNRqNZGVlEQwGBa9fr9fT0NBAKpXC5/Nx+PBh4vE4ZrOZ0tJSDAYDfr+f5uZm4TZcXFxMfn4+RqORffv20d/fj81m45prrsHpdNLQ0MB//Md/0NXVRVlZGStWrMDhcNDS0iKkQ++99142btxIXl4eubm5HDhwQCQOgUCA+vp6du/ezcmTJwmFQpSWljI2NoZcLqe/v/9tngPS4FcGHy+kB1iZZCCDixHpAgaZZODSh3QP0++rJOWt0WjIzc0VRqJPPvkkR44cYcOGDdTV1eF2u7Hb7Rw/fpxAIMDmzZsF7WVycpJf/vKXhMNh1qxZw9q1a5menmZwcJCRkRFkMhlf+tKXOHr0KJ2dnezZs4eRkRFSqRQNDQ2UlZXR3d2Ny+ViZGRE+AEsWrQIr9fLyMgIAwMDuFwusrOzqaurE68/NDSERqNBqVRSUFAghoal5MRgMJCTkyPmAkZHR0XMIJmoxWIxRkZGUCgUVFZWsnjxYjH72NHRIToSTU1NYmZAmn2w2WzU19cLRkAsFqOpqYmNGzdSWlrK+Pg4w8PDzM7O0tPTwyuvvEJjYyPr16+/IN+B94oLnRB8aE7FFxMWLVrEI488ws0333yhT+Ud4fF4+Od//mfcbjcPPfQQDoeD0dFR6uvr+d73vsf4+DibNm1ifHyckydPEovF6OnpIRKJkJ+fz7x581Cr1QwNDQmHYrVaTU1NDbOzs7S1tYmgPpFIYLVacTqd9Pb2CvtwmUyGxWIRg0PpSgPFxcXE43ECgYBQLLBYLJSVlWGz2ejt7RUGIgaDgcLCQqxWK6dPn2ZychKFQkFtbS2LFi0iHA4Ti8XYt28fcrlcyIxVVlbS2tqK2+3m2muvZXZ2lr6+PjZv3sy2bdvo6OgAzgR1lZWV3Hrrrbz44ouii3LkyBHWrl3LvHnzOH36NIWFhfzwhz9kbGyMhQsXMjExwYkTJ8TnhTPdjlQqdU5DsnMpRmRwaSOjHJXBxYhM5+rjgfM9XwwGw9skSHU6HVdccQWxWIy2tjbq6ur40pe+RGdnJ1dccQXPPfcc3d3drFu3jqNHjxKJRLjpppv42c9+htvtFp2GpUuX0tjYyBtvvMGCBQvweDzs3buXiooK8vPzhaqPNBuwYcMGZmZmMJlM7N27l97eXlKpFA6Hg5qaGlwuF+Pj40xPT6NQKCgsLCQvLw+v10tfX584npWVhdFoJJFIiCKjQqEQEuTSTIIkP6rVaud4DSiVShKJBBqNhkWLFjE5OUlvby+JRILs7GwWLFiAzWYjFApx8uRJXC4XFouFmpoa5HI5K1euRKFQ8Nprr1FfX8+3v/1tdu3axYIFC9i/fz+/+c1vmD9/Pv/rf/0vFArFR/1VeE+Qrp0kfX4h8KF0CC42GI3GOZSQixVZWVmsW7eOsbExLBYLv/71rwGoqalh3bp1dHZ2Mm/ePJqbm4V6gCQ1qlKpRHtPGvqtrq5mcnKS0dFR3G634PBXVFQQCoWIRCKi7abRaCguLiYUCjExMYHf7xcmGQUFBVitVsbGxkTAr9PpsNls5OXlMTIyQnd3N8lkUlCAampqOHXqFPv37xfqCo2NjeTn57Nz504x+JuTk0NJSQkLFizg+eefF06L0t9IygXJZFIkITU1NSxatIjFixfz7LPPcvToUfx+P9dccw0ymYyKigr27t1Lc3MzV199NUuWLOHVV1/lwIED+Hw+ofWr0+kIBoOiaiNB2pjTVSIy+PggkwxkcDEi86z5eEB6vkjVXum+SjN9Wq0Wg8FAMBgkFArx2muvYbfbMZvNrFu3jt27d3PixAlMJhMNDQ04nU7y8/P51a9+hd/vp6ysjK997WscPXqUI0eO0NfXx+TkJGq1GovFIubw4vE4w8PDjI+Po1KpuO+++3jppZcIBAK89dZb+P1+7HY7a9aswWg00tXVhdvtZnJykrq6Oq677jqOHTvGyMgIw8PDjI2NYTQaqa+vF3OK0kxBbm4u8+fPx+fzMTo6yszMDKFQSMQPSqVSdCO6u7sxm804nU7kcjk9PT3CZdnhcDB//nw0Gg2BQIBTp04Rj8exWCzMnz+fwsJCMSQdj8cpKCjg9ttvZ3JykrVr19Lb28srr7zC3r17ueuuu9iwYQOLFi266JMBuDjW/2WTEEiL8WKGQqHgk5/8JAB9fX2iMj0xMcHJkyc5ceIEfr8ftVqNyWRiyZIlqFQqOjo6hKmIRqOhvLwcjUZDe3s7o6OjANhsNjEsLLkBq1QqbDYbKpUKtVqNx+MR8pvSsI9er2d8fJzR0VHUajVarRaHw4HD4WB4eJjW1lYArFYrlZWVwiZdov8UFhZSXFyMRqPB4/Fw7NgxgsEgGo2GefPmiUThxIkTuFwu8vPz2bx5MyMjI8I4LBwOU15ezqc//WmGhoaQy+UcOHCA0dFRodSwZs0atm7dyptvvklVVRXXXXcdDQ0NLFiwgOeee47x8XGhkKRUnvnaS4mGhHTOZwYZZJDBR4lMh+DjBelenr2vRCIRYfwlVfgDgQCTk5McOHCAT3/606KT/4tf/AKPx8Odd97J3XffzcmTJykpKeGll14iGAxy/fXXEwgEWLBgAS+//DK7du2ivb2dRYsWsXz5cnJzc3n11VfF/N+GDRvEwPDhw4eZmJjg4MGD6HQ61q1bx8TEBB6PB4/HQ3d3N1qtlsrKShQKBT09PUxMTDA5OSkGmgcGBpicnMTn8+F2u1GpVBQVFQkWQSQSYWRkBJvNRlFREdFoVCgljY6OkpWVxfz588V8wdjYGG63m9LSUqqqqggEAmKWoKWlBbvdTlNTE8PDw/T09JBIJPj9739PT08PJpOJZcuWiZmNiooKlixZcsHu//vBhaYMZRKCixRlZWXceeedHDp0iGPHjrFv3z7cbjcFBQUsX74cuVxOQ0MDL7zwAi6Xi5KSEkpKShgZGeHYsWOi6m8ymcjPz8disXD69GnhOCjJgUp8PsmFUK1WYzabUSgUTE5OMjk5STKZxGAwUFNTg9vtJhQK0d7eTiqVEgtayualNmBRURFr165leHiYmZkZBgcHCQaDzJ8/nyVLlqDRaOju7qa5uZne3l7uu+8+rFYr8+bNY/fu3ezbtw+z2UxhYaGYffjZz35GMplk2bJlQlZ05cqVgn8YjUbFlL5k1rJkyRIsFgs6nQ6LxcLMzAwTExPiYS2TyYSbZGZ2IIMMMrhQyCQDH0+kG07J5XLC4TDxeJzJyUnkcrmQXo9EItjtdlatWkUikRDzfalUSvxuUVERy5cvp7e3F7VaTUtLC4cOHaK5uZm77rpLDPXu2bOHeDzOpz71Kb70pS/hcrkoLi7mpz/9KW63mwULFnDDDTeQSqXo6uoSxmXZ2dnMnz8fvV7Pnj17cLvdeL1ejEYjjY2NKBQKEUdIg8N5eXlYrVZaW1tFAqBQKMjPz2d6eppQKCSGipVKJeXl5ajVanGuEo1pwYIFjIyM4PF4cLlcDAwMYDAYWLp0KRaLhe7uboaGhjAYDKxduxa73c6SJUvYtm0bfX197Nq1C6vVSm1tLddddx1Wq/UC3vVLE5dFQmAymS4JyhBALBYTlfK+vj5ef/11qqur2bx5Mx6Ph9LSUp566imGh4eRyWRs3ryZzs5OtFqt8CiIxWJkZWUJBz+v1yucB7Oysqiurqa9vV1IgUozAnl5eUxPTzM9PS28C8xmM/n5+SiVStra2piZmUGtVlNQUEBubi5arZahoSFGR0eJx+Pk5ORQU1NDaWkpzc3NDAwMCBUkh8PB8uXL+cUvfsHw8DBOp5O8vDzKy8s5evQozc3N+P1+LBYL+fn5NDQ0UFpaKozPJicnhdmJVFU5duwYfX19zM7Ocu+991JdXS3oRxMTE8hkMmprazlx4oTQOpZcFjUaDaFQ6G3JYoZjnkEGGWSQwV+Lcw0USwZfoVCIZDLJ6Oio6NaXlZWxfft2nnzySWpra/na177G6dOnaWpqYsuWLYTDYY4ePcrU1JSQ/AyHw0xMTBCJRKivrycvL4/m5mZGRkZQKpW89dZb9PT0cN1111FZWYlMJmNgYIBjx45RV1fHAw88wO7duxkfH+fYsWOEQiHmzZvHtddeS0tLCz09PUxOTnLixAlKS0upqakhFAoxOjoqaMRms5mamhpisRiDg4PMzMzMMSeT3IZnZ2fp7u5GrVaTm5tLWVkZp0+fFmalUgEzKyuLU6dOMTU1RXNzM9XV1dTX11NRUcH8+fPZv38/hw4dYmRkhJtvvpm8vDyKi4s5dOgQLpeLhoYGqqqqGB8fp6Cg4JKgDF1oDwK4TIaK/+Zv/oZ4PM7//J//80Kfyl/Ef/7nf3LkyBGuv/56CgoK+P3vf8/KlStxu90cOnQIp9PJyZMnGRsbY+PGjfT399PS0iL4+2q1WpiVtbe3MzU1JSrmGo1GOANKXHqr1YrFYhGug7FYDJlMhs1mE7MJUuIgfWHLy8uZmZnB4/Egk8nIz88nLy9PuAQeO3ZM6A7H43FWrFghjM2WLVvGrl27mJiY4NZbb+X48eOCquT3+1myZAm33347+/fvZ8mSJbz55pu43W4++clP4na70Wg09PT08Pzzz6PRaPi7v/s78RBxuVw88cQTlJaWYjQa2bFjh/BGkKRVpQHieDw+Z4g4M0D88UaGjpHBxY7zFSIy391LH2c7F8tkMtRqNSqVimQyKeSv0408b7zxRmEg9sUvfpFYLEYoFOLUqVP88pe/RKVS8dBDD5FMJrFaraRSKZ599lnmzZvH4sWLOXnyJKtXr+aXv/wlbW1tOBwOjEYj5eXlOBwOtm3bRkVFBQsWLGDfvn3YbDZSqRSnTp0ScuVKpZJVq1YRDAbx+XwMDAwwPj6OQqGgoKCARCIhaLypVAqdTkdhYSHT09PCMC2VSqHX68nOzkYul+P3+wkGg8jlcnJzc7FYLKhUKkKhkNirs7Ozqa6uFolEJBIRsulNTU0oFAoOHjxIdXU1paWl+Hw+brjhBjH0/OCDD7J9+3YOHz7MjTfeeNELygCiKyRRmi8ELpsOwdDQ0IU+jXcFyTgsEAiIQZpVq1bx2GOPMTk5yfLlyykrK+Ppp59mx44dBAIBAAoLC6mqqhKyYS6Xi1QqJUzJRkZGaG1tJZlMYjQacTgcWK1WZmdnGRwcFBPuBoOB7OxsMQsgqQNI+sDSfIDkQlxaWkpZWRnj4+PiwZBIJCgpKWHhwoWiwtDT04NOp+Paa69l48aNwk785MmTzM7OsnLlShwOB6tXr+ZXv/oV7e3tuFwuNm/ezMzMDPX19fziF78gHA5jtVopLy+nsLAQhULB3r17ufHGG4VBWm5uLtPT03R0dIhEQJJW9fv9QoJWysalc85suh8vKJVKoeiRubcZXOxITwYy392PF9K9CaTEIBqNEo1Gyc7OJjs7WxTN+vv78Xq9fOpTn8Jut6NQKMjOzqalpYUDBw6wZMkSFi1aJOivAwMDFBYWcv/99zM7O4vNZuPJJ5+kra2N4eFhHnzwQfbt20dPTw8nTpxgenqahx9+GLvdjtVqZWRkhPb2dpRKpeDuL1iwgNdffx23282BAweYnZ0lJyeHuro6FAqF8DKQEoCSkhLa29vx+/3ChdhkMmG1WoUE6fDwMCqViurqaqLRqJibGBsbQ6lUigHq/v5+IpEIXV1d5ObmUlxcjMlk4tSpU3g8Hnbv3o3VaiU/P5+77rqLtrY2oXy0ceNGdu7cydTUlHj9qampC3z3Lx1cFgnBpTRD8MADD7BmzRqKi4v5X//rfzE0NERWVhY33HADiUQCnU7Hm2++SU9PD2azmSVLlmC323G73ezdu5fp6WmcTieLFy/GYDBw+PBhjhw5Iir/ZrOZsrIyent7GRoamuOaWFpaSl9fHy6Xi1gshkKhoKioiMLCQsbHxzl06JDwHKisrKSkpISBgQF2795NPB7HZDLR1NSE3W5nYmKCXbt2MTw8TE5ODkuXLsVsNnPq1CneeOMNdDod999/P9dcc40wS9u7dy+nT5/GbrcL1QKPx4PFYsFqtYquw4IFC1Cr1eTn59PT08Pp06cpLi7mE5/4BNdddx3Lli3jRz/6kXBWtlgs9PX1MTw8LD6vlJBIikYSzlaGyODShRRQZZDBpYbMd/fjgbMN5qT/tlqthEIhZmdnmZiYwOfzodPpqKysxOVyAWf2os997nOcPn2avLw8fv3rX3Pq1ClKS0tZvnw509PTVFZWCsEPu91OKpXC7/czb948JiYmyMrK4vDhwwQCAe68806KioqwWCwMDQ2xZcsWtFot11xzDatWrSIWi9He3k4gEGBiYoKcnBwaGhro6+sTlFuNRkNlZSWrV69mcHCQ0dFRETMUFBRQUlJCX1+foCqr1WqMRiNFRUVC0bC3txcAvV5PVVUVXV1dRKNRWltbRYdk/vz5BINB2tvb6erqwuFw0NjYKLwSpOTgwIED1NfXo1QqufLKK9m2bRtPP/00XV1dPPzww6xZs4bGxsaP/sa/D1wMlKHLIiEwmUyXhDEZgNPpxOl0kkwmWbx4MXq9HrPZzA9+8AMOHTpERUUFixYtYtGiRTQ0NDA4OMiePXuAMzrHBQUFqFQquru7xaS/UqmkqqoKrVbLxMQEHR0dhMNhVCqV0P+XMvJQKIRSqSQvLw+bzUYgEODw4cOkUilMJhOFhYXCaKylpUUMEJWUlLB06VJGR0fZunUrqVSKwsJClixZwhVXXMHhw4fZt28fWq0WlUpFdnY2er2egYEBrFar4FRqtVruueceTp48SX5+Pn/4wx8wm82sXr2aW265BY1Gw+joKG1tbfT393PbbbdhMplYtGgRjz32GCdPnsTv91NeXk5OTg4+n4/BwUHi8bhQGAqHw0QikTlyo2q1mtnZ2UwikEEGGVxUyLgWX7pINyeTyWQi0ZM6+yqVCq1WSywWIxqN0tfXh06no6ioiLKyMp555hkOHjyIy+Vi7dq1FBcXY7fb2bFjB0qlks2bN1NSUoLFYhHFObVazQ033CBkzP/4xz8Kzr8kE3r11Vdjs9kIh8Ps2LGDSCTCxo0bWbx4sXD7bW5uRqVSsXTpUq677jr27NmD1+ulq6uL0tJSFixYQHFxMX19ffj9fnp7e+nv78fpdFJXV4fH48Hr9eLz+cR8oV6vFyIj4XCY2dlZcnNzhZmZlGD4/X7BBHA4HExNTXHkyBFUKhUbNmwQAipms5nf/OY3ggZ9zTXXUF9fz6pVq8jJySEnJ+dC3fr3hItF4vyySAgupQ6BBLlczqpVq2hpaeHFF18UAa3E8wsGg4yNjQneXkVFBdnZ2Rw8eJC+vj6hAFRZWYnZbCYQCAgbc5PJhMViwWg0imFdhUIhKvE2mw23201PTw9wxnOgrKwMs9lMX18fhw4dwmAwiNmB8vJyTp48yb59+1AoFOj1emGUNj4+LuTH4Iynwvz586mqquL111/n+PHj5Ofnc/311zNv3jyWL1/Or371K3bv3s369etZu3YtAKOjozz++OPY7XZuuOEGli9fjt1up7S0lB07djAwMIDdbicYDLJr1y5ef/11UXWxWCwolUrBXTz7OstkMjFEncHHBxnudQaXKtKTgEwycOlD6kIrlUohiwkwOztLIpHAaDSSlZXF7OwsPp+P48eP841vfIOFCxcKatD+/fvR6/VcddVVTExMEAqFSKVS/O53vyOZTPKZz3yGRYsW4XQ62bdvn+gsPPTQQ2JAt6WlRVBwH3roIYaHh9m/fz/d3d0Eg0FsNhsajYalS5eiUCjw+Xx0dHSQTCYpLi5m9erVDA0NEQqFBDNAEg2RlIEkie/s7Gxqa2sJBAKEw2H6+/sBxL49MzNDLBZjaGgIl8slqEpTU1Mi/hgcHKS2tpYrrriC3t5eRkZGiEQizMzMEAgEUCqV2O12QRF66aWX0Gq1LFu27ELd6ksamYTgIoPX62Xv3r1UVlYyOTmJy+XCarVy6623Mm/ePOx2O7/97W/p6+vDbDZz/fXXo9fr6e3tpbW1lampKXQ6HQ6Hg+LiYk6cOMHAwIBQ1cnJyaGwsJB9+/YxPj6OXC5HqVTidDqFM/LAwACzs7PodDrmz5+P0+mkpaWF7u5uYrEYVquVhoYGDAYDra2t+P1+fD4fWq2W9evXMzExwczMDM3Nzfh8PsxmM7fffjsNDQ3U1tbywgsv0NnZyaJFiwiFQjQ1NXHy5EnGx8fJzs5m2bJlTE1NsXr1ao4fPy7MSaQHqWTo0tjYKIaEE4kEw8PD9PX1CXt0hUIhkgTJjwH+LDV69mBxBh8vZJKBDC5VZJKAjyekDoEkJyqp/E1NTTE1NUVhYSE2mw2v1ysC+EgkgtvtFgp5FosFh8MhZL5TqRTJZJI33niDzs5OysrKWL9+PVqtloaGBk6cOMGLL75IQ0MDn/rUp+jp6cFisfDyyy9jsVh48MEHOXXqFA0NDTz++OMcPXqU3NxcCgoKaGxsJB6P09zczPDwMIFAgFQqRVNTE3q9npaWFgYHB3G73RQVFXHDDTfQ0dFBT08PXq+XyclJDAYDlZWVDAwM4PP5mJiYYGJiAovFwvLly+nq6sLv94u4w2QysXjxYjo7OwkEAgwNDREMBsnLy2PNmjUsXryYxx57TMiS3nzzzXg8HmpqanjhhReYmprC5/OJc9iwYQNGo/EC3/m/jAxl6COC2Wxmenpa8McvZrz55ps88cQT1NbW8u1vf5s77riDoqIienp62LNnD0VFRaxcuRKj0YjRaOTxxx+nr69P2IvX19djNBrp7Ozk4MGDRCIRjEYj8+bNY3h4WBh+RaNRVCoVhYWFqNVqfD4fp0+fRi6Xk5OTg9PpRK1WE41GOX36NFNTU5hMJvLy8igsLGRmZoajR48SCoWorq7m+uuvp7y8nEgkwssvv0wqlaK8vJza2lrWrFnDL3/5S1wuF5s2baKoqAiVSiU8BCR3ROkfjUZDU1MT9fX1vPHGGwQCAXJycti0aRM2m42XXnqJ3bt34/P5+Od//mduu+02srKy+NWvfoVCoSA3Nxe73c7+/ftFVQLOLDiLxUIwGHxbgphpy198OF+FP1P5zyCDd0bmeXbxIf2ehMNh4AxlyGAwCAqRJCeu0+lYtmwZExMTuN1udDodd9xxhyhibdu2jYGBAZqamnjkkUdIJpO8+OKLBAIBAoEAN910E+FwmEQiIURKpKTC6XSyYsUK+vv7MRgM/OlPf2Lv3r2cOHGCa6+9Frlcjsfj4fDhw5jNZv72b/+WqqoqhoeHhZT45OQkixcvZsWKFULExOv1cvz4ccxmMw0NDYTDYcbGxgSdJysri5qaGvx+v1Ag2rt3LzKZjIKCAsxmMx0dHfh8Pg4fPkxNTQ1r1qzB6/UKE9TW1lba2trIyckR5mh79+4VCoUPPPAAMzMzWK1WfvSjH+F2uzEYDFx55ZUX6rZfUrgsEgKj0XjJzBCUlpZSWVnJvHnzeOWVV9izZw/XXHMNpaWlVFRUMG/ePMxmM1u3buX06dPo9XocDgcVFRXI5XJaW1uJxWKoVCpycnKwWq0kEgm6urqE8pDdbqesrIxoNMrExATT09MolUqysrIoKipCq9XS1tZGJBJBr9dTU1PD4sWLUSqV9Pb2cvjwYQwGA6WlpdhsNux2O2+99Ra9vb00NTVRV1eH0+lk/vz5gg8oVTIcDgdVVVVUVFTg9/sZGxvDarVy5513cvToUWQyGc8++ywTExPY7Xbuvvtuenp6WLlyJSaTCYDa2loWLlzI6tWr2b9/P8899xzV1dXccsst9PT0cPToUcFPhDMPXUB4F0iQjs/OzmY2z48Y5wvqz6euYjAYRBKXfjwT+GRwOeFs+cp0aLVaQc1MXxPnkzPNrJ2PFtK1ltyJ4/E4s7Ozgvoi3Y9EIkE4HOb111/HYDCwfPlyNm/ezB/+8AcmJiZ44IEHWL16NUajkaqqKsrKygCED8+SJUvYs2cPW7Zsoba2lk2bNrF27Vrq6+t54oknRIf8tttuE5RhQHgQ5eXlcfXVV7Njxw5SqRSjo6O8/vrrTE9Ps2rVKvLz85mamuLUqVNEo1Gqq6tpaGggmUzS09NDd3c34XAYo9FIQ0MDbreb8fFxMaxss9koLy9Hq9UyMDDA1NQU09PTFBcXU1lZCUAwGBTKhZLHQU5ODkNDQwwPD9PR0SEoTEeOHMHn81FSUsKOHTs4ceIESqWSyspKjEYjJSUlF+aGX4K4LBICk8l0yVCGpMq4RqPhhz/8IePj44yOjlJQUMDMzAzHjh3DZDKRSCSwWCysW7eO8fFxRkZGGBsbIxaLUVBQwPz58/F6vRw9epRgMIhKpRKeA3K5nPb2dhKJBFqtViQIVVVVnDhxQvzMZrPR1NQEwP79+wmFQthsNvLz81m5ciUej4fW1lahlZyVlUVpaSnDw8OUlZXR19dHe3s7NTU1fOYzn2F6ehqTycRjjz1GXV0d3/rWt7j77rtxOBz4fD727dtHX1+fmIew2WzCjKWmpkYkBMXFxdx///3U19fzxz/+kdHRUSYnJ3nttdc4dOiQ0HPOzs5GpVLh9/tFRQbObJCSR0JmQ/zo8G6kFNPVVdKThvOt37PvX/p7ZJDBxwEqlUoUN9K/72cn1ekiCek/O5/JYvprZdbNRweJzqpSqUgkEiI5gDOxitFoZHZ2lsnJSbxeL9u3bycSiQh6byKR4MEHH2Tv3r1kZ2eL1x0aGmLr1q2cPHmSq6++mvnz55Ofn8/zzz9PJBJhxYoV3HfffSSTSex2Oz/5yU9wuVzceeedwiSsra1NeBZUV1cTDAYpKCggFArh8Xhobm5GrVazfPlyZmdnOX78uKjeG41GFi9ejMVi4ejRo0xOTnLkyBFqamq44YYbBH15amoKj8eDUqmkurqayclJpqen8Xg8jI+PY7PZWLVqFQqFguPHjzM2Nsbk5CSFhYUsWLAAvV7PG2+8QSwWY8+ePQwNDWGz2UgmkwwNDQmztK9//evE43HUavWFutXvGReawaKUTmD9+vXs3Lnzgp7MhwVphkDS2r/YodVqAbjzzjtF5X7Lli3s3r0bu93OAw88gEKhQKvVitaeVquluroau93O6dOn+dOf/iQoUjabjZqaGoaHh4XxhzSMLLX2pMzbZDJRUlIiZhgk3mA4HCYrK4uVK1ei1+upqKjgyJEjTExMUF1dzTXXXENjYyOvvPIKBw4coKysjAcffJClS5fS1NTEf/7nfzI0NERTUxNFRUWUl5fT3NzMjh07WL9+PaWlpeTn51NcXMxXvvIVFAoFw8PDwoHR4/HQ3d0tjNHS7eCHhoZIJBIkEgnhpeBwOBgcHGR2dlZw81QqFWq1munp6bdJjSqVSrHpZvDh4L3SfCR/iPeCTFCTwccN53suvdN6eq+0ukxh5MNHemIn7VeS5HcoFCKRSDA9PU0wGBQeP6Ojo8Tjcbq6ukSRzmAwiNeIRqO88sorWK1WYRaqVqupqanhe9/7HtPT0/zgBz9gZmaG3NxcXn31Vdrb2zGZTBQUFKBUKuns7OTo0aMkk0k+8YlPUFlZSTwe5z/+4z+YmJgglUqJweTjx4/T39/P8PAwV199tZDu3r9/P9PT0xw9ehSz2czixYuRyWQMDw8zOTnJtm3bUCqVlJSUEI/HaW9vZ3Z2lq6uLjQaDUVFRZjNZrq7u5mZmWH79u3i9xsaGsTA8vDwMHfffTfXXXcdWVlZaDQaIasudRJKSkoE9elSSgYuBih//vOf89BDD/HlL3/5Qp/Lhwaz2UwqlWJmZgaz2XyhT+cvIhqNigp2W1sbR44coaioSHQPjh07xltvvYXT6WTVqlUsWbIEm83G5OQkhw4dwuv1AmfMyvLy8hgdHRX24AqFgtLSUsxmMzMzM3R1dTEzM4Ner6e2tlZwBaVMW6VSCbqQTqfj8OHDeL1err76am677TZ6enpYvHgxr732GsFgkJycHMrLy1mxYgV9fX0kEgmuuOIKbDYbwWCQpUuXIpfLGRkZwePx0NPTQ25uLk1NTVx55ZUsXbpUUHmKior47Gc/SzQaRa1W8+STTyKXy7nvvvuwWCzAGfk2rVaLXC6noqKC3bt3E4lEGBoaEqZkNpuNmZkZIpHIHDUhqdqSSqXmbLoZjvoHh/NVKtMpQOlIr1Sez6gpHeejQ2SQwccR70TzSV8L76b6n06lfafOQwYfDKQ9RnKijcfjpFIpYZxlMBhQqVRMTU0Ri8UYHBxEJpNhtVpZtmyZcBCemJgAztyzkydPsmXLFrKysviHf/gHHnroIfLz88UQrcVi4d5776W9vR2NRiMGfg8ePIjf72fhwoXCp8dut6NWq2ltbSU7O5tVq1bR1taGwWCgubkZgM997nMcOnSIuro6du7cyb59+ygsLOSKK64gFAoxMTFBW1sbXq+XvLw8CgoKKCgo4NChQ/T39zM2NobZbBZ0nrGxMVwuF729vZhMJux2O4WFhXR3d+Nyuejo6GBqaoqlS5dSXFwsREB2795NNBrluuuu45ZbbhHKin/84x8pLCzk7rvvFt5LUjxxMeNiWW/KRx99lH/8x3/kE5/4xIU+lw8N0uK4FBKCoaEhfvazn2Eymbj//vvJyclhZmaG6667jhdeeEFU6yXr86ysLCYmJoQLsUKhoLKyEpvNxtjYGAcOHBDW5uXl5Wg0GuLxuHDx1ev15ObmsnDhQmQyGW+++SZTU1Pk5+fT1NQkTD2eeuopITFWXFxMfX09O3bsYGpqCr1ej1KpRK/Xc9NNN6HT6cjNzWX//v1Eo1GGhoZYv3490WiU8vJynnzySSYmJvjkJz9JXV0d9fX1PPnkkxw8eBC3281nPvMZ8VkWL14MwMTEBKWlpchkMpxOp6AArVu3TlQu9u/fL2RFpaHrcDiMz+cTC06iC52dBKTjYlmclyrSg5bzXcv0ZECn04n7mR64pL/O+ahEmWQgg8sJ7xS4n931lH6WvnbS19r55uoyMzofLqT7oVarheS1VLCUOv8Gg4FwOCyC7AMHDlBVVcWaNWtYsWIFcOa7IPkCZWdnk5ubS2lpqXgfqWP+xBNPcOLECfx+P/fff79Q+zl58iSxWIx/+Zd/QavVUlRURGdnp/AAamxsxGKxcO211/Lkk0+STCaF0anf76ehoYGhoSHC4TBbt24lKyuLL3zhC9TV1QnVw9bWVnJzc1m+fDl5eXm0tbUxOTlJd3c3Wq2WsrIyrFYr0WgUl8tFT08PQ0NDVFRUUFpaitfrZXp6mgMHDqBUKikuLiYrKwuVSkU0GsXn82G1WikrK2Pjxo34/X4KCgoIBAL89Kc/RaPR8PDDD4sC4sWMC00XAlCuX7+e73znOxf6PD5UqNVqQRW52DE6Osrg4CAmk4lAIEBTUxN5eXnEYjFGRkYwGo1cf/31aDQaWltbefzxxwkEAmg0GmpqarBarfT19dHT08PMzAwajYasrCyqq6vZv3+/eOjo9XrsdjsrV67E7XZz4sQJcTw3N5d58+bR19dHd3c32dnZWK1WrFYrq1atQq1WE4lEaG9vFzJoS5YsYf78+Rw9elQ8MDZt2sTY2BjhcJinnnoKpVLJo48+yq233orP5+Oqq64SCzU/Px+n00lOTg7PPvssR48e5ZOf/KRICOx2O9/85jcB8Pl8dHZ2curUKf7pn/6JU6dOEYlEhIqQ9DCV2p3wZ6lReDsfPVMR+2DxXgOI83Vnzvc6mfuVQQbvXLhI/9n5koN3g0zn4MOD1K02m83CmCyRSBAKhYhGozgcDqxWK+FwmEAgwMGDB2lpaaGrq4tvfvObhMNhysvL+c53voNSqZxDh37ttdfYunUrN9xwAwUFBYyPj5Obm8uCBQtYsGABo6OjyOVyqquraWtr49lnn8VgMHD33XezatUqSkpK2L59O4FAgPXr1/PFL36R0dFRtm/fzujoKKFQiGXLlnHttdeiUCj405/+hFwuF7Ll4XCYDRs2cOTIEaLRqFATamxsRKfTsW/fPoLBoPBGstvtrFixglOnTjE9Pc3IyAiBQID8/Hxxvp2dnZw+fZrR0VE0Gg1XX301y5Yt48UXX0Sj0ZCXl8dtt90mYqXBwUHUajUej+eSSAjgwicFyieffPKCn8SHDZlMdskoDS1cuJB7770Xo9FId3c3jz/+OGVlZfzjP/4j11xzDYFAgEgkwrFjxxgbG6OgoIDFixdjMBjo7Ozk8OHDyOVy8vLymD9/vrAj37dvHzMzM6LCXlJSIjwPVCoVGo2G+fPnY7PZ6Ojo4MCBAwQCAWZnZ9m0aRMajYaqqioOHDhAb28vmzdv5tZbb8VgMKBQKHjmmWe44ooruOqqqxgeHqa2tlYYrPj9fuFQHAwGOXbsGE6nU3AhAe666y6uvvpqsrKy+Na3vkVraytdXV0iIYA/qwJt376dX//612i1WmGHnpOTg9lspquri5GRkTkOkSaT6ZxSoxKnM7PJfXg4X4UxfT2mBylarXbOALgEvV5PKBQCMnznDDI4F9JVhtJhNBpF5zQ9+T7fnng+Gl7mOfne8W7U1CTKkFKpxGAwEAwGSSQSwifIarVSW1uL2+3G5/PR3NzMV7/6VUKhEAaDgfXr17/t9U+cOEFrayvFxcX8zd/8DbfccsucAWSTyYTf7+fAgQOsWbMGnU6HRqPhueeeY2JigqamJq655hp8Ph/z58/nZz/7GR0dHVx99dWo1WrMZjNer5edO3eyYsUK7r33XkZHRykrK2Pr1q24XC7cbjcOh4O6ujqhPtTW1iYYCxUVFbS3t+P1evH7/ezfvx+j0ciqVauIxWIMDw/T1dUlnJHXrl3LxMQEw8PDDAwMCGnWBQsWUFVVhU6n49lnn2VycpIvfvGLfPrTn0alUlFeXv7h3NwPGBdDHK6UlFs+7jAYDJdEQqDRaLjmmmsAOHToEPn5+RQUFLBv3z62bNnC7OwsK1eupKamRph4vfzyy3Nc+/Lz89FoNGJQOBqNYjAYBD+/v79fSHw6nU4aGxupqamhrKyMLVu20N/fT35+PvX19axdu5atW7dy6NAhqqqquPLKK8nJyWHVqlX87ne/w+1243Q6gTNf6MHBQZLJJCUlJfj9fuFY+OUvfxmlUklLSwtHjhzBbrdz7bXXkpubC5zZhBwOBwB33303nZ2dwqU4HcFgkFdeeYXe3l5KS0tZsmQJg4ODDA8PMzw8LNqver0etVotHA0lpPM3M0PEfx3OF+ybzWaxyaX/PH2oLn0tpgcm6clAeoAjJQMZZJDBuSGtFYlOKvGt093Z0xPr9DV4vtmdrKwsfD7f294rM7vz7vCX1NRUKhWpVIp4PE48Hmdqagq1Wo3RaCQUChGJRAgEApw6dQqj0UhlZSXFxcV0dHQwPj7OH/7wh3MmBLfccguFhYUsW7YMpVIp9lYJ/f39HDp0CJlMxpVXXsm3vvUtZDIZ//Ef/4FMJkMul1NWVib2VUmYY3BwkLGxMYxGI1dddRWxWIzs7GyeeOIJ3G43mzZt4t5776W5uZn+/n7a29vRarXcfvvttLW10dHRwcmTJ+nt7aWvr4+CggJqamoIhUJ0d3fjdrvZv38/xcXFQtZcki0dGRkhLy+PW2+9lR07dlBdXc3OnTs5dOgQeXl52O12cnJy0Gq1FBQUUFFR8YHfz487LgvZUZlMhslkuiQSgnQ0NTVx4sQJOjs7hZGH5C/g8XjQaDT09fUxOztLdnY2TU1N+Hw+Dh48KBIEh8OB3W7HYrEQjUbp7+8XbsYlJSU0NjbS2trKsWPHWL9+PcuXL6eoqIg1a9Zw+PBhOjo6UCgUGI1GCgoKMBqN5Ofnk5eXRzQaJRKJsGrVKqxWK3K5nD/+8Y+0traSlZXFpk2bRMYvtewaGxu57rrryM7OFonE2ZDamueCwWBg7dq1jI2NYbfb6ejoEImASqXCbrejVCoJBoNzEgG5XC42sUyF+YPB+bTOpWTg7OPpCdi5THpgbkXtfFSidB702T/LIIOPM87+rktrQaouSh4F53vGpTuzn49KlL5m05OB9OOZZOCDgSR8kS5BGo1GicViWCwW7HY7kUiEyclJJiYmCIfDRKNRioqKMBgMbNiw4ZyvW1VVRVVV1Xnft6qqiuuvv178t6Rs+OUvf5ljx46xZMkSfvSjH7Fr1y5isRh2u501a9bgcDhoaWlhZmaG6upqurq6iMfjQhY9Ho/T19eH0+nkyiuvZPfu3VRWVrJjxw4OHDhAcXExmzZtYt++fYyOjuLxeMQsxLJly/B4PHi9Xrq6uujs7CQ7O5s1a9aQTCY5evQo0WiUvr4+dDodWq1WSLBPTEywc+dOfD4fV1555SWZDFwUHYILfQIfFc6nanIxQlIEWrBgAR0dHXR0dHDTTTdx1113EYlEOHToEAcOHECr1fK1r32N2tpaTp06RUtLCyMjI8zMzGA0GqmpqWF6epr+/n7i8TgWi4WioiIcDgcGg4Fjx46xa9cu0aosLCzE4/EQCoWE3KhGo+GTn/wktbW15Ofn86c//QmVSsW8efP4xCc+wezsLFarlaeeeopEIsG6devIyclh4cKF/PznPxdzD1K132azcf/997+v6xKPxxkfH2dsbIyhoSE6OjqAM/c2JycHtVpNf3//HKlRuVyORqMhFAq9jQ8rKTll8NfjfAGCtNGdDaVSKTi06T/X6XSigpl+XKVSid8/m1KUSQYyuFxw9nddWgupVGpOBy49mU7f+863ptKh1WrPuVdmkoAPDukdmWQySTKZFNTmcDgsTDQDgQA6nY7y8nJCoRDT09P09fUxNDSE0WhkeHiYsbExcnJykMvl7/r9tVotd99999uO7927l5dffpmenh6uuuoqVCoVZrOZbdu2kZOTw7e//W1RFDx9+jR//OMfsVgs3HjjjQwMDLB48WJ+//vfE4vFGBgYEPuuw+FAq9UyNjbGwMAAdrudW265RSQAnZ2dhMNhNBoNZWVlOJ1O+vr6CAQC7Nmzh9LSUhoaGlixYgVer5c33niDzs5ONm7cyM0330xubi4+n4/29nbhm3Do0CEhcZ7Bu4NyfHwcmEvZ+DginUd5McPtdvOLX/yCYDDIQw89xJ133klnZydZWVk89thjxGIxysvLWbx4MdFolEOHDnHkyBEhHVpSUkJBQQHhcJi2tjbcbjeJRIL8/HxWrFghFIlSqRSxWAyn08nKlSspLCwkHo/z2muvkUwmWbx4MXfddRcVFRUcP36cnTt3UlVVRWNjI7FYDJ/Px29/+1uysrL48pe/zKJFi4jFYtx+++1CNWB2dpbZ2dkPJOgeHBzkO9/5jpArDYfDmEwmCgsL8Xq9eL1e8V6S90IwGGR2dnYO3USpVIoHcCYZ+OtwPjnD9MAkndNst9uFZF56IJL+++n3SqPRiIpm+u9n6AoZZMCcrgDMTQLUarVYM+nBffqaTV9T6Wsz/ffT12Y6MkZmfx2kaycNAkvy1xKLQVLuCwaDRKNRBgYGUKvV5Ofno9PpGBkZIRgMsmXLFl588UUaGhr41re+RVZW1l91XtKeLVGTV65cyeDgIF6vl/z8fAC2bt1KKpXi7rvvprq6GpvNxhtvvIHb7WbRokV89rOfxev18tprrwkzsq9+9avk5eUxPDzM7t278fl87N27FzjDCCgtLeWtt95iYmKCU6dOUVBQwIYNG0gmk0JopbOzk7a2NpYsWUJVVRXZ2dnodDr27NmD0+nkM5/5DIWFhSxfvpydO3eyZcsWSktL+e53v3vR+xFcLEUtZV5eHgAlJSX09/df2LP5ECGZk13s0Ol02Gw25HI5oVCIP/7xjyLQLi8vJxaLcccdd/DrX/+affv20d/fTzKZJDc3l9raWsbGxjh16pQIjouKinA6nWg0GlpaWnC5XKRSKaqrq6mvr6exsZHjx4+zfft2Vq5cyYoVK7Db7Wg0Gl555RU2b95MZWUldXV1LFmyBKVSyRtvvMHOnTuZnp5GrVYTCATIzs6mvLwcq9UKnAnmvvrVr+JyuZg3b977vh6HDh1icHAQt9stlAoaGhrEYFNfXx9ut5tUKoXBYBCu1H6/f84iUygUyGSyzCb2VyI9QDifRGh6AJEeOPj9fnFcq9USjUbf0QPifLSHTDKQQQbvPog4FzVIoVAgl8vF2pOSAamrei6a3/koRpnk4P1Dus5KpZJUKiX+PxQKCQlSs9nM9PQ009PT9PT0CN791NQUTqeT1tZW3G43CxYsQK1Ws3DhQmpra9/X+dxyyy3U1dVRVlYmjklBtkRbmpmZIZVK8eKLLwq1QK1Wy/DwMOXl5bzxxhscOXKEZcuWEYlEUKlU9Pb2cuTIEVasWMHnPvc52traOH78OF1dXezdu5eioiLq6+sJh8O43W6mp6c5duyYMC0rLS2lra0Nn8/H7t27gTOJxObNm4WoSCQSYceOHbS2trJ+/XrsdjsOh+OSMKOFi4QydLFkJh82LpUZApPJxEMPPUR3dzetra309fVhs9nIycmhrq6O/fv3s3v3blERr6yspKioCJfLxalTp/B6vSgUCkHxcbvdjI6O4vP5BI2osLCQyclJ3njjDQYHB6mtraWoqEhM909OTjIyMoLb7cbtdlNcXMzKlStZt24dzzzzDG63m+rqar70pS9hs9k4ffo0Tz/9NJWVlSxYsEDwEXNycsjJyXnf1yIcDvP000/T29vLhg0bWLNmjRiWHhgYIJlMIpfLsVgsaDQa0bmQAkmZTIZGowE4p/pGBu8d7zV4Tw8U0p81RqPxbfdEJpMJX42z3+vsuYEMMshgLtIHhtOr/9nZ2Xg8njm/m0gkyMrKetvx9KD0bKRLOKev5fN5hGTw7iFdQ51ORzKZJBaLkUgkCIfDopMv8eV9Ph9utxu1Wk1tbS1r167FZDIxODjIW2+9xerVq/mnf/qn93Ueer2eRYsWzTk2NjbG73//e3w+H1/72tf4yle+Qjwe53e/+x0ulwu/38+NN97IoUOHgDPS6S6Xi+HhYZRKJVVVVZSXl+P1ekkmk7zwwguMj49TX18v3JjHxsYYHR3F4XBQUVFBdnY2vb29dHd3EwgEcDqdFBcXs2TJEtrb2+nr62NkZIS33nqLeDzO4sWLBSugvb2defPmcffdd1NfX39JJAQSxflC47KZIbjYZUdTqRSBQICBgQGhvzt//nwsFgsul4u2tjb+3//7f4yNjXHFFVdw8803k52dzfLly3n66acZGhrCZrMxb948FAoFXV1dnDx5ErlcTlZWFvX19axZs4Z9+/Zx8OBBkskkqVQKtVpNbm4u3d3dvPbaa7jdboLBILfddhu5ubnY7XYef/xxuru7kcvl3HTTTZSUlLB06VIxFDw7O0tDQwN1dXUiAP8goNVqqa+vR6VSodPpcLlcYjA6kUjgdDqx2Wz09PS8zXzMYDAIlYZ0ZOgm7x3n2+TfjaReOnJzc3G5XCSTSRH0w5/pCtIakGA2mwkGg6RSqUwykEEGfwFSMiBVlqWOePpaS1cNkpIBpVJJdnY2En04HeeiDL1TwJ9JCM6P812bcwksqNVqtFqtkCB1uVzAmftXU1PDyMgIk5OTHDlyhNzcXIxGIwsXLqSuro6FCxd+oOednZ1NfX09ExMTVFRUUFBQAIDVauXUqVOsW7eOJ554gj/96U+sWbOGyspKkcAcPXqUZDLJ8PAwk5OTLF68GJVKRTgc5tixY6hUKhobG9mwYQO7d+9mbGyMI0eOkEwmMZlMLFq0iOnpacbHxzl27BjV1dXceuutHD16lNWrV7N9+3Yhwf75z3+eFStWUF9fz+rVq4WSUl5eHmVlZVwuipp/DS6rhCA92LhYkEqlmJiYYGBggJmZGQoKCpg3b57gvEUiEfbv309+fj7l5eU4nU4aGhp47rnnGB8fx2QyUVZWhtlsprq6muPHj9PR0cHMzAwGg4H58+dTVlYmguPJyUlSqRT19fXU1tZSVVXFE088QVdXF6lUik984hNotVpycnL405/+xMmTJykvL6eyspLc3Fwef/xxfD4fVVVVIiGoq6vjO9/5zgee4cZiMWw2G0uWLGH79u20tbWRm5vLkiVLOHXqFIFAgLGxMVENk6RGw+Hw25RuJLpQJhl47zibeiVdw/SugNVqFd+t8ymWuN1u8TfpsoiTk5Pi9yUZPsmpOhNcZJDBe4M0YAxngn25XC6ekdJak8lkYqg4Ho/jdrvF359LGUwul2Mymeas1XP9fkbB7fw4X4dFumYqlYpkMkkikSAWizE7O4tarRZGm5FIBJ/PJ/Z2yU341KlT9Pb20tDQQFNTE2q1WnTPPwhoNBr+5m/+Rpy7hPHxcbZv387IyAi1tbWiaPjSSy+RlZXFN77xDWG69utf/1ooEt199920trYKkzVp1s/hcFBaWkp7ezunT58mEAgQDAZpaGhg3bp19Pb2UlhYyOHDhzl69CjT09OsWLFCUIa2bdtGIBCgsbERq9XKwoULmZmZoa+vj3379mG32ykvL8dms30g1+WDxMWyz102CYHJZGJkZORCn4ZAMpnE7XYzMDDA7OwsRUVFLFiwAKVSyUsvvcShQ4e44447MBqNGI1G5s2bh0qloq2tDY/Hg9vtJhaLkZubi16vp7Ozk9dff52ZmRnMZjOlpaXY7XYSiQS7d+8mGo3idDr55Cc/icfjwel08qc//QmPx0NNTQ0mk4kNGzawd+9e8vLyqK+vJzc3F5lMxuc//3lRrX3qqafw+Xy4XC6qq6vF5/kw2l2dnZ288MILyOVyFi1ahM/nw+/3c/r0acbGxpidnRXeCwqF4m2eA3K5HJlMJrohGbwz3qmCJZPJSCQScxKq9N+fmpoS/y1tRGdf9/S/TR8YTiQS4vvjcDgYGhoC5iYKmc5OBhm8M6RKczKZFGtHmi8bHR0F/rwGU6kUOp1OJArnCuQVCoVYw8lkUnTYz35OpPPgpeHY851bBucP/tIlSOPxOKlUao4EaVZWFpFIhGAwiN/vF0ajWVlZzJ8/H6fTyfPPP4/dbqehoUEMAX8QONf+PjY2xvDwMAaDgS984QusXbuWoaEhvF4vWVlZGI1GIRW6efNmDAYDJSUlvPnmm0xPT3P77bfT29tLWVkZu3btorm5GbPZTEFBAStXrmR0dJSpqSk6OzsZHR3FYDBQXl7O0NAQkUiE0dFRIbJy5ZVXcvLkSeLxOHq9njfffJNt27Zx4403smrVKiorKxkYGODw4cOYzWbKy8vJzs6+KGg6cHHMD8BllBBcLLKjiUSCsbExBgcHgTPD3Lm5uYLnlkql2Lt3Ly0tLdTW1rJ06VI0Gg3r16/nO9/5DqdPn+baa6/lrrvu4o033mDHjh2MjIwQDocpKiqiqamJcDiM1+ulvb0dOEPVKC8vp7S0lC1btiCXy1m7di1Op5PKykoqKip47bXX8Pv9DA4OCoWglStXUlZWJtSnNBoNn/nMZ/D5fCxduvRDv1ZFRUXU1tYyPj5OZ2cnR44cwe/3I5fL0el0woSkv7+fWCwmeHgKhQKlUkk0Gp2zCaUHqhm8He+UNJ0djEvX+uwZAplMhsPhEHSE9ONKpVJUHNM7OAUFBYyNjZFIJBgeHhbHJdfOc71/BhlkMBfpzzVJvleiawDCw2ZsbAyYm3CfnaBLSJ8/SE8mzpWgSwpvf+ncMpiLszssUnVfq9USi8WEBOnk5CR6vZ7y8nKmpqaYmpqip6eH3t5ecnNzxT91dXVzXIk/LFx11VUYjUbKy8tRKpViXuDOO+9kamoKr9fL4OAgs7OzGAwG8vLyuOGGG3jjjTeYmJjg2LFj7N27F5vNxs0330wwGGRwcJDTp0+j1WopLy+ntrYWhULByZMn6enpYcuWLeTl5VFTU8N1113H+Pg4LS0tFBUV8YUvfIG33nqLqqoqtmzZIuhUq1atQqvVUlNTQ3l5OYODg5w8eVK8h1T4vFBI7xxdaFw2CcGFHiqenZ1lZGSEoaEhNBoNFRUVOByOt7X1ZDIZt99+O3V1dTQ0NPCLX/wCn8+H3W7n9ttvx2azUV5ezosvvkhnZycqlYq8vDzy8/NRq9UcO3aMyclJMRuwYMECbDabkC6bnJzEbDZTUlLCkiVLWLNmjaAMOZ1O7r//frKzszl69Ci//e1vqamp4b/9t/8mEpYPmp/4TpDmIKT24OzsrDAfi0QieDweoVIjk8mwWq1EIhHC4fDbVDCkB20Gf8a75fumXze1Ws3s7KwwQJKQXk2U+K7S/Irf7yeRSJxXFnF8fFxsiFJgkkqlMu7EGWTwPiFx0RUKBQqFQlCDpOD+7ARdSgYkl1xpzXq9XuDtxRRpvZ6tVpT+THin50tm1uDPSL+W0v8nk0lxD00mk3gehsNh+vr6UCgUmEwmdDodwWAQn8/Hk08+SVZWFrFYjP7+/jkd/A8DVquVa665Zs4xn8/HE088gdfr5Qtf+AL33Xcf0WiUbdu20d3djcvl4rOf/SzHjh2js7OTaDSKx+NhYmKCgoICMTTc2dlJZ2cns7Oz5OTkCNPV8fFxent7kclk1NfXs3TpUvR6PZs3b2bv3r08/fTTHDlyhDvuuIOcnBxWr1495/xUKhUVFRWUlpYyPDxMR0cHXV1dlJWVUVBQ8IHRrN4rLpa1cFklBBeiQxCNRhkaGhIGXXV1ddjt9nfMBpcuXcrSpUuZnp5Gp9Oh1+tJJpO8/PLL7N27l+7ubpFxL1iwgGg0KtwDY7EYWVlZNDQ0kEgkBAXD5XJxww03cM8992C32+nq6uK1114jlUpx/fXXk5OTw+LFi6msrATO8Pfz8vIoKir6SBdJPB7n5Zdf5vTp0+zatYvTp0+TSqUwm81YLBaxSUmDcSaTSXhMTE5Ovs09NyM1en6c/RB6N9crXb0kXQc9vVoocf9lMhkzMzPinkiJmVKpxGw2i2AjnTJkt9sFtS/TFcggg/eH9LVttVrFjIC0tlOpFHa7fY7KUCKRIB6PC+dj6bl/trt7ejB/No3wXOeQ7sJ7rvPL4Ayk56D0/JSuVzAYRKFQCKntqakpQqEQoVAIp9NJeXm5EGrweDy88sorDA8Pc8UVV7BkyRI2btz4kVWf9Xo9ubm5yOVycnJyhOR4Tk4OXV1drFu3jt///vfs2LGDlStX8pnPfEbI3O7evVtIpQOUlZVx6tQp3G43zc3NmEwmli1bRllZGQMDA4TDYX7/+98zNDQkzFINBgNms5mGhgYWLFhw3vNUKBSUlJRQVFTE2NgYfX19dHd3U1paSlFREUrlZRMaz8Fl86k/apWhcDjM4OAgY2Nj2Gw2FixYIDT63y2MRiN33XUXTz75JHv37qW9vR2/38/s7Cz19fW43W6sVistLS0Eg0GKioooLi5mcnKS9vZ2JiYm8Pl83HbbbSiVSurq6vjlL39JR0cHdrudrKwsTCYTr776Ki6XixUrVoj3XrVqFXV1dZjN5o/kYRIMBkUb8V/+5V+YmZnB4XBQUFBAfn4+k5OTtLa2Eo1GUSgUqFQqVCoVarX6bVKjarVaGK9l8O5x9nzA+ZxMJaTrlUtQqVSYTCb8fr+ockmvlZOTI3if0qyHQqEgOztbdBXS53wyvOMMMnh/kNZOIpGYMzCcm5srhvulfyuVSnJyckSnTqpMy+VysrOzmZiYeNs6T+8Ing2payDx4M8nVXw2Ml2DucUVrVYrkjQp8ZqdnRUFxUQigd/vx+v1YjAYRPfe5/Ph9Xr5xS9+QV5eHmq1msLCQgoKCoQk+IcFrVbLo48+SiQSwWKxiOMKhYJDhw6RSCSw2+1kZ2czOTlJf38/OTk5fPaznxXdjccff5zR0VHhrWQ0Gunp6WFsbAyv10teXp5QNnzppZeYmJgQswr5+fncc88977qIKZfLRYzhdrvp7e2lp6eHkpISSkpKPjJDs4zs6EcMqUMgVS4/LExPTzMwMIDb7cbpdNLU1ITRaHxPryG5DJeWljI0NER7ezs5OTlcffXVzJ8/n4qKCp5++mkx1b9582aGhoaoqqriySefpK+vD5PJRGlpKStXrqS/vx+Hw4HD4cBgMKBSqXjggQdEgvL73/8er9dLX18fxcXFwJ814T8KzM7O8uMf/5ihoSHy8vKwWq1YrVYaGxvZt28fp06dEnxYrVaL3W7H7XaLKgmceeBISZ/U/paQCSzfjncaIJZMcs6VDKTzXaV/S/SDeDzO7Oys6N7I5XJR0ZIoc9L6s1qtBAIBEonEnHmCdJnDzD3LIIP3h/QCiUKhEMG5NPyvVqvR6/ViDY6NjQllL5PJRCAQEElD+utIQ8Ppa//swoDUDVAqlchkMkExhHfuDFzuyQDMfS5LktmS7HYwGCSZTAo9f4PBILwkZmdnOX78OHq9noKCAlasWMG+ffuwWCzs3LmTgYEBli9fzkMPPfShfwaNRvM2+fH29nZaWlpIJpP867/+K2vXrmVwcJAtW7ZgMpnIyspibGyMeDzOunXreOutt4SHUn19PQ888ADt7e2UlJTw/PPP093dTTQa5dZbb6Wzs5OioiL2799PLBYTA/Rut5v6+vp3Ve2XyWTk5OTgdDrx+Xz09fWxa9cuCgoKKCsrQ6fTfSjX6mLDZZMQfNgdAslDwO/3k5eXx4oVK973l+jll1/mpZdeoqGhgQceeIDNmzdTUFDA1NQUb731FtPT0+Tl5REOh7HZbGzfvp1AIEAoFCI/Px+tVsvq1avx+XwolUqOHj2K1Wpl06ZNbNq0CafTSU1NDXDmIXzHHXcwMTHxNkOSjwrJZFIE9+Xl5UxPTzMzM8Mbb7zB+Pg4arUah8NBKpXC6/UyMjIiNjy9Xi90jc+WxEtX3UjH5V6Jkqp76ZDL5WIu4OxEQEoS4vG4+Du5XC7M4M6eD0hPuNMHu6X3AETVS5IplehKDodDPNAzyCCDvx55eXmMjIwI+VFpzUnJeXp1UjLFSqcDSv+W6EZKpRK1Wk0kEhFdCKkLKD0j0jsD0mudXZh5py7D5YKz96J0L5106dd4PI5GoxEGjZFIhJmZGSKRCAaDgezsbJLJJD6fj46ODpLJJIsWLSI7O5ucnBza2touqKjK2rVricfjVFdXo9FoyM/PJy8vT+wBo6OjnDhxAoVCwfz581myZAkmk4nm5mYcDgf79++npaWFwcFBHA4HoVCI7OxsDhw4wMzMDFdccYWYlSwpKeF//+//zfj4OA888AAbNmx41+cpk8mw2+3Y7XYmJyfp6+tj9+7d5OXlUV5e/p6Lu5caLpuE4MOYIUj3EJienqawsJC6urq/us2kVqtRqVRotVpaWlrwer0sX76c7u5u1Gq1kMz6yU9+wltvvUU0GsVgMAgjsenpaZLJJCdPnqSuro6bbroJm81GR0cHv/3tbyktLaW2thaVSoVMJntPC+bDgEaj4dZbb8XlcrFjxw62b98uhtsKCwtRKpX4/X48Hg/xeFwEqFqtFplMNkfy8t24517OGxC8fYhNGi48+7qkJwFSkiBde2mTT68Upm/8UsAh0Q+USiU2mw2v10sqlRKeBUqlUgQs8XhcKKBkkEEGfz1SqZQooCgUCkHbSyaT4rkpBUFS5TkcDovj0txPunxzegKQPkMgPSPSuxLSOUjH1Wr12zqMlzPOtxdJ11jaz1KpFJFIhGg0itVqRaFQiGLL1NQU4XCY3NxciouLhXzpm2++iUwm47777uPuu+8WfP4Lgby8PD71qU/NOeb1ennmmWcIBoN89rOf5ZZbbiEcDtPc3MzY2Bhr166ltraWsrIyBgcHhdy5UqkkNzeXW265hQMHDjA7O4ter0er1bJnzx56enpEDCX5cbwfWCyWOV4Gzc3NZGdnU15e/p7p3+8GGcrQRwiTySTkNP/agF1qpUoSnekeAh8ErrvuOubNm0d+fj7/9m//xuHDh3E6nVx11VUcPHiQmZkZenp6BHdw5cqVYrj42WefRS6Xc88993DLLbfQ2NjI8uXLAdi9ezd6vR6DwXDBpunPhf7+fh5//HHgzKKwWCw4HA50Oh0HDhwQFBQpCTCZTLjd7jm62NJcgVQBk3CulnYGZ4J2SX0k/dpIVbyzuwjSdUznJkvHpbkByS36bLqCxIOV3IhlMpnwtYjH44yOjs6RNMwggww+OEjrUUq4pfWt1+tF8UhSbJPWuJTQS0G9QqHAZrOJNRsKhURCLyUN6Ws4XZpUCmql5CE90cis97lI76JI1zG9G5tKpfD7/cCZQprT6WRyclJQMsfHx3E6nSxYsICxsTFCoRCTk5O8+uqr7N27l29961sfSjD7fiDR1uLxOFarlTVr1pBKpXA6nYyMjNDV1cXWrVsxm808+OCD3HnnnbS1tXH06FHGxsY4dOgQyWSSkpIS6urq+PGPfyyC9r/927/F5/NRXl7+V5+nwWCgvr6eyspK4X5ssVgoLy//iwIxlxouq4QAznD83y83PpFIMD4+zsDAAADFxcXk5eWJSusHBZVKRVVVFQDXX3+9GMj8wQ9+wM6dO8nOzua2225j48aN5OTkMD09zalTp7Db7ZSUlOBwONBqtfj9fnJycsTrrlmzhuLiYrKzsz/wc/5rILVE5XI5K1asoLOzk9bWVqanp0kkEqjVaqxWq3gYulwuUbUyGo1CGeNcSjfpG1UGf0Z61V+CRNtJpwFIiWP6hg5nkjONRkM8Hicej+P3+0WwL+lnS4kA/Ln6IVW90lVHMkFBBhl8+Ejvnp6vaJIepCuVSlQqFZFIhEQiQSAQEOtbLpcTjUbnKJKdrUwkQTIsS1/v6RTDDP4M6RqdLUEqzROYTCaSySQzMzNEo1FBqXU6nUSjUaanp/H7/WzduhWbzUZ9fT2NjY28/vrrgqZ5scBisfD3f//3hEIhCgsLgTPfodzcXA4fPkx5eTmNjY3E43H6+/sZHh6mtraWvLw85HI5BoOBp556SlDc5s2bh1qtZv369dhstg/ckVir1VJbWyu8DE6cOIFOp6O8vJycnJz3nRhcTPvfZZMQGAwG4P0lBPF4XHgIqFQqysvLcTqdH0mVPTc3F6/XyyuvvIJCoaCgoIC6ujpcLhcnTpwgLy+P3NxcVCoVV111FRaLBb1eT0tLC6Ojo8yfPx+ZTEYkEqG6uprS0tIP/ZzfKyQKU2trK7/5zW9oa2sTQ1M2m00MqkpBp1KpFAF/uqwlzHXVzeAvI537mx7sS/rlUls6/aElXWPJ/E1KBKS/kfjF0utL72Gz2UQyJ9H30mkMGWSQwYeL3NxcxsfHhfOwVMnPy8vD7XbPofkkk0mR9KfThRKJBBqNhkgk8rYkI5FICLqrVCyQgn+pK5lJBv4yzi7InC1BKtE2pWRhbGyMrKwsSkpKAJiYmMDv93Po0CFCoRClpaU0NTV9ZEIh7xZZWVlkZWURj8dpa2vD4XBw8OBBdu/eTX19PUuWLEGr1VJUVITL5cLv99Pe3s7MzAzXX389S5YsYXh4WCgEZWVlfaAOzeeCWq2msrJSeBlIvgnl5eXk5+e/r7gwozL0EUMul7/nweJYLCY8BAwGA7W1tR9Ji8jj8fD000+Tk5PDsmXLREB14403smfPHqxWK/v27WNiYgKr1cqVV16J0+nEarXy9NNPE4/HWb16NQsXLqSoqIgf/vCHRCIRvvzlL1NfX/+hnvt7gSSP+tRTT7Ft2zbRLiwqKsLpdBIKhThx4gTRaFRUpGUyGRqNRnDQ4c8qNzKZLCM1+i6Rzk1NH/6TBgaVSqUYGpQ2Jinwl6pWk5OTyOVyEez7fD5isZiYR5DmBiYmJojFYoIyJN3LUChEIpHIJAMZZPARIJlMimRALpej1+sJh8Mkk0lcLpcY7pfWsrTGU6kUOp0Oi8WCz+djdnZWyAbDn30GJEgcdp1OJ5KGdAEBmOthksG5kW7+qNFoSCaTcwo3CoUCs9ks5rT8fj8TExMYjUYWLlwoZrVcLhft7e3s2rWLtrY2br/9dmpray8q5Zzdu3ezZcsWCgoKuOuuu8Q+/vrrr5OTk8Odd96J2WxmYmKCw4cP43a7aWtro7GxkeLiYpqamvjDH/6AXC5nZmaGZ555BoBPfepTohj8QUOpVFJaWkpxcTGjo6P09fXR1dV1SXsZXHpn/D4hk8kwGAzvKiE420OgsbHxI+XdnT59mj179pCdnc2KFSu48cYbcTqdeDweWltbsdvtrF27Vuj0v/rqq5jNZh555BGuvPJKEokEd9xxBwaDAa/XKyq3FxNN6PTp03z729/G5/MJXmpRURFNTU3s2bOHkydPEolESKVSaLVa4Xg7MzMzRyfbYDAQDoffVnW63JWE/hLORRmQrtnMzIw4ptFoMBqNc6679DfS78diMTwej5AalDoOqVRKyBeePaD41wx7ZZBBBu8P6d1UrVZLJBJBqVTOofpI1CC1Wi1ciKPRKF6vl3g8PmftA8Ip3mAwoNFoCAaDzM7OiqBOqmgDbxs0lpB5Xr8d6dck3UlarVYLOq2UmEnMAL/fTzwe59ixY+h0OoqKili7di1vvvkmExMTvPTSS7z++utUVFTwP/7H/xAmYBca6V3pmpoaGhsbcbvdyOVyoaj4wgsvAGcUi4LBINXV1Rw6dIhUKsWNN97Igw8+SDwex+12s2vXLgBWrFhBQ0PDh3rucrlc+DxInYre3l6Ki4vftZfBxdAdgMsoIYC/LD2a7iHgcDiE9NVHjfr6ejZs2IDD4eD48eP84Q9/oK6ujgceeIDVq1cLnt3evXuZnJzEZDIhl8sZGxtjYmKC+vp6kRVnZ2fzyCOPEA6HLyq6UHNzM11dXajVahobG/F4PExPT/PCCy8wNTWFRqPB4XAI3WVJGQPOSI1KHNZgMDjnddO1stNxuW845xquPltlKF0eNF0pRArqpcBBcjNOpxKlq2Kka2anU4lMJhMej0d4D1zO9yODDC4kJIlKqVuQlZXFxMSEkGlOJBKiqy5RNdPnBaROX7rSUDgcFoGrpFAGzBlMVqvV5/QZSVclulzxbiRIY7EYsVhM0LJisRjRaJRAIMD09DQ6nQ6n08ns7Cx+v5+Ojg7cbje5ubnk5eWh1+s5efIkp0+f5tixYxdNQrBmzRpyc3PJzs4WHgbZ2dlkZ2czNDREUVGR2Hfa2towm81Cotxut5Ofn8+///u/4/V6ueeee7jyyitJpVJUVFR8ZJ/hbC+D3t5e+vv7KSwspLS09B07MpmE4COGVME4l/To5OQkAwMD+Hw+cnNzWb58OXq9/gKc5RlkZ2fzpS99CTjjSSB9Wfr6+ti7dy+JRIKqqiohF/fVr34Vs9nM7t272b59O0NDQ6xfv14EfLm5uRfss5wPq1atorOzE7lczvHjx+no6CASiaBWq8nLy0Oj0eDz+ZiYmBBVKbVaLR4WEv/1bJxvduByDT7TqUFS0A5/bvMnk0mi0eic44Co8KdvSmq1Gp1Ox9TUlAgYJCqRpEwibURSF8BqtQoqkSQ5ChnTsQwyuNCQ1qBUdEkkEmi1WiwWC36/n9nZWbFm02eNpGeFRDGSJL2lmQEJkkSxJC6QLmSgUqlEkiEFehIu1+LNO0mQAm/rysTjcSwWiyjoxONxgsEg0WiUnJwcCgsLCYfDws1Yr9ezcuVKNm7ciM1mE87GFwPkcjnV1dVzjnk8Hl5//XXcbjfz5s0TDsj//M//jEwm4/XXX6e9vR2n08myZcvE3+l0Oh588MGP+iMInO1l0Nvby549e8jLy6OsrOyi9jK4bBICODOhL1WUpYfg8PAwwWCQgoICampq3uawd6GxadMmhoaGmJ6e5vnnn6ejowOz2cy1114rjEckRaLFixczPDxMY2PjRUUPOhupVIpjx45x7NgxZmdnGR8fR6FQUFhYiFarnaPkJFVCJP6gdP+kivf5NPQv100Fzq8mIrVlZ2dnRZVOCubTaQDpPN/0oD8UChEOh5HL5ajVaiEdmm4+JgUOEmXA7/eTSCSEPKE0hJxBBhlcHJDmgACR0Es0oPTnq3RMq9WKLqAk+JAuQQp/Nh6U1r6UAEiFiVgsJp47Z4sanMtT5nLEuToGZ+95EmVIp9ORnZ0tnKdHRkZQKBQ4HA4qKioIBAIEg0FOnTrF6OgoOp2ODRs2UFxcfIE+3V+Gw+HgqquuYnx8nIaGBnJyckilUtxwww3odDo6OjqEeemrr76KXq/nqquuEjLrFwMsFguLFi1ienpaeBk4HA7Ky8uxWCwX+vTeBlnqMlpx11xzDRs3bkStVvPjH/+Ym266ic985jMUFBRcdJzm0dFRotEoWVlZ/Jf/8l8YHBxk3bp1jI+PU1xczPj4OENDQyxfvlx0Ey52BINBnnrqKRKJBEeOHGHv3r0UFBRQWFhIa2srIyMjc6gnEl1L2qAkCoperyeRSAglmwzeGenDTRKdSqLynH0c/kwlknwKJJw9hyI5n6a/ljT4HQwG5zihqlQqjEajCB4yyCCDiwMymQyn0ykoQ4CgEknur1IAKj2fJRqL5FeSLu+c7mwuvZZ0PL2jmK4+lK7McrlTh87G+RIjvV6PTCYTrAepUJOdnU0sFhMeE3BmXqS4uJiamho6Ojrw+XzceOONlJWVYbVaufvuuy+6GOhcSCQS/Jf/8l8YGBgQAinT09NoNBr27NlDU1MT3/3ud+nq6sJut5OdnX2Bz3guwuGwkFC1Wq0iMZCM1C40LpsOQTQaxeVy8d3vfhetVsvnP/95vvzlL1+QGYG/BJfLxfe//31isRhf+cpXuOqqq+jr62Pt2rU88cQTtLa2CgOTS+nh2d3dzd69e1EoFKxYsULIpR05cgSPx0M0GkWr1VJSUiKqy+n8dYnmIiljZHB+SJuINDcgbSjnq8pJm7Jk7gZzW9UKhQKdTodCoWBmZkYoiUhULoPBwNTUFKFQCIVCMcdNempqimg0KvjFGWSQwcWDVCqFy+UCEEnA1NQUyWSSYDAopEQtFouoQKc7l5vNZiKRiFAlS9+X0ucGzp5DONdxyQtFKiZkigfnpxKFQiEh5SrNYKRLkBYWFpJMJhkaGiIYDNLb28vU1BS5ubnMmzeP6upqXn/9daxWK+vXr7+ouwUSpL0smUwyNjbGzMwMDoeDzZs3o9FoWLFiBc3NzTz22GPk5uby7W9/+6JSU9LpdNTV1VFRUcHAwADHjx9Hp9OxcuXKTELwUSAYDPLzn/+cf//3fycUCrFs2TJ++9vfXnTUoHRIX3hJ9s3tdlNQUEB2draokn/qU59CqVS+baj2YkZVVRUrV65kfHyclpYWjh07xsTEBDKZDJvNJlrRAwMDIrBUq9WkUilUKhWhUCjjOfAXIAXvUjXv7ME9KUFIHyJWKBRoNBrUarVQEkrvIkicYakSJUm/6nQ6QqGQGHSDP8v7SkpFGRnYDDK4dJBKpYhEIkIZ6GxqUDKZRK1Wo9VqmZmZmaN0k65UBojEQKlUYjKZiEQizM7OzpEglQoHkgtv+rNcpVKJzkMmMfgzJLU26R8JOp1OdHAkCVLJUTcajTIzM4PL5cLj8eDxeHA6nVRWVjJ//vwPXbv/g0IikWDFihXceeedjI+P88wzz5BIJCguLsbhcDAwMEBubu5Fb0iqVqupqqqirKwMr9d70UiUfuRn8b3vfY9vfvObPPzww/yf//N/AIhEIjzyyCM8/fTTRKNRrrnmGv7v//2/c1x23ys8Hg8/+tGP+MlPfkJtbS0/+9nPePXVV0UwczEjNzeXr3/968RiMVwuFzt27MBqtbJ06VJuvvlmrFYrCxcuJBKJsG/fPhG8XewYHR1lx44djI2NCZfL/Px8HA6HkHmVWsparRabzUYgEBCujBI0Gs2cgDaDMzjbREiC1N5Pf0hK/GDpuxONRsV8gOQTIMkNSr8vdRyk9r7kYCrxh6X7Id3bVColpAvTKQIZZJDBxYV02p80HJwuR5xO6ZG6g+mmWekzBtKcgUKhIBKJEIvFiEQic9TLpL+T/kmnK0r/L9ERpWdSpsN4BlI3RaVSCbW9RCIhCjZZWVmYzWbRmZXm8XJzcykvL8flchEKhXj11VfRaDSMjY2xceNG8vLyLthnerdIJBLodDoWLlxIMpnEaDSiVCoZHh5m+/btKJVK/v7v/55HHnmE7Ozsi6o7cC4olUocDseFPg2BjzQhOHToED//+c9pbGycc/wb3/gGr7zyCr/73e+wWCx89atf5bbbbmPv3r3v632eeOIJvvjFL7J27VpeeOEF1q1bh0wmo7m5mbGxsQ/io3zokBwHbTYbq1atwmaz0dbWxnPPPUdFRQULFiyY82C9mIeIX331VY4cOYJer6evr49kMsmiRYvweDxMTk7S19cnTKtsNhtGoxGPx8PY2NjbpDBTqdTbNgaJPnU2LoeW89nKE+lVfymATx8wTuf0n00ZkjZfaXYg3S1TUhGSqnjpAYNOp0OtVgs/iXSesZRYXErUtgwyuNwgrWuJGijxzyV6piQiMDMzIwL89OeJRB2UCgSxWEx0F6Xnc3rgr1KpBM3lbE8UKSmQnjnScHL673zcn+vnQ/peJyVg6XFAKpXC5/OhUqnQaDTk5ubi8XgIBoOMjIwwOzuLw+GgqqoKpVLJ6dOn6ezs5JlnniEQCLB58+aLaij3bEjqdnBmduCll14iEAhw7733snr1alQqFeXl5RdUJfJSxkeWEExPT3PPPffwn//5n3z3u98VxycnJ/nVr37FU089xZVXXgnAY489Rl1dHfv372fFihXv+b1WrlzJnj17WLx48ZzjEpXhUkJ2djZf+9rXANi6descJ9hLISFIJpPs3LmT06dPs2nTJm666SZCoRDt7e2cOnWKSCSCVqvFbreLh7/04Ep3IJYqIed7j3Phctg0zqVbLXWLpE1Y2rCl78jZlCGpXSl1EKRrLxmTaTQaERhIx1UqFSqVikgkItSHpMBBcjmenZ1lcnLyo7wcGWSQwfuEROORKEDSDFAsFiMej+P3+4E/UwylTqAUiErCAaFQSKiMpScNUqCfXlCQ3ied4niuItDZ53m54uy9Ln3QW6PRiIQskUgwPT3N0NAQZrOZrKwsVCoVk5OTeL1ehoaGWLNmDZs2bSI/P5+JiQn279+PxWK56BOC9LhHkrpWq9V85StfucBn9/4grY+LAR9ZQvCVr3yF66+/no0bN85JCI4cOcLs7CwbN24Ux2praykuLmbfvn3vKyE4nxmF2Wx+V07FFwN27txJe3s7N9xwgzAPueqqq8jLy6OwsFBUgAEx9HUxQi6Xc8stt1BRUUEikWDXrl3E43G8Xi9qtRq73Y5GoxGDTxLNRKfTiUpVOg9dqmCfi35yuVSOztURSb8u6VxcaW7gbC5ueoIgk8nE9ZQqfRIFSJoPkO6LNNid3tqX3h+Y8z7n69xkkEEGFz/Sg3QpOE+v9EsFA0ltLL1YJamNSRLH0nMinSstvU7660uSxWcLZqQPIKfjcnnmn+tzSp1b6Xkrqe5ptVr0ej0zMzOkUim8Xi8ymQyr1UppaSnBYJBwOMyJEycwGo0YjUYeeOAB8vLyuOKKKy7Ex3vXSE8IrFYrDz/8MJOT/z97bx4d533e935m32cw2HcQAClu4CqSkijKkWRHsVz32rGaNLlHbuO2ce+N46ZJb5Muf/Te26bpTXuSuImdPY4b17Ls2o5ly7Fsa6EWUuK+EyCJfR8As+/r/YPn+fGHl4AESlxAYL7n8IAYzPLOO+886/f5PjG2b9+u7nPhwgVeeeUVDh06dFNReLVB3/WzGnBXEoKvf/3rnDp1iuPHj9/0t5mZGex2OzU1NYtub2pqYmZm5rYex3KLyVYbcrkc3//+97l69SrNzc0qIbDb7YuWiSy1fXa1YWhoiBdffJFgMMi1a9eYmZmhubmZhx9+mIsXLzI5Oak4kCaTCa/Xi8PhIBaLKYUhYBFtZT12BIzDegK9HW8cIJYukt5yN1KJJIDXqURyH30fgSQWgKrKyG3CZc1kMot2HFRRRRX3J0SsQahB0i2QoWCx2bLbRC8IwHUbIYUFffGY2AZRxtGpQfJ4vVChb+gV6IUG3eav5QLEUluLdZuvDxrL3Ibdbsfn85HJZMhkMsRiMVKplFLy27ZtG+fPn2diYoIrV65gtVr59re/TVNT06qT6xToCQGwpDLSyy+/zPe//30SicSqTwhWG+54QjA+Ps6v/dqv8eMf/xin03mnX+5doS8mW82w2+088cQTNDU1sWPHjne9rxjV1YRKpcLFixcpl8v8yZ/8CYcPH6ajo4N/8A/+AZlMhuHhYd5++22i0SiZTEapUAg/UJZZia6y8EzXGw99uQVjRqdgvL+uviSDeRLsy/Cffj+p+ktFUDYXW61W1RXIZDKLBgNtNht2u510Ok02m1WVP4fDQblcriYFVVRxH0Psjd1uV4Gm7COwWq14PB4ymQzFYlGpvzkcDjweD7lcjnw+TzqdBm50D8WmGJeQ2Ww2lTToymiSTBglSPUliNK10G9fy1hulkKf6ZLFZdlslmKxiMfjwev1YjabSSaTaklWJBKhqamJBx98kLa2Nr785S8Ti8UoFAo888wzeDweNm7ceK/e6pJYCT360UcfJZFI8Pjjj9+dg/qAWFeUoZMnTxIKhRZlaqVSiddff50/+qM/4qWXXiKfzxONRhd1CWZnZ2lubr6txyIzBKtdlcdkMvHxj3+cj3/84+95Xz04XC24fPkyX/ziF1X1uLW1lbq6Og4fPsypU6eYn58Hridofr8fi8Wi9hCI1Kh88UXbGm58cfSK0lrGch0P47VrVAjRK0eSBEgLXu+4yBxAPp9X7Xs9UQCUcy+Xy9hsNuXQdf6wvqFUJASrqKKK+x+6MpDeVdT3E4gP0iVFJQmQ+4vPFclSoRfJ4+CGHZNihm7jrVbrTTLKRnWz9QiZv9Dtd6VSWSRBGo/HgeuypLLtN5fLMTc3RyQSUYs/W1pa8Pl8pFIp/vt//++43W7+/b//97c9DvsgKBaL75kQ7Nu3j3379t2lI1pbuOMJwYc//GHOnz+/6LbPfOYzbNmyhd/6rd+io6MDm83Gyy+/zDPPPAPAwMAAY2NjPPLII7f1WHw+330zQ7BSrEbKkAyi2mw2tm/fztmzZ3nzzTfJ5/M4nU6amprweDzKIEmwarFYqKurI5PJLOrkyHZiPQhdbzBWgwRS3TdeAzo1SGYAjLcXi0UVvEsLX3YH6EmFOGp5rJ5Q6wGD7CSooooq1gZkL4lsjteHgYWiI3ZDL07piYHT6VQ2SmYNpLAjtsS4BNF4u7yu2CGxM3oncr0tNNO75iLvLGIOcl5EejMWi6kkwGKxEAwGaW5uJplMsrCwwAsvvIDb7Wbbtm3s2bOHI0eO4HQ6sdvt9/It3oTVLKCyFnDHEwKfz6dWTAs8Hg91dXXq9n/6T/8pv/Ebv6H0cz//+c/zyCOPvK+B4vc6lvthhuBWsBo7BC0tLTQ1NXHmzBneeecdRkZGKJVKeDwefD4flUqFhYUFRQ1yu9243W7S6TQLCwtLDsSm0+kV8UXXkjMQx2scPNI/c122T+fkAqrNb5QFFGct50pmAPTOi67wIVQiXX9cFpml0+nqFuIqqljjqFQqqtJst9txu91kMhlFMTRKkOrDrsL7Nlb+he4j1EShMkqwL51Hebw+ZyBYbp5gPUB/7/l8XglL6BLRCwsL6jz6/X6lCBcOh4HrXYPa2lpisRjZbJZLly7xp3/6p7S0tLBz5078fv+9fIs3wThDsFawWhgrq2I92u///u9jNpt55plnFi0mu924XyhDt4LVNEMwOTnJ6Ogoo6OjfPvb3yYej9PQ0EBra6sa6J6eniabzWK326mvr1c8x3g8roJZu92unIpUqIxYD4PFS72X5fiGUslZajuxPJeu0mFUqZKqncViWUQl0jcQ69rh0u6XwcLqNtEqqljbkICzVCqpAo1w1pfi/ws1SLcvwKLuAKA2FuuL0HQJUplZkvsaj8lYMFkvdkjv4AptSG53u92LZu/K5TLRaBSfz4fT6cTlchGNRgmHw/h8Ptrb2xXdM5lMcvz4caampmhra6Ompobt27dTW1t7L98usHYTgtUCU2W9fHuAUChEU1MTU1NTeL3ee304twVnz56lvr6etra2e3oc5XKZ//gf/yMDAwNs2rSJ8+fPUygUcLvdnD9/Xi2t8ng8+P1+7HY7k5OTJBKJRUa/traWaDSqJNTgRrXauIF3PWGpjogM6ekdImmp6lQyneYjTllfCiRVf6O6kP4a0kkQ/qn+d6EtVelCVVSxdiGiIGI3RMVMhAR0upAerNpsNhXc6x1ISS50264nC5Jo6DQRuX09S5AuBX0BnH4OxN/Ozc0tomUFg0Ha2tqIx+OkUiklGFFbW8uuXbsIhUI0NjbS0dHB8PAwTz75JL/yK79yr96ewuXLlzGZTGzZsuVeH8ptgXxPnE7nqihSr4oOwd2CJAGpVGrNJASrZYZAjIzQfySwvHz5MtFoFKvVSmNjI1arlenpaTVUJlKjEmiGQqGbFtMs9f7Wm/FfSk0IbqYMGTeDwg21DqkA6Y5ZX/4mSh/imC0Wi5IV1GlB8hiLxUIqlVoXA95VVLHeIUUasdliS0SaVJID6QZIYiCLo6RQoe9KEdslkqawuAugzy3pkqb6/pOlKEPrwT8Y37tRWrpcLi8K9j0eD5VKhXQ6TSQSIZlM4nQ6aW1tVTSihYUFBgYGCAaDFItFXC4XXq+XYDB4L9+qQqlUwuFw3OvDuK1YDYmAYF0lBE6nE5vNRjKZpKmp6V4fzm3BapkhiEQi1NXVsXnzZvr7+xkYGMButxMMBtUwdzKZVJrINpuN+vp6tQVTWtCiMqRv0hUsJ8O5lrCcI1vK8RmHe8VxSqKl7xWApecNAEX9kSRA9MMLhYJKAqSLYLfblc71Wv0MqqiiiuVRqVTULJ7FYsHlcpHL5VQACihZYrHjetKgzxro8slCC5LChHQHdBU1YwV8Pc8TLEebFVuu07kKhQLFYhGv10tNTQ1Wq5V4PE4ymWRyclIpELndbmw2G+Pj40xOTtLZ2Ul3dzdOp5NEIoHP57vL7/Lm97YWKUOrJSlYVwmByWTC4/GsKaWhezlDIENLIyMjDA4O8tJLL+FwOKipqaGrqwufz0c2m+X8+fNEIhHMZjONjY00NzdTqVSYmpoik8moL4MMl2UymZuqPaulE3KnsdzcwFJynmIY321uQIJ9abtLZb9SqSyq+Ola4TLYJ3Qi/RqTmY8qqqhi/ULnq+uzASIDatxwrO8M0LsCQifSqUE6dUheQ1cTWooaI0nDapmnuxcQaqd0XuSfw+FQM1+JREJ1eGSpVyQSYX5+noWFBerr69m7dy81NTWUSiXsdjv9/f0MDg5SqVTo6uqit7f3pkWydwtrMSFYLckArLOEAK5z6u6H5WQrxb0IlCuV6+vQT58+zbe+9S1aWlp49tlnOXXqFPl8nt27d3P69GkuXryoDLnL5aKuro5KpcLExATlclm1ll0ul5LA1INN3SGsh2TACF3lR08G9EViujExzgeIs9a7CMAiqVHjBmgjl1eWBukUryqqqKIKgU5V0YNP3W5LcUFfNCm+wWq1Lgry5acUMETdTH+upWah1vsyRPGdOmVIJEhNJhMOhwOTyUQ2myWZTDI2NobFYqGlpQW73U48HieRSHD48GHcbjd9fX309fURiURobm5mx44d/NEf/RG5XI5nn32W7du333Uq0VpMCFYT1lVCIFrKa0l6VPjddwOVSoXZ2VlGR0cpFApKkWBqaopCoUB9fT1vv/02J06cYHJyknK5TDAYJBAIKB1kWYLi9XpxuVxKtlJ3KnolaT20fnXoij3LSY3q6hvATdU0fQ5AkgdJwADVSobryYVOz9LnA4rFouKfylCx1WpVG0irqKKK9Q0JNEVlSLYW22w2lRzoNJ5KpaLmBcRW6bNJYrP0JWdGmqORaiRYSnjBKKe8HiCUIV10QmhboiLn9/tJpVJkMhlmZmbwer3U1dXh8/mYn58nk8lw6dIl/viP/5impiYOHDjA/Pw8s7OzOJ1OcrkcJ0+exOfz0dvbS11d3V0pFq3FhGA1FdnWVUIAKPnLtYK70SYtl8vMzMwwOjqq2oYtLS1ks1l1+//3//1/vP3225TLZRobG+np6aGuro75+XkuXLhALpfD6XRSX1+vVt4nk0n1BZdKtCxXWa/QB+30gF83GuIUJajXl7VJJU6gD5sZZwpk0Zs8l7T7ZfBPb/nL66z3KlwVVVRxAyIGoauVye1i23X+v9gQnb4oO05EiELsmr6HRfdx4iuMVEn9teWnUTVtrUPvKsN1f+J0OhdJkJZKJWKxGG63G5fLhdvtJhQKqRmDnTt34vP5iEajxGIxTp06xaVLl3jsscfo6elh586dPP7445TLZcbGxjh79ixut5ve3l4aGhruaIC7FhOC1YR1lxD4fL4qZWiFKJVKTE9PMzo6isViYcOGDTQ1NWEymSgUCly6dInnn3+ecDistKS3b9/O5s2befHFF+nv718kq1VbW0sikSCRSCijZbVaqaurIx6Pq8EzgSQ766lLsFRXQFcMgsUcWl1SVO4vv8tjxUDLrgKdTqRzfPVFQjI7IEnCek7SqqiiiuWhV+s9Ho8aZBVboi8r0+2MTnERnyIDxXCDGiQFCylG6D5BXkuOQx9c1kUU1gv0borY/3Q6jclkwu12U1tby9zcHIVCgXg8rux8XV0d0WiUYrHImTNnsFgsdHR08PTTT3P06FHGxsY4cuQIZrOZixcvsn//fjo6Oujt7aWrq4vx8XEuXryIzWajt7eX5ubmO5IYrLWEYLVdn+suIViLHYLbnRAUi0UmJycZHx/HbrezadMmlflXKhX+5m/+hgsXLuD1egmHw1gsFvbt26dmA374wx8yNzeH1Wqlvr6eUqlEKBRidnZWVaQ9Ho/iOM7NzS2irEiSY3xf60FKTndwxn0AOndWHKo4P9kRIP/0gF4SAL2TINU5Odc6n1cel8/nlXpIFVVUUcV7IZvNLlIrk8VkkhjIwjKxRaJ+I9V9XRlH7wzoSmm6b1hKatToN3SbulZh9I260pAkUCJBKuIdIkEaDoeV3W9tbSWfzxONRpmYmOCll16iqamJLVu2UFNTw9mzZwmFQjz33HPMz8/zMz/zMzz99NN0d3fT2dnJ5OQkAwMDXL16lZ6eHlpbWxd1rD8o1lpCAFXK0D2FSGCuFdzOhKBQKDAxMcH4+Dhut5stW7bcxA0slUpcvHiRgYEBPvaxj/GpT32KZDLJiRMnGB4exu12U1dXh8fjIR6PEw6HFTVIthPL8LCoCUmrWYLZ5d7PWk0GdGNu7ATI+dErXjoFSD4bfVGPGHdjh8VIQZJ19/oAn8wa6HMIenWuiiqqqGI5SPBXKpWUfRc6YqlUUnKicrte4IDr9k+SBrl/qVRaNGcgP42+YinKkDznWsdSvtG4m0Bm80QgwuPxEAgEsNlsxGIxMpkMo6OjBAIBGhsb8fv9mEwm+vv7KRaLPPjggzz11FM0NzeTy+UYGBigra2Np59+Wr1GZ2cn7e3tTE1NMTQ0xLVr1+jp6aGtre22BPLVhODOYt0lBF6vd811CD6owcvn84yPjzMxMYHP56Ovr49gMLjkhWq1WvmFX/gFhoaGGBoa4gc/+AGFQoFYLIbT6WTLli3kcjkuXLhAOBwGrnM+XS4XNTU1hMNhtXNAnk9XxRHoMnVrHcvpaovT04N6PXEy8mPlb9J+lxa8dAKWateLA4YbLXddJrCaCFRRRRUrhdgL6VgCi2yXTgmSIobZbMbhcCj7o9++nGSpQB8k1gsl+iDxUj5krXebdZEJuH5urFbrIhGJZDKJ2WzG6/XS2NioqL+RSIRoNEpDQwO7d+/G6/UyODjIhQsXGBoawuVy8cu//Mv80i/9Env37l3ytdvb22lra2NmZobBwUEGBwfZsGEDHR0dyt+8H6y1hGA1JQOwThOC6gzBdWSzWcbGxpiamiIYDLJ7924CgcC7PiYcDvN3f/d35PN5JiYmiMfjNDY2snXrVq5cucLbb7+9SE60pqaGQqFAJBJhdnZWVaWFz26UGn0347/eoH+uerVfd2b6fIBU1ESmT6/CGWcGdIepDzJL8mC1WslkMnf5HVdRRRVrAYVCAZfLdVMBQmyX2Bihtsj9JJCVApEUPmRpmSQcS3U9dQnS9yokrXXfolOt5DxKd8ZsNuN0OhVlK5FIKDW5hoYGlSzEYjEOHz6M1+ultbWVBx54gIGBAaLRKGfPnsXj8TA1NcWv/MqvLLk92GQy0dLSQnNzM3NzcwwODjI0NMSGDRvo7OxUn+mtvCfpZq8VrLbrcN0lBD6fj9nZ2Xt9GLcN74cyJK3BmZkZ6urqePDBB1e8gXBmZoZr164BcOjQIfL5PAMDAxw9elQZ42AwSDAYVOvRE4kEpVIJj8eD2+0mlUot2nSrcx1hfbR4dSw3PG2U0Vvq73K7PkBnt9vVzIA+oGez2bDZbIuSAZ0WZDabyefzNy0CqqKKKqq4VUhBQTjrxrkwXbJU6C26gIIEfjJnYByY1QN/o0zzUhKk+nzaeoG8V91XiEiE2H2/3086nVaqgX6/n9raWgKBAKFQiEwmw+TkJDMzMzQ1NXHo0CH6+vp46aWXCIfDRKNRmpqalj0Gk8lEY2MjDQ0NLCwsMDg4yPDwMJ2dnWzYsEEVB1f6XtZSQrDasO4SgvW8qTiVSjE6OkooFKKhoYH9+/fj8Xhu6fU2bdrEk08+yeXLlzl8+DDvvPMO0WgUs9lMW1sbmzZtYm5ujosXL5LJZBSXXTiMyWRyUUdAJOR0Dvx6h75IzNgOl3kLnd6jO0PpDBhnEYwSpfI8unE1yvhVUUUVVXxQiPjBUrNi0s2UQoUonEnyII8DVKdTF6AQ/2dcXqkHwLpfWa8+Rmy+JGD6MrdEIqGKRSaTiUQiQTweJx6Ps337dnw+HwMDA0xPT6u/wfVY4OGHH6axsXFFx2Aymaivr6e+vp5IJMLg4CCHDx+mvb2d7u5unE7nuz7emNysBRglxe811l1CsNYWk62k4pFIJBgZGWFhYYHm5mYOHDiA2+2+pdepVCokk0mGhob42te+xsTEhKow9Pb2Ultby9jYGK+//jpw3QDZ7XYCgQCpVIp0Or2IGyobK9ejNJwRRke21HyAcZjOyLEV6I8TR6vPIeg7DHRnudZVOKqooop7B7HzUhgyBuxin8SmSdCvP04KIHqHU7eL8nxw8zzBUovM1hv0zoAkYPl8ftEW+kAggNVqJZFIkM/nOX36tNpmvG/fPubn50kkErz55puYTCauXbvGrl27qKurw+v1rji4DQaD7Nu3j1gsxtDQEK+//jptbW10d3cvG5voyklrAcZkdTVg3SUEa3GoWAyq8YsSi8UYGRkhEonQ2trKww8//J5Z+FKIRCJ84QtfYHp6mvb2dqLRKE6nk71796qOw9WrV0mn05jNZjWQPDMzw8LCgjLkHo9HVYWMuvZrfcjr3WDcQiyQDoE+VyEVNDHqSy0ys9lsixbR6K12qQLpf5PBblEeqqKKKqq4XZBKvl58kKKEzWZTyYB0C3SIdCncCKBkLkoUiJbiyy83h3YnZLrvB+gJk36uLRaLUnTK5XIkEgnVUW5vbyedThOLxQiFQiQSCfx+P1u2bMHv93PhwgUWFhb4y7/8S8bGxtizZw+f/exnb6nYGAgE2LNnD4lEgqGhId58802am5vp6enB6/Uuuq8MRldx57Duzu5alB2FGy3BSqVCNBplZGSEeDxOW1sbW7duXTFPT0d/fz8jIyMMDQ3x3e9+F4Dt27fzyU9+kkgkwtmzZ7l06RLZbBan00lrayuZTIZoNEoqlaJYLGKz2QgEAuRyOQqFwk269npFvIrFQ3cOh0Mta9MrL3IfqeqIc4UbTvHdEix9gE+qZ9UOQRVVVHEnUKlUVFAv1BQj9WcpsQRJDsR3CY1IEgFYXDQRP2IymbDb7WqDchXcdF71eY1sNovD4cDn82G1WonH42QyGYaHh/H5fDQ2NmK1WpmamiIcDrOwsMCBAwd46qmn2LBhA5OTkxw9epT+/n7q6+sJBoPs2LGDzs7OFR+fz+dj165dpFIphoeHOXLkCI2NjfT29qr5RimGrSVUKUP3GEIZMgZZ9yt0VQZJBNLpNB0dHfT19d3yJL8gn8/z5S9/maGhIbZs2cLWrVtpamrCbDbzne98h3w+TyqVUnsHTCYT8/PzRCIRVcVxu93U1NQQj8dJpVKLHID8NMpsCtaTITcO2sFiJyozGEK5WkptSB4jlR9jW1icpShASSJppCZVUUUVVdwpFAoFpUijS5DqSYEMIIut04tdcEMIQYQTBHo3QWylsTK+HrsDRqlqod4IhLprsVhUAhAOhymVSkSjUeLxOPX19bS2tqrC3oULFxgYGMDn8/G5z32OyclJyuUyZ86cYWBggMcee4zf/M3fvOVj9Xg89PX10dvby/DwMEePHqWuro7e3t41Jzm6GrEuE4K11CGQL/aZM2coFAp0dnbS1tb2gVtrVquVrq4u8vk827dvZ3x8HKvVysWLF0mlUtTW1tLX18fFixcZHx9Xeva61Gg4HCYUCikjbLfbFS3F2BUwckDXK4xJk2Cp82W325WmtLThjbJs+vPp57g6QFxFFVXcC8iSMT3Il5kmYBFNUn6Xn7oqmpFKJI+Tn/K39Q5dclpXZQLUPJ/4BCneWSwWGhoa1OxgLBZjYWEBh8PBhg0b2L59OxcuXCCZTHLu3DlFB96xYweZTIYNGzZ8oGN2uVxs27aN3t5eRkZGOH78OG63e1EXqIrbj3WXEKyVGYJyuczs7Cyjo6MA1NfX093dfdsy6EqlQl9fH52dnXzve9/jxIkTdHR08Au/8Avk83kuXLjAm2++SSaTIZ/P43Q66enpIRwOK6NSLBZxu91q94Nw1o2KOPJ66wnLUXr01rc+CCzQF85IMgAoTW/5mzxWtoQa1YjW2/muoooqVhf0QBVQ3WwpVhilQ/U9A8ahYrnNGPDKfZayd0tJk65V6IG0cchausZWqxWfz6f2EoRCITweD8FgEI/Hw9DQkJIsD4VCNDU18VM/9VM88MAD/Pmf/znRaJS6ujo++tGP0tLSclsCd4fDwebNm+nu7ubChQvMzc3xzjvv0NvbS319/ZpIDFbTe1h3CYHP5yOTySh++/2GcrnM9PQ0o6OjmEwmurq6GBoaoqGh4ba20y5fvsz/+B//A5PJhNfrpauri6amJl555RWOHz9OOBymUqlQX19PQ0MDVquVkZERUqmUoqToMmZGqVGLxbKuOZ7ijIyOSzfWeuKkV8v0pEA3JkIrkuErvSokzyn7Bozt9iqqqKKKuwmpTMMNfXwZaNWXkklgKf+Mt+tdg6UWky2lxLfeRCz08yb+QQas5Zzl83kSiYRiF4jvTiQS1NTU0NHRQblcJpPJEA6HSaVSpFIpMpkMXV1d1NfXk8/n+frXv04gEKCtrY2Wlpbbcvx2u53GxkYKhQINDQ2cP38ep9NJb28vjY2Nqyqovp+xLhMCgGQySTAYvMdHs3KUSiWmpqYYGxvDarXS09NDY2MjZrOZsbGx286NrKuro76+nkKhwObNmzl9+jTvvPOOMti9vb3U1NRw7do1QqGQUqmx2+34fD6y2aySG5UBVlG/kW266xnLbSHWIR0UXYdbfhd9bjmPumyfbtAlGZDkQBKG9eQMq6iiitUHqUwDSh5ZCnVStLDZbItmp+DGQjPd9sntEvxLsGukEOk7XJbCWk0UjO9J/LA+a1YoFBZJkNbU1AAoFsDExASVSoXW1lYeeugh5ubmSCaTHDlyhEqlQltbGzt27CCdTtPU1LTiZacrhVwbPT09dHV1MT4+zqVLl7h69So9PT00NzffV0PHq/E6W3cJgUhZ3S8JQbFYZGJigvHxcZxOJ5s2baKhoWFRRnwnti+63W5sNhsXLlzgjTfeIBwO4/f7OXDgABMTE0xNTREKhYhEIpRKJbxeL4FAQCkRyPF4vV4lNapTXARr1QDrwftSKkpLSY0alYTgRitcfpfKv34f6ciIg9TpRtIREO3utXiuq6iiivsT+tyAFJX0IoZuB6UDIPfXbaL4GGP3AJZe8Gi8XbBW/ZEO/T3qQhRmsxm3202pVFJqgZJ8tbW1MTU1RTKZZHp6mkwmQyAQYPv27bhcLk6fPs3Q0BB/+Id/SHNzM5s2bbrtEqFyjcB1/7lhwwY6OzuZnJzk6tWrXLt2je7ubtra2u6bxGC1dTbWXUJgsVhwu92rfo6gUCgwPj7OxMQEHo+Hbdu2UVtbu+QFdDu1lQcGBujv72d2dpaXXnqJRCJBQ0MDvb29bNu2jaGhIS5cuEA6ncbhcFBbW0smk1HHK8GrUIYqlcpNUqN6RXytGl/d0S2FpW4XNSF9C7FUcIytcDl3QicyrqbXpfh0J1tFFVVUsdogfkOnUhpV6KQzajKZFm0yXm6pmTyHLt+sy5QuhfUwU6BLkMpchviMTCaDy+XCbrcvum14eFhJk3o8HhKJBNFolGg0yoEDBzh06BBDQ0NEo1H6+/uJx+M0NTXhcrnYv38/HR0dH/i4l1IZMpvNdHR00NbWxvT0NENDQwwODtLd3U17e/t9oUq0mpKCdZcQmEzXF2StVqWhXC7H+Pg4k5OT+P1+duzYQU1NzbteNB90OKpQKJBKpaipqeFrX/saZ86coa+vj+3bt+NwOPB4PLz22mu8+uqrFAoF3G43fr8fs9nM/Py8Sq6sVitOp1MZjHw+v6TU6FKB6XqozOjQ36vO89fPkywe0++jzxAYVYOkIqNLjepUpPU0RFdFFVXcP5BCiF4okm33Yhf1/Sm67RObpu9VsVgsN0mQyn3erRi1nvyQLsMq57NUKqk5QKfTqQRByuXyIj/f3Nyszuv58+epVCp4PB6efvpphoeH8Xg8vPPOO1y7do3Z2Vn+j//j/yASiVBTU/O+q/fvJjtqNptpa2ujtbWV2dlZBgcHGRwcVF2E1brQbDUlA7AOEwK4TmNZbQlBNptlbGyMqakpamtr2b17N4FAYEWP/SAdglKpxJe+9CVGRkb49Kc/zbZt20gmk+zcuZOpqSlGR0eZnJwkHo/T0dFBb2+vkhotFAoUi0XMZjN1dXVYLBbm5+cJh8OL1G+En7iUdOZaV71ZKWXIKLmn7wmQ24QuJI5RHz7W5wZ0qtJyCVgVVVRRxWqBbqOWsmUCXaluKclSXX1IL6LI342zW0sNGxs7E2sRRlELff5MfEs6nSaXy2Gz2WhsbCSdTquuQCKRwOFw0NPTw+bNmzl37hwzMzN873vfo7m5Gb/fz969ezGZTGzevJmXXnqJF154gYMHD/Lss8++r2MulUrvKQRjMplobm6mqamJubk5BgcHGR4epquri66urvtSSOZuYt0lBKutQ5BOpxkdHWV2dpb6+noefPDBWx7G+SAJgQwLTU9PMz09TXNzM0888QQ/+clPOH78OFarlWAwqKhBb7zxBplMhlwuh8PhIBAIkM1m1RCxPsAqwahRzWYphZ21iuUWry0HvTqmzwEY5wt0VQ15nJ5MyM9qMlBFFVXcTxDbpQfxxgVjeqFFp01KMKvPqy3nZ4yymO9F81xLkPdoLExJB1qoWOVymVwux8zMDC6XC4/Hg9VqJZ1OKyrR7OwsjY2NdHV1YTKZGBkZYWxsjLa2Np544gn8fj9nzpxhcnJSyaS/H5RKJZxO54ruazKZaGxspKGhgXA4rBKDzs5ONmzYoJbj3WtUOwSrAKthOVkymWR0dJS5uTkaGxvZv38/Ho/nfT2XfHnfD1wuF88++yxjY2McO3aMl156ic7OTjo7O+nt7cVisZBIJJicnCQcDgMQDAapr6/HarUyNzdHJpNRRlxPBJbawAvrw+AuBSO/VW7TOyVGipUYZd1w6ypD8pxiyHXHWJ0bqKKKKu43FAoFNU+l+zZ90Fg6qHoHVLevy1X6hVKky3DqNni9+SZjsgU3OtbiY+D6eRPKUE1NDW1tbWq+IBaLqWWlXV1d1NTUYLfbSSQSfOlLXyISifDss8/ymc98hu3bt3+gY73VmQCTyURdXR11dXVEIhGGhoY4fPgwHR0ddHd3rzjBWC9YlwnBvewQxONxRkdHWVhYoKWlhYceegiXy/WBnvODqAxNTk7yjW98g1KpxPT0NNlslnK5zJYtWzhx4gRXrlyhUqng9Xrp7e2ltraWwcFBpqenVSXaarUqdYJkMrnI0OotyPXQEXg3LNUtWIpKJMG9sUKma3TrCZc4Tv111vLAdhVVVLF2oRdDdMEE3c/ptk8U1HS7J75JOghGRTf9+da7rdSLU9KN1unAJpNJqQVms1lyuRxTU1NUKhXa29vZsmULc3NzTE9Pc+LECRwOB319fWzZsoVTp06RSqU4f/484+PjnDt3jl//9V9/X5Kk7ych0BEMBnnwwQeJx+MMDg7y+uuv09raSk9PD263+30/7/uFsUO1GrAuE4J70SGIRqOMjIwQjUZpa2vjkUceuW1tK11y8lYxOzvL1NQUDoeDD33oQ+TzecLhMH/6p39KLBbDarUSCASora0lHo8TCoWIRqMUi0U8Hg/19fWMj48Ti8WUYZEvVy6XU4Ni6wm3IjUq9zeqB+lScLoRFA6t7jThBt/WyJ2toooqqrifIAUkY+dbr+BLoUlXJ5JKv75sSw924ca2Y1jeBuu3radkQT+fosZYKBTUIjKLxYLT6WTDhg2Mjo6STqeZnp4mmUxSU1NDd3c3MzMzpNNpBgcH+e///b9TW1vL/v37efjhh3nttdeIx+MsLCzck4RA4Pf72bNnD8lkkqGhId58802am5vp6elRsvTrFesyIfB6vXdFdrRSqRCJRBgZGSGRSNDe3s62bduw2+239XVk6+/7wY4dOzh06BD9/f386Ec/4ty5c1QqFRoaGqitraW2tpaZmRlGRkZIp9PY7XZqa2tJJpPk83mGh4eVgZVqjUiNvtcA11rFcp0Ao3PTaVa61J7O/9eDf33Azig1qg8bryeljCqqqGJtQlcdkoBf/i+BvXGPgU6x1De66/bWqL4GLLK9xuLMeoD+3uX8pNNpnE6nkg8XitDVq1ex2+14PB78fj+xWIxYLEZNTQ0bNmygtraWSCRCLBZToiSFQoHm5mYeeeQRurq63tcx3q6EQOD1etm5cycbN25kaGiII0eOKIl1v99/215nOeh7NlYL1m1CcCc7BJVKhfn5eUZHR8lkMrS3t7Njx447NuH+foLtfD5PJBLhypUrfPWrXyUUCqltwrt27aKzs5MXXniBc+fOYTab8fv9eDwezGYz0WiUdDqtDKxIk4oqgci9Cdaj1KhesRcsJTWq30ffQyDXirTC9XOl8131dvpaV2yqoooq1hf0gF/43nrgqlfx9a6oHvxbrdYllzYu5TfXq+3Uab7ys1gskkwm1cIyp9NJMplUyQKAw+Ggrq5OJWfnz58HoKOjg0984hMcO3aM4eFhTp48SblcZmBggM2bN9PQ0EBjY+MtBfi3OyEQuN1u+vr62LhxI8PDw7zzzjvU1tbS09NzXyyvvZ1YtwnB3NzcbX/eSqVCKBRidHSUfD5PZ2cnra2td1wD91ZnCCqVCn/xF3/BxYsX8fv9FAoFgsEgu3fvZnBwkLm5Oc6dO0c0GlUqQ3a7ncnJSXK5nDIYIjW6sLBAOBxeJF0mSYCxEmOkx6xF6O9RD+btdruSXzUOysGNqr+uzCRJmjxO/5xl5bw8TxVVVFHFWoXQKOEGrchYLBEbC4tnr/QhYvFf+v4Cm822ZJd9PexuWUr+W5//K5fLJJNJMpkMdrud1tZWtZgsHA4TjUZxuVy0t7djNpuJxWKEQiH+9m//lvr6erq7u2lububs2bOk02m++tWvEo1G+emf/ml+7ud+bsXHeacSAoHT6WTr1q309PQwMjLCiRMnCAQCanbydlfzV2P8sy4TAp/Px/Dw8G17vnK5zOzsLKOjo5RKJbq6umhpablrW/JW2iF45513mJmZ4bHHHiMUCjE/P8+uXbvUTMWxY8cYGxvD5XJRW1tLTU0N8/PzRKNRSqWS0iR2u91KZjSbzS7iHQJLDhCvB167sepv3Acg9ymVSsqx6fJ65XJZyeXplCBjJ8C4h2A1th6rqKKKKm4X9NkoWBy46rZRbKXub/R5AuPCx6VstO679KRhrfoueb/GQpY+kwaooWKZOXS73djtdiVBOjExgcVioa6ujvr6eiqVCmNjYxSLRSwWCx/+8Idpamoin89z7do15ubmmJqa4siRI2zbto1t27a963He6YRA4HA42Lx5Mz09PYyOjnLmzBncbje9vb00NDTcNl+7Gv32ukwIbtcMgSjzjI2NYTKZ6Orqorm5+X1v4nu/WInsaDwe57nnnmNiYgKn08kv/uIvMjQ0xJkzZ3jhhRfIZDJks1m8Xi8dHR0kEgnGxsaIRqOYzWYaGxtV+2xhYYFMJrNolTzc4HwasR4WvQCLnJXRuehKSxaLBavVelNAb9Talv+Lw9IXx0jSUJUWrWK1YC0HTVXcW8jAq3GOyrizQC/ECN1S19UXmyn0TNnoru/K0ROLpUQg1iqM3Ra9oyJdFLh+joUyJLFBpVIhm80SDodJJBJks1l6e3vp6upifHyc/v5+rl27htfr5bOf/Syf+cxn2Lt3Lz/60Y94/vnn2bt3L7/927/9rsenF9LuBmw2Gxs3bmTDhg2Mj49z4cIFHA4Hvb29NDU1faBgfjV2B2AdJwQfZIagVCoxOTnJ2NgYNpuN3t5eGhsb71m2txLKkMfjYfPmzTidTgKBAH/zN39DLpdjYWGBXC5HXV0dTU1NqlUm2bjb7aahoYFyucz09LSquJhMJtxuNyaTSa02h8WtxvUm6bbUTIRxcM0YyOtJlZ7Y6efTbreTz+cXSY1KcvB+h8mrqOJ2Yz0ETVXcO+i2VJYy6kmo2ETpWuu36483Dg0bufPGwHg9YTnKkPges9mMz+cjl8uRyWRIJBKk02lsNhttbW04HA6i0SjxeJyTJ0/icrnUMrDh4WEymQwnT57E4XBw9uxZHn30UTZv3syuXbve87jK5fIdp18vBavVSnd3N52dnUxMTNDf38/Vq1fp6emhpaXlfScpq/H6WpcJgd/vf18dgmKxyMTEBOPj4zidTjZv3kx9ff09b/ushDJULBbp7e2lr6+PYDDI3NwclUpFSY1eunSJsbExVQmora3F7/cTCoWIxWKk02mKxSJOpxOn00kmkyGVSi2aEdA58OstONCHeuHGl93hcCgakO549CqM3mGRdrfNZlPnUK9e6YvHZK6giiqqqGK9wLiIUberUqySgFbf+G5MDOT/Rslms9l8k4z3covO1irEv8g5FpTLZSKRiCpkeTwecrmc2mZss9nw+/3U19cTDodJp9PMzMwwOTlJfX09Bw4cYP/+/fzkJz+hVCqxdetWstksLpdrETXWCL0Qdq9gsVjo6uqio6ODqakpBgcHuXbtGt3d3Wp+4lZQpQytEtzqYrJ8Ps/4+DiTk5N4vV62b99OMBhcNR/mSihDZ86c4W/+5m/w+/381m/9FocOHeLUqVO8+OKLnD9/XlGDOjs76ejoIBQKMTAwQC6Xw+FwEAgElMJAJpO5ScpNVAmMUqPGoeK1BuMSnZXcri/T0dvVOnVIBuL0apZRbm+9OKcq7j2Wq5gupX5VRRV3GsYilD4noEuIStdAOga6P9J3vOhbkPXHG+cJ1kNisJRUtpwrXc2pUqmQSqXUXGEgEGBubk5tLt68eTM1NTUMDw8zMTFBOp0mm82SSCRobm7mqaeeYmZmhueeew6bzUZ7ezsbN25c8pgkrrgXHQIjzGYz7e3ttLa2MjMzw9DQEIODg3R3d9PR0XHXZkfvBO792b0H8Pv9aqPuuwX1uVyOsbExpqamCAQC7Ny5k5qamrt3oCvESihDLS0ttLa2YjabGRwc5Ktf/Sqjo6Nq2cjGjRvx+XxMTk7yxhtvqGzXZrPh8XjI5/OLEgGbzYbX61WbC40LsmB9KN8sNzAsjklfnGO322/iquqOx263L6IV6ffT9aH1n1VUcTegX2vLBf4ruU8VVdwOLKXiZqy46vx3kR41dnLl/rptNna95TnWyzyB8Xury7wKVdhmsxGPxxdtNPZ4PHg8HlKpFIVCgQsXLgDQ3t7Ovn37VMfg9OnTAIyNjfFrv/Zr+Hw+NYi8HPR5u9UCs9lMa2srLS0thEIhBgcHGRoaoquri66urlWRvNwq7r8jvg2Qi3Y5ZDIZxsbGmJ6epra2lj179tyVRRXvF3olfrkvjNPpJJ/PEwqFeOmllyiVSjQ2NrJnzx6uXLlCsVhkenqaeDyOzWZTic/s7KxSGRI9YpkjiMViakBLlxpdq4HAuwVCUvXX6VKiaCHUHp3XKudLkoJSqbRIK9tut6vnknOvzx+s1XNcxerHUtS4d7tPFVXcbujzAFKR1fn/EowtNXslj9N/6tVw494Co4LeUljLCbDx/SeTSeXvRPo6l8sxPz+vzn17ezvJZJJkMkkkEqFSqVBXV0dLSwuNjY2cP3+eQqHAd77zHaanp2lsbHxXyo3MNK6mhEBgMploamqisbGR+fl5hoaGGB4eVonB7V5EeyexLhMCkdk0BtDpdJqRkRFCoRANDQ3s27fvvlhlrX9ZjVnp8ePHuXbtGpOTk7z++uuYzWYeeeQRgsEgCwsLnD9/nsHBQZxOJ3V1dfj9fhYWFojFYooCJF0CMZJiZI3SmMbKyVozkku9H30mQK4l/TPQOwByH6vVqlSGhDepV7Pg5v0E8n89qaiiiruFqoJQFasRuvKMkeu+lO/R5w8cDsdN1EudaqRLPOtzX+vhu2CUIJVzJsmSJFmVSgWXy4XL5cJut5PJZFRx0Wq1UltbS319PaVSiYmJCfU8hw4dYsOGDYRCIS5fvszk5CRNTU14PB7279/Pli1bFh3P3ZIc/SAwmUw0NDTQ0NBAOBxmcHCQkZEROjo66O7uxuFwLPmY1YR1mRD4/X6lqet2u7l69arKcJuamjhw4ABut/teH+aKIV8Uo5EqFAp84xvfYGBggJ07d7Jz505aW1spFot8+9vfVoPCHo+HlpYW0uk0U1NThMNhTCYT9fX11NTUUKlUiMfjpNPpRYvH5DX1qolxyGstQa/8w2Ieq5wHed/C9Ze/CwdTkgDhvOrDb8u9liQPa/GcVnF/QL8+VxIQVa/VKu4WdP6/zAvogb7RlupSo3KN2mw2ZY+NctA6b16fHzBKdK4lLPX9lnMglXpJxFKplOoWiCJhLpcjEokoCdKenh7a29uZmZnh0qVLXL58mWAwyOc//3k+9KEPUSqV6O/v5/Lly0xPT9+XCYGO2tpaamtriUajDA0NcfjwYdrb2+nu7sblcq3a62VdJgRS9f/xj3/Mn/7pn3Ly5ElefPFFHnroIVwu1z0+uluHrlKjw2q1sn//fux2O319fYyOjhKPx5mbm6NUKlFfX09LSwsjIyOcO3dOcQFdLhfBYBCr1crU1NQiqVGXy4XFYrlJatTYUl2tF/z7hXEpjj4AXKlUcDgcixyR3EckQwVSaZLqitVqvYnXarVasVgsi7YT6z+rqOJewlhRfa95giqquJMwBuq6wpvRJuvCDPogst6RlSq43o0VW14oFFY0YL+WIP5dzpM+4Ov1esnn8+RyOeLxuBoybmtrw263E4/HicfjnDp1CrfbTVdXF+3t7QwPD1MoFDh27Jg6zw8//DBWq5UHH3zwpmO43xICQU1NDXv37iWRSDA4OMgbb7xBS0sLGzZswOPx3OvDuwn3TsPpHqFSqXDs2DEA/tk/+2f09PRw/Phx9u3bd18mA3DjC2tMCAqFAn6/n3379vHKK69w9uxZRkZGOHToEDt27CAWi/H2228zPz+P3W6nsbGRnp4e3G43yWSSmZkZCoWC+uJbLBYymQzxePymZECveq9F6IO++qCZrhikV6kA1XbWA349kQCUgTWZTDgcDhwOBx6PR81lyPNU5waqqKKKKpaGLsYgNlj26DidTlV40WmaMr+l22h5nP48enfXYrEo3jxwk0/Qb1sr0LspOo9f5ghzuRwWiwWfz4fZbCabzTIzM0MmkyEQCLBx40bq6+uxWCxMTk7y9ttvUyqVeOSRR9i5cycDAwMcPXqU48ePc+jQoUWL5gT6rMj9CJ/Px+7duzl48CAAR48eZWFhYdVdK+umQ1CpVHjppZf4T//pP3Hx4kXsdjvf/OY3efzxx+/1od0WLCU92t/fz/PPP0+lUiEYDNLV1YXP5+Nv//Zv6e/vV9Sgjo4OWltbiUQiXLt2jVQqhcPhoKamRgX/Qi+SAFinDC215XGtwKhaoUO6ALojkn/iQIRvKZzVbDarjJuuow035gOko2CxWJTy0HpQbKpi9aLaCahitaNYLGK321WAL9SgpeSvTSbToiBXuglig6Xgoxdj9DkCoxLcWk0GdJlVI/VKUC6XKRQKpFIptZvAuMOot7cXn8/H2NgYk5OTpNNpcrkcs7OzNDQ0UFtbS6lU4n/+z/9JMBhk06ZNtLW1qdeQ2ON+h9frZceOHfT09Cw5U3CvcVc7BL/zO7/D/v378fl8NDY28slPfpKBgYFF98lms3zuc5+jrq4Or9fLM888w+zs7Pt+zXK5zHe+8x3279/Ppz/9aT7+8Y8zMjJCfX39fTX9/V5YSnq0tbWVzs5OgsEgPT09JBIJTp06xcDAAHa7nd7eXvbs2UM+n+ftt9/mypUrajDZ5XKRy+XIZrNq86N0Cux2u+LMGw2jkU5wv0OcgF4V0hMB/ZzrikFLOQh9bsBms2G323E6nYuSK52eJVzMbDZ7F99xFVXcjJUE/mvh+17F/Y1MJkMul1M2uFgsqsWQgFLKE/sr12wul7up2l+pVBRFyHi7/rsUgGQOYS0lyUsNXUuBqlwu43Q68Xq9mEwmCoUCuVyOVCqllphaLBZyuRyXLl3i2LFj2O12Dhw4QHd3N6VSifPnz3Px4kUSiQRbtmyhrq6O3t5eamtrFx3H/d4hMMLlcq1KWdK7ekSHDx/mc5/7HPv376dYLPLv/t2/46mnnuLSpUuKT/Xrv/7rvPjii3zzm98kEAjwq7/6q3zqU5/irbfeel+v+alPfYrjx4/zr//1v+aXf/mX1et4vd73ta14tWK5bcXZbJYLFy7w6quvks1maWxsZO/evVy5coWpqSnm5+cpFotqw6DVamV6elrNCMjcgBiAZDK5aKOubiB06Pz6+xn6ALHuGICbqiRiOPWWp65dLU5KP2/icER5SJcoNc4WVFFFFVVUsTz0wWDdHgv/X2yudA302QOhEukSpUIHlefTleCMOxCMicL9jKXiCaFX6XsZZKDYbDbjdDqpVCrk83kWFhYA1MKxRCJBKpUiHA4TDofx+Xxs3ryZhoYGTp8+zfj4OF/84hdpamqis7Pzpte+X2cI3g2rsYByVxOCH/7wh4t+/+u//msaGxs5efIkH/rQh4jFYvzlX/4lX/va13jyyScB+PKXv8zWrVt5++23efjhh2/5Nf/Lf/kvS0o+eb3eW9pWvNqhU4ZOnjzJ6dOnSSQSvPbaaySTSRoaGnA4HGzcuJGrV69y+fJl0uk0LpeL1tZWYrEY0WiUTCajdPBld4FeETC2Uo0LQ8TAGisl94uRXOo4jYPCogpULpex2WzKkcjjpVKka2KLMlM2m1UBv7RB7Xb7os/PKOlaRRX3A+6H73cVax9GOXGZARC1tnw+r2bjxJ85nc5F24xliFhXj9PpoPocgiQM+mzY/Qjd9+kBuZ4c6H5QbpcCYaFQUHGD0+lUm4lHRkaUUInX62V8fJxYLEYikWDPnj3s3LmTkZEREokEY2Nj/N3f/R3BYBCLxcITTzzBpk2b1mRCsBpxT3sWsVgMQLWHTp48SaFQ4CMf+Yi6z5YtW+js7OTo0aPvKyEwylcJ1lpCkM/nGR8fp6GhgRdeeIETJ06wa9cudu7cqVSVXn/9dSYmJqhUKng8HpUkzc7OEolEANTQkOwdyGazKjjV6TA6LUYq4nq1xYj7JVjQqz26gdQ5qJLsGJ2OnJ9cLgegBoX1LoqRd1oqlRZxV4WaJK3uKqqooooqVo5KpUIul1OJANygBOkzAXqQXy6XVce3XC6TzWbVvh24Wdrb6O+WKoDpx3M/YLnjlORHp0zp+x/0eTiJF0QcQ85PMpkklUpRX1+Pz+ejXC5jt9u5ePEi5XKZQCDA3/t7f4+JiQmcTifnz5/n2rVrlMtluru7GRsbu4lGdD9jtV4T9ywhKJfL/Mt/+S959NFH6evrA2BmZga73a625AqampqYmZm5ra/v8XjWTEJQLBb5xje+QSQS4bOf/SyPPfYYFouFrVu38r3vfY/BwUFmZ2cpFos0NzfT2trK4OAgY2NjlEol7HY7brdb7WeQxWRiDO12OzabjXQ6rQyCGABdp3mtQSpBugPRoQfvutHUtxPLT1GwsNlsi3YU6HQroQxVE4Eqqrh/cb90Q9c6xHaLcpBU8sWWS2dAijLCU9cLPzabbVHnQDoN+qyX7htkSFlef7VjJRKqegFM9hAtNWgtjIJCoUAsFlMJWX19PZVKhUQiQTwep1gs4nA46O7upquri8HBQcLhMN/61rdobGykt7eXD3/4w9TX17N//35eeOEF/uf//J/s3r2b3bt3383Tc0exGrtJ9ywh+NznPseFCxd4880378nr+3y+NTNDUCqVyGQyJJNJYrEYJpOJLVu2cPjwYc6cOYPZbKahoQGz2Uw0GuXtt98mm81SKBTweDx0dHQQCoVIJpOLthM7nU5VKclkMphMJjUoJGo5xqr3WlAZ0g2hcCb1apAuGSr3kxaq/BMnog8Sw+L2qy5xJ45IugtVVFHF/YlqMrC6INVoneqp7yCQAo4umy2Bvb4nRh6r04qW8n1i/++HmYLlaL36ses0YJ02LOIjsocgkUio22X/TrFYJB6PYzab8fv9BINBhoeHyWQyDA0NMTU1RUNDA62trZTLZaanp5mdnaWpqYmdO3eqmEY6DFXcWdyThOBXf/VX+f73v8/rr79Oe3u7ur25uZl8Pk80Gl3UJZidnaW5ufm2HsNaGip2OBx8/OMfJ5VKsWHDBn7v935PDRD39PSojD0cDitqUCAQoFwu43A4GBsbI5lMYrPZqKurU1VrUWuAG1SiSqWikoGlNjbe6kbT1Q7jgJl0AozvX1QrdMlQCfhzuZxKnqSqZLPZsNlswA3ZNn0+YbU6kCqqqKKK+wVS1ZbOgG6XZQBWbDKg5KGlSyt2XuSfpQIu9tm4a0a6wvpM2f1iy/XjNMqt6rfrtGFRwJOuiMzHyf/dbjder5f5+XkSiQS5XI5gMKjOeSQSIZvN0tDQQDAYpLOzE5/PRy6X47nnnqOtrY3f+q3fIpvNsmPHjrt4Nu4sVuu8yV1NCCqVCp///Of5zne+w2uvvUZ3d/eivz/44IPYbDZefvllnnnmGQAGBgYYGxvjkUceua3H4vV6SSQSt/U57xVGRkb47ne/i8vl4tChQzzwwANMTk7S3d3NyZMnuXLlCpVKhdraWjZu3Ijf72dmZobJyUllsESLWbJ9QGX7DodDfflzudxNlCG4vwzfcjCqCC2lMKTvYNDvI+dHZFsl2JfHwI1ZC3Eu0o3RK1fVZOD+xlr4HlRRxVqBruQmtltUhqxWqxom1ru80jWQirgEuKL8ptt/6fgaZb/ld92H3E94NxqRLnaRz+fVOXG73SppkoQhk8ngdrtVsSybzZJOpzGbzXR2drJp0yai0Sizs7PMzMxgs9nYsWMHvb29JBIJ+vr6KBQKvPnmm1y6dInt27cTDAbv5qm4I1it18NdTQg+97nP8bWvfY3vfve7+Hw+NRcQCARwuVwEAgH+6T/9p/zGb/wGtbW1+P1+Pv/5z/PII4+8r4Hid4PX61XSWPc7IpGIyr4jkQjxeJwLFy7w2muvkc1mcTqdBAIBAoEA0WhUnXe73Y7H48HlcjE5OUkqlVJdk0AggNfrZXZ2VinjwI2KC9xQ39E3PsJiqc37BbrEp14F0dWUJHHSeaXG4WMxiHqFRSpScls+n1+kiy37Bqq4d7hdgfxqNfRV3H5Uk7/7AxLQC+VVn/sSv6UPzcpgrNVqXTQ/oFNH9W5DLpdbtKleF9kwypjeLz5xOX9vnCcwnjcpeLW1tREKhUilUirOcjgctLe3Ew6HyefzRCIR5ufn8fl8tLe3Mzc3RyqVYnR0lC996UtqniAUChGPx7FYLMTj8TWREKxW3NWE4I//+I8BeNywHfjLX/4yv/RLvwTA7//+72M2m3nmmWfI5XL8zM/8DF/60pdu+7H4fL41M1S8Y8cOdu/ezeDgIK+88gqvvvoqsViMYDBIc3MzgUCAUCjE2NgYqVQKp9NJa2sr0WiUeDxOLBZTbVGHw0EulyOdTpNIJJQ0pmxylOxfH6YSdZ3V2gZbCXT6j17dMc4NGHmUUkky0ojEYUg3QNrMkkDZbDb1nPqm5yruDZZa7FdFFe+GW00G7qeAcC1Dpwzpw8LyN5vNpoo24uOEEip+Qey5bjP0hGEpP3g/fvbGwWG9WKb7RpHOli7A6OgoNpsNh8OhJEiLxSKTk5MABINBfD4fo6OjJBIJ0uk0nZ2d1NTUEI/HicfjTE5O8qMf/QibzYbb7eaxxx6js7Pznp2L24nVGivddcrQe8HpdPLFL36RL37xi3f0WNbCDEEymWR6eprBwUG+973vkUgkCAaD7NmzB7PZjM/n46WXXmJsbEy19ER7eX5+nnA4DFz/curVfaFS6TJtYiBFOWC56vhqx3tV9Uwm0yIOpN4SFkMvzkC6BXrFX6cLyWsJzUruL9ATiGqwsHpQrfxWcSdQ/Y7fW4iP06k/NptNBflCHRJVPenu6sUceYzYfF1+U08GjPKk8v+ljsnI019t0I9PF9owLtjUdxLA9aWoZrMZr9eL3+9X5yUcDpPNZikWi3g8Hkwmk2IpiHT6//a//W+MjIzg8/k4f/48x48fZ2Fhgb6+Purq6ujq6rppt9T9gtX8ea++3cl3Cff7HoJKpcKf/dmfcenSJbxeL2azmfr6eh5++GG+973vMTo6ysLCAvl8nqamJpqbm5menmZsbIx0Oq2ybp/Ph8fjYXx8nFKphMPhWGQMhRcvhs7hcCiVoaUu6tV6oS8H47yAXgHRjZ9QfsSByDkRrWoxThLky6IWeZyucV0oFFSHQN+CWcW9w3JqG1VU8UGgq4pVO1D3FrKUTJcbFVsstl3ss8iVSoIg1W9JGsTG2+32RfRRWOxDjCpExrkCeZ7VYG90u/duhT69iCVSo7JLR24XeW2LxUI6nSafzysqkc1mI5lMKglSr9dLfX099fX1jI6OEgqF+MY3vkFdXR3bt2/niSee4PTp05RKJZ577jlisRg//dM/zbPPPnsXz876wLpNCO5H2dFKpcIrr7zC5OQkTz/9NLlcjnw+z44dO1TA+dZbb3Hq1CnMZjO1tbWYTCZisRijo6NqiKqmpgaPx8Pc3ByJRIJYLKYMY2NjI7Ozs2QyGeXAnE4nVquVTCaziOu+1EDxcv9fLVhKScH4f6kKAao6JGvZjdQo49IWeZyoMsn/xVjK/XUt69V2jtYL9M9cT8iqyVkVtwv6tVT9nt976LNh8v3XOwD6xni5Tbbk6n/TVXWARcmE3jmXeQW9om7Earc3Rj+uC2mkUik1hO1yuVQyJR2Umpoa/H4/09PT5HI5pqamlARpTU0NyWSSXC7H0NAQg4ODNDQ00NLSQrlcVgtTm5ub2b17Nxs2bMDtdjM3N6ce88orr7Br1y72799/r07P+0KVMrTKIAmBMYtfzYjFYnz3u99lYmKCxsZGfu7nfo7h4WGOHj3Kq6++itfr5aGHHmLTpk1ks1mSySQLCwssLCxQqVSoq6ujrq6ORCJBNBolkUhQLpcJBoPqSzw+Pq4GpGpra1UWbwycdH3i+xXG+QB9LkJ3GMCi9fQ2m23RoLAYQVGzsNvtAOp3eZxxCEvmMfTXruLu4X6+dqu4P1D9Tq8eiI0VEQd9N4FA9wlS1BHlPbHdsptAl5KW4pnYeX2uDBaLVrybgs+9xEpeX38Puv+XbkupVMLlcuF2u9WC01QqpW73eDxEo1Glruf3+/F6vUxMTBAKhcjn89TX19PU1ERHRwfBYJBUKsWJEyc4e/Ysn/3sZ/mlX/oldu7cyUsvvcQ3v/lNrl27dt8lBKsV6zohuN8oQ36/nwMHDtDY2EgwGOTP/uzP1EIyuF7Zbmtr4/Tp00xNTQHXlYQ2bdqE1+tlbm6O8+fPA1BXV0dtba3it+ubGi0Wy6KWqgwcG4el9OUsOr1GcK8NnA59aYzeujdm6vpuAGDRXgAJ7HV6kG7I5bHG7cU1NTW4XC7m5+fVAhzjEOtqOldrDXfa2a4GZ17F3UH1Wrp/oZ9XCeZlCafdbqehoUEtwcrlclitVlXgMSoMyePkOeC6io6+mEyKR1Is0uU6BZJk6HNqqwHGa3ApWpNxngCun9dsNovL5VJCJHK7/N/v9+PxeEin08zMzGC32+ns7GTDhg3E43EikQgTExNqHq+1tVWdx3feeYdz587xxhtv8LGPfYz9+/dz8ODBu3BG1gfWbUJwPw4VZzIZfD4fjz32GMFgkGQySaVS4UMf+hDJZJLBwUH+6q/+ilKpRGNjIw8++CDDw8OEQiEmJiYUj8/pdOLz+RgfHyeTyaiMXr7E09PTpNNpMpkMgEoS9CqIQAJqMZarhQ9phF75sVqty/J5ZV5ATxRk86K0m6UdKudF54JKAqXPHZhMJuLx+KLhNXmuKu48lpsPWC74utWgrBrEVXGrWO6aqV5HdweyYEzmAGR5p75fRw9mpTCkL5vU5wEkeNUlRmUOT4puuiofLA6o5ffVaEv0Y9IlSI1KgxK0VyoVotGomr9oa2sjGo1SLBZJJpNqLrG5uVnNz0knIRgMsnPnThobGzl27BhXr15lZGQEi8XCnj17ePTRR3n99dexWq10d3dz8OBBVYAT2vT9gtXITLm/zuBthFCGdMmx1Y4zZ87w9a9/nWAwyL/7d/+Ohx56iJMnT7KwsEAoFCKRSNDQ0IDP56O+vp6BgQEGBwexWCzU1NTgcDiYmpoiGo2STCYpFApYrVZaWlqIxWIkEgkSicSiire0AdPpNICSIJXtu0ZZMr2LsBopRfqxSpKjG2Z9QZjD4bip2i+P0w2hXg2SJW4S9BeLRebn5wHUAFpVZvTe4U7MuKy2a7yKO4dbvV6Wq/quxsBvvUEq/RIDRKNRRfmRnw6HQ9GGREBC1OLk/+ILxA9IwUkkOI1KQ7q09WpdXmZkAgj0xEaSqXQ6TaFQUPNzQqmVpGlmZkbNE7hcLsbHx0mn04yNjVEul2lqaqKxsZFoNMr8/DyRSISenh7a29vx+XyEw2HC4TDz8/PMzc3h8Xh46qmnmJub47nnnsNsNtPV1cXWrVvv+nlaa1jXCQFcl+4MBAL3+GhWBmmrAZw7d46vfe1rzM7O8thjj7Fr1y6ampp46qmn+Ou//mtGR0cV9cfj8aghHZEU9Xq9KvCNRCJEIhHghgRpKpVS1W5g0TKufD4P3BiQNTq8d+NK3gsstUNAYFwio3cPdLUho1a1vGcZsrZarfh8PtxuN+FwWDkHeX1xGPoW6NUsP7ZWoV+rNpttyYVw1c+kipVgJUH9csniaqwOrifofkuWd+r2WpclDQaDxGIx4vG4CnyN4hAC8al6N12nEOmvrRcmjMd0L7CcspB+u14YE0qxPh8nBS/xqV6vF5PJRCQSIRQKUV9fj9/vX9Q5F/lzn8+HzWYjk8kwMDBAuVymq6uLz33uc3zrW99i69atDAwMcPz4caampviVX/kVAoGAGkS+X7Ca/Us1IbiPEoKOjg7a29s5duwYL730EmazmY6ODh5//HFeeOEFFhYWOH/+PG63m8bGRpqbmwmFQoyMjJDJZPB4PPT29lJfX8/MzAzj4+PkcrlFle18Pk8mk1FzA0Kf0aXUdEm1pdqgq+WC13cH6MdqNOA2m021O42cTlFQEHk1fRDYuKE5mUwSi8WwWCz4fD58Ph/z8/NqoZvI263WqtB6g96pMc6WVFHFe2G5oGk5VCVIVw8kUBc7L35BlnNKEpDJZEilUmo+TOQ0pTgmvlDkuoFFW4tl/kCSh3Q6vUipTlce0geS70V3/d2uX+O2YiOtSpIniRekQ55KpdS5sVgspFIp8vk8brebnp4e6urqmJycZGJigqmpKXw+Hxs3biQQCDA1NYXD4eD48eOKcvvYY48xNjYGwLe//W1SqRSPP/44NTU1d/z83E6s1oLAuk0IRILzfpgjePXVV+nv7+djH/uY+sJt376dpqYmAE6cOMGZM2cwm83s2rWLSqXCqVOnuHLlipoRCAaDeDwewuEwIyMjihcvwevCwgKZTEbJptntdlpaWgiFQosUFnRJNt14rYQHebfb5Mu16nXephh1mREQByFr6aXiI8mAJA0iQSfr7QH1eBk6lk3P8uXXJUarAcG9h/4ZVDcVV/FBsBK7tlqDgPUI43dfX1ZWKBRIpVLK3+mypHDDj8km+kKhoApFUmASmpEIdsjriD8RvruRSiT/Xy2FIqNv1wej9VhApLrL5bKiLE9PTyu/aTKZ8Hg8uN1utQdpeHiYoaEhamtr6ejoUMPco6OjuFwuvF4v+/fvx+Fw8Morr/D666/T1NTEQw89REtLC4lEgv7+fsxmM+fPn+fVV1/lscceY8+ePffkXN0qVqM9WLcJgVygQqFZrcjn83z/+9/nypUrNDU18fTTT7N582a2bNnC7/zO7zAxMcGWLVvYunUro6OjPP/88yqIr6uro62tjVKppKrX8/PzlMtldbsMEAsfMhgMkkgkKBQK6gsNLFrAAouNlnGYeDljdq+MnN6alaqQUXJU9i7oVXx9RbvuBKSDIM/r9XqpVCpks1ll8OPxuOouSOelyjVfvajOdVRxp1FNOFcnstkscL1IKJTRcDh8U4fZ6/VSKpUUNx4W+z5dfhRuUEXFl4iNEZqqfj/BakkEBMbjNPp6ne4knYF4PK4ESdxuNw6HQw0Np9NpTKbrkubZbJa5uTkKhQJ1dXXU19crxadwOEwoFOI73/kOzc3N+Hw+tm/fTjgc5uzZs+zdu5d/82/+DceOHWPv3r38zd/8DT/4wQ9IpVL3RUKwGpMBWMcJAdwfSkN2u50Pf/jDSpf3S1/6Etlsll/5lV/h4MGDHD16lL179zI0NMTs7CyxWAyn08nmzZs5cOAAL7/8MpOTk1itVhwOBw0NDaRSKeLxuNID9vv9aqmIMdiVC1eqHdL61Ksm78aHv5fDc/LaEuBLZV83bHBjyYwE8/rj5e86X1Teu8Viwe12U1NTQzQaVc9vNptxu93YbDZSqZSiYOnHVB0qvPdYjjNbRRW3ipUMq1evsdUF4+cknHin00ltbS2ZTEYp4kiyEAwGCYfDqqgkvtJmsymfIAG/dITF3ot0t15gMopQSOd5OcrQ3fAbS72GThPSRTmkQy4boOV2ed/FYlH5SKfTSSQSIZPJMD4+jtfrxefzEQgEKJfLhEIhADZs2MAnPvEJXn31VaamphgcHKRSub4cdMeOHaTTaT7ykY9w8eJF/tf/+l8cOXKEp556StGHqnj/WLcJgXQI7oddBB/72Mf42Mc+prb95XI5IpEI165dY2BggGQyicfjoa2tjQMHDjA+Ps7k5CTPPfcclUqFYDBIU1MT6XSa4eFh4vG4okyJ8ZucnCSXy6mMXh8W0rsC+kzBcjKjd0N6dLnA2qj1LEZMgnk9sXE6nYs2C0vSID8lSRLKlCQF8pqVSoVcLsfk5KR6vkAgQDqdxm63q+6KvLaebFWDg3uD25UEVBO6KnRUr4X7D3pgq++pgevfb5fLhd1ux263k0gkSCaTJBKJRQsmdalLeT673Y7JZCKZTC5SIpLgWZfxFlEDfRYNFvsx3V8YZ/du13W3lF0U32lMTOR2veOuz0EAanmb0+lclFh1dHSoroDIprtcLjZs2IDFYmF2dpbh4WEmJibw+/3s3r0br9fL+fPnKRaL/PjHP2ZmZob+/n42btxIOp0mnU6zZ8+e+2ofQbVDsApxvy0na2lp4emncKAmbgABAABJREFUn+a73/0uL7/8MkePHiUUCtHX18fGjRuZn59X8wCJRAKfz4fH42F6epqxsTE1G9Dc3Izf72d+fl619/TgVZcZlaq3DFIVi0Wl36zzKpfazgh37sJfTg1hue3Dcl8ZihaOp9xuNPBC85Eqj91ux+12Y7VaSSQSKrEQQy+vlUqlyGaz5HK5RRWV6t6BtYX3+iyrCcP6wkoUWqpYndBnx6TIJcGqfH4yGyDqQHI/s9lMfX09uVyOTCZDOp0mm80uEpzQpavF9+i0VWMBTS84LdV1uhNdTWNRTZcUX06QQ+IB8ZvCHACU/9MLaOl0momJCSqVCrW1tdTU1DA3N0cmk+HUqVOYzWaam5vp6OhgYWGBaDRKPB6nra2NhoYGHn/8cdU1ePXVVwmFQvh8Pn7u534Ol8t1287Fesa6Tgjulw5BMplUGXEqlWJ8fJxKpcLOnTvZtGkTDz30EH/2Z3/G+Pg4ra2t7Nmzh9OnT2M2m5mZmSESiVAoFPD5fDQ0NAAQjUYX8fysVivJZFJN88uG3Xw+r2hVunHSqwLLJQP6Y+4U9CqF8bUkuZGqj14RqlQqyng5HA41VKwvONEXjMmMgDzG7XarjoHb7SYSiai9FiaTSXVZcrncomHiKu4tJLGF27eYbClUP++1j5V0m1ZyHci+lyruLcrlMplMhmKxiNPpVIsm0+m0kvCura1VHXbxF5FIZFEXWA/mhVcvlF2RLdUVhvTEQH43FtKMlJ07aV+W8uHSsVhuyFjfROzz+TCZTESjUSKRiHpfXq8Xi8VCMpkkmUxisVhoaGigUCgwNzdHKpUiFApRLpdVnNLX18fQ0BAXLlygUqnw6U9/GpvNRl1dHWNjYyQSCVKpFDMzM0xNTdHX14fdbr9j5+Z2YDX7hnWdENwvHYJvf/vb/OhHP+Khhx7imWeeIZlM8sADD3Ds2DGOHTvGG2+8gcPhwO/34/V6mZiYYHZ2Vm0mbm1tpbW1lXA4zNjYGNlsFo/HQ1NTE9FoVA28inSYPggrlXAJvPUhW6NCgm7I7ibPUZdx042rBPT6fgGhPMF1RyzLZqSCIwG+UH4kCdDXz9vtdmpqakilUmqICq4nmA6HQ0mryVIaXbFI5g+quDfQHe0H4XpXK79VLPf5r2SeQJcgrV5HdwfLfRZi06WCLx1yl8uFy+XC7XYr0YlYLAZcpwU5nU7i8biy9RIcSzfZbDaTy+WUn9AXd9nt9kVdZACXy6V8hhyv8af4Oj0Qv9PnRk9u9H+6YpLEDJVKhUwmozoG+jyF+Niamhq8Xi/z8/PMzs7i9Xrp7e3F4/EwPj5ONptlaGgIt9vN3NwcPp8Pv9+PzWbjJz/5CYlEgg9/+MPU1NSwsLBAX18fv//7v8/o6CjPPvssH/3oR2/LObmTqFKGViHuh6FiuF7BdjqduFwuzp07x/z8PI8++igulwubzUZfXx9ut5sf/vCHvPjii+RyOVwuF0888QS5XI7+/n6GhobI5XJq+67T6VQZvMViUV84l8tFNBpdtIkYFgfdVqtVJQZG42XEnQqcjJxK40yDnrRIe1a2DxsrMpVKRdGDZCeDTi2SJCkYDCpt5dnZWTXo5PP5FqnUyDHJxkZAJVdV3FvolVh9MdmtXqfVIK6KD5JQ6glBVeHq7mC5z6VcLivf6HK5VPdY9yl2u30RnTadTpNMJrHb7dTW1lIqlZR4hMlkUsPJIkEqswN6AqBTimQ2cCkVP4FebLvd9mc5mpuRtqT7Tum8w+IlntIFqVQquN1utcNHtkEnk0kVg0g8MTExoWKcQ4cOMT8/z8mTJ/nJT36i4pJDhw6RyWS4cuUKLpeLxsZGzp49y5UrV3A6narTv9qhXwOrDes6IbhfOgQ/+7M/y969e2lqauL/+X/+H65cuUJXVxf79+/n6NGjXLp0iXA4rBKB5uZmzGYzg4ODaoDH5/PR2trK/Pw8ExMTSv7LYrHQ1NREpVJhZmZG3Q4oxQOdYymBrtwG944/qxtWXetZ348g70N3vhaLhUKhoAya/phCocD8/LwyZmLQZDZA6D9SASkWi6TTaaW17HA41PObTCbS6fRNVRx9d0EV9w7G5KCasFVxK1iJbdPvo1ODqhSh1QH5TIQSKmo5UjiSzbnSAZA5AqfTqTrLsVhMFdoaGhpIp9NkMhni8bhKKmQxlxTR9G3H+h4bo8+SghbcEPXQC3F3CktRk3RasByL2WxeNGunU6H081OpVGhtbcVisRCJRIhEIsqPNjQ0UFdXRzgcJhKJ8MYbbyhWg8lkUnMG58+fx+PxYLfb2bdvH9/4xjf4yU9+Qrlc5td+7deYm5uju7v7jp6XtY51nRB4vV4WFhbu9WG8J+x2O5s2bQLgqaeeUlzHL37xi5w8eZLm5mY2bdrErl27eOihh3jnnXe4cOGCClB9Ph+5XI6RkRFV1Xa73YrPl0qllCKCBMDhcHhRkC17CKSarlfl9eDbWMW43UmBnlnri170JECOTSo6+pwBXHfGsphNftc3FUtHIZvNYjKZlE617CmwWCx4vV6SySTlcllVPBoaGujs7OTChQuqWqTTrXQjWcW9h56oVQdBq7jT0G1X9fpaHZACkb6YUJcA9Xq9bN68mWvXrhEOhxUN12q1EggEVNBfKBQUzVYq/nrQrNNqpZKdTCbVQjRZjin3k2Hc5aRIjYPIH/R6Mtq85ShvuhKT+DIJ7CW5EYqQ3W4nGAyysLBAPp9ndnYWu92uKEDJZJJ8Pk88Hicej1NTU0N9fT2pVEotTz148CBPPPEEFy9exOl0cuLECRKJBL/3e7/HAw88wPbt2/nIRz6C3+/H7/d/oHNwt7Cav/vrPiEYHR2914exIojhqq+vJxaL8aMf/YhMJkNNTQ0PP/wwmUyG0dFRKpUKfr+flpYWnE4n2WyW8fFxotEoNpuNtrY2mpubicfjjI2NkU6ncTgciiYjagmycVeMHdxoGYpxMgbhcp/baah06K+jB9s69UfoQroetG5kZXhYjk0Mrt1uVwYlmUyqilAmk8FkMqnNiaK5LIvHHA4HtbW15HI5EokEJ0+eVLxKkZ+TYeOl5NtWs3FYK1hq2N0II+VLUP2MqlgJVjKgrncFqtfVvYOxoy3dbgl0a2pqKBQKFItFotEoJ0+exOl0UlNTg8ViIZ1OUygUiMViqujmcDiIx+NqLkC6zlJ8kyKescIONzrxcjx68Uh8mTyfrv4j70Ue90Hwbo/XF7TBjWVs4tN06pBxeHpubk7dR+byJLbo6enBbrczOzvLxMQE0WiUpqYmWlpaFgmFnDp1irm5Ofr6+ti3bx8nT55kZGSEqakptRXZeE5XM6qUoVUKr9er5DVXM65evcqXv/xlurq6OHTokGpd7tu3jzNnzlCpVLh48SLxeByHw8GuXbu4ePEiExMTiuLT1tZGIBBgdnaW8fFxLBYLHo8Hj8ejDKSRdiMVdDlH+kCuBN5yfzFSerfgdsNoCI3UIJ3WJJ0MuK4IJFUf3fDKkJNU/WUxjbx3h8OhOKCpVIr5+XkARb/K5/NqSU2hUFADyHa7HZfLhc/nY3Jy8qYNpcupIlVxZ7BcMmDcsfFBUQ3y1iZW8rnq91nJdVW9Tu4d9HOvf1Zip7PZLC0tLcRiMfL5vKJ/AqrQ1N7eTqFQYGZmRrEMhP4iwbAIcqTTaWw2m+Ld64vIpKouHW2hLslxGsUx5JiBJdXrbocNMj5eTwb0oqB+TIA6T263W81R6HRji8WCy+VS5/nSpUuUSiWam5vZsmULCwsLVCoVVaRtbW3lkUce4Zvf/CaRSIQLFy6wceNGHnjgAfbu3ctbb72lkqnf/d3fJZvN8n/+n/8nTU1NH+j930ms9u/9uk8I7ocZguHhYS5fvsz4+Dg1NTUcOnSIRx99lPPnz/Pyyy/jdrvZu3cvsViM4eFhLl68SCqVoqmpie7ubiVTurCwQCqVUrQhl8tFPB5XlBm5rVgsKiqRXMB6MiC/LzUAdavDxStRN1gKuuKRVOKlMm+UbZNNk2Kghf8vSUGxWFRKEDabDbfbjc/nUxJ0+mZiwYYNGxQ1SBInm82mpGwjkQjhcBi47ihqa2uZn59XMxkrPQ9V3DmsRKHjVj6Ttfz5Va/PlaOaBNw/EBtgt9sJBAKEw2Gy2Syjo6OYTNelMt1ut/IdUvQplUq0t7czNTWlilAAqVRKqesEg0HS6TSpVIp0Oq0orBL867t9xC/pc0y6XLb4Nrm/vkxNh56Uvpv/vBXId9+Y9MpxSbIjvyeTSVUFFwnSTCZDJpOhUCgo5aZcLkc6nSYSiQBQX1+PxWKhubmZwcFBpqam+KM/+iO1O2nbtm1MTU2RSqXYtWsXBw8e5PTp07z88sscP34cq9XK+Pj4qk4IYHXbgXWdEAiPbTUjkUjg9Xp58MEHeeCBB4hGo7z66qvEYjF+8Rd/kcuXL6uqg1Q0ZOnH/v37uXbtGrOzs5jNZiWLKSpCspBMJvYjkYiqmkv2LwOyUsWA66pHJpNJGUm4WfUH3r9Ot86VlN+Ncmf6ABbcaGNKW1IMpi4ZKtULj8dDNptVj5G2r9vtVkY0Go2q9y90Ko/HQzqdplgs8sorr1CpVKipqeHJJ5/kzTffZGJiglQqtWiGQY4tFostOVwsLevVbCTWEqqB7fvDej5ny713/Vpabh5lJVgJpa2K2wfd7gpkc674ELHJ2WxWBfM9PT1s2rSJ119/neHhYUZGRrBYLPh8Pux2u6rsi8/JZrOKM6/beaHQiAqdzPClUilVeLPb7cpnSbVd96367NxSVKKldhncCpby3cbrWgavpUMOLOqC6KwDn8+H1+tlZmaGTCbD7OwsJpMJv99PbW0tgIpT2tvbeeihhzhz5ozaMVBXV0ddXR2lUom+vj527tzJ7/7u7zIyMsKnPvUpPvKRjzA3N6eEPNxu9/t+73cDVcrQKoTH41m1sqPxeJyRkRHC4TCtra3863/9r3E4HHzrW99Si8ReeeUVXnrpJZxOJ319ffT29qrZgbfeeosXX3yRfD6Pz+ejpqZGGTfhtMuiELvdTiQSIRqNYrVa8fv9aqGWTgsSCK1GjJWxemBMDm7VQRo53NINMK5I11uoot+sD2EZh57FQEUiETVALXKrYkxF/k0SIpmjyGazJBIJdWwej4disUgul+PYsWNq0YoMaycSCaxW600qQ6LZLAlJNRC4u3A4HMpxVwOxKj4IbleS5HA41JLIKu48ZLuuFIhEAEI+A5kNK5VKBAIB5Qvn5uaU0pzL5VJFMZ1WJFKaIiEqPkuCZ5fLpfb+xONx5dt0CqzuP+U2CbCF3ip/l/cDNzoKH3S/xUoLeUIHku65+Fqh5spsRSQSUeqFQt+1Wq0kEgnK5TJut5tAIIDL5SIcDnPkyBGsViter5dPfvKTnDt3jkqlwtDQEMeOHcPlcrFnzx5sNhter5fm5mZ+/ud/nmQyyeDgIG+++Satra309PSsysRgtSYDsM4TAukQ3Ene+60iHo8zPDxMJBKhra2NRx55BIfDof7+5JNPcuTIEfr7+5W8WWtrK48++iijo6PE43Gy2SylUgmv14vf7ycajdLf30+5XCYQCNDe3o7P5yMcDjM9Pa0GoWCxco8YIFHlWcliLeOQ01K8WuP9l3o+3bjpgbNO29G3zspx6r/rLVb9+MVIi2OQAFEfPHa5XGQyGRKJBKVSCafTSVtbGz6fj6tXr6pKT7lcZnp6Wp3vBx98kNdee41cLqfOldVqxefzEY1GFxlReT3pvlSD0zsPvSV/uypoVaxP3CoNUr9dlyCVXRhV3FnI+ZcuMrCooxsMBpWNzmQyqoB04MABTp06pTT0xabLfprNmzcTCoWYnp5WlCGHw4HX61WFH3mczP/JHIH4IJ0SJN0DSUQkeZGOs7wH/X0ZpcF1kY3lzsNytxv/ZpyJ0YtrUniT2QopyEnXQP9dlAzNZjP19fVs2LCBeDyu4hCn00lzczPNzc2KrTAyMqI2Rz/xxBNcunSJSCTC888/T7FYpKWlhYMHDwLXKeC7du0imUwyNDTEm2++SUtLCz09PXg8nttzEa1xrOuEYDV1CIT/H4vFaGtrY+vWrepLXyqVOHz4MABbtmxRHP/9+/dTU1NDX18fP/jBDxgYGKC9vZ2///f/PslkkunpaWZmZigUCmq5WU1NDel0momJCeBGxdrhcLCwsLAokA0EAtjtdjU4C4sDfmMSYZRC0yEtzOW6CfLcy3UVjApDRllRGZ4WipMkM9lsVm0KllkDMbSlUolcLqc6AV6vVylBpFIpZbxEZq6trY3Z2Vl1Lmw2Gz6fj23btvHaa68xPz/PD3/4Q3V8nZ2dLCwsUCwWF22gFOjJjZEiVQ027wz086xL0d5qQlb9fKrQsZKqqn4fq9WqEoJqIeDOYanPRRIA4wxcPp9XM2Q2m41QKMTCwoKih9bX1/Pwww9z5swZcrmcKuzk83laWlqYn59ftM9GgnwAp9Op9hnkcjlVURfxCr26LhV3OXahOOmQ7rgE3Lrv1d/nUkH+Sn2uvI7eqdCZAvrv+nHX19cTiUSU8p4E9MFgkHg8DlwXKonH4wQCARobG9X8hGx+9vv9dHV1sXfvXr7yla+QTCZpamriU5/6FNeuXWPDhg288cYbBINBkskkR44cIRgM8vDDD+P1etm5cye9vb0MDQ3x1ltv0dzcTE9PD16v9/1eSusCpso69mwDAwPs2LGD+fn5e9YhiEajDA8PE4/HaW9vp6Oj46Zte5cvX+a//bf/BsC/+lf/SnUGLBYLf/Inf6KC+itXrqiNulevXlVfLJfLpdrSk5OTapFKU1PTonaeVNIlaJZzIlV3CcCNOvrGc2fkOi51X91oLWeI5KcsjdKTCn1dusvlUgZa9iXIY6W96/V6VYdAOgJ2u10NRIkqhMl0Q2JUJEd1vWV53MGDBxkfH2d0dBSPx8PU1BTZbFZVeUwmk1q2IpxROb/6OV3qvFQTgruD6nmu4k5Dv8aq19vdh5zz5RJ+mRcQ4Qn5GQwGlaqc2G6v10tjYyOpVIqdO3diNps5efLkos9U5s1k9iwWi6milE73kSVoNptN+SFABcTi2yR5yeVyqjAlCYX4PAnWZVBZkhF4bz/7XomAnlDoSYd+u16Ik8KcHLsMD8P1AlqxWCQQCBAIBJiYmKBcLlNfX09TU5P6eywWI51O4/P52Lhxo/KxPT09JJNJ3G43//Jf/ktmZ2dVke5LX/oSdXV1/N//9/9901BxOp1maGiIqakpmpqa6O3tvWeJgZwzoZatNpjf+y5rFz6fTwWCdxuRSIRTp05x9uxZAoEABw8epLe3d8nV242NjXR1ddHV1UU0GuX555/n9OnTtLa20tzcTE1NDU888QSFQoFr165x/vx5APbt28ff//t/n1QqxfDwMKFQSA3PWq1WotEosVhs0eS/vqJdDItcxELfkSBdNwpG7qO+TVHn+y/XxtRh7AbIbYBqiUqwL1UYfeeA1WpVHE+43pKX5SfyZQwEAovWyst7k07Aww8/rNq2MqQsGxVNJhNXr15lZGREzV4EAgFqa2s5cOCAWnI2Pz+vHEx7e7syqHrCoqMaLNx56Ea4er7fH5ZzZKvRwa0mGCuzS/2/ijuD5QpTusJPR0eHKg6JIpzD4WD//v34/X6lQhSLxbh8+TKTk5NYLBaampqoq6tTQXo+n8fhcPDYY49RV1d3E0UIricOwWBQBcFCR9J9g9PpXLSUzG63q9/1XTt6p1l8snQNBPq1t9Lb5Z8u5qH7dH37snG3j3QMrFYrbrcbt9ut9hOEw2Gi0SgOhwOXy4XZbGZ6eprh4WFKpRKf/vSn2bx5M5lMhlOnTin59Keeegqfz0dHRwe1tbUcOXKEr3zlK9jtdjZs2EBPTw81NTU3ffZut5u+vj4ee+wxrFYrR44c4cyZMyQSiVu7iNYB1nWHQFpWQ0ND1NfX3/HXq1QqRCIRRkZGSCaTdHR00N7erqoD7wZpL7/66qv85V/+Ja2trfyLf/Ev+MM//EMmJiZoaWnh/PnzpNNpdu3axbVr1yiXy0SjUbLZrNoCGA6HmZycJJPJqGFa2UcwOztLsVjE4XCodeT6TIFebdG3EkoVXW9RAmoDo25QYPmqmZ4IwA0jLmviARWki8GTDoB0ECTQlyBfOKIyPK2vW5f3IgbV6XSq4F8MeENDA+3t7UxPT7Nnzx7OnDnD1NSUmkkol8vs2LGDq1evEg6HsVqtinbU0tLC1NSUen+68kOlUlGdjaXUh6rbjO8ubrWCtt5QPQ8fHO9m96rn9vZDikdGmWcpIAldVAJfCW5tNhsNDQ1MT08D17npuVyOjo4O1X0X31kul3nggQdobW3l8uXLtLe3c/XqVaLRqFKtkw33Om1UD/Jlw3G5XFY+1efzATe6E4lEQvkq6UTLcdvt9kUL0aQirxfJYOlugdFfG8+F8drUBTv05ESPDcTHSVdEEqTGxkZisZjqvBcKBbxeL52dnXi9XkKhEIlEArfbTU1NDXa7nZaWFs6ePUtHRwetra2EQiH27dvHJz/5Sb7whS+QzWb59V//dfr6+tTn+l7IZDIMDw8zMTFBQ0MDvb29d23LsR7TrMZCwLqfITCZTCSTyTuaEFQqFcLhMCMjI6RSKTo6Oti5c6eij6wEkjQ88sgjXLhwgYWFBb7+9a/z1ltvYTab+amf+ik8Hg/z8/M0Nzdz/PhxCoWCmt5Pp9NcunQJUUIIBoNYrVYWFhZIp9Ok02m1dt3j8SwaINYrDjIopLcL4WbZPTFGRuidAv3nUkmDHqxLcqIfi95F0FWFRAdZVAhk74AYSpkbCQaD7N69m7GxMWZnZ5UikCQ8JpNJradPJBJcuHBBKU/s2bOHkydPMj8/z9mzZ9XQmFCTJAkRpyFwOp1UKhXFJTV2QMSBVHF3sVxAVg3UrqN6HlaO6jzK6oDYclgc+EoFG1CUFvFr8neZI9ALSGNjY4RCIYrFIm1tbXR0dHDp0iUymQyXL18mlUqRyWTwer2kUikV5EtX2Gq1snHjRtxuN+fPnyeZTCrZb6mUS7Vd9t9YrdZFPlN8i05N1dWMZF5OOt7vNU8AS1+vOl1IXkPm9sTfGsUxdL8l6kEOh4NcLkc2myUUCgHX466amhry+Ty5XI7x8XEAAoEADQ0NFItFpqenqamp4amnniKbzbJv3z5SqRTvvPMOCwsL+Hw+fD4fBw4cYOfOnSsqqgpcLhfbtm2jp6eH4eFh3n77berr6+nt7SUQCKz4ed4vjIXP1YR1nRCYTCb15b0TqFSuLwMbGRkhk8nQ0dHBrl27bikREMTjcaLRqOLMXbhwga1bt7J161Y6Ojqw2Wy8/PLLwPXV6729vSwsLJDP50mlUiwsLFAqlWhqalq0MEUUiXw+H8VicdH2XVHHSSQSqkOh03/geudC2pa6zKfOfzQaFp3+Y6Qc6evc9cfJa8rjnU6n6gLIYJXernS5XIq6I8ZRjLJu7CcnJ9UCsbq6ukWzBLlcTrUxzWYzDQ0NeL1erl27phat5PN5rFYrTqeTcrlMY2MjV69epVwuMzs7C6BapvJ56IOswr2U60X/WcW9QbViW8UHwXLJQPWauvtYSh1H5sxE+UYKQM3NzczPz1MsFpmYmFB2ubm5WS2gFCqtSFD7/X62bdvG8PAws7OzXLp0adEgsfiiSuX6xuLp6WnVxfZ6vaojIH5EugnyHCLxLXRWeR/iv8R/A4sKWeL7xK8uR5mScyMw7jSQJENPVuT1JDmQ8ywUK4/Ho+YARGXJ4XBgt9vV3ien04nf76empoa5uTnC4bBiJdTX1yua9OTkJBcuXGBycpL/6//6v5ibmyOfzzMwMMC1a9fo7OzEbDYzNDRES0sLLpdrxdeG0+lk69atdHd3MzIywrFjx6itraW3t3dJ6tF6QDUh8HpvO5esUqkwPz/PyMgI2WyWzs5O2tra3lciANc58F/4wheYmZnhH/2jf8SHP/xhgsEgTzzxBF//+tdZWFhgcnJSyWMKfUiWf1itVjo7O3G73cRiMa5cuUK5XCYYDOLz+VQrU6+OSxAsRkAf7tW3FOtVfV1xQE8adKP8bopEepdAWr3GjoAE6iL5JsG7JBA2mw2Xy0W5fH0xTDabxWaz0dzcTGNjIyMjIxQKBTVIHY/HVeJz4MABTpw4QTweV9WQmpoa3G43ExMTKjnI5XK43W6ViO3evZs33niDXC7HtWvXlKrChz70IV577TUAZQj196xr4i9llI2oBqofHCtRFqqe43eHkWZQvVZvHUYaRrUr+MHwbsOxxgHbYrGI3W5X1BW5XZZRulwuHnnkEQ4fPkw+n2dwcFBRPHfu3MnFixfp6OhgdnaWubk5jhw5otTourq6FEc+nU4D0NLSQm9vL++88w6JRGLRBnspJsnW49nZWTKZDG63G6fTqfYhSNFLOuUWi0UF0DLIDDdkuqWzIF0E47mS82FMDIyFOZ0GJDRbIz1IxDxkR4PerZdYQhgHLpcLn89HJpNhbm5O0YLa2tpIpVIkEglmZmawWq00NjbS0tKiFLleeuklCoUCzc3NfPSjH+Xw4cMcOnSIH/zgB3znO99h9+7d/It/8S9u+dpxOp1s2bJFJQbHjx8nGAzS29tLMBi85ed7L6zW7gCs84QAbq/0qCQCw8PD5PN5lQishNf2bhCZ0VQqpVQIduzYQUdHB3C9inDw4EGSyST9/f389V//NeVymaamJvbv38+VK1eYnp5WkpnC7XM6nYTDYdLpNC6XC6fTqeQ5jdVsr9erFpjp1X/R05YKPNzgDuqa/8aBOn1YSX6X5xAjs1S1A27MJsjreTwe5VTNZrPi8ANqOUpTU5OSEgUUB1Q0qdPpNK+88grZbFZJiY6NjdHZ2al2EcTjcWXkAoEAMzMzpNNp+vv71TXk8/lIp9P4/X5GRkZUwiIJkLyXYrFIOp1W70mnFy0nQVoNsD44ZMCvivcP/Tpc6nttvL2K69DPj54EOBwOFTxW8f7wXpQ/I9VF6KNyu/D4xV9FIhG1tMxmsymZzOHhYVX19ng8lEol9dmZzWZ8Ph9Op1PRYq5evcrY2JjaVSMJh/xff12R0BSqkSxKs9vtShVHNiqL79ApUeIr5XYJ4HUKq7ymTh3Skya9ey9SoPrfdLqSPLfValVUm1wuRzqdplgsYrPZqK2tVb5R9jvYbDY8Ho+a4UilUuRyOSUX2traytGjR7l48SJXrlyhUqnQ19fH7t27ef3116lUKmzfvp1QKKTovJJMfBA4HA42b96sEoMTJ05QU1PDxo0bb2tiUE0IVimkQyDV2/eLSqXC3NycCgC7urpobW39wImAwOPx8LnPfY5QKITNZuMP/uAPMJlMdHd38+ijj/Liiy8yPj6uOIwNDQ2KptLf36+We3i9Xtxut6IRhUIhtaOgoaFBSZDKF1VoMPIll2Ut0gI1Lk7RF4XpSYNk+HobEm50FGQIWKcHSVtXZhokuRCZUBmkknarVEMcDodqp4rTLZfLXL58WSUAO3fupFKpcOnSJcXjN5vNaquh0+lUqkTXrl2jpqYGv9/Pli1biEQiDA4Ocu7cOeLxOKVSic7OTurr68nn83R3d3P27FnC4TDxeFzNITidTqanpxcNC+sBgjHhWWoAW0e1AnszVnJOdEWxqv77yrGSToAEG+92n/WG5ZIk/f96MlD9vq8c7zYca7xWjZVyvVsgj+/t7WV8fJxMJsPFixcVZWjPnj1cvHiR2tpaABKJBOfOnVMziLt371Zc+EgkouRKhRpUqVRUcC3dCYfDwZ49ewiHw/T399Pf36948KKQJz5PfLAuvy1+VTrjEoDrvlKXCdd9tBQFBbqv0QsmkjjodCW5vx4fZLNZwuGweh2Hw6EKYIlEQsmf+3w+pqamVEJTKpWoq6ujqamJaDSqBFAymQyBQACPx6NUnZLJJOPj4zgcDj760Y9y/vx5vv71r1NXV8dv/uZv0tPTQ09Pz225rux2Ow888AAbNmxgdHSUkydP4vf72bhxo7oG1irWdUIAfKCEoFKpEAqFVMDd1dVFS0vLbUsEdHR2dtLZ2UkkEqG7u1slIF/96lcZGRnBbrezdetWHA4HH//4x/nKV77CwMCA0kP2er2YzWbm5uaUsZDkAK4vRkskEphMJvx+/6LFKkJrgcWyZiJ9pp8PCQr0RWZyu95uBG4KHiSIl7ajDGPJinNpr4qBFRk3qfyInnOxWFRJjTyvJAMmk4nR0VFVPQkGgzidTtxuN729vbz99ttEIhHC4TAWi4UHH3yQbdu28cILL5BKpUin01gsFrxer0pOPvaxj/HHf/zHZLNZNT9gt9vp7OxkaGhIzZLADZ6nDIzJ8eswdk2WQjU4uBkrOSfL3edWB0HXG/RgSj9Xy523pagaaxnLBezLUQH1c7YSytBKzuF6SxqWS7CMFW1jQqYLZEgAXCqVGB8fV0O53d3dDA4OUiwWuXTpEoVCgVwuxy/8wi/wP/7H/1C+Jp1OE4lEFO30H/yDf8APfvADrly5wsWLFzGZTNTU1PDwww9z9uxZNUuQTCY5d+6cmhfQh4Sz2azqjuvLSaWoJgUxvWgmMxGZTGZRMQ6uJxhScJPnMBamxL/qv+u+Xp8nEL+kU4f1Qp+u9iPqSrKQTDj+TqeTRCJBOp0mFAqp+KRQKDAwMECpVKKnp4d//s//Od/73vdU1f7cuXPqcwgEAmzZsoWOjg56e3tv56UFXE8MNm3axIYNGxgZGeHUqVNqN0Jtbe37qvSv9u9nNSF4HwlBuVxWiUCpVGLDhg20tLTcpCt/JyDctv7+fl544QWsVitdXV089dRT/OQnP2Fubo5jx47h9Xqpq6tT2wEnJibIZrO43W7a2tqoqakhHA6rhVpStZDOwtzcnJL0FDqRBOeSRAh1JpfLkUql1PsXjqO+zEtajfKlN6r5LDdnIH/XFRXkeGWJmtPpVI8VqVGz2UxdXR09PT2Mjo6qtiSgDK7dbmfjxo2Ew2Hm5ubUshi/309LSwuRSISOjg5OnTpFKBTCarXS3NxMsVhk9+7dnDx5kkQiwde//nUlC9fZ2akqGTKcHYvFlIHu7Oxkbm6OQqGgFrnIsUjipQcHVQnSD47lKok6lqNprWfogeq7JVIC3UFKRXS9YLnzY+wCvtftH+S6Ww/X7Ht9N/VOtTEZkwq7HhAHg0FMJpPi7gvi8bgK1uvr6xkdHWV+fp7vfOc7lMtlGhoa6Ojo4OrVqzQ1NXHt2jWi0Sjnz59XcwTBYJDx8XGy2SyXLl0imUzS1tZGXV0d/f39qgAnwbcsFa2pqWFiYkLNGng8HjUzByg/kclkVPEJUF0CCcZ1Lr8U2IyVfkmAdP8q16OeIAhEDUloOvJcsttI5giko1FTU6N8tuxo8Hg8NDQ0sHHjRubm5piZmSEUChEIBGhra8Nut5NKpfB6vbz55puqOPf444+zsLBAuVzmO9/5Dvl8nu3bty+5u+l2wmazqcRgbGyMM2fO4PF42Lhxo9pLdCuoUoZWMW5FZUiUY0ZGRqhUKmzYsIHm5ua7kggcOXKE119/naeeegqv14vX62Xbtm3kcjmlOnTixAmy2Szt7e04nU6OHDnC2NgYhUIBt9utlqfEYjEmJyexWq1q+2KxWFTzBOl0WmkEBwIBFhYWVBBtsVhwuVxks1k1nCuGx+PxqFagPgQsAb0E+Po/WEw1kC+L7Ayw2+1UKhU1+Cz8TamqSFtXDL10Psxms/ps5T4ya9Db20s4HGZ6eppTp04pFYSWlhZV+bHZbCSTSd58803S6TRut5uf//mfZ3R0lIGBAc6dO8fU1BSFQoGOjg68Xq9a7iacUOlIyAK0XC7H5OSkqtLIPIE+fyHnY6lKYpVO8P6wVPUQquftvaAnpsudJ6PUoEC+c+sdK/nOLtdFWMnz3O9Yyfu9lfcuRSHj84gPghsd42KxyMLCgvJDYrvL5TLxeJxsNovJZKK9vZ1oNKqeIxaLUS6Xla989NFHaWtr4+/+7u84f/68Kkp1dnZSW1urqt8TExNK+ttsNrNlyxZMJhNjY2NUKhUymQzpdJra2lrsdruaUZDqv/gRWVgmATbcCO5luaguXapTqfRqv150k/OmJwH6/IXD4VhUVBP/JYm/dDAcDgd+v59IJEI2m2V+fp5KpaKkzuV9Tk5OMjExgc/no7W1VQmAzMzMqPexd+9epqammJ+f5/DhwwQCAXp6eti5cyezs7NMTU3h8Xj4yU9+wrFjx/jEJz7B9u3bb/kaXClsNhu9vb10dXUxOjrK2bNncbvdbNy4kfr6+lUd6K8U1YRgBSpD5XKZmZkZRkZGMJlMdHV13bVEQHD48GHeeOMN/H4/n/rUp/D5fOzfv5//9//9f7l8+TJ9fX1s3LiR8fFxvv/97xOLxZSUmtvtJplMks1mSaVSxGIxpacfDAaJxWJqHgCuVwHEMIhagsiGGYN5MTzGAN84JwA3jHW5XF602EXftihzBjLcLAZIXh9uDC1L4uLxeKitrVWr4qU6ND8/r5aIdXV10dnZydWrV1VrFVBGV97r3NwclUqFhoYGrFar6haMjY3xzjvv0N/fTzqdZv/+/VitVsbHx6mtrWVqaopEIqEGj10uF62trQwNDanzJO9PDLBeydLlWPXqqu4s9QSoig+O9xpEhLUbiN0q9Pkgo8qYfp+lZl/WMx1rufd9q7evpWtwue6IjpV0XHTonVQ9kdApLvJYmTXTq+JwY87AZDLR2dnJtWvXyOVyqmhkt9tpbGwkGo2ya9cuAM6ePcs3vvENOjo68Hg8PPDAA4yOjlIoFJiZmWFubo5EIkFtba2i70pxKJFIqA3I27dv59y5c4RCIfr7+xX/X4piogYoNBuHw4HT6VS+Vr6fImIhykOyxFPvFogPEqqRnDP5Luu+W4p7+syF/F0osyLjHYvF1DyfyWTC5XKpan8+n1fqSfX19czPzxONRlU8UFtbq2RIw+Ews7OzfOUrX6G+vp5gMMgDDzzAxMQEV69epbe3l89//vOcPn2avr4+fvu3f5szZ87Q3t5+RxMC/VqTxGBsbIzz58/jdDrZuHEjDQ0N75oYyPW1WlFNCN6lQ1Aul5menmZ0dBSz2Ux3dzdNTU13NREQ/MzP/Ax+v5+HH36YL37xi8zOzmK32/npn/5pstksvb29zM7Okkwm1W6AYDDIrl27OH/+PKFQSBmXnp4ebDYb0WhUcd7r6+t54IEHMJvNLCwsMD09rSoKDoeD2tpaCoWCaqVKp0CkTEUJSSoZPp9PfeGFs6mrEwiHXlctkC+KqEBIMuDxeBZVLgqFwqLFLbK6PJlMKh1p4XRKsB4KhZiZmVEGsLGxEYvFwq5duzh79iyhUIjBwUEsFgs9PT18+tOf5i/+4i9UQpRMJpmcnMTr9eJwODh48CBXrlwBYGhoSB2Ly+VSC+FCoZCq/ttsNux2O3v37uXEiRNKXUIMsdPpVF0QvcKl0zaWG0heb7ib7329nmNYmWqQbguNlVnBeuvKrIf3+EFwq+dmJcnBcjRLPUHVZZ5ls6/L5WLz5s1cuHABuEHHCYVCqljk9XrVwOvY2JjyQU8++SRTU1O4XC5GR0fJZDKMjY2RyWRoaWnh537u5/jLv/xLpqamiEQimEwmtdBsYGCA+vp6JicniUQiak5OOvZzc3PKr1qtVurq6gAYGRkhl8spHyn+VjrqFotFiYvoakLyfdT9ifGcyf3kOf1+P9FoVHUApJMuTABA/U3iong8rnb5mM1mamtr2bBhA/l8nunpacbHx7Hb7TQ3N9Pe3q5868LCAhaLBb/fz+7du3n77bfJZDKEw2G1s6GnpweTycSTTz7J4cOH+du//VtOnz7NJz7xCTo6Ojh48OAtXVcfFFarlZ6eHkUTvnDhAk6nk97eXhobG5cM/Fe7XagmBF4vk5OTi24rl8tMTU0xOjqqAsSmpqZ7mtnt3buXvXv3qqA7n8+TSCQ4ffo0Fy9eJBaL4XK52LRpE319fVy6dImhoSF+8IMfqM2KH/nIRzhx4gSTk5MqGPV4PPj9fsxms5JGE/39mpoaNWwsS8yEmy/KQzLApA9ZlctlVeF2OBxYLBalUCTVBpF7MyojSPVf5g1EsSCZTFIul9UAMNwwYrlcjrNnzyrlg87OTnK5nKLs6FQjk+m6slShUCCVSqkNkx6Ph56eHkKhEHV1dbz++utMTk7i8/nYsGED2WyWYDBIqVRidHSUv/qrv2JoaAiTycSDDz5If38/dXV1WK1W4vE44XBYGVifz6e2Mp47d27RYJh8DroKk367fs0t1UY3Ds6tB1rRnX4fa+lc3S4sR7taLglYSfdlrWIl77G6e+D9QfyH8Rwbv7NSzJIAFxZ3AOT8F4tFrly5ojTy3W432WxW+VmTyURPTw9TU1MUi0U6Ojo4c+YMp0+fVvN0ModgsVior6/n0qVLxONxTp06RSAQoFKp4Ha7mZycJB6Pc+XKFSWBLR0DmQcQ/1ZbW0tbWxv5fJ7JyUmlkid0Gp1yKvRdm82mAnYJ1IvFoqIXSZAfiUSUD9YXn8F1doAci6j4AUrMQ86nCGuUy2XC4TCRSEQV/kRdKZlMquWedrudYDCoZN5FzdDhcLBlyxZ6e3v58Y9/zIULFxgcHMTn87Fv3z5aW1tVV/7NN99kYWGB48ePq5ihWCxy8OBBHn300bt0Bd4MGUKXxODSpUtcu3aN3t7eex433irWfULg8/nUUHEqleLSpUtqa+DGjRuXzfTuNnQlnaeffpq//uu/5uWXX2ZsbIx4PE5dXR07d+7k8OHD5HI5VSFoaWlRj//BD36gKvzNzc3KiCQSCebm5kilUrjdbtW6i8fji2Q5hbefz+eV5Kbo/AsFSAyGbFCUv0n1W1cbApSOc6VSUW1QMXZSaZDkweFw0NbWRldXl1J+KBQKim8pxj6Xy6nho2AwiMvlore3F7PZzNWrVxkcHFRL3LZs2UI0GmViYgKbzUYqlaK/vx+fz4fdbufAgQM89NBDnDt3juHhYWX829vb1WyFyKJZLBbq6uqw2WzU1dXhdDoZHR1VrVwZtpIWrq7zLA5Np2Lp7UVxOMbZAv0x8vtSWA+B2EqwkmC/eq5uhpFGtdT/9SB3NdjM1YzqbNDKYaScLdW1MtIphRrjdrvV7VIxl8KR7KuRQVgRqzCbzTzwwANKIlPoPblcjubmZtUxr6urIxKJMDMzw/z8PC6Xi3/0j/4RX/7yl7l8+TJnz55lYWEBm81GW1sb0WiUrVu3ks/neeeddzh//rwqpPX19SnJ0vn5eRKJhArgZT5PCm1S7AoEAmzatImBgQFmZ2dV11ykTWV5mdCm9Fk8nTak+2RRCJL5BL14pX8O8jwiZS6fk7yGx+Oho6ODSCSidiiJPxaFnkKhQDgc5sKFC0opsbe3V1Gb5XPx+Xw8+eST/PCHP+Tq1au89tpr1NfX43a7+eQnP6n8572m41gsFjZs2EBHRwcTExP09/erxKC5uXlVHON7oZoQ+HzEYjF++7d/mz//8z/n4MGD/MEf/MF7csHuFiQRkIrDhg0bFAfe4XCwfft2WlpaOHToEF/5ylcYGxvD6/Wya9cuNm3axK5du/irv/orQqGQGmbatGkTvb29vPzyy6RSKWV42tvb1eD09PS06hT09PSovQX6YJHH41Hr2VOplKIkORwOVfEX5R5AVeaNsqQyNCW0IElCJCiG65ULi8VCNBplfn5etXJra2vJ5XL09vZy7do1ZmdnSSQSijK0ceNGrl69qmTPzObry2NkPuDQoUN89atfJRaLqQUwVquVzZs3k8/nFZcxk8mwbds2Dh06xOjoKDt37qS/v598Pq/axXa7nT179hCLxejp6VHyaTKcJudZ1IfE2OozEWJQYTEXVv99qWtEsJa6BXfiOKvzAe8P+gzBcslB9VyuHLqQwkquyVu9VtfS3IZ+jb3bHhe9awossqVm8/WFYEIVymQyqmPg9/vVZyH3j8fj9PT0MDs7y65du+jv7yebzSrWgMvl4uMf/zgnTpxg06ZNfP/732d8fJwvfOELalHXli1bOHPmDA6Hg+npaTVj9vTTTzMyMqIKWsViUXXn6+vraWxs5MKFCyQSCebn57Hb7XR3d1NfX8/Y2BgOh4NQKMTCwoIqZkoCoHdE5LkdDof6XWi6Mksh6kvC9U8mk+p2Kfbl83nVhXC73Xi9XuWz5f4yawfXZ/EmJycpFovU1tbS29tLLpdTnZdwOExDQwNPPvkkb7/9NhMTE2r2rru7m8985jMcPXqUxsZGRkZGOHPmDPl8np/92Z/F6XTS2trK6Oio+nzPnj1LLBbjoYcewul03vOg22Kx0NXVpRKDgYEBrl27ppgmqxmmyjq24qlUin/yT/4J3/72t9mwYQP/6l/9K37hF37hjuwRuFVIIiCG7gc/+AHPPfccmzZt4jd/8zc5evQoDQ0NnD9/nu9///vU1tYq9YNf+qVf4pvf/Cazs7P09vYqRaHu7m7efvttEomEkjzbu3cvLS0tHD9+XM0BSBXb6XQqOUxpH4pMWTqdVtV70eYPBAIqqzebzaTTaVU1kKqFzWZT2wrF6IhaEdyQOvP5fMqwSWVEjFmpVMLlctHe3g7A/Pw8Pp+PRCJBpVKhvb2d6elp0uk0VquVXC5HMBhk48aNjI6O0traSiaTYWZmBp/Px/z8PDU1Nfzqr/4q3/72txkcHFTqSn6/n7q6OkKhEI899hgTExMMDg7S0tJCf38/JpOJ1tZWBgYG8Pv9aphZEqNcLofP5yMSiajZDnlffr9fSbeJA5d27FLDw9Ip0a8RI3SnuJa+2h/k/eic4rV2Xm43ljs/ci3D4vOp/38l91nJa60HLBewC13QiPV4rvSu6VLnSuyhFLrEZuo2UIZzxa8IVcZut5NMJtVjpWMslBbpIJRKJdrb2xWfX4Q7HA4H3d3dzMzMsH//fgqFAufPn6elpYXx8XHy+TxNTU3Mz8/z4IMP8tBDD/GlL32JQqFAU1OTkrQWWeqGhgaGhoZIJpNql05tbS1ut5v5+flF1NvW1lai0SgLCwtkMplF3y9RIhKkUilVdDOZTHg8HgAV0BeLRdxuN7lcTjEGxMfq1CS73U40GqVcLuN2u9VcnM/nU7MMMm8oVF5JVoQGJbN3586d48qVK6o4FwwG2bt3L1evXlW0rbGxMXbu3MmDDz7I888/j9/vV+//H//jf6woQ319ffzn//yfiUQi/PN//s85ePCg+kzvdWIgKJfLTE5OMjQ0hN/vZ//+/asixlwK67JDkEwm+eIXv8h/+2//TWnfnjhx4p4MCxthTAQkAG9qaqKxsZGmpibeeecdDh8+zCc+8QkaGxtpbGxk7969zM3NMTk5yZEjR9SAy6OPPsqpU6fUAqxYLKYy2Hg8TiwWY2xsTAW/LS0tZDIZvF6v0giWtl1TUxMul4v5+flFm4NlSQqgZgWkeyAOTgyQVMaFOykcRqvVqnSWdWpSPp/H6XTi9/ux2WzKcJVKJYaHhxXvsrW1lbq6OjWEpOspu91ufuqnforOzk4uX77M6OioWtYSCARUm/S1117jypUrlMtlOjo6aGtr4+GHH2ZycpKrV6/y8ssvq+GqjRs3KpWjLVu2MDQ0pJIhUWbQNaDFOOmGShIlcVLSKdDVh3RnqDu65RRd3msI1Ij7JdC41WPU39dK9jhUOd3Xsdx5Xm5WQMdyyWqVxnYdSw27Gm/Xk4HllrvdL9/ZDwq9+i8wvvdKZbFCmw4ZGpZzKgGw+B/hvBtnsYSeKgmBBMIOh4O9e/eSTqdpaWmhtraWoaEhjh07pjj7//gf/2M1f5jNZhkfH+f06dNqOajf71fUnoWFBdWZ/sVf/EW++93vcvr0abVwM5fLqeJVe3s7c3NzhEIhLl26pBaqyT4eqdoLXdjhcOByuZS/NaowOZ1O1aEQxT2T6bq4hT5bIIU/u92uZFklYZCEq62tjYWFBbXPx2az0dTUxMaNG4nFYng8HqUqdPToUTVP4Pf7mZubIx6P4/V6aWpqoqOjA7/fz5kzZ3j77bepra1V8U0ikWBsbIyGhgZmZmZ46623cDqd1NXVYTablfSn+Fx9j9G9TAzMZjMdHR20traqDtVqxarrEHzxi1/kv/7X/8rMzAy7du3iD//wDzlw4MBtee54PM4f/dEf8Xu/93ts3LiR//Af/gMAn//85zl16tQ9/aCMiYAEyZKkSOU5EAjwu7/7u7z11lt84hOf4O/9vb/HlStXePjhh/kP/+E/cPnyZR588EHGx8d54IEHsFqtPPfccwSDQQ4dOsTw8DAPPvggly9f5siRI4qT6PV6eeaZZ1T2LtVqh8NBMBgkGo0qWTGn00kgECAQCDA/P084HFZfwEKhoIJ3WShiNpvJ5/O43W4lQeZyuZRhd7vdqsJgMpmU0ZH5gJqaGh544AFmZmbUQLTT6VwkayZc0XK5TE1NjTKWIh8nyg1SsWlvb+eNN96gqamJmZkZUqmUkmDt7e3ln/yTf8JXv/pVampqmJubY2BggO3bt+NwOOjv72fbtm2cOXNGVV4WFhbo7Oxk8+bNvPrqq9jtdlVVEhpSuVzG5/MxMzOj3q84I7vdrgyzvjzGYrEs2hQNi5fvyO9342u8WgKRO30cq+V9riboCZNexV6uK6DfZ6mkdr1Af7/LVbo/CL1nvdEC9XO1VOfJZLquJqQnsNKxdjqd6loFlI9obGxUgXk6nSabzaolnZVKhaeeeoojR44QiUSUoEYwGKSnp4erV6+yb98+RkZGGB8fZ//+/eo1//f//X/nv/7X/6r8diQSIRgMqo7xRz/6Ud5++20GBwdpbW3F7XYTjUbZtGkTV65cUVVk8aPS7ZbAPJlMKl/Y29uL0+lkZGREUVLtdruaO5Tik9VqVaqKUqCT5EHvNoiyj4iHyPff4XBQU1OjpEPFx7ndbnw+H36/X1F6hQ67b98+6urq+N73vqee2+Fw8LM/+7MAjI+P09bWxksvvQTAr/3ar3HmzBkSiQRer5cLFy7w4Q9/mH/2z/4ZJ0+eZOfOnXzhC1/g1KlT/PzP/zw///M/Tzabpba2Vn22ktjJNbMaEgOZ3RChlNWIVdUheP755/mN3/gN/uRP/oSHHnqIP/iDP+BnfuZnGBgYoLGx8QM9dygUYsuWLWzbto3nnnuOj3zkI5hMJt56661b3lR8O7FcR8B4wZhMJhoaGgD45Cc/SVdXF7t37+YP//APmZubw2638w//4T9kYGCAHTt28Od//udcu3ZNBaG7d+9m06ZNnDt3jrNnzyrt366uLmKxGHNzc/yv//W/yGQy+P1+9u7dy+zsLLFYjFgsptqxUulwOp3Mzs4qpSCRPBN6kbQRhTojhlzuJ5UZl8uFzWZTA8wyKyD0ILPZTCqV4syZM6qtq6v+5PN5tT/AZrPR2trKZz/7Wf72b/+W4eFhhoaG1BbhQCBAuVxm27ZtXL58Wa2cb2xsxG6385GPfITnn3+ehYUFfud3foe5uTk2b97Ms88+y7Fjx3jiiSd48cUXyWazHD9+nEQigcfjUVUcr9fL4OAglcr15SuiCPFTP/VTHD58WHUUREXJ6XQqWpWRTyzvXaf/yE8x7ncbqyXAuNVq6f0eNN0rvNt5W+7+AmNVt4rF50RPsJa7fTks1RE04n65rldynMu936UWkMl95Dzq155OHdLnCRYWFlRQ+6EPfYg333xT8dPtdjtDQ0OKGtPU1MTw8LDaO2OxWGhpaeHgwYOcPXuWBx98kD/90z9lcnKSkZERSqUSHR0dfPSjH+XHP/4xJpNJDSuLf4lEIni9XmZnZ8lms0padPfu3ezfv5+/+Iu/YGFhQR13U1OTEtyQhaJDQ0PKN9jtdkXRFUGLfD6vBD48Ho+aawPU/aSjL3OCdrudQqGA0+lUexvg+izC3NwcXq9XzTPKrJzInTc1NeH1ejl+/DiHDx+mpqaGuro6Ojs7sVgsTExMKGpVNpvlk5/8JBMTEwwPD/P666+rLsyzzz7LmTNn2L9/P6+88grf+ta32Lp1K8888wxbtmzhQx/6EG63Ww0269eDvoNiNXUMVjNWVULwe7/3e/zyL/8yn/nMZwD4kz/5E1588UX+6q/+in/zb/7NB3ruxsZGXn75ZXbv3r3oYriVTcW3E0t1BIRX/17o6+ujr6+PTCajvqzlcpkzZ84o6TOXywXAo48+yptvvklzczM//OEPGRwcZMeOHTz99NMcOXKEjRs3cvToUVUh8Xg8il8ZCoVIJpNqkEiGhmRJm9lsVivcRao1n88rHqIkD7KURIJ/GcoSQyVa/S6Xi46ODgKBACMjI6p7IRUFoSeZzWZisZhqNXo8Hrq6uoDrDvWll17i2rVrVCoVOjo66Orq4vHHH+fixYu89tprvPzyy0QiERwOB7/4i7+oVJZki3Mmk6Gzs1MNLp8+fZqTJ0+Sy+XUtkS/38+VK1fo6enBarVy9epVpVFtNpsJBoPkcjnMZjODg4NKdckop1qpVFSSIINhklAAi25biicLiwcUl+Nrr1XYbLYlOdc6bnVoU//7WhrOXAmWu65WoiCkK73odkx/7HqgvqyE6qMHs/r9lwtydegLG+9H3Op3Su+GLgWhruiDxdJllgKTqA7pXHdA+Z9yuUwymWRmZmbR3pt0Os309LSy39u2bVPS0r29vapC/sorrzA2Nobf78fj8dDY2IjValX7f3w+Hx0dHezatYuhoSFefPFFjh07htVqJZvN8qEPfYhCocDly5fJZDLMzc0piWqPx0NDQwPpdJpoNEo4HCYWi2Gz2WhpaSEajarvmFCXpMPR09PD5OSk8s3yHRW/IkG8Ts91u91KPlwosoFAgKamJkqlErOzs8zPzxOJRGhsbKS1tVUlHrI7QD5nn8+nkqlEIoHL5WLr1q3U1tZy8OBBvv71r6vzsXHjRgKBAAcOHODVV1/F4/FQX19PPB7n9OnTqhDpdrvZvXs3e/bsec9rZzUmBqs5GVk1CUE+n+fkyZP823/7b9VtZrOZj3zkIxw9evS2vMZSF5DP51OSWHdj0GOlHYGVwOVy8eu//uvEYjGi0Sivv/46FouFAwcO8A//4T/E7XazsLCgJEVra2vZsWMHn/rUp3jhhRc4f/48qVSKlpYWHA4Hjz/+OM899xyTk5PMzs5SKpXo6urik5/8JM8//7waTq5UKtTV1Sk6jQwIOZ1Ompub8fl8itojKgRiFKUlK5uRRa5UNhFHIhHm5uaA60O3onTQ3t6u1ILC4TB2u51du3axceNGDh8+jN1uZ35+nnQ6rQamH3jgAT71qU/x7W9/m+HhYZVcdHR0UF9fz8TEBMeOHePixYvK+G3evJnW1lYOHTrEf/yP/5ErV64wMzNDNBpV1f7Z2Vm2bNlCKpVS1RkZPvP5fFy8eBH4/9l77/C4yjP9/zOj0VRJo15GvVq2ZKvYsuSCccFggysQQkgChBAIJGETkl0IySakbfpuvpssoSchJHQImGLANsa4d1uyrWr13mek6dL8/vDvfTkadIwMBmzwfV1cjI9mzpw59Sn3fT/v6imEO4Owb+vp6ZHCaiEgE98vIOhT8K5dnlguugWTDZgJDtpOF3CdrwGZcruVycBUqqvB/OPJXivxWUoG4L3J0GT7U7lPlPetYF68ODbKYO6zrNVQu97UAmTle4UNMzAhGTgfr+GpXFPKIF5NjyLeI84p8TehxxL3SJEIiOXiOSN48jabTbIE2traZJAcERGBTqdj1qxZ1NfX09bWxubNmyXXfdq0aTQ2NnLppZfy8MMP093dzaZNmxgaGiIsLIwf//jH/OMf/8Dj8bBz50527tzJkSNHJL1n+vTpkhff3d0tt/9LX/oS999/P11dXZw4cUIOG7VYLISHh7N8+XJ2795NXV0dJ06ckDbXmZmZsivhcrlwuVzU1tbKbrQ4b8T+EB0F8VsHBgYYGRmR56N4Vg4NDeHz+airqwNOFVGzs7Pl0LLOzk7Gx8dJSUnhmmuu4cknn6S9vZ3e3l5p33755ZezdetWrFYrBw8elDHDlVdeycaNGzEajVRVVU14rpvNZmkzGhUVxT333MP06dNJSko646BamRiI33+uiY/PBZwzCYHgnQXbMiUkJFBdXf2RfW94eDiBQACn00l4ePhH9j1nMxFQIioqiqioKEZGRrj44ovR6XR0d3fz1FNPkZyczC233MKSJUuIiopCp9Px4osvsmXLFgYHB7FYLCxYsIDOzk46Ozs5duyYnIqYlpZGS0sLbrebBx98EKfTSUJCAtnZ2TQ0NMhkQ7gPiQp3ZGSkPJYiyBcDzZxOp3QTMhqNREdHYzQaaW1tlb7H4qYlOhJi8ElLS4vkTwqr0ZycHFpaWhgcHAROnStGo5FFixbx3HPP0d3dzf/93/8xODiI0Wjksssuw2QysWzZMp588kk5mMzpdGIymSgtLWXz5s04HA5qa2sJCwsjMjKSoqIient7ueqqq/jDH/4gdRbCwcJoNAJgs9moq6uTv1MkSWIYzPj4uHR9UAqngwN6cX6IIECtoq0M+sW/lQ9B8T6B4PWcr9Vate2cyk19Knz282lfnA2o/V61hGkq96zPsqhYLeA9U2qQEp+1fSgCNwFx3QbTJwFZ9VVOu9fr9bK6LT4nEipRgBIQyYBGo5GDxLxer5ye29nZSXJyMoODg5hMJpxOJx0dHTQ1NTE6Ooper+f6668nJCSElJQUdu3ahVarZe/evZKCO23aNHbv3o3dbuf48eO43W4iIyO5/PLL2bt3L/Pnz+ef//wn9fX1tLS0MDY2RnJyMpdeeilvv/02fr+f9vZ2PB4PfX19ZGRkYLfb0el09Pf343Q6aW1txefzERsbi8vloqenB7vdPsHBzmg0Mm3aNOx2O4ODg7hcLpxOJ0ajUT7HhEHI2NgYDoeD6OhoqWMQFB+n00l8fLycdXTy5EkaGxt5+OGHsVqtZGRkEBMTQ0dHBzqdjiNHjuDz+cjOziYmJkYmQbt378ZoNLJq1SqampqkZetf/vIXXC4XX/ziF1myZAkxMTGkpKTIzs0HhVI8/nEnBufDtXrOJASfFEQSMDIy8pEkBOJCFDexs5UIBCMsLIybb74ZgC1btsjguq+vD4vFQlFREbW1tQQCAaKiosjIyJCV+DfffBOn00lpaSkxMTG43W7i4uKor69ndHQUk8kklfJiPPnIyAgmk4m4uDhiY2Olw4Dg8sfExGCz2aS/suDUi0BXVP77+/sJBE4NONHr9cTExGAwGGhpaaGmpgatVivHllutVjweDzqdjsHBQbZt28bo6CgGg4Frr70Wu91Ob2+vHFHv8/nIzMyUN7Ht27dz5MgR3G63THwWL15MZWUlzc3N/O1vf6O3t5e4uDjWr1+P3W6Xg2iampp444030Ov12Gw2IiMjJUUoKiqKQCDAyZMn5e+3Wq1S9CVE16JLIn67GHYjEirRzlXSB3Q6naQXKZMHcRMT55i4mZ1uJsHpcK7frKYSpCsr0cqK6pmu81zfFx8X1IJ6tXuX8hxTo3hcqMSdwvvZB8NEwbaa/74S5zu9LTjIVy4H3hO0KZ3klHaXgKQMiQq4oBaKbqzBYJDzB0JCQiRLQAy0NJlMGAwGhoeHaWtrw+/3SxqQKPbYbDZZ6HnzzTfx+/3MnDlTuuXl5OTw3HPP4fF4OHnypJwbFBsby759+/B4PLz55pvU19fLbbZarURERNDe3i6FuvHx8ZSUlFBfX88bb7zB7t27pflGamoqfr9f6gtra2s5ceIEOp0Ok8lEYWEhw8PDDAwMyOKSEDmLZ6eg7AodRXx8PFarla6uLvr7++nu7iY8PJzk5GSMRiPDw8PAKeqw6HTExcXJIWj9/f0kJCSwYsUKjh8/TkpKCm1tbdTW1jIyMsLnPvc55s6dS3Z2tuzcm0wmZs6cSV1dHX19fXi9XtlZv/322z+Sc+2TSAzO9fvfOZMQxMbGEhISQnd394Tl3d3dJCYmfmTfKywzz7aO4ONKBCbDRRddRFRUFImJiTz99NNs3LiRrq4uvv71rxMeHk5hYSH33XcflZWVeL1e0tPTCQ8Pp7S0lN/+9rf4fD7KysrIyckhNjaWqKgoXn31VU6cOCEHkF122WUYDAa2bt1KT08PTqeT0NBQIiMj5dyA+vp6ORhFVPXtdjt+vx+Hw8Hg4KDsKqSnp9PV1UUgEGBoaAg4RYnS6XRkZ2ezdu1aHnnkEXp6eggLC0Or1cpuQX9/Pzt37qShoQG9Xk9OTg4lJSXExcWRn5/Pb3/7W2pqajCZTNjtdnw+H9OnT8fn8xEXFydvCEL4NHv2bOx2O9u3bycuLo6ysjIpWLbZbJw4cYLs7Gwee+wx7Ha7PLZiIqWwHhUPC0Baw42Pj0vnBvEbTSYTPp9PDmcRehLRLle2wsX6gukZ4nPKhGEyXvxkiUMwzsXA4kx5/cpkQPn+YLrLufY7PwmoJUBKa9vguQICYq4ITEwU1GY/XEi2TkGpfVGeg2rUIDVdgpqV6bmC90vk1X5X8DUrKEDK4E2sP7hbCkxw5RGBsDCV8Pl8krYqhm+KroAouni9XuLj4+VsAvFdovsbERHBqlWrOHLkCIsXL5ZWoM3NzbzzzjuMjY1x8cUXs3DhQtrb26V9J0BiYiI2m43CwkK2bt1Kb28vu3fvlhad3/zmN3n11Vdlt3/fvn1UVlaSlpaG0WgkOTmZ3t5e/H4/vb29OJ1OrFYrX/ziF/nLX/5CV1eX3HdihkFCQgIRERG0trYyPDxMX1+fTKCEk6BGo5F6OtERSEhIkMVFoVXQ6XSsX7+eo0ePsn//frZs2YLBYMBisfD5z39eah/E3+Pj4/nGN75BT08PRqORPXv20NraysyZM/n2t79NQ0MDxcXF/Od//qd8Tv/bv/0bTqeTgoKCs3k6vgefRGJwLicF50xCoNfrmT17Nps3b2bdunXAqRvB5s2b+eY3v/mRfa9GoyEsLAyHw3FW1vdJJgICoaGhUi8xe/ZsOjs7KS0t5dFHH6W+vh6z2Ux5eTlut5uVK1eyYcMGRkdH2bBhAwMDAyQmJnLJJZfw5JNPEggE6OzsxO/3y8C9o6ODyspKOY8gOTmZxMREBgYGMBqNUowseI+RkZETbDU1mlN+x7GxsTidTlwuFydOnMDn88lKREhIiLSD6+rq4r777mNkZISUlBTWrVvH888/z8jICE6nk9HRUdra2mQlSAwpE4PAwsPDCQsLk5X86667jt///ve0tLSQnp5OaWkpNpuNz3/+8/zjH//A7XazY8cOhoeHSUtLY+nSpVRXV9PS0oLP5+Po0aMcPXoUgJkzZ5KRkcFrr72Gz+fDZDJhsVhkezY0NBSTyURPTw+9vb2yGyBuPmJmgtKiUSwTwb0QH4vXygcjvEsZCm6pq3UL3i9w+CQDi6l0As50+5SB7Yf53s8ClUjN/Uat+h8sjhUIDlqVXvCfVaiJiqfSyVM776ayPz/JxPdMrpfTJQeT0deCCyQiqAsE3p3fohSUut1uaWYhLDi9Xi9dXV1S35WYmCin2ovnlODQh4WFsWLFCiorK+nt7eXvf/+71LcJetHSpUt588036e/v5+2330ar1ZKYmMi6dev45z//yYwZM6iurqaqqgqtVssNN9zAX//6VywWi3yGHThwgP7+fsxmM9nZ2ZLC09raitvtlgF/RkYGF198Mc8//zxtbW3cd999kssfEhKC3W7HYrHQ1dWFy+Wis7MTjUZDYmIifr8fu92Oy+WSRSqbzUYgcGqgmNASaDQaOQgtOTmZvr4+Ojs7efrpp4mJicFqtZKeni5jBEERMhgMrFy5koMHD9LZ2cmmTZvkMLeioiK2b9/OrFmzOHz4MBs3bqSzs5Py8nJMJhP5+flkZWV9uBPvDPFxJQbncjIA51BCAHDnnXdyww03MGfOHObOncsf/vAHRkdHpevQRwWLxfKhrUfPhURgMixcuJAFCxbg8/nYtGkT3d3d9Pb2Ehsby6WXXsqMGTN44YUXsNvtlJeXMzY2RnFxMZs2beLQoUOkpqZy2WWXERISQnl5OVu3bqW5uVlatVksFhYtWsSePXsYHh6WHPmEhASsVisdHR10dnbK2QPJycmEhYUxPDyM2WxmcHBQ+uxbLBYuu+wyLBYLzzzzDO3t7bKdmZCQQEhICGFhYRw8eJCuri45fTk5OZnLLruMN998k7q6Oh555BGGh4ex2WzMmzePtLQ0UlNTMZvNVFdXs337dsLCwsjMzOSyyy7jueeeo6Wlhbfeeguv10tfXx8VFRX4/X6uuOIKnnzySQ4dOoTT6eRzn/scPp+P5uZmOWXY6XRiNpvp6uqSlaWrrrqKbdu20d/fT3t7+wSdhfB/Fl7Nojsl/iZoQ4FAQN5chQgb3uXMioedMjEQDgrB+gCBcz2gPVNdg1qwowxsld0CZUVVGdgqHXKmsm2fBSh/r3IfB3u8T/Z+tfNPic9CgqWE0i1HuQ+V555SJK/sFgSLaSdzbVLDudg5EAimTimDMiUlUjxXxX1PLFcmEOL+6nK55AAyeHfQ5djYmHzOCzqmMHsQLkIjIyMkJydjs9koLS3lxRdflDz8hIQEhoeH5X05Pj6eadOmkZ6ezqZNm+jp6SEvL4/rrruOvXv3kp2dzebNm9Hr9WzcuJG2tjYyMjJYunQpzc3NGAwGduzYgcFgYM6cOYSFheF2u4mPj+eVV15hZGSE+vp6fD4fs2fPZvr06Wzfvh2Xy0VbWxstLS3U1tZKJyVlV1oIo2+++Wbefvtt9u7di9vtljq2lJQUNBoN2dnZcj7P8ePHZUErKyuL3t5efD4fPT09klq1YMECNmzYIOnIgUCA7Oxsli1bxokTJ0hPT2ffvn3Y7XbS09NZv349LS0txMfHS7c9oXU0GAx0dXXR3d1NZ2cn3/3ud7nmmms+0aD5k9QYnAs4pxKCz3/+8/T29vKjH/2Irq4uiouL2bhx43uExmcTokPwQROCczURUEKjOTX46uabb6alpYWEhAT++Mc/4nK5uOOOO7jpppvo6+sjKiqKw4cPs2vXLukwsHTpUsbGxqirq5MTEDMyMigqKuLEiRO0tLTwzDPP4Ha7iYmJYcWKFRw5coTOzk5ZERcWaEJYLNqRgk5ktVqJioqir6+P2tpa6U88ffp09Ho9dXV16PV6uru7GRoaIjw8HK1WS1lZGQsWLGDLli309/fLi1fQnLKysmhqaqKhoUGOOTcYDNLBoLu7m9bWVg4ePIjb7SYnJ0c6JIWEhDAyMsKmTZvQaDQkJSWxaNEisrOziYqKQqvV8sQTT9Dc3CwrTKmpqfh8PjweD2+88QZDQ0PyJmw2m0lISJCWccJ5yWq1yqnQol0ttBbigSYmICvHygdThpRTKMX/JwscxM3tg1Rqz2YA92Eq8mpVbCWm0h1RLr/ghHMKwfQVQVtRm1QsaBkwMTg1GAwXXIaY+HuV+2EqNDa1czs4mZhMrzGVrsBHcT2fqVB/svNB3KNE4UPc84AJ4mHl81ZM/xWJhPib8l5pMpmIjo5mcHAQh8MhrTKjo6OJjY2lu7sbv9/P6OgoLS0tksJps9nkug4fPkxYWBizZ8/mqquuYnR0lNTUVMrLy9mzZw/9/f00Njbi9XrRarWYTCbKysqk9ec777xDVlYWubm5lJaWSlc9p9NJY2Mjw8PDzJw5U84nEEG+1+uVFf/rrruOf/7zn9TW1nLgwAEcDgdms5m4uDjcbjezZ8+mubmZhoYGHn74YTkMLTc3l/b2dgBJ8xWCYuHjLyhVglKUl5dHeno6r732GgcPHqS+vp7w8HCmTZtGfHw8J06cwOFwsGPHDgYGBigvL+eiiy7i8OHDNDY2YrfbiYqKYvXq1cycOZPc3Fx27tzJI488QkpKCnfccQdZWVmSGnSuBNwfVWJwrvw+NZxTCQHAN7/5zY+UIjQZPsgsgvMhEQhGTk6OHCeelJQkB4q88MILxMTEcPXVV2Oz2dBoNMyZM4cXXniBwcFBampq6OvrIz8/nwULFrBx40ZZzVZOCPT7/ezdu5eOjg4CgQCxsbEywIVTIqTBwUFpcyb0BoIWJEa9C3FxWVkZu3btkoPFIiMjiYuLIzs7m23bttHW1sbDDz+M3W4nISGBkpISwsPDKSgoYNeuXeh0OilQio6OZuHChdTU1HD8+HHsdjtNTU2Sy2kwGMjNzeWBBx7A6/WSkpJCbGwsSUlJFBcXy8Fjf/vb32hqasJqtTJz5kyWLl3K9u3bOXHihDwfRPXE7/cTHR09YdjLyMiIPF80Go2cVQDIwTBKkZeSKiT+Ezen4Cps8AMQ3rUpVb73gwZkZ7Oaq7auqQTvasvV1q9MgIKDr8kqrWfapTjfMZV9qKYhUFo1K1+rJRDnU7fqTHCm54mSxnam9KrT0bo+6DXyYfF+GpHTUZ6Cnb+UgZiyG6r8u4Cya6CkDInhl2Jujfgul8uFz+eTdKPx8XGGhobktN7IyEj8fj/d3d1yzo2gF4WGhlJaWkpZWRnV1dX8+c9/Znh4mMLCQlJTU8nJyeGKK67g9ddfx+v1Ul1dzY4dO2hqauJnP/sZJ0+eJCwsjPr6ehlYi4LRsmXLOHDggKyWm81mRkdHmTdvHocOHaK4uJjjx49z+PBhWlpa5DN0yZIlHD58mNHRUfr7+yVVd/bs2QwMDKDVaqUFuNBnRkVF4fP5cDqdDA8P43A4sFqtxMXFyUKVz+djcHCQ2tpaObNHfG5kZERSYuPi4rj88st5+umn6ejoYMuWLSQmJpKUlMT69et58803iY6Oxmw2s3v3bvbv38/ixYtJSUmRnfvMzMyzcxJ+BPisdQzOuYTgk8CZdAjOx0QgGFarle9///uMjY1x4MCBCcr+Sy+9lLS0NGpqarDb7fT09JCVlUV4eDhXXHEFDz30EHV1dZLrFx8fz9KlS7nvvvsYHBzEbrfj9XrJzMxk9erVPP7445IeFBISQnJyMiaTic7OTmndGRYWRkpKCi6XS15gQ0NDPP/88/KmfOONN8qJkRqNBrfbzcDAANHR0cTFxTFnzhyeeuopSYeyWq34/X4qKirQ6XSsXLmSJ554gsrKSrRaLWvWrCE3N5dLL72Urq4uRkZG2LJlC36/n4iICFauXMnw8DDTpk1jy5YttLe3c/ToUeLi4qirq6OtrY329nYqKipYunQpVquVDRs24HK5ZMVJ0IJ6enqkF7QYsOZyuWQFSmgrEhISsFgstLS0TEgERAAgEgTxwBNBmrKiqJxuLJbB5PMLlC35cx1qAbva0CK14EhtCNTpJsd+2ge9qSVAwftN+Z7JoEwU1KrYUwlUz0eoCWLVzjElPU2ZHEzlXBP0F5iaveu5BnGPCt5nQvekvMcJCDqRCFgFzUr5LFY6tQloNBrS0tLo7+9ncHBQOr4FAgEiIyPleS2KMz09PSQnJ2MwGNBoNLhcLvr7+4mMjOTaa68lIyODd955h2PHjklji9jYWI4fPy671LfffjudnZ0MDQ3x1ltv4fF42LRpE4FAgPj4eFatWiW1co8//jhNTU288MILXHXVVezYsYOSkhLefvttYmNjqa6upq6ujtDQUCoqKqRrX2dnJ6GhoaSnpzM2NiaNNp566in27dsnB4JarVYAOai0o6NDzhMwmUzk5eVht9txu93SRjwxMZEvfOEL/OMf/6Cnpwe3200gECAuLo4bb7yR1157jZSUFJqbmzl8+DCBQICrrroKnU5HWloabW1teL1eYmNjufHGG3E4HHR3d9PQ0CBnD/zsZz/DaDR+aBvRjwtnIzE4H67P8+NofMSYSkLwaUgElBBCpZKSEr74xS8SERHB0aNHefrpp5k2bRp33HEHTqeTxMREampqaGxs5JVXXkGr1ZKens6qVat488036ejoYPfu3URGRhIWFkZOTo7kEN5///2SipOfny89h+12+4Q5BdOmTWPVqlU88MADcoy74GxarVacTidbtmyhqamJ+Ph4ysvLmTlzJrNmzWJwcJD6+nqqqqro6OhgbGyM2bNn09LSQnt7O2NjY/T29vLGG29gMpnIzMxk5cqVxMbGyo6DqOrn5uaycOFCUlJS2Lt3L1u3bmXBggUyOcjPz6elpYXjx4+j1WpxuVxs376dQ4cOkZ6eLoe1mEymCbQjYZ8mOlFms1mOiheVIK/Xy/DwMP39/Wg0GuLj4/H5fNJxSVTSxOtAICBv1MEUI3hXTxBcuRPrUVbTBM41152p0AzUAk/l55SOLlMZAqXEpz0ZCIaasFMJteq/kv+u9oCcSkJwrp2HZwq1bZ9K9VzZIVBCzX1IjYKl3LfnQiAyGRVKnCPimarUCignD4vPi9/q8/nw+/2yYyoSKlHJ1+v1REdHSze7pqYmWQjR6/VYLBbcbrd0GPT7/ZKHPzo6SldXl0wI4uPjpb12XV0dmzZtwuPxEBsbKzULc+bMobCwkP7+fmbOnMn999/PyZMnWbt2LZdccgljY2PYbDaOHDmC3+8nMzOT3NxcaXst1vnOO+/ITjLAnDlz6OvrY9++fTQ2NpKYmEhoaChLliyRWsCBgQF2794t5/KYTCYSExMZGxujtbVVziiw2WzcfPPN/O1vf6OxsVE+Q8QQNbPZTGlpKYcOHaKtrY0///nPhIeHk5aWRmFhIbW1tVitVrZs2SKLhIsXL5YDTF9//XVZgBP329TUVH71q1/R39/PDTfcwLXXXotWqyUnJ+e8SQSC8WETg3O9o3B+HpWzjNNRhj5tiUAwLBYLa9asAU7NIwgPD8dqtXL8+HFqamrIzMyU3sgFBQWkp6fT3t5OQ0MDe/fuxe/3s379eqKjoyUVaceOHdLSU7Rj29raZPcgKiqK0NBQ4uLiGBwcpKuri/vvvx+73U5WVhbl5eX09vZy6aWX8uCDDzIwMIDT6SQQCGCz2Zg7dy779u3jwIEDBAIByVMUlKHk5GT++Mc/SieGlJQUKT5++eWXcTgcbN26Fb/fT1JSErfeeitDQ0NYrVZef/11uru7ycnJwefz4fV65WAzURVxOByEhIQwa9YsqqqqpMVqIBAgLS2NtLQ0Ojs7JR1InDv9/f2S/mSz2eTEZWF3Jx50gk6kvNHodDr57+BgXtktEG12AeXEz+BKsFLEFxxYfFLV26lQidS2cyqVbjUE77PPEs9dCeUDS0mpUqMGKR/syntiaGioNAsIXqfY12pD4s7nZCAYU9EEKPePWkchOMEVyUGwy9Mnve/U7hvBDmjK9yrvTeIZG7xOUfQIphYJfZy494lzULwWHVQxG0B4+1utVsLDw+np6ZHDxZQBnaiuL1q0iMOHD+NwOOjv7ycsLIzo6Gjy8vLYs2cPERERAKSlpTE0NMTw8LC8jx87dozKykpsNhvLly8nKyuL9PR09u/fz2OPPUZCQgKZmZkkJSWxatUqdu7cycjICM3Nzezdu5fGxkZ+/vOfc/LkScxmM6Ghodjtdo4cOcLo6CharZaLL76Y/fv3c/LkSWpqanC73VgsFtavX8+WLVtISEhg27Zt9PT08L//+7/S9UhYcAsHPI1GQ19fn7QON5vN8vmUn5/P+Pg4+fn5DA0NsXv3bt5++23WrVtHZmYmpaWl9PT00NbWhtVqxev1cvDgQRITE2XyFRkZKZ0PPw34IInB+UAxupAQgLSpVOLTnghMhmXLlpGXl0d8fDy/+93v2LFjB1arlauuuoro6GjKysr48Y9/LKf4Tp8+nZiYGGJiYnjooYdk9aKgoIDU1FQMBgPPPfcczc3NuFwuAoEAixcvJiQkhDfeeIPu7m45xTg5ORk4xW9saWmRAbbNZkOv13PRRRfR0NBAfn4+//d//0d1dTUFBQVcddVV7Nmzh5SUFLq6urDb7WzevFl2GK644gpZuXn++efp6emR2oHe3l48Hg/PPvssZrOZG2+8kaysLGnH2tHRQXd3N0888QSHDx/G5XJx7bXXsnPnTk6cOEFlZSUul4vU1FT0ej2HDh2itbUVv99PWloaFosFj8czweEhEAig1+tlIhMWFkZoaCgWi0WOj/d4PLL9LLirogImbih6vV4GBkJvoNFosFgscpnyQRvMl1cmE0qLU4EzFR5/FAmEXq+fUA19P6g5twSLOc9kPWpB1qeJ7qIWjAsucTCCA7bJlisffJMlqMHLPy37EqaWBCihlhAoqUHKc3gq6xTDGc8mpnLOB3c7xDNU/E1U9ZX6KAGlRagogoiEUwyaFLbMwkNfaKYCgXeHOwqnOI1GI62sLRYLdrsdjUYjO7IxMTGykKKcATNnzhzp6nbo0CFJ+Zw1axY9PT0MDw9z6NAhxsfHKS4uZtGiRfz85z9n3759dHZ24nA4iImJ4dJLL2VoaIi0tDT8fj8bN27EbDazYMECwsPDSUpKorGxUQ4Nu/XWWzl58iTj4+Ps2rWL8fFTA8+EJWhKSgozZ86kvLycRx55hJaWFh588EHmzZtHSkoKNptNPrPffPNNamtrpe22x+PBaDTS19eHVquVw8Wuvvpq9u3bx/79+zl48KBMsL70pS9x5MgRvF4vbW1t7N27l+PHj/OjH/2I1tZWtFotDQ0NNDY2Mn36dL7xjW9w9OhRioqK+OUvf8nBgweJj4/ne9/7Hg6HA5vNdjZPxXMGnzaNwYWEAOTNAj6biYCAoAMBrFixAqvVSnl5OX/605+kzeeaNWtIS0vjoosu4i9/+QsOh0PyI1NTU1myZAkPPPCAnEAsJvvqdDoaGxs5ePAg3d3djI+Pk5eXh9lsljZvDz30EJWVlfIhMGPGDHw+H4cPH8Zut3PixAk6OjpITEwkJCSEq666ipMnT0qXIIvFQiAQoKSkBKfTSUpKChs3buTAgQNceumlLFu2DL1ez8yZM9m2bRv19fW88sorNDY2SurOsmXLiImJweFw4HK56OjoYO7cuXR0dBAVFcXjjz/O4OAgJSUl5OTk8NRTT9HT04PNZpOVl6GhIVpbW8nNzSUnJ4f29nY0mneH2oyNjdHR0SEHvohkSdixajQaDAaDnHQs3DCEDkEZzItZCyJIcLlc8lwVD2RlRTb4ITwZhSM4GZhK5fGjCOjU6CVqAZfaZFc17vZUphmfqUjyfIfyuCtfK/eTcrmS3qLc58pETvl+NS3IpynBmgqU556a1ahyuclkklqjqbgMfRSdgvc7PkoKEDDhOaqEmquQ8r4m1iPuX8HrFr9br9djNBoZGRmRRRchGjabzZIiGRYWJumYotDQ2toqk5CIiAhCQ0MxGAykpqbK51RGRoYcNjk+Pi5n7axdu1a67mzYsIGEhASSkpKIiori4MGDcsLwF7/4RQA6OztpbGzEZDIxODiIx+MhPz+fxYsX09rayty5c3nooYeoqqpi+fLlLFy4EL/fT3Z2NnV1dYyMjLB161ZaW1uZMWMGq1atYuvWrej1erZu3UogECAqKgqr1cpFF11EZWUlQ0ND7NmzB6fTiclk4lvf+hbbtm2TMwnq6ur4y1/+IicTT58+ne7ubkZHR6mrq8PpdKLRaLj88ss5dOgQDoeDV199Fa/XS1paGmvWrGHnzp0sXryYt99+mxdffJHDhw+zatUqEhISWLBgAREREbKL8mnGVBKD8+H+diEhACIiIujo6JC2ZZ+1RGAylJWVUVZWhsvl4plnnsHn8+FyuWSgLfiMo6OjzJ8/H61Wy7Rp0/jXv/7F8ePHycjI4OqrryY0NJRZs2axZ88e6VAQGhpKSEgImZmZNDY20t3djcfjkVWTmJgYORL9nnvukS4HWVlZREVFUVFRwYsvvkhLSwuVlZWMjo4SFxfH9ddfj9vtxmg0smHDBnp6esjIyJC/qbm5mZGREaKiojAYDBiNRkmJ6ujo4ODBg7z66qvExsZy9913c91116HX6zEYDOzcuZNt27YB4HQ6WbBgATNmzODAgQOMjIxgt9sZGBhg+vTpaDQaKQYTA23KysqorKyUlqspKSnS2s3hcEg+p0ajkQ+T0dFR6dIkKmPiZiNa4MJJQwjgAoGADCjEYDRRKVTepITDhrJbIFrvShcjQV8KpnYEP6CVONObn/L9ytfKIFSv18vfMVVuu3Kd7wdl0qC2PVPZ/vMRajqS4IRsMigpQ2oi5KkIv8/n/TdVqFGATqelOBN7XbPZLLVwapO6P8y1+X7LRZV+MqczUa1X3juUugDl+wwGg3SwEwF9cPdTfL/oNCg1VOPjpwaSJSYmypkuQ0NDcrsiIyPl9N6enh5CQ0OZMWMGVquV6upqKisraW1tZWxsjJSUFAYGBhgcHMRisRAdHU16ejpXXHEFXq+XN954g/379zM0NERoaChz587FZrNhNpsZHx/nwQcfxO/3s3z5cqKjoykuLqa/v5/e3l5puV1ZWSmLRlqtlubmZo4ePUpiYiJLliwhKyuLyMhIfve73zE4OMju3btJT08nJiaG9evXs2HDBrRaLSdOnODAgQP09PRwzz330N/fT2hoqPT/r6ysZHBwEI3m1PyBtrY2dDqdpDklJyczZ84cWlpamDlzJn/9618ZHBxk69atLFmyhN7eXqZPn05XVxchISFkZGRQX18vxcjCcnvevHnMmzdvyufYpwnvlxic67iQEHBKeb9//37sdjuRkZGf6UQgGCaTiTvuuIPu7m5CQ0P53e9+h9/vJyMjg5tuugmn04lWq2XTpk3s2bNH+h2vWLFCevwPDw8TGRlJXl4e8+fPZ/fu3dTV1fH666/L6cO33XYb4+PjZGZm0tXVRU1NDY899hhwyi71K1/5Cvfddx9NTU3o9XqGh4cZGBigqKiImJgYLrvsMh599FEsFgu33norM2fOxOfzcfHFF/PQQw9x4sQJ9u7dy8mTJ4mJieGqq66isLCQoqIi/vM//5MTJ04QGxuL2WzGYrHQ19dHTU0NBQUFWCwWSelZt24dPT09FBYW8oc//IH+/n6WLFlCUVERv/3tb+nq6mLevHnSAWN4eJjGxkZpOWo0GikrKyMlJYVnn32W0NBQwsLC5I1D6A6EAE60fLu7u2W3YHx8XFKJggcdGQwG6cktKmYajQaz2Sy1CsoHshDbAfLhCe8GL8HVPKVWQQ1nWvmdig4guLIvqqfK9yiDTqWHvpprUDCVSC0heD98XMHsVIawfVgoRa3K3672Ong7JnuPclbBVNbzQRKscykpm8pxCj5XJ7MaNRqNUtsWLNhWJvEiURYdBLENH9Q1ayqJWjDnX6xTXKfKe8tkdMRg4bqwB3W73bIyrdFo5OwVce8Twb/BYGB8/NQALkEnCg0NJTY2lsHBQXnOeTwedDqdvIcbDAbg1H3yC1/4Aq+++ipHjx6luroagIGBAWbNmsW0adOwWq2kpqZSU1NDbGwsP/jBD3jqqac4fPgwDz/8MDfffDMZGRnEx8fzxBNPyE7DyMgITU1NxMXFYTKZJPWotraWjIwMbr31ViorKykpKeGBBx7g9ddfp7W1FafTSXh4OKtWrWJ8fJzU1FS8Xi8vvPACBoOBa665hvHxcaZPn05TUxNOp5Pt27fT3t5OWloaX/3qV+nr68PtdvPoo4/icDioqKjAZrPhcDjIy8tj48aNDA4OEhkZiV6vZ/bs2aSmpkp60Pbt2+nt7aWwsJDly5dz4MABBgYG6OjoIDIyksWLF5Ofn4/NZuPw4cM888wzJCYm8v3vf1/OLLiA9yYGra2t/OxnP+M///M/ycvL+6Q3TxUXEgJOcee3b99OeXk5P/rRj/jyl798ISFQICkpiaSkJBwOB4WFhVIA+9hjjxETE8NXvvIVZsyYgV6vp6CggCeeeIK6ujpaWlpwuVwkJiZSXFzMyy+/LKcbAiQnJ2M0GiWFZ8+ePTQ2NsqJjZdeeilJSUno9Xq2b99OZWUlERERXH/99cybN4/s7Gzeeustjh49ysaNG+np6cFisTA6OkpJSYncZr/fz/DwMGVlZSQmJpKXl8d9991HT08PZrOZpUuXEhUVxZo1a4iIiCA8PJxNmzbxxhtv0NTUxC9+8QtuvPFG0tPTiY+PB05RIsxmMx0dHezduxePx4PFYpHD3E6cOEFERARhYWG0tbXhdrsZHR3F5XLh9XrlfAWbzUZWVhbHjx+XVf+xsTFJYQPk4DLRLRBOG8KKVHQJBAc2mEag7BooXTngvTeuySAe4OK7z6R6PhWRsJotqBLBYsvJ1qOWQJyu6q0mVBaYyrZ9XJhKZ+SDQM1ZSHSMxHsm2w5loKrsFhgMBpxOJ/BeUfFkONPpu8H4pJMBtWBfeS1OZWK2MpFVBvhqibLa7IepWO2qYSrXrPK94h4UnEQo/68sQoh1iXuR+FtwBwHePQdFp1ZMIRbDGoUmQeyLyMhIhoaGCAQCsvMqugs6nY45c+ZQXV1NV1cXb731lkwqnE6npGRmZGQwOjpKaGgoS5cupb29HYfDwRtvvMHhw4fp6+sjOjoam80mufFxcXHY7XZ0Oh2bNm2S3eK77rqLsbExGhsb0ev1zJ8/n/379/PMM89w+PBh5s2bh91uJyMjg61bt2IwGIiMjGTNmjW4XC76+vro6elBr9ezYcMGRkdHycnJYcmSJfJvwgijuLiYkpISORdo27ZtVFdX09raKpOkBQsW0NbWhsPhkFbjDocDo9HIJZdcwnPPPUd9fT3bt28nOjqayMhIrrzySt566y2io6MJDQ3l5ZdfJhAIcPXVV1NYWCgZAykpKe97bn3W4HK5+N///V/+53/+hxUrVkj713MVFxICTk1I/tznPsezzz7LXXfdxYMPPsivf/1rLrroovOizfNxITw8nDvvvBOAHTt20Nvbi9/vx+VyMXv2bLKzszl58qTkxc+aNYvIyEgWLVrEI488Qn19PVFRURQXF5OQkMCyZct46aWXGB0dldMaQ0NDKS8vZ+fOnVJwJYa/zJgxQw4RO3DgAFlZWURHRxMVFUVhYSGxsbE0NTXx9ttvs2nTJmw2Gz/84Q+56aabsFgszJ49G41GI+09BwYGGBgYICYmhoULF5KbmyuD8pKSEimQ3rRpEy+//DJlZWV87WtfA04FPF/+8pdpa2tjdHSUHTt2YLfbWbp0Kf/617/Yt28f6enpXHfddYSGhpKSksLLL7+M2+3m2LFjDAwMoNFoWL16taRTCaqQeAAODAyg0+kkzcpoNMpKGbzbYhcULCUNSCwXyYPX65XLhf+z6O6IB71SiCvWA+9WMEUX4/1wOgrEZIHnVCqSyvcoxZIiSAiGGn1FLVAKXq5G7fgkMZWg93Qi6KkIxafye5XLxfVyuvdM5bv0ev2kx/Fcqvx/ECj3g9q+VaNmqSWvSmpQcFfggyasUxHPn67zJwoGISEheL3eCbx/ZRdBKbQU03GFyFcsFxRIkSAEAgHpFKTskorug9lsli5sw8PDMkmNj4+XyYBWq8Xr9ZKUlERcXBxPPvkkBw8exGg0otFosNlslJWVMTw8zJw5c7j//vsZHh6mpKQEm83G66+/Lt3lCgoKpDYATiUy//znP2lra+O6665j8eLF9PX1UVBQQFxcHPCucYnFYqGtrU0G8+Xl5VRUVOD3+8nKypJd4YcffhiXy8WiRYvkDIKhoSF8Ph+RkZH4fD4OHDjAkiVLWLhwIcPDw3R2dlJdXU1qaqocsjZv3jyZADQ1NREbG0tcXBxf+tKX2LhxI3l5eVRWVlJZWckzzzzD2rVr0el05OfnU1dXx/j4OGFhYaxbt46+vj5JdxLH79577/3E74vnIsbHx3nuuef40Y9+RExMDC+//DKLFi065/fVhYTg/4dWq+Waa65h9erV/P73v+dzn/scy5Yt4xe/+MU5PUnv44Y4ocvKyvD7/URFRXHo0CGeeOIJZsyYwd13341GoyEpKYl9+/axb98+Nm7cKKlEa9asYcOGDdTU1KDT6XC5XLS1tUlXnqVLl8phLXq9nqVLl8qJjW1tbfT09PDiiy9y8uRJUlNTufTSS0lPT6e0tJQf/vCHnDx5kuTkZOLi4khISKCxsZEtW7ZQXl4ut91qtXLrrbfS29tLYmIiv//973G5XEREREhrtKysLL73ve8B8Nhjj0mKkuB3lpaWkpuby+23347D4WDfvn28/PLLcl6Cx+Nh2rRpaDQaWlpa0Gg0lJeXU11dTXR0tKzOvPHGG5w8eZJAIMDKlSs5duwYx44dA04F/MKRyOv1yoeFVqvFYDDI5YK7OTY2hsVikQ9f0UWAU4GzCOqFhasQ3o2Ojr5HeKy8cU0mYgzuKEwlcDvToVRTCWCnQvsJfs9kQ6CUFVs168dzzeJxMpzOA19t+4M1BMrPCAQPiRJQrlOZHKgtV35Wje4SvN3nKtQ6TGpD7oTFMEztnFSuX5msq3W/lFDSeM60SzeV36vsyoltCz7HxH5QCitDQkIwGo04nU45iFLQgHQ6HW63G4/HI+9zJpNJdlcdDocseohulNfrlcH+2NgYVqsVvV4vixdGo1Hy2V9//XU2btxIXFwcXq8Xs9lMVlYWcXFxlJWV0dLSwtDQEOvXrycpKYnOzk6eeuopOcBszZo1pKamYrPZiIqKoqamhrq6OoqKihgeHmZ4eBin08kXvvAFuQ/EvXT79u088sgjJCcn8x//8R/ExsaSnZ09oXPS2NhIS0sLa9euJSYmBpfLJTvt06dP55ZbbuHw4cMUFRXxpz/9iXfeeYeRkRE8Hg9Wq5W1a9dKncPzzz/PiRMn8Pv9XH311Wzbto2kpCQ5Lfn111+noaGB5ORkLrvsMll82rhxI8PDw8yYMYNFixbhcrlISUnh5z//Ob29vdx8883cdNNNAPL5dgHvIhAIcOjQIe666y4aGhr4+c9/zle+8hVVZ7ZzDRcSgiCYTCZ++MMfcuONN/KDH/yAsrIybr/9dv793/+d8PDwT3rzzhkYDAYWL14MwPDwMDabjdTUVHbu3MmmTZtYt24dNpuN5ORkysrK6O3t5cSJE1RXV3Po0CGcTqccOiZuOo2NjezevZvMzExCQkLIz8/H4XAwffp0wsLCJL958eLFzJgxg9LSUv70pz/R3d2NVqtl7dq1cvCYoOs8/fTTktJz8cUX09TURFZWFvn5+eTn5zM8PExiYiIul4vQ0FB+9atfodfrueWWW+TxXrduHdnZ2eTk5PDYY4/xzjvvcNlll7Fu3TrpMPG5z32OgYEByWm12+2EhITwz3/+k4aGBhITE7nqqqsYGRkhISGB6upq7Ha7tKkTD8vu7m65LQaDAZPJJG1HA4GAFKuFhITg8XgmUH9EcCC0AEKELCpsykBfSW8QgjylzaFYl/Kz4nsEzrSyr7Zc+Xdl4DNZwiFEhyKQVAZQalVmNV68ElMR0E5laNf5gqn8FmXgGTxZV0AMOISJQb1a0hCclJzPUBNjq0HNZlX5WWUgr7xGjEbjpO5DSlqX2ncp7XunKmae7NyYbJuDkwpxTINtFwW1J3i6uvJcCgQC8nMiufd4PDJhUFIbA4F3bUaNRiMul4vx8XFpFjE2NiaD5ebmZmbMmIHH45EubiEhIVgsFnJzc+nv7+fyyy/nl7/8JdXV1fztb3/DarViMplISEggPj6eWbNmcckll/DPf/6T/fv3Y7PZeOyxx6iqquLaa6/l9ttvp6Ojg9LSUvl7Ojs7efjhh4mKiqK8vFxah8bFxZGUlAScenZ2dHQQHR3N3r17aW9vp6ysjLvvvhu/309jYyM2m42LL76YLVu28MILLzBz5kwuvfRSwsLCiImJ4c0338RoNBIXF0dGRgbt7e3MmDEDt9tNfHw8+/fvl8PRGhsbiYmJwePx0NfXJ4eKxsTEcNFFF9Hf309LSwuJiYm0tLSwc+dOQkNDSUpKQqPRkJCQQEFBwXvOmQuArq4u7r33Xp599lm++c1v8uqrr8pJ0ecLLiQEKkhJSeGvf/0rt99+O3feeSfFxcX8+Mc/5otf/OJ5k+19XLjooosoLCzEarXy61//msrKSjIyMrjyyisxGo2Ul5fzs5/9jI6ODmJjY+X0x5ycHDZu3IhGo6GgoICMjAwKCwsnVMRff/11Nm/ezHe/+12uv/56LBYLM2fORKPRyKmOXq8Xp9OJ1+slOTmZpKQkjEaj3Dav18usWbN48skn2bZtG0uWLOHGG28ETnUL7r77bsbGxqitreX48ePodDra29sJBAJYrVZsNhsLFiwAIC8vj9bWVrKysnj00Ud57rnnmD59OqtWrWLt2rXYbDY2b97Mk08+SXt7O729vYSGhrJ48WKee+459u3bJx8GkZGRLF26lCeffBKPx8Nrr71GW1ub1FXs27dPzmnQ6XRYrVZ0Op0cGGM2mwkEAhiNRsmpFe16OJXcigE0Svs+0XVQdhZENW58fHyCAFSZaMC7VoIwUQypBrUARI26834UC6UeAiYGUMH2jZMJNYP57O/nqKP22TMNBs8GziZ9Rq0SrYTyNymr/FMRFSs/GyxqFf9+v3PnXMTpElyB4KRnMm1BsKuVgPI9Sjqc0GPAxABfuQ9PR/uZ7HunQp9T+70iyZ6sKxB87E0mk5xQrxT6G41GQkJCpBWz+L7o6Gg8Ho+kEgnao3BNE5V/0TGIj4+XnU9h5Ww0GikoKODw4cPU1NRIJx2LxcLixYt57bXXANi/fz+9vb0kJSUxd+5cWZG32WxkZmbypS99iczMTNxuNwMDA2zevJnu7m5sNht5eXmMjIyQnp4u/wM4efIkGo2Gjo4OqqqqZPX+pz/9KSaTSXY3AoEA9913H7W1tVx99dWsXbuWjo4OZs+ejcViASA9PZ26ujocDoekfrrdbkpKSigtLWVsbIycnBxCQkLYtWsXDz30EGFhYZSWlpKYmMgll1zCyZMn6enpoa+vj4aGBgYHB7n55ptpb2/HYrHIv7vdbm6++WaOHDlCZmYmzzzzDJWVlRQUFHDnnXficrnOuwD344DL5eL//u//+N3vfscll1zC0aNHycnJ+aQ36wPhQkJwGgiaxzvvvMOTTz7J3XffLfUF8+fPv9Au+/8hbuIAa9euJS0tjdmzZ/OnP/2JtrY2fD4fy5YtIzQ0lMzMTDmI5ciRI+j1etLS0li9ejUDAwOUlpby4IMP0tvbi8PhoKioiPDwcJqamnjllVcoKSmhoKBAVnjuuOMOent7MZvN/OY3v8HlcpGcnExhYSFarZaMjAy++tWvAnD48GHJPT148CDHjx9n8eLFUgw1ffp0rrzySkJCQhgeHuaRRx7BarXygx/8gMjISADWrFnDsmXLMJvNvPnmmzKxqa6u5h//+AcZGRl885vfxGKxoNfreeSRR3A6nezatYuDBw/i9/uZM2cO+/btw26309TUhMFgwGKxEB4ejtvtlu4cYjCP4J+KgT4ajQaTySTpPkqhnphTIAIIQQ8Sw2kExUi01EX3Qdj8iU6BxWLB4XDIZEGsX4ngQG8y3v2ZDvZSBhfKToBadXUqXOwz1QGo0ZTUKDdnSoV6P6jtM2X35GxCrQqstt/URMJqCcFUKElKfJB9qObHf7aTNbUEV+2ceT9Hn6l+11TOeeVrk8kkHYqU58xUzlW1DsFk17i4XwT/TnF/HhkZkcJd0dkUVsiCZqTVajEajWi1WpxOpxT0ivucSArENms0GsLCwqSLkFiHTqeTv1un0xESEiLvp9HR0YSFhRESEkJnZyehoaGkpqZKWulbb71Fbm4uer2ejIwM1q1bR0hICCUlJfz+97/Hbrfz1a9+laSkJAYHBxkcHORb3/oWV199tQze4VQy8N///d9oNBq+/vWvc9VVVxEREUFycrI890+cOMH+/fuZO3fuBN3X8uXL5XrcbjchISHs2bOHf/7zn6SmpvKDH/yAjIwM0tLS5DkwOjrKs88+S2trK1deeSVlZWXodDo6OzsZGBhgbGyMG2+8kerqakJDQzly5Ii0IDWbzbL7kZCQQEVFBa+88gqvvvoqs2fP5nOf+xwzZszg4osvRq/XT+gGXsCpa+nFF1/kBz/4AVarlX/9618sWbLkvI4LLyQEU4BWq+W6665j7dq1/Pa3v2X9+vWsWLGCn/3sZxdstoJQUFBAQUEBXq9Xilqrq6vp6+sjLCyM5cuXU1tbS29vLxUVFYyPj5OUlMQzzzxDXV0dV199NevWrSM1NVVaooWEhLBhwwYcDgeVlZW88soraDQaKioqSE5OJjk5mdHRUaZNmybpNj/96U8xGo3827/9m6xqfOELX2Du3LlkZ2fzs5/9jMrKSjQajRSIGY1G1q9fDyCnNgbTGsTDCOCGG25g7ty5LFq0iBMnThAaGoper6enp4f+/n7S09PlzcHlckl/7dzcXCorK+nt7WVkZERamhYUFFBVVUUgEKC9vR2n00l8fDzZ2dnSdlQ4CsXGxkoHpfHxcflQMhqNeDyeCdsuPqMUFovtEnQh4RaidJUR1U1lcKBWYRTHWuyjM6ESqQVswRVV8e/TcdhFxTSYVqGcxaBcp1I78X6C56ngbFTw1Sq3ai41HxZqx0IZVCr3p7BuPN12KwdpTWWfTOWcCYYa917tHD3bmMq5oZYcKzsHwUmwSOaV+1zw7mHieRBMt5vs/D9dZ2uyJF7tNykpeWrXpnKmgJJ2KO4z4r4UHDQJvZSYpSKWiaLI+Pg4ZrMZp9Mp3YWEFkvMKwgNDaWgoIDt27czOjpKa2urpBiWlpbS0dFBSEgI/f39+Hw+DAYD2dnZWCwWzGYzDodD7i+DwUB7eztDQ0PS4tlkMnHPPfdw8OBBysvL0Wq1E5IBsU+VScs111zznv340ksvsXXrVgYHB7nttttoa2sjPz9f/r21tZX/+7//IywsjFWrVjF9+nQyMjKIjY0lISEBgJaWFkm9bWxsJBAIkJiYyLp169BoNFRVVVFfX8+CBQt46qmn2LFjB+Xl5bKrUFBQQFdXF6mpqSxbtozHHnuMN954Y8KxLikpkZq6C3gXgUCAo0ePctddd1FdXc1Pf/pTbr755gkua+crzv9f8DHCYrFw7733ctNNN3HPPfcwZ84cvvWtb3HnnXfKIPECTl0wDoeDhQsXkpOTQ0pKCn/7299wuVxcdNFFXH/99TidTvR6Pa+88oqc9Gs2mzEYDBw9elRaggqqgnB8Sk9PZ9OmTbz66qsUFxfzox/9CKvVisVi4Xvf+x6BQIDDhw/T3t6O0WhkYGBAJgRhYWEUFRUBMG/ePLRaLTNmzJj0N5SUlPC9732P8PBw2R0IRlFRkVxfdHS0tF196qmn2LBhA0VFRWRnZ2M2m/nqV7/KT37yEwYHB2lsbCQnJwer1cp1113Hr3/9awYGBqisrMRisRAbG0tWVpZ0WWpoaCAQOOVxHR0dzbFjxxgZGZEPwaioKNxut3ShEKJjvV6PyWTC6XTKdrNGo5HaDdFiFw9sk8kk1+t0OqUOQYj2lPQAkTAEB2SCknQmnGW1SmtwsDMZt1oJteqnmoBzKp0DNWHzxyUoPl23QOk2Faz9CF4ueNPKoU6TQa3irHzYKacQB2/rmaxTuQ3Kc0Zsr6j8TpYgBVPZlPi4KnRq54DakLtgu18BZSAfTIebLOFRu6aUCbFa0nymTl/K6d/BFrPBImetVis7jmIIpRAAG43GCQUHjebUAEatVovdbpf3Jq321FRh0SXVaDTSalRU+AU10uVyodPpyMrKoqmpiZGREaqrqxkZGUGj0TB37lzZidi9ezdOp1POz3nyySfJzMykrq4Or9dLREQEN954I4899hjJycls3LiR5uZmkpKS+OY3v0lbWxuFhYWEhIQwbdq0SY87QEZGBt/73vfQaDSkpaVN+p6ysjLZDY+OjpbddYGuri5J54mOjuZnP/vZBDe4jo4OfvSjH9HZ2cmNN97IHXfcgd1uZ/bs2fI6FW5GNTU1mM1mzGYzvb29VFdXS4e/7OxsUlJSOHr0KPv37yclJYXrr7+ehIQEpk2bht1u/0xMGT4TdHd389Of/pSnnnqK2267jZdeekk1PjgfcSEh+ABIS0vj73//O7t27eLOO+/k73//Oz/5yU/4/Oc//5nXF4gAdmRkhKysLC6++GLGxsaoq6tjdHSUkJAQ7rvvPiwWC9/4xjeYN28efr+fq666CqfTSVhYGPfeey9dXV3SBnRsbIz4+HjWrFkDQF1dnRwIs3//fuLj48nJycFkMqHRaJg5cybXX389BoNhwqRiJdatW8fatWtVgweNRkNubu6Uf/fTTz/N9u3bWbFiBRUVFfT393PxxRezb98+BgYGOHz4MCaTCavVypw5c9i/fz99fX28+uqrDAwMYDKZyM3NlRMsBWdWr9fT0dHB6OgokZGRUmQMpx7WISEhkjokoOTZi4esXq8nNDT0PcJEMb9AfEYp7BNdA7PZ/J4hX6L9r/xO5f8FplKtVQtQlcuCpxZPlnAogy1lkKXmJhQcaE4WVE9lOz9KqHUBlMGzmpg6ODBVus4o90NwAKi0dRUwm80TZmMIKBMFodsR361cPlmHRm2yrpLGFnwclFVntX1ztjonHxRqwns1qo9yXwXPJBD7RS1RVnYOJjtuwe+fiqj+TAfdKa99rVYrXYKUjmQ+n09el2LgmtfrxWKxSOqiyWSaYCig7FaKdYhKvhBTa7VaWeAQRg7C693pdEpjBjGZt6Ojg7fffhutVktycjI2m42DBw8SEhJCVVUVRqORoqIiTCYTNTU1zJw5k5deeomjR4/icDi49NJL33d/vB9rYOnSpaellhQVFXHDDTdgNptJTU2V73M4HNTW1jI0NERycjIGg4Hk5GQWLlwo91lHRwdhYWHs2bOHjRs30tbWxk9/+lMuvvhiQkNDeeqpp7DZbIyOjvLUU09hNBq59tprWbBgAZmZmcydO5fi4mKamprYt2+fLE591g1VPB4Pf/7zn/nNb37DokWLOHz48Dk9YOyD4kJC8AGh0WiYP38+O3fu5PHHH+eee+7hgQce4De/+Q1z5849r3lkHwSDg4M0NDTgcDhIT0+npKREBgs6nY6bb74ZOEXFEVQXu91OSkqKHGwCpx5MS5YsoaOjg8TERH71q1/h8/n4zne+I2+069atY+7cuSQmJjI+Pk59fT07d+4kPT2djIwMQkNDWbZs2ftu89k8RgMDAwwNDTEwMMC0adMoLi6moKCAHTt24PF4CAsLY86cObjdbsLCwnjrrbcYHR0lMTGRQCBAVlYWCxcuZOvWrXIQjdlsJj09Xc46sNvtHDt2DKfTSXZ2thQYi0E8wpZ0cHAQv98vOwhiroF4rXQcioyMlO5IyoBa2JSOj4+/h7oggs/g6vNkFAi1YFUNUxH6qnUClP8PFgOLvwULjyebZnw6S86zNRH4g0CtiqumK1AT8wavU406Ehoa+p5jDacC+cHBQfkeAWWHQJkoKNepTAKUUHYDRDLwfr/pXMJU7GmDOy6TieGVUCZ9wcdysqRWbRumMvRNeW4paUvBlLzg9Ytig9AfKbsFIhEUlERAap9EB1LchwRHXcwyEG5tgUCAyMhIOX9AJBY5OTk0NzfT1NTEwYMHZYchISEBvV5Pb28vra2t2O12zGYzK1as4MSJE3R1dVFTU0NnZydDQ0PcfffdVFRUkJmZKfVVPp+Piy66SHZB+/v7GRoaYmhoaNJ990FwumePXq/nkksukf/2eDzU19dLis+sWbOYN28eAwMDJCcny/cdOnSIRx55hLi4ONavX8+yZcsoLS2VCVEgEGD+/PmMjIwwODiIw+HA6/USFRXFf/zHf8j1GAwGpk2bRnp6Ok1NTezdu5e4uDiysrI+c0yI8fFxXnnlFe655x5MJhNPP/00y5cv/9TGdxcSgg8JrVbL9ddfz/r16/n1r3/NqlWrWL16NT/96U8/E5P7hoaGaGhoYHh4mPT0dIqKilSHFcGp6sfXv/51zGYzDQ0NPPLII2RkZPCLX/xCcjU/97nPAcjx7H6/f0IFXKfTTWjHFhYWkpqaSm1tLe3t7WRnZ2Oz2T5WW8MvfvGLzJ49m2nTpvG73/2O2tpafD4fN9xwAxUVFcTHx/ODH/yAkZER4uLiSElJQa/XU15ezqOPPkpPTw+PPvooPp+P3NxcLrnkEv7617/i8XiIiYlhdHSUuLg42tra8Hg8Ukit1+uJjo7G4XBIgbEI0LVaLUNDQ/j9fqxWqxQdiweyoBEJbUJkZCSDg4OMj4/jcrmkoNhgMJxWsKl84Afzg5WBg1oArqxyKqEMUpTHUvlZtcFkU+FKq9FX1Najtm0fFGcqeA0O1kXwpUaJCg5M1abpCqpY8HI195upUIOUUCYsVqtVfpcyMVBqDiZzdppM4/BhBMMfpTOUWldA7dwLThROZ7sLp66XyToryuOidn4qr7XgToMIwIOPtdhXwQUAce0r3yvOJb/fLwcfCtMEUXgwGAxyubL7KBx04NT5IDonIlmMjo6WtKO+vj56e3vxeDz4fD4SExMZGhrCarUyODiIxWLh85//PH/961/p6enh/vvvx263ExYWxuc//3leffVVwsLCeOedd6isrGR0dJR7772X+fPnU1JSwuOPP87rr7/O4sWL+drXvkZDQ4Okh35cGBsbk0lPbGws8+fPl92P0NBQOdhNYHR0lJGREYxGI5mZmXKOjjim3d3dPP7449jtdr7xjW/w9a9/HYPBQGpq6qTfbzQayc/PJyMjg8bGRvbs2UN8fDxZWVnv0U582hAIBDh27Bh33XUXlZWV3Hvvvdx6662njW0+DbiQEJwlhIeH8/Of/5ybb76Zu+++m9LSUr797W/z7W9/+z0X7qcBw8PDNDQ0MDQ0RFpaGrNmzZrSxRISEkJZWRlwKsjIyMggOzubvXv38uKLL7JkyRJWr14NnGq93nbbbfj9fqZPn37a9QoqTm9vL7W1tbS2tpKXl0dMTMyH/7FTQFxcHHFxcQQCAXJzc+VD6tlnn6Wzs5PU1FTpKDR//nw6OzsZGxuTDz2Px0NqaiqdnZ2EhYVJ2pVeryc3N1dWg7xeL21tbbhcLvr7+3G73WRnZxMaGkp/fz+hoaGyhT42Nia5/z6fTw6CE1U5kTSIgHlkZGRChU/8JxAcZCg90JUVdeVnlHQh5fLTBa7KTsVkOgDlvIRgoe1kwZTy/WrrVEtW1Kqxat2CM0kUphKQqomH369LErxczKYIhrKqO9l3T4apuI2ofVatWyTOU4EPIjJWfvdk++zDrHMyTMXCU63CrjZQT81JSimMV3YOlNV8NStZtYRYuVxNWK7W4QgJCZEUQ/F5sX4hqhWdOmGdrPybeL+ghYlj5vf7cbvdmEwmDAYDERERkn4UFxdHe3u77IAKIXJKSoosWsTHx9Pd3Y3H4+HkyZOSdhkZGUlnZ6cUxEdGRpKamkphYSEvvfQSJ0+eZPPmzVRXV9Pe3k5WVhaZmZnk5uaSlJQkraI/DgQCATo7O6mvr8doNFJaWjolnnpFRQVGo5GYmBjJ/Q8EAjz66KPU1NRw9dVXk5aWxvDwMCkpKaoah2AYjUYpbBazghISEsjKyvpUxja9vb38/Oc/5/HHH+eWW27hueeee4/O49OKCwnBWUZGRgZPPPEE27dv5zvf+Q6PPfYYP/3pT7n66qs/1or1RwW73S69jMUN9YPakRUVFfGLX/wCg8HAQw89RHV1NbGxsTIh0Gg0FBYWTnl9Go2G+Ph4YmNjaW1t5ejRo1itVvLy8j62VqdGo+Giiy5i1qxZZGZm8vjjj9PT0yO7J+np6XR3d7Nt2zbCw8MpKiqiuLiYnJwcwsLCOHjwIM3NzXR3dxMSEiKdlIRfdnR0NC6Xi9zcXI4cOcLY2BgdHR3yu3Nzc2lpaZHWfWKisVarZXh4WD7UxXIx1VM8uMXDOTY2lt7eXukBDu9WACezAhVBt5KuI6wDg4Mg0QkSwaEyAFLrRiihVtkXQYrYF+JvOp1uwmyFyT6rZs2olgRMJSCfDGoJgxpvW008rJa0BAd8U7FGVQtOlZ9Rvkdt0JjydfAxnYznPhWuevC+moolptp9Vm0/nUkSd7rA+f0ce9TcgYIFxpMtV/tNyv2ndl0oufnKZEJ0C4KTQqHhGB8fnzQRD952s9k8YVKxoABZrVZ6enoYHx+XBQqhITAajRgMBmlJOjY2RlRU1ATqkEajwWazERoayvHjx2lqapKzBwwGA+np6bS0tGA0Gunv72dsbIxVq1bhdrs5cuQIu3fvpre3l/Hxca666iq2bdsmRcaHDx/m2LFjLF++nAULFsj7X3V1NVqtlp/85CdERER87C6CAwMDsrucl5dHQkLClOkpoaGhstgm4PF4qKqq4uTJk3R1dfHv//7vjI2NqTqFnQ4mk4kZM2bIxGDXrl0kJiaSmZn5qUgMvF4vDzzwAL/61a+YN28eBw8efN9C5KcNFxKCjwAiKNyzZw9/+9vf+P73v88DDzzAr3/9a2bPnn1e8s8cDgcNDQ309/eTmppKQUHBWfElFi3QlStXEhMTw6xZsz70OrVaLenp6dhsNk6ePMmePXuw2WxkZ2d/5F7KnZ2d3Hfffbjdbr7xjW/whS98gf7+fnJzczl06BBdXV3AKS51ZmYm+fn5vPbaazQ1NZGSkkJ0dDQ5OTkYjUZ6e3vp7OykqqoKn89HZmYmJpOJ3t5eTCYT0dHR0nK0qalJ6jI0mlP+3XFxcfh8PtkVEBU6QC4TcwvgXZvJQCAgrfl0Oh0REREMDAwQCASkpamozokAT3Q6lOe2z+ebdH+L6p6Akt+uDFiUVXtlEKIMgtS6BWoVVWWVVi1gVluuFuidCdQ+F/ybRCAW/JtEEqUWgJ5OayHeK86DyQJbJRVJ+d0mk0naMk5G74KJ4thgDvtky4OtapVQC9jVEhs1OpRyX6olmh/lsVRCbduVnTZlwqRMpILP4cnoYmricGVXRnlNKYP74PNmsm6SMikxGo1S+yDWFxISQnh4OP39/XIqsFhuMBgYHR2VSYagJ4lCjaAnig5nZGSkfM/w8LC8LyUmJuJ2u4mNjZXV/5KSEiorK6murubxxx8nEAhIq9GamhqGhoaor6+np6cHOOXys3HjRux2O++88w52u52YmBhWrlxJUlISOTk57Nq1i7/97W8kJSXx4x//WD6nPiqMjo5SV1fHwMAAmZmZpKWlnRWDEqPRyJe+9CWam5tZsGCBtHH9MDCbzXKQqEgMkpKS5PPpfEMgEOC1117jnnvuISQkhH/84x+sXLnyvIzTPizO/5L1OYyQkBBuuukmampquPjii1mxYgW33nornZ2dn/SmTRkjIyMcOXKEvXv3YjKZWLhwIXl5eWc9sE5LS+Pqq68+q8r90NBQpk2bRkVFBR6Ph+3bt9PY2PiRCkNFVV5Uv2pqarDb7VgsFiwWC0ajkfnz51NcXExxcTEbN26kpqaGjo4OFi5cSFFREaWlpZLbLyYdWywWsrOzcbvdeDweBgYGSEpKIiYmhhkzZkhebldXF11dXbjdbjIyMuQ0UKPRKCcX+3w+3G63FNEJjq9oSwcCgQm0HfGf8gElxKhKPrFyHwgouwWTUYlEt0BAzX1F7easDFon0y6I3zPZa7Wq61ScWJQ4G/QTJdSGdym3S+36U6PtBVfBg6lgAsH0rcneE7zeyd6vDDqCPesne/9kuoH32w5llTOYjjbZ67MBtWOtdm6oHcvJHLpA/Vgo96dShKz2WbVrSnneBCdO4vPK5ZOdZ+J9wW5K4ruUdCGxfTExMZjNZmlK4PP5GB0dlbqmsLAwdDqddA1KSEjA7XbT3NzM4OCgtCPNzc0lOjqa+Ph4WbSAU88Ps9mMRqOht7dX6qKKi4uln35rayvHjh1j7969FBUVyeVms5mwsDDMZjN9fX2cOHFCWjYrtQwfBXw+HzU1NezevRuDwcDChQvJzMw8q985e/ZsrrzyyrNOn7VYLBQWFlJRUcHY2Bg7d+7kxIkTqm5X5xoCgQDHjx9n3bp13HLLLdx+++0cPXqUyy+//DOZDMCFhOBjQUREBL/61a+orKzE7XZTXFwsp+qeqxgZGeHo0aPs2bMHg8HAggULmDZt2gdqNX7SsFgsMgDv7u5m586ddHZ2nvVADiA2Npa77rqL73//+4yPj7Nlyxa2bNmC2+3mxhtv5Bvf+IZ09qmqqsJsNpOfn8/q1as5fvw4e/fu5bXXXuPYsWOEhISwevVqMjMz8fv97N27l5qaGnQ6HatXryY1NRWfz0dHRwdWq5Xo6GjS09PxeDy43W5qa2tlF0B0HQQ9QKs9NdlTuAkJDrcI0CMjIyXdZ3BwUFIBYmJi5JAhQTdQWv3BuwGIELIC0t0IkA9+sVxJiVEGIEqaj3L9pxP6CgRXogWCdQMCakHnmT4YzsaDRG0IWHC3QED5O4KFx5MtF1azk60rWLA92TYpBYVqAbcygA0WkAuIcwreGyCrBUTK9SrfE6wlEfi4LEjVAnPl/lFur/LYBNN1BNQE3moJrpIWqXy2KIPa4E6D8vpUUuyCxdxw6riLfSsmAOt0OqKioqStrd1ul9X+qKgoOTE4EAjg9XrxeDyYzWZJCRLXqcViISsrS849aGpqkvexnJwcIiMjCQsLo7e3l0AgQFFRERUVFQDs2rVL3utmz55NRUUFGo2GHTt2sG3bNvbs2cPw8DCLFy8mPz8fp9NJXV0dQ0ND5OTk8PWvf50bbriBxsZGtmzZwubNm0lJSeH73/8+3/nOdz6SrvL4+DjNzc1yiFp5eTnTp08/L6cBWywWZs6cSXl5OT6fjx07dlBdXX1OJwb9/f1873vf46KLLiIvL4/a2lq+/e1vf+pFw++HC5ShjxHZ2dk888wzvP3223znO9/hr3/9Kz//+c9Zt27dOaMvGB0d5eTJk/T09JCUlDTB2eB8R3R0NOXl5XR2dlJXVyeFx2d7sEhsbCxw6gG9cOFCDAYDw8PDPPbYY8TExHDrrbdy0UUXYbFYSEhIkIPUenp68Pl8xMXFSfecxsZGjh8/jtfrJT4+Hp1OJ6dT1tTU4PV6GRoako4eiYmJREREMDo6Kt2I4F2XH7fbjdVqnUALEVW90NBQWclX3hgFLWdsbIyBgQHGx08NLBPDhsQgIvFepTuIch7AZNxv5fJg1xKBYI6zGhdcrcoc7MSiJkgW2xlcyT2ToPKDJplqPHblb1JuRzBHX0ndEpSnsLCwCUmVGFxlMpkmneQs3jOZ973ajAFlAKNWLFAuV95LlNuk1+sn6D+EW01oaOh7qDDCelLNrlNNA/JxQe38VNLb1GhNakPf1KhBatO5g5NjteF676eJEesfHx/H4/FIPZKYS+H3+6U2SSQI4jgajUZZYBCiYtE1EIMThQ2tsEQW97KkpCQMBgNRUVHExMTg9/txOBxotVrcbjf79+8nKSmJkJAQUlJScDqd0iIzISEBrVZLSkqKNF84cOCApDsuWLBADusKDQ3l73//O+Pj43zlK19h0aJFREREkJyc/JEEh4FAQBpfaLVaZs6cKZ8X5zvCwsKYNWsWDoeDkydPsmPHDlJSUsjIyDhnCok+n4+HH36YX/ziF8yZM4d9+/ZRUFDwme0IBOPciEI/Q9BoNCxevJh9+/Zxzz338N3vfpeVK1dy+PDhj6RiPVU4nU6qqqrYvXs3Wq2W+fPnM2PGjE9NMiAghGoLFiwgNjaWgwcPcvToUVVe9IfB2NgYKSkpzJ49G6/Xy8jICA6HQzoKzZgxg6effprjx4/T2trKggULKCsr45prrpHi2traWlwuF2FhYVxxxRUyOK6trZUzDQoKCmQQcvz4cTQaDbGxsXIKs9/v5/DhwzgcDgwGA7Nnz5YPaeVEY4/Hg8vlwuPxEBoail6vx2KxEBMTIx/mopOg0WhkpVir1coJuGKdYl8HDwsT+0UEInq9XibDSqqSEBcKKCecKh8uajfyqfD91ahjap/9KB8aatuoZiupDP6ChaViH4pOEEwMHIX1I7zXhlJZZVZ+t7IrEJxMCKjtH+VnBU0ETjmzKbnzItFQbmuw447SRUpN36HmmvRRYioVfCXUAvwzpaUpEzXl7zYajfLYBye+yutQuVz8BuV5prw+RUdHJGwicfB4PHK74+LiMJvN8rkhqEGiUynExMKgoLi4GJ1Ox9DQEDU1NTKxmDlzJlFRUQQCAerq6ggEAoSGhlJYWCiTRUH/NBgMLFmyRA4ta2xsBE4VZq688krKysooLS3l5MmTHDt2jJdeeoni4mISEhIYGRnB6XQyOjqKTqejuLiYuLi4j4RWarfb2b9/PydOnCAjI4OKiopPTTKghDDLKCsrw+VysX37dmpra1UT+I8DgUCAN998k4qKCh544AH++te/8vrrr1NYWHghGVDgQkLwCUGn03HLLbdQU1NDeXk5l1xyCd/4xjek6PTjgsvl4tixY+zatQuAefPmUVBQ8KlLBIIREhJCVlYW8+fPJyQkRLadz2YwsX37dh599FEee+wxiouLueWWW7jttts4cuQIDz/8MI8//jjh4eGkp6ezcuVK2traqK6u5s0338Rms5GVlcX69evlA+qpp56ivb0dg8HA+vXriYmJYWxsDIfDIXm4EREReL1eXC4Xg4ODGI1GIiIiJCfXbrfT2tqK0WiUFAARyIsHvk6nkwmAqNqLAUQiYPT5fPT19ckHtZhzIGYYwKlqrghYhO2o0Bwo+cpKYaN47fV65UNZ2A4CMgARUFbxlDd2NY622oNeja+txvtW4qPs7gVXmCdbruY0o5Y0iOQN3hvEK4NC5T1AGcAqp5aq8fiV71EGreJcE+tUdofUXI2UwmHle9T0Dh9lEnc6B6PJvn8q9CW15WqOQ8r9qaQGKYN3UdUP/qwyGVfODFFeexaLBb1ej0ajkQPExBwAId4Wrj4ajYaIiAhJAxTHUSSj4juU55xOp5PV+cbGRhmUp6SkSJ1VX18fLpcLt9tNREQEFosFg8GA3W4nEAiQkpLCJZdcgkajoaqqirfffptAIEBaWhqXXXYZaWlpGI1G3nnnHerr6yVlKDk5mbGxMR5//HEee+wx+vv7ufXWW/na175GeHi4XH7o0KFJj8kHgdvtpqqqin379hEVFcWCBQtISUk5Z1gBHxUiIiIoLi5mzpw5jI6Osn37durq6j72xEBYrt5444189atfpaqqijVr1lxIBCbBp/uMPA8QGRnJ7373Ow4fPszQ0BAlJSX893//90fOv3O5XBw/fpydO3cyPj5ORUUFhYWFnwr7sDOB0WikoKCAuXPn4nA42LFjB62trWeFapCamiq9rA8fPsyzzz5LVVUVaWlpZGVlUVhYyLx584iMjMRut3Po0CGGh4eJioqirKwMq9Uqq/eiMi74t06nE4fDwdjYGBaLRb43NTVV0j5aWlqAUw/4adOmodfr0el0dHd309/fz8DAgHQbEsJl0TFwuVxyMqher8dgMEhv8OBg0u/3yyBd8JIFP1jZCRBBx/j4uAyglB0FpQsSqAuM308cK2wPzwRqgaaaLkFtO88G1ESxk7kGne61koIVXMEW9xchvhQQzjDBv0l5P1Luf2VypnzQK4NcQVsT2yH2o3LY4FSCI5Ggvt9npiKGPhOoHWu1Y6Mmlp5K9V8t8FfTJQRfC5O5Yymh7ByIxB+QE4JhYjKhFP0L69DgbRJiYZPJJClDYuihKAqYzWZ0Oh3j4+OMjo4yNDREX18fg4OD0oUoPz8fk8lEIBCQrmkGg4GMjAz0ej1xcXFotVp8Pp+0RBZ6JyXFyWQyERsby7Jly6TIeOfOncCpDsby5cvJzMwkPT2d5ORk9uzZwzPPPENvb6+cdq+cAPxB4ff7qa+vZ8eOHQQCp6YE5+TkfGiXn/MNVquVkpISSktLcTgcbN++nfr6+o+8kzc4OMhdd93F/PnzSU9Pp6amhu9973vnpU7j48KFhOAcQV5eHi+88ALPPfccTz31FHPmzOGll14668GG8FreuXMnfr+f8vJyZs6c+amfPPh+CA8Pp7S0lIKCAlpbW6WH9YehcRUXF/OLX/yCW265hdraWmpqajh8+DCZmZlcddVVXHPNNdjtdoaGhmhtbWXGjBmUlpZy+eWX8+yzz3LkyBHq6+vl8ltvvVUmA5s3b2ZwcJCIiAhuueUWtFotIyMjNDQ0oNVqiYmJobCwUIp/m5ubMZvN2Gw20tLS5ENbBOei8icq9qGhoeh0OvR6vRT3eb1eSTUyGo1YrVYCgYCcJC0CelEd1mg0MmBUUhWC7SLFDTq4YimgnIUgkhoBEYQGJwFiuehsCEzleE4l6PwooRb8qQml1Sw+lTjd71B+31Sq2MpAXlmhVpvloEwaTie+Ff8O7uKoBfhTsTlV4oMmB1M5Z6Zi/TqVzyo7LsEzAwSUyZnRaJTngprjlnJ/GI3GCYJh8Vrw/cU1Kzo5ERERsls4MjIif090dLS8FgWvXyQMYrlSsCyGMIpZISJhmDFjBnFxcVgsFurr6+VvLi4ull3H6upqRkdHMRqN3HzzzdJ6edeuXbjdbiwWC1//+tcpKipi+vTpVFVVcejQIZ577jmuueYaioqKyM/Pl3MMPB4P119/PWvWrCE8PJxjx45RW1tLV1cX3/ve9/jxj3885aFdkyEQCNDe3s6OHTsYHBxkzpw5zJw581PfdX8/REZGUlpaSklJCcPDw2zfvp2Ghoaznhj4/X4eeughioqKJPvhz3/+M/Hx8Wf1ez6N+Gylquc4NBoNl1xyCYcOHeLBBx/kW9/6Fvfffz+//vWvPzTXzePx0NjYSHt7O7GxsZSXl39sw7rOF2g0GuLi4oiJiaG9vZ1jx44RHh5OXl7eBArEmUA8BC677DIiIiIoKCjg8ccfZ9euXVxyySWsXLmS6OhoCgoK+Mtf/sLg4CBbtmxBp9ORlJTEokWLZPAvJkTq9Xrmz59Pd3c3APfffz+dnZ2YTCYWLVrEa6+9JsWlgkokgnpBKxJVvZiYGNn+Dw8PJyQkBKvVisFgkHalSt2AeNCLSqNwKxLCSJ/Px9DQkPztQvOgpAaZzWbGx8fxer34/X4ZVIrgRnzfZFxsv98/KXVGuJiI18rKeHDF/Uz4wWpcb7XKrBJqQuHJINahrKAHf4+SMjMVJyQh5BTrEUmfCNREB0E5uE2tO6FMQJRBq9prJdQ+K5IAkYAqBa7ityp/w+mgNpdBiTM5HmrvVS5X0zCoHT8lgmlFIihS64Sp0SyUybLa9oSFhcn3ia4inLrehFjY5XJJClBYWBijo6O43e4JDmPCSlkMLxQdBnEfEAUFcYzNZjNer5fh4WHZ0QTIysqSwnCDwcDY2BhOpxO/3094eLhcv8FgIDIykrlz5/LCCy9QV1fHE088gUajITIykvLyckZGRoiKimL79u0MDw+j1+uZN28eNTU1+Hw+Nm/ezPDwMEajkS9/+cu0tLRIHvnx48dZv349X/ziF2lvb6eiouJD+/T39/dTW1vL2NgY+fn5xMfHX6CmBCEqKorZs2czMDBAQ0MDLS0tpKenk5aW9qH2fSAQYOvWrdx111243W4efPDBc8qw5XzAhT11DkKn03H77bdTW1tLcXExixcv5o477pCDVc4EXq+Xmpoatm/fjtvtZu7cuRQVFV1IBk4DrVZLamoqCxYsIDw8nL1793Ls2DFVB5CpIDk5mauvvprp06fLYNxsNtPY2Eh3dzf19fXs2bOHlpYWYmJimDNnDtOnT8fn87Fv3z5aWlqIi4tj9uzZzJgxg/T0dLxeL4ODg3R1daHT6UhISKCwsFBO/4RTAZjVaiU5OVm22+vq6tBoNCQlJZGUlCSFgsLRxeVySeeQkJAQLBaLbMXb7XapURAUAeHhLehAItD0er3yBi+CBxHwKrsFAsHOK6KyL7YPJjqjBAf7yuUiCFUmCsp1ir+9H860o3Cmnw1+rwjQJ1vHh/G0VyZJwdulDGCVAbtSaK+sUKtpE9Q+q7zXBHdflImeeB1MfZmKcHwq1KozwVQC+al8Vu37lcuV+01Z/VfTH6hdM8GDw8S/lfoMEbyL9Si7BOKaUSaeoroPpyq84l6g1+ulXbHb7ZbJvMVikSYDIyMjE9yvxPWal5c3QTAsEoCcnBwsFot0wfL5fIyNjVFeXk5UVBQhISG0tLQwMjIiuwvTp09nwYIFaLVaWlpa2Lx5M7GxsUyfPp2FCxfK5Zs2baKvr4+Ojg7a29sn0Jzmzp3L+vXriYqKUjuk74uRkREOHTrE0aNHpTvfmUwZ/iwiOjqaOXPmMGvWLPr6+uScoA9iFVxfX8+1117Lddddx5e+9CWqqqq48sorLyQDZ4gLe+scRlRUFH/4wx84dOgQ3d3dFBcX8//+3/+bUmDq9Xqpq6vjnXfewel0UlZWRnFx8QeudH8WERoaSl5eHvPmzWNsbIwdO3Zw8uTJD+1AsX79em655RbWrFnDiy++yCuvvEJ1dTU5OTkUFRUxf/58tm7dyr59+6irqyM3N5eioiLmzJnD1q1b2blzJw888AB2u52kpCS+8Y1vYDabGRwc5IknnsDtdhMfH8+1116LwWCQD9CwsDCioqKwWq2MjY0xNDSEx+PBarWSmppKbGwsPp8Pu90urUXNZrOsECp5/8LCNHjmgHASAeS6AGkxKChGLpcLjUYjNRGAnGAqXEwms/0LDoon6wQEdwuUFXE18bASUxmIdrah5jSjFtwG02KUfG7lZ5Ui4ck0GcEdEzUHJzUalXIfqmkslMdRGfAGe+4rA9XJAmalEw6oOxypdXLOBv1yKgG+EmrnmNp+Uy5Xc5g63bYpzwOh23G5XBPcu4QOSKkJsFqtcl7A0NCQTNDCwsLkcEOxrcJtTBwP5bU3Pj4uCwUej4eRkRF8Ph9ZWVnEx8cTERHB4OAgo6Oj+P1+uUw4BLndbsxmM1/5ylcIDw9naGiIJ598EpfLRVRUFN/97neJiIigu7ubP//5z+zdu5ctW7awatUqZsyYQWZmJvv37+fAgQNs2bKFtWvXyqm6O3bsYMOGDWzevJmbb76Zr371qyxZsuR99+vp4PV6qa6uZs+ePZhMJhYsWEBGRsaFQHSK0GhOzbYpKyujsLCQ3t5etm/fTlNT05Ses8PDw9xzzz1UVFSQkJBATU0Nd99994QCxgVMHRfO2vMA+fn5bNiwgSeeeIK///3vzJ07l5dffnnSB5zb7aa+vp7t27fjcDiYM2cOJSUlREREfAJb/umA2Wxm1qxZlJaW0tvby44dO+jo6PhA+gKv18v999/P448/zvHjx1m+fDmLFi1ixYoVREdHExoaytatW3E4HLL9LR7Ir7/+Ot3d3fh8PjIyMggLC8NisbBjxw7cbjehoaGkpqZKWs+OHTtwuVwYDAbS0tJkBU8IkHU6Hb29vZKHGx8fLzsBYWFheL1e+vr6JGfcYrEQHh6OTqfDYrEwOjrK2NgYHo8Hg8GATqeTtKPgQMHj8UyoGisFjKIiJPjNQvcggnphVQinr9xOFhQKSgNMTAhORw34pB/mar9RjYqiFA8LKgacCv6CKUOAFHeKz4rAOiQkZEKxQVkxVS5XMx5Qbp9yKqqyo6AsSHi9XrlNBoNhQrdALFdSqIIrh2pC8KnYfn5QnGnnQK1boEyGTkcHer91Kl+LQBxO6TwE9U5U9OHUcVRa+Ip1iM4fvEvlErockZzr9XrZMXC5XBiNRmlNLKiRDoeDgYEB/H4/VqsVk8mEXq+XVEe32013d7c0KYiMjJSv09PT0el0jI6OsnPnTqkvEkYJDoeD3bt3YzabZRHD6/XS2trK9u3b5ZC00tJSdDodAwMD7NmzB71eT0pKCqtXr+biiy9m4cKF7Nixg8cee4y///3vk+7j98P4+DhNTU3yHltRUUF+fv4FweoHhEZzyiq7rKyMgoICurq62L59O83NzZNeH36/n0cffZSioiIOHTrEO++8w0MPPURiYuInsPWfHlxICM4TaDQaVq5cyZEjR/jWt77Fbbfdxtq1azl+/DiBwKlhJ3feeSeFhYX09PRQWlpKaWkpVqv1k970Tw0EnzU3N5eGhgb27NnDwMDAGa3D5/MxMDDA4OAgg4ODREdHU1ZWhs1mk+4v0dHRkio2MDDAzp07OXDgAA6Hg5kzZ7Jq1SquuOIKAPr6+qiurmZsbIycnBw5Rn5gYIATJ04wPj5Oeno68+bNY3x8HLvdjs/nw2AwkJycTFxcnAwIurq6MBqNFBYWEhUVxfj4uAzORIAmxMNiOrFOp8NoNMpKoNvtlpNRw8PDJ3QFlIGIoCcpKQlCsCzeo+w+KCvd4j3BgbuyW6AMviZ7oAhtA0y0NRXHSGAqXYSzDWWQpwww1ES7apaiwZx+8VsEF1xAWYFXQgT+Go1mQsVNrUOgDPaDB5CJzwRPRVbOHlBShsT7lPx65e8+ndZCjXJ1tqF2DqhNG55M9B6M4OFik3UeghML5fWgFGYrrxmxrYKGEwgE3kMDE8vDw8PlNWw2m3G73TKhF9ois9ksqUFitoToIgo72fT0dDIzM9Hr9TQ3N8vJ5qmpqcTExBAaGorL5WJ0dJTx8XFWrlxJXFyctOkUIubLL7+c+Ph43G43lZWVOBwONBoN119/PUuXLmX69Om0tLRw8OBB3nzzTWJiYqioqKCoqAiTySS3Pz8/n9LSUiwWCwMDA/T3909wwJoKAoGAnHbf1dVFUVERJSUln3lTjrMFoeMTk5v3799PXl4ev/zlL6Uj3rZt27jooov4/e9/z5/+9CfeeustZs+efYGedRZwQVR8niE0NJQ77riDL37xi/z4xz9m4cKF5OfnU19fT25uLn/84x+ZP3/+J72Zn1oI7n18fDwtLS0cPnyYmJgYyX99PwhHjK6uLmw2G7/73e+w2+1885vf5NZbb6W7uxubzcaOHTuor6+Xw8SSk5O57LLL+M1vfoPT6SQqKorU1FTi4uLIzs6mqamJvr4+nnzySfx+P6mpqZSWltLY2Cjb7j6fj+TkZObOnUtDQ4MMxk0mE1ardUJQLyg+CQkJ+P1+BgcH6enpkZX1iIgIhoeH5dRSISRWBuViCqkI8EQCoNFoJHVEiJIFXUh8Pjw8HI/HIznKIqAJCwuTPuen48tPthzeDSjHxsYmJB/Bx1isI9jrfjJbxzMRq6pBbR1q33+6gFK8R+kApLSAdblcUryt0Wgkrcvr9RITE4PD4SAkJIS+vj7g1P6MioqiqakJmEj7USYdyoBXrBNO+ZG3trYCTEiglefNyMiIXC6ErjBxuJoS4lwSUDv+HyWCKVhi/wYfs2AHpGD71NNRmSbTfShfWywWSf8ZHR2VyZMI3AWPXyQIwlIYkLQ9Ie4V9sGC+ud2uydQufx+v1wu7D5HRkbweDySAhQTEyO/V6vV4nK55Dkp5qaIf+v1epYvX87AwADt7e08/PDDOJ1Oudxut9Pe3s6DDz7I6OgoBoOBFStWsHXrVgKBAIcPH6a+vp6IiAhuuukmqqurcblcvPjii7S0tJCdnc3q1avJzc0lNzeXbdu28de//pWMjAz+/d//nZSUFHJzc6d8vIeHh6mpqcHlcpGTk4PNZrsQhH5E0Gg0xMfHs27dOkZGRvjNb37Dfffdh81mo7Gxkbvvvpvvfve7n3nnprONCwnBeQoRJBqNRvmgvu6661i2bNknu2GfEYSEhJCZmYnNZqOhoYHdu3eTkpJCVlbW+468z8nJIScnh5GREWw2GxaLBbPZzL/+9S8CgQBXXnmlrHJWVFQwOjpKbGwse/bsobGxkbi4OBYtWkRDQwNRUVFEREQQEhLC6OgoKSkpktLjcDjw+XzSiUMIgEWXoL+/X4r3xIO8q6uL4eFhGUCkp6fT19dHW1ubnBngdrvp7++X3QIxsEzwfwUHeWRkBLPZzOjoKBEREdJlRBkACXqTsDacbLCSsuIrNAbwbnXU7Xa/J2gUrjVqVVYllNVUYaMoAu5g7vyHdROaCpTrC9YNiO9XExWrBZpqr5UCbyEKF+9R0oRO93kBZYCupIepVfKVg8mUHSHl6+DvUwbeavqK4H2jFJt/2OOkXJ8SanoLpXuSqM4Hb6Pa8RZBulgu3qcM1j0ez4QZIMLpR/xfQNkVEN0AJdXMYDDI7zMajfT09OD3+3E4HHKKeVhYmNQWDA4OyuNkMBhkchEfH49er2d4eJjW1lbpChYTE8Pg4CBut5vW1laZoIoEQHQNhS7J6XRKCqHYZoPBQFhYGPHx8ZhMJubMmcMzzzxDX18fNTU1ZGdno9PpmDVrFs3NzdIE4a233uLEiROUlpaSkpJCeno6cXFxJCQkTOmYu1wu6uvr6enpISMjQ1KbLuCjR0hICFdeeSX19fX88Y9/pLW1laioKJKSki4cg48AFyhD5xmcTie/+93vyMzM5KWXXuKZZ55hYGCAJ598kocffpiKigpef/31j61K9lmHwWBgxowZlJeXy2mMLS0tUxIwWiwW1q9fz9e+9jVCQkI4evQoO3fu5K233mLZsmXcc889FBYW4vV66ejowGQyMXPmTK644gpOnDjB3r17qayslMvXrVvHzJkzGR8fp729nf3796PRaJg7dy4zZ84kEAhMWC70Bn6/n/7+fkn3EQ88v9/PwMAAgUAAq9XKrFmzpAOIqCKLYWminSvcRkTlX+gMhBBZUIlE0mQwGCTVQeldLqxKNZpTcw2UiYLgyQtHk2Do9Xq5HqW2QC05CL5W1ALNj3Iy7lSuV+W61Wgxyoq9UlSsTFKV+0RJwYJ3g3qRoAkoZw8oKTzKwF/5HmUyoXyt9hBX0oqUA7NO91vVplSraUA+6D1RLdhXm4OghDLZPJ0dqoBy25VUvWCakBAGBwv7zWYzGs2pWQJKKp7Q9SjpcSaTSV5DYp+Pj48zMjIir2HlnBChNQoNDWV8fByHw4Hf7yc2NpacnBzCw8NxOByyoBAeHk5CQgIGg4GBgYEJy+Pi4vD7/WzatEkOJ7v00kvJycmRy/v6+tBqtVxyySVcfPHFFBYW4vF4qKys5J133sHv98vlbrebnp4evF4vl156Kd/97nel1m7v3r0cOnSI1NRUvvKVr7Bq1aop6YT8fj91dXXs3LkTjUbDggULZNJxAR89xsbGeOyxxygqKmL37t2888479PX18etf/5rf/OY35Ofn87e//e0DuRJdwOS4cGafR3jggQfk0JS///3vXHbZZfJBsWrVKi699FL+9Kc/cdNNNzF37lx++ctfMm3atAttzY8BYWFhlJaW0tfXR21tLS0tLeTl5REXF6e6/6uqqrjvvvvQ6/VceeWVct7BjBkzePzxxzGZTHz3u99l/fr1wCmh5ubNm2lubpYPy+TkZAoKCnjzzTdpbW0lIiKC8PBwUlNT0Wg0dHZ20tvbKydDJiQkYDKZaGtrk9anIigfGBjA6XQSGhoq3UV0Oh19fX14PJ4JguTIyEjGx8fp6+uTlUAxw8DpdMpuQW9vr6w2i++JiIiQdBVgQtAa7BokOMoiCFV61zscDvlgt1gs+Hw+6acugiQR0Ez20JgsQFNSJE73/qm8/qBQq2SrBY5nmkwEJ0lqENoQmEgTUnP3UdKYlMLjqU4UVgucldv6SRQ6puJadDoh+Jlss6jSj4+PT3AHEp7+TqdT0nCU10ogEJADxcTxFQmhUgwsRPYiOTAajbhcLvR6PU6nU9LxwsLCcDqdUjDc19eHy+XC6XTi8XiIj49Hp9PhcDiIioqSPH273S4nmlssFmlRPDw8LLsQYmqxTqdj2rRp+Hw++vr6eOONNyRlKT8/n4aGBjQaDf39/bK7UFFRwauvvkpXVxcHDhxgYGAAt9vN/PnziYqKIiYmhqGhIR5//HF0Oh1f+tKXJMWpqqqK559/Hr1ez1133YXNZpv0GIyPj9PR0UF9fT1hYWGUlZVdMOX4GBEIBNi5cyd33XUXfX19/Pd//zfXXnutvF9cd911XHPNNTzxxBP85Cc/4Re/+AW///3vWb169Se85ec/LnQIziMEAgEefvhh9uzZw4oVK97zMNfr9dx5553U1taSmZnJggUL+I//+I8zFr5ewAdHbGwsFRUVZGRkcOLECQ4cODCBT62E3+/HbrfT2dnJ8PAwNpuNWbNmTZj063Q6cTqdhIeH88ILL1BTU0N7ezvz58+ntLSUiooKXnrpJWpqamhra2PevHmUlpayZMkS6fTS1dWF2+3GYDBQUFCAyWRibGyM/v5+wsPDsVgsZGZmYjKZ0Gg0dHR0MDQ0REhICBkZGbJ139XVxcjICBaLhYqKCvR6vXTuEa5Fo6OjslJsNpuxWCyyoma32xkbG5OVRjF8SATrwslEJANKq0MR/Circ8E2okpRqvK1kjKitNtU6xwoP6uGsz1BXLktahafym1USw6Cl4vfohTwiu6PWC4q7YLzLaDUxKgJrdWCXbXJuspkQkn10ul0Ezj4SqGskkc/lX0QfNymkvx8EKh1ktS+J9jOVklTU65TLBfDBeHda0Cj0UygWik7PMrrQSTfgJw6LoJ9keibzWZpPTo8PCy/T1iWKt2HRGIttDsREREUFxdjMBjo7u6Wz5iIiAhSUlIA6OzspL+/Xy5PS0uTycLAwADj4+MkJCSQmZmJTqdjaGiIvr4+NBoNmZmZLFq0iJKSEgoLC2lqauL48eNs3bqVhQsXUlJSwsyZM+XyzZs3YzQaGRoamjC9PDExkRkzZhAbG0tvby/d3d0TJi4Ho6+vj927d9Pc3MyMGTOYPXv2hWTgY0RzczM33HAD69evZ82aNZw4cYLrrrvuPde0Tqfjy1/+MtXV1Xz/+98/6/fjzyouJATnEb7+9a+zatWq932wxcXF8ec//5k9e/ZQU1NDUVERDzzwwFkfEX4Bk0Or1ZKSksKCBQuwWq3s27ePqqoqGRj5/X5OnjzJ4OAgn/vc5/jJT36C0WjklVde4fnnnyc5OZlbb72Vb3/72zQ2NvLss8/y/PPPYzKZyMjI4IorrqC5uZnKykq2b9+O0WgkIyODlStX0tTURFVVFdu3byc8PJzs7GzWrFlDcnIyY2NjHDx4kCNHjqDValm6dCkpKSmMj4/LCp7FYiExMZGRkRGcTqdMDMxmMzabjdHRUVwuF4ODg5jNZsLDw5k+fToazSm/866uLuBUQBIdHS2pCx6PRwY0wk0J3hVFigRAPMwNBgOhoaHyb0oPehEgChoEIEWNGs2pKaYi8BTUIzj1EFEOLFOuJ5hSAxPtPD8uBAKB9wSIwdsFp59OrPyssvsymaA6mJOv5mqkrPgrkwblNimTgGAevUCw575yANZktqhKu9TgDoGabkDZDfq4juFUOkZCnxL8NyXFTUkBElPGATlpXFT4lbM1JksslFajXq9XJg7CHUysU3xWiH0FVSwqKgq9Xs/Y2Bjd3d2yQ5iZmSkpf0KLJDqPYiLy4OCgHFomlmu1WpxOJyEhIcyaNUtSGN98801aWlrQarUUFhayePFicnNz8Xq97Nu3jxMnTuByuVi4cCGZmZk4nU727dvH8ePHcblcLFq0iIyMDJxOJ//617/417/+xdjYGHfccQe33XabFBlv2rSJvLw87rnnHlavXs3Jkydpa2uT+9rhcHDw4EEqKytJSUlh3rx5F6YMf4wYGRnhpz/9KXPmzMFoNHLixAnuvffe9zXq0Ol0fOUrX2Ht2rUf05Z+unGBMvQphUajYdasWbzxxhu89NJL/Pu//zsPP/wwv/rVr1i6dOmFG93HAJ1OR25uLikpKXI2RFRUFA6HA7PZTHFxMdHR0cApPu+sWbNIS0ujpqaGJ598kunTp7NixQpmzZpFamoqycnJNDY2ShGd3W4nPDycefPmUV9fz+DgIDU1NQwPD2OxWJg/fz61tbV4PB5ZwTcajURGRjIwMIDdbqe7u5uxsTEMBgMJCQnY7XY5kVRMQhZVQqvVSlhYGC6Xi5GREex2O4FAgMzMTClGNhqNkl/c2Ng4IcAPCQmRAbrL5ZJ0IKPRiMfjwWQy4XA4pHe64J4LMa1IKJQVVCXnXQSMYrCagFIoq6weiu0J5surCUc/SqgFumpOOsHVZiF4VtJ84F3bToPB8J7JwyMjI1KgKhAZGSk53Uruv1KboAxqlcvVxPSRkZETfo/oUISFhcltFcmIkr4i9ovBYMDj8UyqLfB4PO+pHgZ3WCYT8n5cUNqmBidD4t9K+g+8u50ej0d+VpnAiq6JSOzE71Va+SqpdWNjY1gsFmkbOjIygt/vl/RArVaLyWSSlLvR0VE6OjokdUjsY6vVSmJiIi0tLbK7GBISImmKLpeL/v5+OeQsPDyciIgIdDodNptNDkJsa2uT3YjY2FjpSCS2OTw8nIsvvpj9+/fT29vL7t27pXHB4sWLOXLkCH19fezatQuz2UxkZCRLly7FbDbj8XhISEjgscceo7+/n+uvv55Zs2bhdrvJzMwkJiaG2bNn093dTUNDA42NjZhMJoaHh0lJSWHmzJnvawpxAWcPY2NjPPnkk9x7772kpqby5ptvMm/evAvxySeECx2CTzm0Wi3r1q2jqqqKG264gS9/+ctcc8011NXVfdKb9pmBwWCQLj9DQ0MEAgFsNtuEwU8ZGRnce++93HTTTfT09NDW1kZzczNhYWEsXbqUyy+/XDqK9Pb2UlhYSElJCatWreL555/n6NGj1NfXM2vWLIqLi1mzZg3PPfccR44coaamhlmzZlFSUsL111+P2WzG5/NRVVVFX18fer2e1atXY7FY8Pv99Pb2yod8Tk4OY2Nj+Hw+2tragFPV4tzcXOlk0t7ejsFgwGq1smjRIgDpbiQGFyUnJ0v7Q6/XK4WOgUBACo8FhUj8TQRKgl4kAt/JRJ7KCrjSzUXp067UFuj1+gnLxfuVy+HMJ9OeDah18pTLlYmCkkISXL0Xn1FatwqnKDgVdIrKvjg/4dQ+UVIllN+tnDeg5sWvZkFqNBrlto+OjsrP6/V6mawpExTlv4OtZpWdDbV99lEmdlM5B5TV/GCqj6joC+cesU6xXLgBieUiUFXOmlAG0nq9Xh5LQRHU6XTynBaJunJwoPgOj8dDSkqKnC0iBMNms5mysjLCw8MZGxujr6+PsbExQkJCyMrKkg5Evb29MhHJzs6WQxOHhoYYGxvDZrOxaNEidDodzc3NUneUkJDAF77wBWbNmkVubi41NTUcPnyYV199lSuvvJJZs2aRl5dHTU0NR44c4eWXX2b9+vUUFRWRn5/PwMCAvK7Xrl3LwoULpalCZ2cndrudb3/729x9992SQqnRnPK6T0pKwuv1yu5oZGTkBcHwx4RAIMCePXtYunQpP/nJT/jlL3/Jzp07mT9//oVk4BPEhbP/MwKDwcB//Md/cMMNN/DDH/6QiooKvva1r3H33XdPqOBdwNlDIBCgs7OTkydPotVqmT59OnFxcfT29lJXV0drayt5eXkTproCLF68GKPRSGZmJq+99hobNmxg9uzZ3HbbbRgMBjIyMti3bx8ul4utW7fKB9zChQvp6+ujt7eXzZs3y+ULFixgeHiY3t5eXnrpJZqbmwkNDWX+/Pls3bqVoaEh3n77bRobG9HpdFRUVLB9+3b6+/tlUCACDjGF1OfzYbFYCAQCmM1maWGq1WoJDw/H6XRis9mk7kAkE6GhoSQlJdHb2ysTHMGPFhQGITy22+0y4FFqCJRVUJFUCO2BCHyV022VHQWxnuDgUkAZaIugLdjzX3QXPg53CzV/e2UVPJgiM9lyUU0WwZySPiQCTREgCig9vpXrVS5XBlDKB3nwEC5RrVZ2FHw+n/x9ymMcHMQr/61mcxrcOZjs2JxtUbLaOSCSG3GeKu1UBZRJq/jtSqqaeL84ZqKCr5xELZIEkbArbXY1Go20GAYk3Uhsr7hOQ0ND6ejoYGxsjPb2djwejxxM1tXVJd/j8Xjo7+8nPz8fk8mE2WyWtqH9/f3ExcVNWK7VaomPjychIYGGhgYOHjxIWloaWq2WuLg4UlNTOXnyJIcOHcLlcjE0NITFYqGkpISOjg6Gh4fZtWsXQ0NDmEwmZs+eTVtbGw6Hgz179hAIBEhPT6ekpIShoSEKCgr4r//6L9ra2rjhhhu46aabGBgYYM6cOROOTSAQoKuri/r6ekJDQ+Xwzvb2dqqrq2lsbCQnJ4eYmJgLgelHhLa2Nn70ox+xYcMGvvOd73DXXXdNKDJcwCeHCx2CzxgSEhJ48MEH2bFjB0ePHqW4uJhHHnnkgnXXWUQgcGqa5a5du2hoaCArK4uKigoSEhLQarUkJCQwf/58kpKSOHr0KIcOHZpg2RgZGcmKFSuYNm0a0dHRREdHExsbK6tkTqdTLktLS2PevHlkZWURERHBO++8Q2dnJzqdjvnz55OVlUVUVBTbtm2jo6OD/v5+SclJT0+XQcjw8LCsTqampspgxePxYLVaMRqNpKamSoFia2urnFCanJwsq/oiqAgLC+Oiiy6a4HEvKpilpaUyMBSJhqBWCC2AqFyLoEvQV0wmkww2lUGUwWCQomilGFMp0lUGhMrAMFh8q9QWBAdn4rPKwPSDBg5T+VwwzURAzZYzeMaDcj3KboFyPeLcCx4C1tPTI18r7w9iYBlMrP4r16t8j/I4DQ4OTvh9YpuUjjrB06iVv1Vt5oJyuVrQfzaSATWr0eDtUgp9J/veYIqQUh+jpAaJar4QAotrVLxfr9fL7pgQaWu1WiwWywRantAeCLEwnHJGmzFjBkajUU6vFknbvHnzpI9/b28vWq0Wo9FIUlIScOp+0dnZKZfbbDbMZrOkRIpjk5CQIO8NQkgsOqRieWdnJy0tLbz++uukpaWRl5fH0qVLGRkZoaWlhTfeeIOUlBTy8vJYtmwZsbGxREdHExkZydDQEAcOHKCjo4Po6GiioqKIjIyktLSUSy65ZIKuZXBwkL1791JXV0dOTg7l5eVERUWh1WpJTU1l4cKFJCYmUlVVxf79+99zrl7Ah4PT6eS//uu/KC0tBeDYsWP8/Oc/v5AMnEO4kBB8BqHRaCgtLWXLli3cd999/M///A8LFy7k7bff/kR4tp8WBAIB+vr62LNnD9XV1aSmprJgwQJsNtt7eM5arZaMjAwWLFiAyWRi9+7dVFdXv6cavXTpUm6++Wa+/OUv89Zbb7Flyxa2bdvGkiVLuPnmm7n++uvlpM+jR4+SkZHBjBkzWLNmDVu2bOHQoUPs37+fzMxMZsyYwVe/+lU5BfiVV16ht7cXg8HADTfcQFhYGF6vl40bN8rl1113nVw+ODhIREQEERERJCYmSr5xb2+vrNCLqaVOp5Pu7m4iIiKwWq2UlJQwPj7O6Ogou3btwmg0YrVamT179oSgXwRAIpBRLheBvgg8TSaTfOB7PB7JOzcajdIZKTiAU3YLJrO5VGoUhFUjqAtCgx2KlHi/gD84KRFQbvNUvPaDEwXlb5zsu5RBZ3Byo+bWMRlVJ/i1mphWbT1KBO9btYRAmeipQW2/qrlGTbauqSRrwd8zGQXtdHavSmGwMhkS56awBAbkFHE4lfwqqUHi2hAdsrGxMUZGRiZ8n+hYmEwmCgsLiYiIQKPRcPjwYVwulxzoFRERgcViobe3F7fbLS1/hfBeLHc6nWRkZBAeHk54eDh9fX34/X7i4uJYu3YtOp2OpqYm9u7di8/nIy4ujquuugqdTkdLSwvvvPMOXq+X2NhYbrjhBvLz80lNTWX79u0cOnSIHTt2cNVVV8nle/fupbu7G5fLxW233cZXvvIVZs2axcaNG3nrrbc4dOgQt912GzfeeKMMOAWcTidHjhzh0KFDsmOalJT0nmMsXNUWLlxIdHQ0hw4d4uDBgwwPD7/vuXAB6hgfH+epp56ipKSEjRs38tprr/HEE0+QkZHxSW/aBQThQkLwGYZWq+Xqq6/m+PHjXHvttXz+85/nC1/4Ag0NDZ/0pp13GBwcZP/+/VRVVZGYmMjChQtJTU193wE4er2e/Px8KioqcLlc7Nixg6amJllJe+ihh3jooYfYunUry5cvZ+XKlSxZsoRHH32UBx98kC1btrBs2TJWrlzJ6tWrsdls6HQ69u7dy+DgIEajkVmzZklaUn19vQzSU1NT5YCjAwcOMDIygsFgIDU1FaPRSCAQ4MiRI9jtdvR6Penp6dL1JDIykrCwMMLCwhgaGmJoaIjR0VH6+vowGo2YTCaGhoYYHh4mEAhIXrGg/AwPD+N0OmU1MzQ0dMLAMrfbLWk9SstMn883wZtdGdiK/0QyIKqpk7nUTCbSPN17lEGeEmL7JsMHTa7VeO9qga7y/coKsHK5cGwS61Harwa700z2HUqqj9qANuV6lJQh5fLg75pMTK0Uyo6Pj0/aAQl2Y1ITXE/FjvD9KvhKqK3vdEmVWnIx2Xcoh5EpKXHB71XqCUTgL+hFgUBgwgA/o9GIxWIhJCSEsLAwAoEATqeTwcFB+R1hYWGkpaUxNjYmvf1F96G3t5fR0VH6+/vlPBExp0Sr1RIdHU1KSgoazSlr4pMnTwKntCYpKSmEhITQ3d1NbW0tcKozkZqaKqlJTU1NaDQaMjIymDZtGiEhIbS2tlJVVYVer2fatGmsXbuWFStWUFZWxvPPP88DDzzAhg0bWLVqFStXrqS8vJx//etfPPDAAzz//PPAqXtFbW0tu3btIjQ0lAULFpCVlaWqexHQ6XRkZ2ezcOFCwsLC2L9/P0eOHJkg1r+A90cgEGD//v0sX76ce+65h5/85Cfs2bOHiy666AId6xzFhYTgAjAajdxzzz1UV1cTExNDeXk5P/zhD1X98y/gXQwPD3Pw4EEOHTpEdHQ0CxcuJCMj430fOsEQ/NlZs2bR2dnJzp076e7uZmhoCLvdzsjICDqdjry8PDIyMhgaGsLhcOBwOAgNDSUvL4/MzEwZuJpMJoqKiigtLSU1NZVNmzZRXV3N2NgYxcXFzJ49m9WrV6PVavF6vVRXV0uXoDVr1qDRaPD5fNTV1cmE4PLLLwfenZ8gAo309HRZ8TSZTJK+IKqGY2NjNDc3o9PpiI6OZtGiRVJcXFVVRSAQIDIyUlKMRNVaiCJNJpOsfIpqpqAYCSpReHi4TG6Gh4fl5OTw8HBpe6gMipVUjuDqv0CweFmZNJwJpjKYayq0GGWQraTwKIP4YA3EZL9XSX8KhpqoUrlcScNQbpNaR0JtnWq+/MHWqUraltq+UUuQ1LbpbHR1lN+r3E7leoK/U2l7q/xd4twMCwuTFq8Oh0PSgAQ/H961CxVTh8UsAaH3EdV8kSyYTCbmz58vO4NiSKFWq2XhwoVERERIup+glvX09MjOgAj8NRqNtB0VXQFhBrBo0SL0ej12u526ujppI3vJJZeg1+sZGhqitrZWalauvPJKiouLKSsro7e3lxMnTvDSSy8xe/ZsioqKmDNnjtynY2NjTJs2jczMTLRaLXa7HbvdjsPhIC8vj6ysLLRaLcPDw3JScktLCzt27MDhcDB37lxmzJgxIamdCvR6PXl5eSxcuBCDwcCePXuoqqqa4NZ1AZOjs7OTW2+9lRUrVnDxxRdTU1PDTTfddMbPxQv4eHFBVHwBEjabjUcffZTbb7+dO++8k+LiYn784x/zpS996cKFHISRkRHq6+vp7+8nLS2NwsLCCcHRB0VMTAwVFRV0dHRQU1PD3LlzmT9/PiUlJfzyl7+kqamJQCDAzTffzMmTJ5k2bRq//OUvaWhowO/3c9NNN1FfX09+fj6/+tWv6OjoYNeuXSQmJhIVFcXChQv5wx/+QFtbG3v37iU7O5vR0VGWL1/OsWPH8Hq9/P3vf8fhcBAZGcny5cupqqrC6/Xy9NNPS6vTSy+9lOPHj+N0OgkEArJimJKSQlNTkxxAJoKJkZERBgcHpT+64I3GxsZSX1+P3++nuroas9nM+Pg4qampNDQ0yMBJVI2FVaiwEBWBkdJCVARCWu2pScdCUCmq5yKIERQMUYUWA5jeb7rsZMHe6aBWVQ4OICer7CsDVLUquLCSDIZSRC26AkJUrPztQjSqpGPBxNkDyuXKhEC5TcGdCgGlfanysy6XSx7XYHtO5fEWENoXcZyUUIq/lR2G4H05mYZEiTPp6pwuqVB2nzQajQyElTa5gion9omw41W6AAlRssfjwWw2y26W2KfKbo+S/hUaGkpCQgJtbW0YDAaqqqoYHh5mbGxMOn6FhYWh0Wik1iApKUlqdEZHR/F4PAwPD7N48WJpXex0OvH7/VgsFpYvX05NTQ0dHR1s3rxZJiTLly+ntraWrq4uNmzYgN/vJzIykpUrV+JyuUhJSeHtt9/m5MmTxMTEcNlll3Hs2DGio6N5++236evrY3x8nJtuuomFCxcyc+ZMnnjiCV555RUWLFjAV7/6VcrKyigsLOTZZ5/lxRdfpLy8nFtvvZWcnBxCQkJoa2ujoKCA2NjYD12NNhgM5Ofnk56ezsmTJ9m1axdJSUlkZWVNOJ8v4NQ1/cc//pHf//73XHbZZVRVVZGVlfVJb9YFTBEXEoILmACNRkNZWRlvv/02Tz/9NHfffTcPPPAAv/nNb1iwYMFnvtXndDppaGigp6eH5ORkWT06mxBC3YSEBJqbm2lqaqK9vV0OEUtISODFF1+ko6MDm80mrUFtNhsvvvgiLS0tJCYmkpOTg9frZd68edJ9qL6+npMnT+JyucjLy2NoaIj29nbpGS4CS2HlFyzSFVU7JadfydlPSkqSr2fOnMnhw4fp7++np6eH0NBQQkNDaWtrw+VyYbFYWLBgAc3Nzfh8Prq7uxkdHUWn0zF79mza29sn8JeFAFnwo4U3vUg+REApgjBhfSqoE4LuJAJHZdAWPL1XHIdgWpHyP7H845qSqQysld+pDNaVlqJCMyGEosKSVFRvRTKgRs9RWnkqz3FlF0KNtqOE8j3BnQ1xLMS2KJ2H4F0xutI1Srxf2RVQbutHKSoWgbrouEx2fgS/R+wX5TmmdAMS14vT6ZRJrvh9Yv1er1dOHxYzIoTTVkREhAzYxblvMpmYOXMmHR0d0q0LTh3Hiy66iK6uLknxUxoCuFwukpKSiIuLw263YzKZiIuLk65EIlkZHx/HYDBMSGzEd4hZJMrfbbVasVqtREVFMWvWLLRaLUNDQxw/fpzy8nIiIyMpKCggNzeX3t5ecnJyaGtrY8OGDfT09JCVlUVGRgY5OTm0t7fz8ssv09HRQWZmJhkZGaSmptLc3IzZbCY7O5vk5OT3pWueKUwmEwUFBWRkZNDw/7H33uFtlmf7/0d7y5Ys2/JecTzjOHG2kzAaVlJGW/aGAmVTNgUaxgu0UN7STaGFDqAvZZSWVWYZ2SHbcRI7dmI73luWrD1+f+R3331sCF9KgRDQeRwcOI+lR7ekR9Z13dc5WltZtWoVubm5FBUVfSabQYcy4vE4L7zwArfffjtOp5OXXnqJww477GtfLxxqSFKGkvhIqNVqTj/9dHbs2MG3v/1tvvOd73DOOefQ1tZ2sJd2UBAMBtmxYwdr1qxBrVazYMECysvLP/NmQAnBZa2vr0ej0VBVVcUFF1xATk4OW7dupbGxkT179rBs2TIuvPBCioqK5PGWlhaWLl3KBRdcQEVFBV6vl8HBQcbGxqioqGDu3Llyp66hoYGhoSEqKyupq6vjlFNOQa/XEwwGee211/D5fKSmpnLKKafIIu7NN9/E6/Vis9k47bTT5A5tJBLBZrPhdru56qqr5BelSDtWqVSSo6y0GzSZTJLS4PF4WLVqlcxvqKurk7usonDUaDTSLlfQHEQSsaAtiQJNFAZer1dONAQHXRRlwuVGFKDKJgQ+zLX/rHEg+ouygFbuiiubA2BC8aU8p9LnX8m/Fzuber1+QjEtXtPJdqtKa1zl+kSTpbzv5OcjwvcA+T4B2O12WfBGo1FJp1EWV8omRRnmNVkMfSDR84FoWZ81lLQzQQHSaDTydU8kElIAPFkb4PV6ZbOmdMWKx+OYTCbZfAuLXp1OJwO/lJMxrVbLrFmzSE1NRafTsXbtWsbHxwkGg6SmpmIymbBYLPT390vBsM/nk+FiSvehq666CqfTid1uZ3R0lEgkgtFo5Mwzz8RgMDA0NMR7770nQ+/OPfdcjEYjQ0NDvP322/L25513HrW1tZSVldHW1kZDQwOvvfYaixcvpra2ltLSUnp6ehgeHmZwcJCjjz6ac889l/r6enbs2MG2bdtYt24dhx9+OOeeey6LFi1i165dbNu2jfXr1zN37lzOOeccsrOzsdvt1NfXfyLt1n8Di8VCTU0Nc+bMwe/3s3LlSknD+rohkUiwZcsWjjvuOG644QZuu+02PvjgAw4//PBkM3AIItkQJPGxMJvNLF++nB07dmCxWJg9ezZ33nnn10ZgFQqF2LVrF6tWrSIajTJv3jyqqqomeLF/3jAajVRXVzNv3jzC4TBNTU0cfvjhnHzyyRQUFPDQQw/x8MMP093dzSmnnMKpp57KlClT+NnPfsbDDz9MW1sbp556KqeeeiqHH364dPBZuXIlKpUKp9PJ7NmzJb2mqamJtLQ03G43JSUlchf8jTfeIBKJkJKSIo8nEgneeOMNotEoKSkplJaWyl3nt956C9hPRfvWt74l+c5DQ0OYTCZSUlLo6enB4/EQCoVkmJJoRsbGxvD7/TL11Gg0YrPZZBGfmZkpaQ9iN1xZuCstGgXtQqkbgH+Hd4njkzneykL7o2wxJ1tffhZfggcqXCfrA5THxX2UwWSCfz35OPx7qjA5BEw4qogpgoDSRlT5nL1er/xZ+TdBeRsRdiaem3geSvcWJQ0mGAxOuL9oTJSuT/DJxMOfRROgDBdTcv+VoWDK9SibV6X4WTSu4v7Ka1CZVjzZqlc8hpg2WK1W2WSJ3Xe9Xo/dbpef7eHhYUmxEpSyUCjEyMgIXq9XUvx6enoIBoNYLBZOPPFE0tLS8Pl8rF27Fti/K15RUYHFYsHn87FixQrg3/x6q9WK3+/nX//6l1xvWVkZbrcbl8vF1q1bCQQC0tnO6XSSSCR45513CAaDqFQqvvnNb3LWWWdxyimn8P777/PrX/+aX/3qVyxYsICzzjqL0047jdWrV/Pwww/zy1/+krlz53L66aezcOFC1q1bh8FgoL6+Xv7t+aJgs9mYMWMGM2fOxOPxsHLlSvbs2fO1sfDu7e3liiuuYMmSJcydO5empiYuueSSZLjbIYxkQ5DEJ0JeXh5//vOfefvtt1mxYgW1tbU8+eSTn2sS6MGEENSuWrWKYDDInDlzqKmpwWKxHLQ12e126urqqKysJCcnh/z8fFnMih3TsbExzGYzJpNpwu6rEAFv2bKFrVu30tLSQklJiRTw7du3jy1btrB7924KCgqoqalh5syZzJo1C61WSzAYpL29XWYMzJgxQ9qM7tu3j0AggNFolLv5kUiErq4u/H4/JpOJRYsWyeLE7Xaj0+kYGxujr69PFhJC3KjVajEajTJBdevWrUQikQnCY4C+vj7C4TBarRa32y2pJsFgcMK0YHIRKdxYlCFNYodXpN6KZkAIm5U70kKg/FG7kOLYZMHsR/2svP8nsRT9JBx9ZQGsFBJPDi9TctmVDZRyl1P52MppwYG8+A80zVA2HR8ngP4o3v/kfx/IaelA+QufREh8ICjdfpQQ5xHXgGgqRQOqbCqVugblNTM5mEz5PMxms8z78Pv9xONxjEYjLpdLTgqGhoaA/RQg4YYjppji+hXXrmgaxIRFmRXicrlkOvhhhx0mdQKdnZ3yMzB//nw0Gg3j4+NSeKxSqVi4cCFarZbx8XE6OjqkNqe+vp5p06ZRW1uL3W6ntbWVtWvXotFomDZtGtOnTyctLY2WlhbWr19PR0eHTMlWvo92ux29Xs/IyMiEiV8isT+ULCsri5kzZ1JTU/OFbtBMRmpqqhRDDw4OsnLlStrb27+y343BYJCf/vSnMhRu69atPPjgg8mA068Akq1cEp8YKpWKefPmsWrVKv7yl7/wgx/8gEcffZQHHniAuXPnfiVGhNFolI6ODtrb27Hb7cycOfNL9YdOpVKRkZGBy+Wis7OT1tZWjj76aLKzs9FoNDz//PMkEgmKioq48sor8fv9aLVafvOb3xCJRKirqyMvL4+cnBwcDgdNTU3o9XoyMzPJz8/H5XKRkZFBU1MTKpWK3NxcSktLsdvtzJs3j02bNuHz+Xj66aeJRqNkZ2dz5JFHsm7dOgKBAH/9618Jh8NkZWVx2GGHsXLlSoLBIM888wzRaJT8/Hwuu+wybrvtNsbHxwmHw5jNZmlhKkKyhEBRUCT6+/vx+Xzs3LkTm82GXq8nLS2NoaEhSSsxGo1ScCp2XEXBG4vFZLGj1EEAsuFRUoyE+DYcDk/QU4jbh8PhCcfEfZW7x8opw/9LzKqEeHz4sHWoUgwsYDKZ5ARAeVyIhcXjKgW8osGZvLN+IOqN8riyOVA2EAf6WYmPcuKBiam/yumL2G0X+Citx+TjkzUOyuZH4EDaD6WYWazvQCJvcTuRhi2uOaG7UWo1xH8iWXhyAySCwSZrEZQ6HXFbv99PcXEx0WgUk8nEtm3bGB0dlY2x3+/HYDBIF654PE5VVRVjY2NEo1H8fr+k+lx//fXcdddd+Hw+Xn31VUKhEBaLhW9+85ts3rwZn8/HCy+8IG1Ily1bxvbt2xkbG+P//u//5PGlS5fKx92+fTvbt2/H6XRy8sknU1FRgVqtZuvWrWzfvh273c5pp51GZWUl0WiUrVu38v7775OVlcXy5ctxuVwytPGZZ54hPT2dH/7wh1x88cV4PB46OzuZOnUqmZmZX6rvHDFpHRwcpKWlhfb2doqLiz8yh+ZQRDwe56WXXuK2227DYrHw/PPP841vfONL9R4k8d/h0L9Kk/jCoVarOfvss9m5cydLly7lhBNO4IILLmDfvn0He2mfGsIac+XKlQwODjJ9+nTq6uq+VM2AEmq1mvz8fBYuXEhxcTGDg4P4/X5KS0spLy9Hq9Xy2GOP8cILL2Cz2aioqKC8vJzDDjsMl8uF2Wxm/fr19PT04Pf7Ofzww0lLS8NsNsvkz/HxcRYtWoTL5cJqtaLT6aQAUuy8JxIJmX6cSCSkS1A8HpeUEI1Gg8VimXBcr9fjcDjkBGJkZIT+/n70ej0pKSm4XC4pnBSFkfA5HxsbQ6PRMGPGDMmxHhsbkw4tubm5ckIiCmJRWIkiTPlv5U6toGeIQlTJWf+o4+LLcPKX4scVvh/lUnSgXXfljvqBdscnNxkHWtMnsRpV3udADirK3Vjl+pTnUd5Gec7Jx5W77R+1bqWgXQnlfeGT2bZ+kmA58W+lYPhATZy4/pVuTvBvCpe4lpRCXGXTowwmE9MDMXUTnyW3241arZY6A5EZUFtbi0qlYmxsjKGhIfk4sL8ZE826+Nx2dHRIh7BZs2ZJmpFwHhLCc2WqsHA4EnkEGo2GoaEh2UiaTCYMBgN2u51IJILFYiEjI4OamhoCgQC9vb1s27YNi8VCeno6s2fPJhAI0NPTw+bNm7FYLLhcLo444ggqKyvl/Z599lkee+wx3G43FRUVTJ06la6uLoLBIGVlZSxYsAC32/2lLERVKhXp6enMmzePqVOn0t7ezurVq+np6flcNSyfJxKJBA0NDXzzm9/k6quv5oYbbmDz5s0sWbLkS/keJPHpkWwIkvjUsFqt3H333TQ2NqLRaKirq+Oee+6Ru7yHAuLxOJ2dnaxatYqenh6qqqqYPXv2BCHklxk6nY6ysjLmzZuHwWBg3rx5nHbaaXi9Xjo6Oujo6MDv97NkyRJOP/10SasZHR3F4XBQXV3Ncccdx/bt29m4cSNNTU3Y7Xaqq6s56qij2LNnDx988AE7d+6UWoYjjjhiAo1g5cqVRCIR8vLyWLhwobSvXLFiBaFQiPT0dBYvXizpDoKGlZWVxZlnnilTjnU6HRaLBb1eTzgcloWV8EIX4uNwOIzH42Ht2rVotVqsVisWi0VyzIV3u/gd/HvXWK/XS3rSZJqO+LfSCUYUpEJDIChF4ndKeogSk33plfhPCoMDNQoHsgFWhn1Nnmoopw7KJGCxm6+kD8GBrUaVFKUDFeUHohgp7ysmFYB8TcU5lcJapVhXWaR/XDibwGSNx+S1Tn7OyknPgd4nwesXeghBoRFFvWgQRLMpmgzlekVhL5y3BIVNpdqfUCy0LyJ/IxqN4nQ6sVgsqNVq6bEfCoWw2+2SJqi0JRVFvgglE6/5lVdeSUpKCmNjY3zwwQfSIeikk07CarXi9XpZvXq1FIAff/zxpKamMj4+zvvvvy+Tw5cuXcq8efPkTn9jYyMrV66UIWCVlZUkEgl27tzJ6tWrCYfDLF68mMrKStnEx2Ix0tLSOPXUU6mvr6evr499+/bR0dGBTqfjzDPPpLq6WjqSFRUVHRIW2CqVCrfbzfz58ykqKqKlpYU1a9ZIiuShgv7+fq6++moOP/xwamtraW5u5vLLL0/qBL6iSDYESfzXKCgo4C9/+QuvvfYab775JjNnzuTpp5/+wuwYPw0SiQTd3d2sXr2ajo4OysrKmDt3Lunp6YfkrofFYpFBZIJes3TpUs466ywGBwf51a9+xa9+9Svcbjdnn302Z599NlVVVeh0Otra2tizZw96vZ7c3FymTJlCMBiko6ODlpYW9Hq93K0TO39erxeHw0F2drYUGAcCAQYGBnC5XGRnZ1NaWiqbgPfee08WNeJ4NBrlnXfeAaCwsJCTTz4ZlUqF1+tldHQUk8lEbm4uaWlphEIhAoEAoVBI2pyOj4/j9XrlLqler8dkMhEKhRgfH5d8bBHWpKT+ZGRkkJKSIgsyUWyKYlm546rcTYZ/04HEpGDy78VtBA5EOTnQbQ7E3VfqV5SFtbIAVp5H2EKK56Dcjf+o3e/JRavy8/tJPsv/6ZRDuTuv3JGffB+lO9KBNAhKty/la3agMLcDTUsONNmZ/F591OuhbCKU61ReIyKHw+FwSI980TxotVrZ9MbjcSnYFlqAvr4+mecRjUYxGAxSMBwMBvH7/RQWFpKRkYHJZKKnpwefz4fRaOT0008nJyeHWCzGa6+9JilxZWVlpKSkEIvFePXVV+Xx8vJy8vPzycrKYseOHbJpqKioIC8vD7fbTXNzM8PDw/j9fqZPn05mZiZGo5GNGzcyODhIIBCgtraWzMxM9Ho9W7ZsYXh4GL1ez7x58zj33HM5++yz8fl8/OY3v+E3v/kNdruds846i6OOOkpuZsybN4+KiopD0tpTrVaTk5Mj3Y927drFunXrGBwc/FI3BqFQiJ///OfU1tbS19fH5s2b+dnPfobD4TjYS0vic0SyIfgSIRQKyVHwli1bJvxu27ZtLFq0CKPRSF5eHg888MDBWeQBIERma9eu5X/+53+4/fbbWbJkCR988MGX6g9fIpGgr6+PNWvW0NraSnFxMfPmzfvS8VE/LRwOB3PnzqW8vJzs7GzpCS6STn0+H21tbQQCAWn1aTabmTdvHtXV1cyYMYO33nqLpqYmurq6mD17NtOmTWPGjBm899577Nq1i/b2dmpra6mpqaGuro7CwkIpgKypqZGCQrGbFwqF6O3tlYFG+fn5JBIJhoeH2bJli+QtV1RUSCFwdnY2Op2O0dFRGVRkMBjIzc2VO6gimVhQMcQ0QRwTVo+Tvd/j8Tg9PT0y9TgtLU02BZNpQ8q8BaX4WEDsACvFpHBgMeuBqC1KHKgoPRBlaHLxrPScVx4XtzMajRPOJQLIlBoFcTsB5fEDPU8llI+tbA5SUlImnFOcSymCV65VOUWAiU4+ShyowD/Q+3AgsfaB3hMxFVDeXjQo4ppQXitiTeJ6FFMup9OJRqPB5/PR398/YYojtCNKPYsQ2cNENykx6UpJSSEnJ0e+XoICaDKZyMnJwWQyodPpmD17NiqVivHxcTZt2oTf70etVlNeXo5GoyEYDEo6kF6vp7KykvLycqqqqigpKZHvVVlZGZWVlVRVVVFeXs7evXvZsWMHTU1N1NTUUF1dTXV1NW1tbezYsYPNmzczffp0+TfBbDbLVPGxsTFaWlrkZ9tgMEixc05OjtzgUFrbHqpQq9Vygup2u9m+fTsbNmxgZGTkYC9tAuLxOC+//DJz5szhiSee4P/+7/946aWXKC8vP9hL+69wKNdWXySSDcGXCDfddBPZ2dkfOj42NsbRRx9NQUEBGzdu5Cc/+Ql33nknjz766EFY5cdDo9Fw/vnn09TUxJFHHsnSpUu5+OKL6e7uPqjrSiQSDA4Osm7dOnbt2kVeXh719fVfGcGXEiqViuzsbOrr60lPTycYDHLCCSdw+eWX09zczCuvvMIrr7xCZmYml112Gddeey0qlYrR0VEaGhrQaDQUFRVx5JFH0t3dzY4dO9i4cSOJRILi4mIWLVrE0NCQ/MKPxWKUlpayYMECfD4fO3bsYOvWrQSDQcrLy5k9ezZ1dXVotVo8Hg+vvPKKFDyOjo6SSCQIBAK8/PLLJBIJpk6dyvnnny8zDwQ/OTs7m6OPPloGVcViMWlfKsKZxsbGGB4exmg0Sp60EFaKXVhRAImEVkGrMBgME5KKhfuR4FYrRcLKKYKgjoiiWTQIAp9k1/1AvPcDUXiUKcJjY2PyZ2VhraTuGQyGj7QgVVKGlLQdOPCO+ifJTDjQeSbbnIrHnmxzKiYgwmFHQLl2pR5BORVQNizKRuajKEOT13qg5kOIyJXHlbQh8bjCNneykFiv12OxWGQiczAYJBwOT6AYieM2mw2bzYZWq6W/v5+xsTGCwSAul0s28EInYDQaOemkk0hPT8dkMslwM71ez/XXX092djbhcJh//OMf0tmov79f2vw+//zzhEIhdDodixYtora2loqKCjo6OqQ4ODU1lRkzZlBRUUFfXx8NDQ00NjZiNBqZOXMmxcXFDAwMsHXrVnbu3AnAnDlzKC4uZnR0lNbWVnw+Hw6Hg+9///tcfvnlBINB/vnPf/L666/j9/u54oorOOaYYxgdHaWwsJB58+ZNyL74qkCj0VBYWEh9fT1Op5PNmzezadOmCRa8BwOJRIIdO3Zw4oknctlll3HVVVexdetWjjvuuK/ERtlXobb6IvDVqoQOYfzzn//kjTfe4MEHH/zQ75566inC4TCPP/44VVVVnH766Vx99dX89Kc/PQgr/WSw2Wzcd999NDQ0EIlEmDFjBj/+8Y/x+/1f+FpGRkbYsGED27dvx+12s3Dhws89vObLAI1GQ3FxMfX19eTk5LBr1y5MJhNz5syhvr6e5uZmHn74YZ5++mmmTp3K3LlzmT9/PgsWLMBms+H3+9m8eTOjo6NSn2CxWIhEImzZsoWRkRHUajXz58/HarVK8dnw8DCxWIz58+dL/rJwARIiRFFsm0wmVCoVAwMD7N69W2oHhoaG0Gg0ZGRkMGfOHDQaDb29vbz88svEYjEp3BP2pILSIIoykakgKBCisFfyuicLlcU5RNMguNhix1bQi0SRrswjgH8Xkx8nhD2QGPhAFqQH2pmfnE4soNxFVtKElLapSv69ELGK4weyIFUW5QfaUVdSOpTrUx73+/0fSV1S3l6Z0BuNRj+yMREF9Eet40BJygdqag5EDVL6/0/WHIhrRxT7wk1IFPqiKRTnCIfDcto1+dxiV15MIZTuQEajUWoTRDBZSkoK8+fPx+l0EgwGefbZZxkaGsJoNDJ//nxcLhc6nY6enh4ikQiBQIBt27ZJxzGh04nH4zgcDkwmE1arlWg0KnU38+bNIxKJMDg4SENDAzqdDqvVysKFC+XxrVu3yuOLFy8mHo8zMDDApk2bUKlU2Gw2Fi9ezJw5c5gzZw4ZGRn8+c9/5te//jXhcJh58+YxY8YMQqEQHR0dMoQxNzf3K1GEfhx0Oh0lJSXSMnbDhg1s3br1oOT7DA4Oct1117Fo0SIqKipobm7m6quv/kIzHT5PfNVqq88TX+2K6BBBX18fF198MU888cSEnT+BNWvWsHjx4glfrMcccwxNTU1fupHjZBQXF/PMM8/w0ksv8fLLL1NXV8dzzz33hegLPB4PmzZtYvPmzTidThYuXEhhYeEhIUr7LGEwGKiqqmLOnDlYrVbmz59PfX09AwMD9Pb20t3djdFoZO7cuRxxxBEEAgFisRgjIyOSArB06VLeeOMNGhoa2L17N6WlpVRVVXHsscfyzjvvsHXrVnbv3k1hYSGVlZUcffTRrFmzhq1bt9LU1EROTg5VVVUsWbKEiooKtFotmZmZkr8MyF1YIV6MRCIUFBSwbNkyWTwODQ0RCoVQq9XSWjEej2OxWLBaraSmpmKz2ST1wuPxoNFoSElJIS0tTVKJlPQgwQkXvxONhUqlkk4rgr6hnCAIvYHY5RXiaOW0QFCb4OPFxAfizyuPT6YACSh3ypWFtXJaMJlX/1Ge/0qLT/F8BZT3P9Du/2S3HoHJfuxiTaIx+6jH/ijuv3C3+qjX4EA6isnJzQIHaswMBsOErABxPQh6mtIZSDSXovAX14QQB4sCX1w/4lpSUtLEmnJycmTo3ujoqGxm09PTSU1NxW63S6pXOBzGbrcTj8cJBAJyd1mv13P++eeTkpKCz+fj3XfflZ8p4dgVi8XIzs6WuQRz5sxh/vz5VFVVYbFYaGpqYuPGjXR2drJo0SKqqqpITU2lqamJTZs20djYyJFHHklVVZW0J968eTMbNmzg6KOPpqqqitzcXHw+n3x+S5YskYX/wMAAAwMDjI6O8o1vfIMZM2Zgs9lYsGABU6ZM+dqJVUXA28KFCzEYDKxbt47t27d/IRtn4XCYX//610yfPp329nY2bNjAL3/5y6/UZOarXFt9Hvh6ffq+hEgkEpx//vlceumlzJo1i7a2tg/dpre3l6KiognHMjMz5e++7EIflUrF4YcfzgcffMAf/vAHbrrpJh555BEeeOAByev7LOHz+WhpaWFoaIj8/Hyqq6sPSUHaZw2bzcbMmTMZHBxk9+7dmEwmzjjjDKqqqnjvvff461//SllZGTfffLP0NN+zZw/xeFy6kdhsNqZPn05GRgYqlYqGhgapRSgvL8dqtcq8gKysLCwWCyUlJaSmpsr3paysjPT0dIqLi0lNTWXbtm2kpqbK5GIRRBSPx/H7/axdu1baMJrNZkZHR+nt7ZVJyKWlpRxxxBH85S9/IRgMotFoJM1HBB55PB5JpRBTBGHXKG4nKEGimJ88ERCTAlHQCVcXkbgqXIfEeYAJFqXwb564aEiURbDAZK67KMYnW4KK48rz22w2+UWmpAzp9XpJt1FOEUSTI/BJiuZPIow+EG3nQNx90VSJ5kz5nA0Gg3SOmuwmpGwWBMTtJx8/UEMmHlc0JZMbDeVkR1CARGEuGlKRFSDseAUtTfwsXg9RJKtUKlJSUuS/e3t78fl8JBIJWZCpVCp8Ph/hcBin08mZZ57J888/z8DAAC+++CI+n086c4mJwltvvSU1NUIrpNVqcTqd+P1+AoEAFRUVjI+PMzQ0RF9fn9TTFBYWkp2dTWdnJ3v27GHfvn34fD4KCgrIy8sjEAjQ2dnJvn370Gq1FBcXU1xcjMfjoaenh+7ubrRaLfn5+Xz3u98lEAiQl5fHvffey+DgIBdddBEXXnghe/bsIRgMMjIyIi1Qv+4wGAyUl5dTUFDAnj17WLNmDVlZWRQXFx/Q/vfTIpFI8Prrr3PrrbeSSCR44oknWLZs2VduKvN1qK0+ayQnBJ8TbrnlFrkLdKD/du3axS9/+Uu8Xi8/+MEPDvaSP3doNBouuugimpqaqK+v56ijjuKyyy6jt7f3Mzm/3++noaGBdevWYTQaWbhwIaWlpclmQAGlT3Y0GuXNN9+Ur1daWhoZGRm0tbWxadMmhoeHpRtKRkYGhx12GFOnTqWkpASHw0FaWhppaWksXLiQqVOnMmXKFP71r3+xd+9eBgcHWbBgAWVlZZSXl/P++++zZ88eent7pehZ7DLqdDrsdrv84ysoRvF4nOHhYRobG4lEIhNyA3Q6ncw86O/vZ+vWrcB+J57c3FxJTxJFu9ilFdQlYd8oClHlzq2y+BNFpPJ3SnvSUCj0IUcipce8kmOuVquxWCwT3HUEDlR8f5TbDny8s9BHnUfYWIrzKIWvytsrefMHEi4ri3rlOpSNxYGoRMocBqV//8fRqf5fac1iKvNRt1dicnq0eN+Ee5OShqTUgSjD5oAJAWTK60EZKjZZayLOr7yORIMrwtPEfcxmM0ajEbPZTF5enmwyNmzYIDM/RIqvmFaJaUFDQ4OknYjXNxaLkZOTg9lsRq/Xk5+fLz+XM2bMoKOjg+bmZjZt2kRFRQUVFRXMmjWLrq4umdYuckzmzp2Lw+HA6XRit9spKyuT2QAOhwOHw0FKSgrd3d1s2rRJ2hunpqaiUql4//33ef/997Hb7clm4CNgMpmoqqqSf59XrVpFU1PThAndp0UikWDXrl18+9vf5qKLLuKSSy6R+QKHUjOQrK0+PyQnBJ8Trr/+es4///yPvU1xcTH/+te/WLNmzYQvcoBZs2Zx1lln8ac//Qm3201fX9+E34t/u93uz3TdXwRSUlJ44IEHuOSSS7jxxhupra3lhhtu4Morr/xUuyHBYJA9e/bQ09OD2+1mwYIFBzXK/lCAWq2mubmZ1tZWLBYLRx11FEuWLOHII4/k+eef56233sLj8XDHHXdgsViYMmUKL730En19faxfv56TTjqJiy++mKKiIt5++20GBwfZsmWLtBs99thjaWxspLGxEYDa2lqmTJnCkiVLaGpqorGxkVAoRH19vbR8HR8f54MPPiA9PV3ysoPBIAMDA0QiETlFEMFmOp1OThGam5uJRCLk5uayZMkSGWSk1WoxmUwYjUYKCwtpb2/H6/Xi9/tlI6LRaOjr65P0D6WTkNg5FusRRej4+LhsUlQqlbxulVQhcT9RlAmOudhNVhag4jziOSnfJwFlkaz8eTK9RnDT7XY7Q0NDAPJxheOUmB7EYjEsFguBQOBDdqRKm1NlIa4cvSsLCWXBPflzLNakpDHBv52NRCq0uK1Yo9JlSKxVNGFKO9KPcxkSzaVyreL9DIfDE+gZ4r0XBboQWlsslgmuVYIuJixCxdqVhb3yccXrl5mZicfjwe/309/fTzQaxeFwkJeXx+7du4lEIlIwbLVaOeGEE3jyyScZHBxk586dUp9gMBgwm81youDxePD5fHR2dkqRcGpqqqQUzZw5E5PJRHd3t2wcRkdHGRkZob6+nqamJmKxGFu3bqW3t5eenh4OP/xwNmzYgEajYffu3Xg8HuLxOFdffTXDw8PYbDZ27tzJ6Ogo4XCYq6++mr6+PrKzs/nNb35De3s7U6ZM4YILLmDt2rUEAgG2b99Od3c3HR0dzJ49+yPfsyT2b2zU1NTg9XppaWlh5cqV5OfnU1BQ8Km4/cPDw/zoRz/i8ccf5/zzz+fJJ58kPT39c1j5549kbfX5IdkQfE5IT0//RB+4X/ziF9xzzz3y393d3RxzzDH89a9/Ze7cuQDMnz+f2267bYJN35tvvklZWdkhPdKaMmUKf/vb33jnnXf4/ve/zx/+8AfuvfdeTjjhhE8k+A2FQuzdu5euri65660sYpL4eCxevJhIJMLixYtpaGjgtddeY/v27cybN48lS5Ywf/58/v73v/Pmm2+yaNEi5s6dS29vL9OnT+eNN97gpZdeoq6ujqOPPlpmOcRiMTZt2sTAwAB79+4lGAySlpZGdXU1q1evxuPx0NnZid/vl1967733Hn6/XxY5mZmZmEwmmpub5W622OkXBZPVasVsNkubUoPBIMPYhIuR1WqVhaXQJoTDYTQaDWazWWolhEhUTB0E1UO52y8mE5FIRHLDxWcxHA5/KMRLq9UyPj4uhcqALDRjsRihUGjCDrcomJWfcTiwTenHpQsfKBdB7KIrpy1K8bBwYRI4UNbBgXQDB3IcUj4f5U6nVquVNCZBrRENjTKYzGAwMD4+PmGiMFlncKDXQ7xvH9U0KClgSojXRdnkiWsIkKJ18W/xnormQzkREuneggInfieyBcR7rtzVF6F5oVCIZ555RhYoYiIWDoexWCyysRXXkhDoi9dzypQpBAIB6WaUSCSkOcA//vEPPB4Pu3btIhKJYDAYmDt3Lu+++y5er5fGxkYCgQBms5m6ujrS0tIYHh6mtLSUxx9/nK6uLs455xy+8Y1vyEDHP/3pT7S2tnL66adz9NFH09LSgtls5sEHH6S/v59zzjmHU089lcbGRmbOnEkS/2/YbDZmzJgh3ZpWrlxJQUEB+fn5n0hvEYlEePzxx7nnnnuYMWMG69atY9q0aYfURGAykrXV54ckZeggQ3DcxX9Tp04FoKSkhNzcXACZ5vrd736XxsZG/vrXv/Lzn/+c66677mAu/TOBSqXiyCOPZNOmTdx88818//vfZ+nSpWzbtu2AnN9IJCJH2YFAgDlz5lBTU5NsBv5D1NbWcv311zN79mzGxsZIJBKkpqbicDiYM2cORUVFDA0NMTw8zODgIFarlaqqKqqqqhgZGWFoaIj+/n5MJhMVFRXU1NRILrPH42HWrFlUVlZyxBFH8M9//pPt27fT0tIirQ2XLFnCW2+9xfbt29m9ezfV1dVUVlZy1FFHyeTh9PR0rr32WqZNm4bVapU726mpqZKGIApFQZ0YGRkhHA4TCARkiJNKtT/wTLi0lJWVyXAz4ZbkcDioqKjAZDJNSChWJs8qqSBimiCKTvh3urGgGwlqiZgWKD3lRcGt1WplcTuZqz/ZDeej6EbKonZyIJZoIoQLlDiuvL1y918UwcoGAiZOBQ6UCnyghGBlk6JskD7KvWfympSZBJMLd2WjdaDpifJ3oqmEfzcDYt1CRC4eU7xvk6lWYp3K2yuF58oJk6AjVVdXy2t1aGiIYDCIyWSipqYGq9UqpxSiORsdHcXv90tRvJgwiKYR9k8aRIMwNjYmzQIuu+wyrFYrsViMjIwMKQzOycmhqamJrVu3sm7dOo488kgqKyspLi6mubmZhoYG3n33XSn6r6qqYnx8XDbhdXV1lJWVoVarGR4eZmRkhLGxMWbOnElZWRk6nY6hoSGGhoYYHR2VuQOpqalyPT6fj6OPPpprr732Q7ztJD4eqamp1NXVMX36dAYHB1m5ciXt7e0fEuwLJBIJ3n77bRYsWMBvfvMbHnvsMd544w1qamoO6WbgP8HXvbb6NEhOCA4BpKSk8MYbb3DFFVdQV1eHy+Vi+fLlXHLJJQd7aZ8ZtFotl156Kaeddhr/8z//w5FHHslpp53GHXfcQUZGBrDfPvTHP/4xJSUl1NXVMXPmTFJTUw/uwr8iOPPMM5kxYwbTpk3D4XDQ19cnXYPOO+885syZw1NPPcWKFStYsmQJZ511Fvn5+ZSWlvL3v/+d1157TRYk6enpFBYWsmLFCsLhMOvWrSMej+N0OpkzZw6hUIjh4WE2bNiAVqslNTWV2tpawuEwPT09vPbaa2RkZJCbm0t9fT2pqanSnz0/P5/du3cTDAbx+XzSOtFoNDI6OiopQILGIAr0lJQUWRwKipmgVojdXb/fz44dOwgGg1gsFmw2mwyPEoWp0WiUVphiqqDVajGbzUSjUfx+P36/X3LlTSaTFAYrpwKiyBWuNGKXXgRYCZ765EJX/Hvy7r0owJV+5mazWQqMhTOToN2IFNxwOCypJWazWTZc8XicjIwMKSBV+v8rd+cm6wZE0ep0OuXxYDAoqUFWq1XueMdiMSkAVmkAuU0AAKS0SURBVNJqIpEINptNvn9irZFIBLvdLs8r1jR5sjG5wQmFQvJ9F6+ToEcJ0be4BqxWK2NjY9KuUwiwxfsuKETCHlfsuotdeDFZyM7OZnBwkPHxcXlNiWZSo9EQCARoaWmRDbTYzBDNgVin1WpFpVLh9/txu93E43EGBwfp6OgAIC8vT+YAjI2NUV5ezvTp02lubqa/v5+mpiZCoRBms5mSkhLZADc3N+PxeDAYDFRWVjI0NCRDC8XrcNlllzE0NERNTQ133303e/fu5bzzzuPSSy+lp6eHuro67rvvPnbs2MFpp53GJZdcwtatWzGZTHKS6HQ6ycjIoLW1ldraWpL47+B0Opk9ezaDg4O0tLTwl7/8Bb1ez5VXXimpMbt37+bWW29l1apV3HrrrVxzzTUfos0ksR9fh9rqP0GyIfiSobCw8CN3xmtqalixYsVBWNEXC4fDwU9/+lO+973vccMNN1BbW8s111yDz+fj97//PXl5eRx33HHU1dUd7KV+pZCRkSEbL9jPn0xPT6ejo4O9e/fS3d2Ny+XC7XaTk5PD5s2bWblyJXa7nezsbLKyssjNzaWxsZH33nsPvV5PZmYmWVlZFBQUYLfbGRgYIDMzk1deeYXu7m7KyspYunQp7e3t2Gw2nn32WTo7O8nKyuLkk0/G6/VSWFjIypUr6ejooLKykssvv5xf/epX0pVFmQSr3NUVok29Xs/IyAjDw8Nyl99oNEpuvyjMxY692O0Xk5Lh4WHZEMC/d5/FTr0QJosdYWU6rbLQhH/nE4j7ipAq8fji/AcS6ip37D/J8cmWogKTpxCiuRBUIgFBg1JOQIAJnHvlY4vCW5xLuQ5xf+V9lRMQ5U6+KNQ/au1KKI8fKERNNIqT16TT6aQWQenkJJoQcU0pk6jFepUZDsoJkLidVqvFbrczPDwsswOUvxfXhrDN9Xg8MslbrVaTlpaGz+eTjZR4/cxm8wTBusViobS0lEsvvZSbbrqJrq4uNm3aRElJCWq1mlNOOYVbb72VtrY2nnvuOdxuNz6fj7lz57J27Vra29slBaWrq4sFCxbwwQcfyGZwz549bN68GYfDQU5ODoFAQP5NWL16NXa7ndzcXEZGRrBYLPT39+NwOJgyZQpZWVny/cnJySEnJ+cj38Mk/nMIYwiXy0VbWxt33nknDz/8MJdffjm9vb089thjnH322TQ1NUnHnCSStdUnQbIhSOJLibKyMp577jluvPFG7rvvPlQqFZdeein33HPP186r+mBBJBbn5OTQ2tqK2+3m3HPPZebMmdx3332sXbuWjIwMzjnnHHJzc6muruZnP/sZK1euxGQyceWVV+J0OqmsrOSPf/wjAwMDbNmyhYKCAkZGRjjuuOP417/+xYYNGwgGg1RWVhKNRjnppJPYtGkTDQ0N7NmzB6vVSk5ODkuWLJE5CLm5uSxYsIDNmzfj8/no7e0lHo/LUKbh4WFJkxFFG/ybniP43MKeVHDVw+EwsViMsbExuVNstVoBJkwcBG1ESQ8Rr5kQoIqpgPidyWSS9p/K4ltQiYRnvCiaxbRA8MuVBbDyZ2XxPDmTQBStYucbkCJekfQsCn9BZRGv0/DwMIAUIguIHXs4sB2p0sNbybcPhUKSZy90FmJNJpNJ7rQrdQ1CB6JsXuDAjkoiVC+RSExYq+DyCy2IuI/NZpMNYTAYlFMAq9Uqj4mGRRT14nUTr6NyPePj4zQ3N8tmUAiY4d9WqUo7UqVwWjxf0US43W6i0ShjY2Ps3bsXg8HAjBkzqK6uZt26dezcuZOenh4WLVrEypUrefHFFxkbGyMWi9Ha2spxxx3HypUryc7O5t1336W7u5sZM2Zw1FFHEYlESE9Pp7GxkeHhYXw+H5deeint7e2Ul5fz5z//mZ07d1JSUsJFF11ES0sLVVVV3H333axfvx63282ZZ57Jli1bCIfDpKWlfS1zXg4WVCoVZ5xxBieeeCIXX3wxy5cvx2Qy8T//8z9cd911X/ngzSQ+eyQrqyS+dIjFYjz11FPceeed6PV6/vSnPzE4OMhdd93F9u3buf/++6msrPzacCEPNvR6PRUVFeTl5dHc3MyqVavkeHXx4sU89thjbNu2jW9961scddRRmEwmFi1axF/+8hdWr17N0UcfzWGHHUY0GmXu3Lls376dLVu2sGLFCnbu3IlWq2X27NkUFxfT2NhIb28ve/bskW4rfr8ftVpNR0cHAwMDhEIhsrOzOfroo9m1a5cMahIiYeEEo9FopO7AZrPJJFWRc6BSqXA4HKjVarq7uz9kExmJRD60Uz3Z416ZKaCkpIhjQmAsinxRAAv/+HA4PIH3r+SJK4O7ACmcFmsTUPL7ldQes9ksKUSBQECeWyl8Fc2B+L/ysQ9Ew/kkuQUHch+azPcXUxKluFnoLURDoxQiKxsk5XHx2igtPievQ+g+hAOTmAiNjY3JPAal2Fz5HMX1BBOnOWI6pMxDEM9H6AzE667RaMjMzJQNbF9fnzxHRkaGvNZFQxOJRBgbG0Ol2p/6Kyw6TSYTp556Kg0NDfT09LBq1SpJVRPXmmgIBE2tvr6erq4u9u3bx9q1a0lPT0er1VJWVkZFRQV79uyhrq6OP//5z/KzfNJJJ1FSUsLcuXP561//ypo1azj66KP55je/icvlIj8/XzYGJSUln7lffhIfj0Qiwfvvv8/NN9+Mz+fjqaeeYmhoiHvvvZenn36ae+65h2OOOSb5PZnEJ0ayhUziS4NEIsHzzz9PTU0Nd9xxB8uXL2f79u2ceeaZXH311VJ4unjxYq699loGBwcP9pK/VrBarcycOZNp06bhcrmora3F6XQyOjrK2NgYXq9XcpXz8vLweDxyp91kMlFSUoLT6WTv3r3SOvSoo45i+vTpzJs3j3/+8580NTWxd+9eZs+ezbRp0zjttNNwOp1SW7Bnzx6ZifDOO++wa9cuHA4HV1xxBdXV1VI/EIvFcLlcnHfeecyaNYv09HS5MyvcjNRqNaFQSIqQ9Xo9NptNZhUIWpEIoAJkqBn8O2RMuAaJkCqlR71er5ePpSyGhR5hch6A8vzw7wZCrVbLSQVMLLKVOhql6Fgk3wqIxzAajRPyBsTPSjGvMj/h43bmlVDSdpSuS0qazWQRsmg6lM2HCJYTj60s7m02m7ydsrEQot1EIjEhkM1sNksKl/K1FpMh5fk1Gg02mw2dTicbQ0EzE9QfYR8r7iPyLpQTIeGKJYLthH5FFPhiamS1WuXEIB6Pk5WVxdy5cznjjDOwWq1EIhH6+/sxGAzU1dVx2WWXodFoaGhoYP369Rx22GE4HA42bNjAu+++y+joKKWlpZxyyilUVlYyffp0WltbaWxs5K233uKII46gpqaGZcuWEYlEGBkZYc+ePdLOUoT4ic9ySUkJxcXF6PV6+Tn2eDxkZWVRU1ODw+Fg9uzZVFVVJZuBLxitra2cccYZnHbaaZx++uns2LGDM844gyuvvJLW1lZOO+00zjrrLA477DDef//9g73cJA4RJCcESXxp8NJLL3HVVVdx++23c9FFF30oUMzpdPKLX/yCSy+9lOuvv57p06dzyy238L3vfS8ZPvYFwuVy4XQ66e7uZufOncyaNYt58+Yxe/Zs7r//fnbt2oXP5+Pss89mzpw5VFVV8dBDD7FixQrq6uo49dRTOfLII6muruapp55ifHyc9evXYzKZyMjIYN68eQSDQQKBAD6fj5KSEoaGhkhNTcXr9TI+Ps7LL78sRaZ1dXWo1Wrpky5CmyKRCC+88AIDAwO43W4qKytpa2vDZDIxMjKC1+vF5/PJ3XGn00k0GmVkZEQW0sI6UghIhQgY9heDwWBQUkoEfUSIcEXxKOgpgmYkmofh4WFZgDscDmmtKR5bUIaEA43SychisUhKj1hvIpEgJSWF/v5+YL/AWNiL2u12SRkKBAITmgOx0x6JROS0QZmuO1ncfCDbUWXToGxehBOTuL14nZTUIEDScISIVnkur9eLWq2WzwH2CwLFDvrkaYFI/RWveywWIz09nba2NqLRqNSGCEqPsPMUlLFoNCopQUrrWSEwFrcX762YOOn1+glrEVMoYZ06OjoqdQQ2m42MjAxCoRDFxcXSc17kL6Snp8sG1ePx4HK5mDJlCh6Ph1WrVuHz+fB6vaSlpeF2uwkEApSWljIwMCCvw5kzZ9LV1UUsFmPjxo2Ew2GMRiO33347u3fvxmKx8MADD9DR0cGpp57KRRddxN69e5k2bRqPP/44//rXvzjyyCM566yzKCsrQ6vVSj1Penp6cvf5C8bY2BgPPPAAv/3tbznttNNoamoiKytrwm3MZjM33ngjl1xyCQ899BDHH388H3zwgXTZSSKJAyHZECTxpcGyZcukd/XHobKykldffZVXX32V66+/nscff5z77ruPY489NvkF9QVBrVaTm5uL2+2mra2N9vZ2Ojo6yMnJwev1kpWVxYoVK9i6dSter5dwOIzb7eawww5jaGiItWvX4nA4yM/PJzc3l6lTp8ppg+BN5+bmUlRUhMFgoLe3l6OPPppXXnmFbdu20djYiNFoxGQykZOTw9q1a+np6ZE7tgaDAY1GQ3t7O2NjY6SkpLB06VLee+89PB6PLDCtVivxeJzR0VGGh4cl7cdkMmE2m+nv75dCUVEAKn3tRdGs9JRXNg3K1GNRPIqiWPk7YYOpDEUTjjVi11/sfAt72H379gH/Ts4FZBKyeBxRiIvzCu66KN5FQSyKUPF8VCrVhBTZyRz9j/pZSRlyuVxyHeI5iLCzgYEBALlTHo1GJ9CmotGo1CwoG5PJ9C1xm0QiIQXCKpVKCnrh325CQk8g3jvxd0LcR3lcPA9BExLvg5h0iImKaArENEEU+qKY9/l8+Hw+uru7JWXI5XIRCoWkhiIlJQWHw8HixYulv38kEpENIiAL/E2bNlFYWMjWrVvZtWuXbIBLS0uZOnUqGzZsYO7cuWzdupVoNIrb7WZkZITc3Fzmz59Pd3c3Xq+X7OxsWlpaePfdd/nmN7/J/Pnz8fv9eDwe1q5dy6ZNm4hGo/KzmZGRQUdHByaTieLiYnJzc5P89C8YsViMJ598krvuuovS0lLee+89Zs2a9bHfdykpKdx5553ccMMNExr0JJI4EJINQRJfGggO7yeBSqVi2bJlHHXUUfzmN7/h4osvZtasWfzoRz+ivLw82Rh8QdBqtUyZMoWcnBxaWlooLS1lwYIFFBcXc+2117Jr1y7sdjtXXXUVQ0NDVFZWcvvtt7N582YKCws55ZRTKCoqorq6mgceeIChoSEaGhq45JJLyMjIoKKigscee4yhoSE6OjqYPn26bBa2bdtGd3c3f/rTn9BoNOTk5FBdXc3WrVvp7u6WoWWiaH388ccZHh6msrKSY489loaGBgD27dsneeImkwmXy0VhYSGtra0TUmc1Go1MplVSiQQFRaVS4fP5pNZAFJBKTrrRaCQQCMjfK4OpxBqEtWYsFpPFvrJQBaRzDjDBylPsmIumQUwLlAW90C4I/YIyXVmZQyCaCY1GQ3Z2Nrt37waQHH7xeALCfQqYQKuxWq2y8Fdy8QVdRnD5lU2AxWKR2RjK5sVms8n0ZSU1SJxT2MeKtYs0X+GDr8wkEO5RBoMBv98vOfxiiiOsRoW1qGjyxBRBHBcTCuEaJM6Zk5ODTqeTr7VYT35+PhqNhmnTprF+/XrWrl1LW1sbFouF7OxsVCoVgUCA8fFxeU03NTXx5ptvEgwGGR4eJi8vj5qaGnp7e5k2bRq7du1idHQUj8fDRRddRFtbG+Xl5Tz99NMMDw8zOjrKOeecw+7du6moqOD++++XWoKLL76Y2bNnk5GRwUMPPcT7779POBxm+fLl0pnIarVSU1PzqVJyk/j0SCQSrFq1iptuuonR0VF+9rOfceqpp/5HDVmyGUjikyLZECRxSEOv1/P973+fs88+m+XLl7Nw4UIuuOACbr311gle6El8vjCZTEybNo3c3Fy2b9/O+vXrmTVrFtOnT+fEE0/kscceo7Ozk7PPPpuTTjqJwsJCFi5cyCOPPMKOHTs4+eSTWbp0KU6nk0WLFvHkk0+ydu1ajjvuOI444gjUajVz5sxh69atbN26laqqKnw+n7R2FOLJjIwM8vPzGRgYkEWtSEUWhbmg8gATXGOysrLIyMiQacoisEwIPtva2oB/OxUJxyCldaaS/y6oJMqpgCjWBWVG0EyUhZYosgXPfHBwcEJAl5I+BBM5/cqpgGhIYrGYdFICJhTlGo1G0nNisZik3imnCEJ3IY4rKUOiIFaGowEyi0HcVzx2IBCY0BAoRdLi/krnHmWImvL8k2lMgtID+/UEQrA7Ojo6ge8v3i9xf7FuMQES75nyuYn3Tby2onEUegFxDWVlZREOh9mzZw9dXV0y7C4tLY3u7m76+vqkeFk8P9FUCoen8fFx7Ha7fC9EGJjP5yMQCEir3JkzZ2K1WhkeHqaoqIjy8nJaWlqYM2cOf/rTn9i8eTMnnngi3/rWtygpKaG+vp5nn32W999/n2984xssW7aM9PR0DjvsMF555RVeeeUVZs+ezfnnn096ejpOp5NVq1Zht9uZP39+MvTxIKCtrY3bb7+dN998kxtvvJEbbrjhE2+YJZHEp0Fy7pfEVwIul4tf//rXrF+/nt27d1NTU8PDDz88gaOcxOeHRCJBd3c327dvR6vVUlhYyLRp05gzZw46nQ6/38/4+Dh+vx+j0UhBQQEZGRmSx688npWVxdjYmKRcGI1G8vPzycnJkQViKBSS+oTTTz9dcudfeuklOjo6SE9P55RTTiE7Oxuv14vX68Vut5OWlkY0GuXFF19k27ZtDA8PYzabcTgcZGVl0draSlNTEz6fj7y8PEpKSnC73YyOjspCurCwkNzcXKZMmSILaCEoFbQfpShWKR4WdpiJREIm54oiESY6CymFw4JyIs6pFOEqnYWU4k4hhIWJO/Zi8gBMsN9MJBJy91/sjAsItyLh4iSgLLiVFp/iMSffRjgawf4d/o/SJgj7VfFclQ3WZMch5esjbq+kBCkLfGHxKSYQQswrXKzEBEhAaQkqmk5BVSotLSUnJ4eCggL5Ovp8PnJycuS1OjAwQEtLC729vWRnZ2Oz2TAajXR1dbFlyxZefvllLBYLDodDakJCoRDl5eV885vfxGazsW3bNt555x08Hg95eXl85zvfoby8nNmzZ8vmKhaLUVhYSE5ODlqtlrGxMcbHxxkfH5e0H9F8Cd1Bbm4u+fn5E46PjY3hcDiYN28e1dXVFBYWEg6H2bZtGwMDAx/p4Z7EZw+v18udd97J7NmzsVgs7Nixg+XLlyebgSQ+dyQnBEl8ZaBSqZg2bRqvv/46L730EjfeeCOPPfYYP/7xj/nGN76RpBF9DkgkErLwicfjTJkyBbfbjUqloqSkhI6ODpqbm1m8eDEmk4mqqiruvfdeurq6ALjkkktob2+noqKC++67j6amJsbHxznvvPNYsGABlZWV/OIXv2DDhg2ceOKJnHzyyVRVVTF16lSeeuop2WhUVFQQCoVIS0tjcHCQWCzGrl27JAUoNzeX7u5ufD4fTqcTi8Uixa6dnZ3E43Hy8vKku0tRURGBQIChoSHpiqTT6SgpKSEWizE4OIjX68VgMEhHo66uLlmACqeZrKws6YYlinrhPiT0BvF4XO5Ca7VaSZeJx+OyEFepVKSlpdHZ2TmhORC/ExAUJ0FnUfr/i110g8EgKUfhcHiC048ouCdPBZQUJWVS8UclBwPSoUn52II3r9wd1+l0srAVjYKYaIjnJo4rQ9uUUxIxxRGvv1irSqWSQnQR+iUmRJFIRFKWhLg5kUhgNpux2+309vZOOA6QmZlJT08POp1OZlSkpqZiMBjYvHkzfX198jV0uVxYrVY6OjokBWlkZIRAIEBGRgYpKSmYzWbZkDidTtxut2xM9uzZI5OR3W43BoOBmpoaBgcHZeN52WWX0dnZSU1NDT/5yU/YuHEjJ554It/97nfZu3cvVVVV/OEPf+Ctt97i8MMP5/zzz6euro7y8nJefPFF/va3vzFjxgyuu+46srKySCQS7N69m9LSUvkZLi4uprOzk8bGRhmElkyH/3wQi8X4v//7P+68804KCgp4++23mTt3bvJ7K4kvDMmGIImvHNRqNSeeeCLHHnssv/zlLznvvPOYP38+9913X9Jp4TPE8PAwLS0tBAIBiouLycnJmUDrUKvVFBYWkp2dLWkUPT09ZGdnA/sLrLfeeouOjg6ysrIoKirC7/eTnZ3N+++/z/bt23E6nRQVFdHX1yd9z1etWoXRaKSwsJC8vDxZwAwMDHDiiSfi9XrZsGED7e3tDAwMoNPpWLp0KW+88QaDg4OMjY3JgtXpdNLf308wGJTiTbVajcVioauri4GBAWw2m7x9JBKhpaUFr9eLTqejoqKCvr4+cnJyGBwcnJCBoNPpKCgokLoCnU6HXq+XPvFK1yDltEC5260sjJU78Hq9XhYKyp1yZQE72VZTWUArpxDKEDDRHCgdgJS0HbEWASVdSUljUjoOKZsDJTVImYegvK+waAU+tCstXg/RVInbiGZk8vQkGo1K/YXFYpHWryKXQSRai+doMplwu90MDQ1NuK/JZJLc/6ysLHbv3i0bvczMTEkjE4J1m81GWlqaXJ8IzjMYDKSlpTE+Po5er5fnqKmpwe128+yzz7Jjxw7S09OZNWsWixcvZnBwkFWrVjF79mz27t0rPyO7du3i/fffR6PRUFxcTH9/P/n5+bS1tfHPf/6TcDgsPyNFRUV0dnby+uuvS6FxXl4eubm57NmzR06+CgoKJjSbGo2GgoICcnJyaG9vZ9OmTTidTqZMmZLkpn9GSCQSrFu3jptuuom+vj4eeOABzjzzzKRwO4kvHMmGIImvLAwGAzfccAPnnnsuP/zhD5k/fz4XXXQRt9xyCw6H42Av75CF1+tl9+7deDweCgoKyM/P/9j0aL1eT3l5uQw2mzFjBkuXLiUjI4Pf//73dHV1UVdXx0UXXcT4+DgGg4FbbrmF5uZmqqqqOP7446mtraWiooLly5ezceNGCgoKOP300yksLMTpdPLAAw8wMDBAV1cXV1xxBXPmzGH16tX87W9/Y3x8nDfffBOPx0NOTg51dXU0NjbS398vw6JisRhWq5Vdu3ZJv3jhbZ+Xl8e2bdukY0wgEECn01FZWSkDppSptHl5eezbtw+/309TU5Pk02dlZTEyMiIpLWazmXA4TG5urmxGwuEwmZmZUg9hMpno7+8nFotJrr/Y+Z5c6IvXWkBw3GOxmHTJEcdFIJjQQcCHGwKlYFh8XiZbfCoLdqUrkVLcPHkqoNQvCPpRPB6foF8QjYJSO6FWq+Vjx+NxHA6HfAyv1yvXkp2dLSdHYuITj8fl7nxvby9ms1lajwoqT0dHh/TbDwQC2Gw2srKy2Lt3L7FYjJaWFnw+H263m9LSUkZGRuRrFAqFsNlslJeXS4Gw1+tlaGiIUCjE1KlTZVOi0WjQ6/W4XC6qq6tpaGhg79697Nu3D7VajdPp5LTTTqO6uprS0lJ+8IMf0N/fzwcffMCFF15IfX095eXl3Hvvvaxduxa3282FF15ITU0NpaWlPProo6xdu1Z+jhYvXozdbpe6HL/fz913343dbmdkZASdTkd9ff0B8yVgf/NWUlJCbm4ue/fuZd26dWRmZlJSUjKBZpXEf4aOjg6WL1/Oq6++ynXXXcdNN92UbLSSOGhINgRJfOWRkZHBb3/7Wy699FKuu+46pk+fzg9/+EMuuOCCjy1kk5gIv99Pa2sr/f395ObmUl1d/R/lP1gsFmbMmMHw8DDNzc0MDQ2xcOFCxsfHmTlzJhqNRlJQvvWtb9Hc3ExdXR2//vWvaWtr46yzzuKkk06ioKBAJiRv2bKFcDjM0NAQpaWlHH300TzzzDO89957HHHEETz44IOsXbuW1atX09PTg16vJysri+OOO46mpiZaWlro7u4mFArhdrslxSQQCMgdf2EjGY1Gpa1pOBxm37597Nu3j/HxcUnrUNJmBOddpM6KvAOtVovZbMZsNjM+Pi7FqkJvIMSsQggsflYWCiMjIwCygBRQCpeVBboyJ8FqtU5oLvR6vWwSlJ8Hm81GX1+f3CEXt1dymZViU+XPyrUKC9hYLIbJZJKPbTQapSZBWHaK5yDOpdRXCE//9vZ2VCrVBG2Cw+GQ9p6iCRGaAOH0I94/nU4nk63FNEdQgMbHx+XzU2oRhIjc5/Oxc+dOMjMz5XMT9rdut5tYLMbY2JicGBgMBlwul6RGWSwWqqurWbp0KVVVVfzzn//E4/EQCASYM2cORx11FIcffjgvvvgib775Jqeccgrf/va36evrk/oorVbLMcccwwknnEBWVpa8/Wuvvcb8+fM56qijMBqNkm4iroOFCxfi9/txu92sWbMGm83GvHnzJljH/r9gMBgoLy8nPz+f1tZWVq9eLe2Bk1kwnxzj4+M89NBD/PznP+eEE06gsbFR6lGSSOJgIVkNJfG1gEqlYsaMGbz99tu88MIL3HTTTfz+97/n/vvv57DDDkvyND8GoVCIvXv30tXVhdvtZsGCBf/VrqDT6WTu3LmygBNFmxKLFy9m8eLFhMNhKS72+/24XC7y8/PJyMiQwmODwYDNZiM3N5f+/n7eeustRkZG8Pl8pKWlSZGnVqulr6+PVatWsWnTJkpKSli6dCnBYJCWlhZ0Oh1OpxO9Xk9aWhp79uwhFAoxOjpKSkoKgUCAsrIyRkZGCIVCDA0NyV31/Px8KTweGBiQnv5itzoYDEoaiqAqhUIhgsGg5J6LYlucv7e3l8LCQtkoiGZJUJdEo5CVlTUhVVdoBUpLS9myZQuwn6ojQs4EBQs+TAdSCobFe6xMWJ6sX1BOJ5TTAqvVKtckpgXAhGkBIAXbgk8vzlNaWsrevXsn2KKqVCqmTJnC9u3bP5Sk7HQ6ZdJyLBZjZGREWo0K+1CtVkt/fz+hUAiLxYLFYsHj8cjGTwS+uVwuPB4PGo2GwcFB2Ui43W66urqIx+PyuNVqpaioiHA4jNVqZWhoCK/Xi0ajoba2Fr/fL/UCeXl5zJgxg2984xu8+OKLrFixgkAgQE5ODlOmTOHYY4+VdrFer5euri5efvllTj75ZNxutxSGi89DdnY2+fn5GI1Geczr9VJRUUFFRcWEz5PIgKiurkalUjF16lTS0tI+9d89s9nMtGnTZJjaypUrKSgokInHSXw04vE4zzzzDHfccQdut5vXX3+d+vr65PdPEl8KJD+5SXytoFar+c53vsOyZcv42c9+xhlnnMHixYu57777KCkpOdjL+1IhEonIwDFRxH9W42yVSkVOTg6ZmZm0t7ezceNG0tPTKS0tndBs6PV6Lr/8crq6upg6dSr33HMP7e3txGIxKZ4sLi7mnnvuYd26daxfv57x8XEWLFjAqaeeyqOPPsqaNWs46qijeOihh2hsbOTVV1/l9ddfZ+fOnQQCAZYtW4Zaraa1tZX/+7//k2FTGRkZkuvd0tIyQeQJSApUIpGgs7NTUoMKCgpoa2sjHo9LCpRer8fhcMjUWI/Hg16vl1MRMVkIBAIyyMtgMEiPfpFuLCwyBac7kUjQ0dEhi/H8/Hyam5tRqVT09PTIIjs9PX1CVoEoyoUoWkAUc0r7VGBC8S00C8qf4d876qL4VO6uK993nU4nE56V1p5Wq1VSpwYGBiR/Pysri46ODmKxGG1tbdIqND8/n/b2dmD/jqtwDRLPQwSHKd2fzGYzoVCIcDiM1+uVNqKpqalyPeK4wWAgPT0dj8cjhcqiASwoKJBi8kgkgsfjYe/evWRnZ+N0OklPT5cBdWq1mm9+85ukpaURj8d57rnnWLlyJXa7nW9/+9ssWLCAmpoa7rnnHrZv384pp5zCJZdcQl9fH7t27eJnP/sZ0WiUefPmceGFF9LW1kZlZSXPPvssL730EvPmzePyyy+nvLyc0tLSD33WxsbGaG5ulqnfk7U+/w1sNhszZsxgZGSE3bt309nZSVFRUTK8bBISiQQbNmzg5ptvpqOjg/vuu49zzjlnQnOdRBIHG8mGIImvJYxGI7fccgvnnXcet99+O3PnzuWSSy7h5ptvnkC1+DoiFovR2dnJ3r17sVqtzJw583NzFhHc5JycHElByM/Pp6ioSBanOTk50nI0Ly+PSCRCZmYmK1asYPfu3WRmZlJbW0sikSAnJ4eGhgaGhob4wx/+wKpVq9Dr9eTn59PQ0MDbb79NSkqKdBnq7Ozkf//3f7FYLFx00UWcffbZrF+/Ho1Gw8DAgCwWbTabTJoVQmWXyyWdi7xer3QOEtOOaDSKz+dDp9OhVqtJSUmR/PRQKITP5yMWi6HVanG5XDJETNB+BP8fmOBEJCYAopgVVqGiABdTCFFUi3OKwlg8jritUmwsoHTxUVJngAmuP8qpgNLaVBTm4rzKtSlzDIaHh0kkEgSDwQnXmJi+hMPhCc5CHo9nQlK0yAdQrkcU4cpEaJVKRUFBAY2NjcRiMSnyhf10I/EeabVaxsfHpVOUSHjWarX4/X5UKhUul0tePwaDgczMTBwOB2azmdTUVHp7e0lJScHlcpGWlsZRRx1FJBLhoYceku+13W6XU5Q33ngDi8VCQUEBmzdv5sUXX2R0dJRgMCitb7u7u5k+fTo9PT28+eabBAIBKQouKCjAbrczb968CZ+tYDBIa2srvb295OfnM3369M8tWMzhcDB79mzpONbe3j7BcezrjO7ubpYvX84//vEPrrnmGn7wgx/8RzStJJL4opBsCJL4WiMrK4vf//73XHbZZVx33XXU1tayfPlyzjnnnK/d6Dsej9PT08OePXvQarVUV1f/V7SC/wRGo5Gqqiq5675y5coP7WZqNBquuOIK6Rv/pz/9iba2Nqqrqzn//PP59re/jd1u55ZbbqGhoYHe3l6i0Shz585l0aJF3HXXXWzfvp3MzExMJhNFRUXMmDGD3/3udwwODvLyyy9TXl7Occcdh8Vi4Uc/+pEMq6qurqasrAyr1crrr79OMBgkHo/LZNmqqio2bdoEIO0l9Xo9lZWVNDU1SSqR4KJnZWWxb98+SW9JTU2VWgVR7AcCAVJSUqQYVdBhBL1F8Ovz8vLYtWuXnFQIlJSUsGPHDgAGBwdlsW6z2aTtq3DSgf0UIfGz0gVJ2SiIxkT5bwFlSJl4fQDJ51c2EuKxxTQoGo1Ki9VEIkF2dracgHR3d8vjxcXF7NmzB7VaLacCsJ/CIiYq8O8sA6fTidfrZXh4mOHhYbxerwz9SklJIRwOo1KpGB4eJhaLYbFYSE9PZ3R0FK/XK5sJo9FIeXk5jY2NZGRkSCFzW1sbZ555JikpKfT29srsh0Qiwfnnn8+ePXvo6Ohg+/bt9PT04HK5WLZsGa+++ipjY2OsXLmS0dFRtFotl112GQ0NDbS2tvLOO+/g8/lYunQpV111FR6Ph5SUFH7/+9+zatUqYrEYd9xxB3PmzJlg/Sreu7a2Ntrb23G5XP81xe+TQqVSkZGRQXp6Oj09PbS0tNDW1saUKVNwuVxfu8bA7/fzi1/8goceekgmoxcXFx/sZSWRxAHx9ap4kkjiI6BSqZg1axbvvvsuzz77LDfffDOPPvooDzzwAAsXLvzKf5F9XJbAFw273U5dXR0DAwPs3r2bffv2MXXqVFwuF7C/uLTb7SQSCU444QT27NnDrFmzUKvVcof5W9/6FsXFxUyZMoVnnnmGnTt3cvvtt9Pe3k5+fj5nn302L774It3d3ezYsQOn0ymFoU8++SR6vZ6FCxdit9sxGo1MnTqVf/3rXzQ0NMgMBK1Wy7Rp0/j73/+Oz+cjEolQXV3N6Ogoc+fO5dlnnyUQCDAyMiKLTiUFSK1WY7fbpQWq0B/4fD7y8/Pp6OjAZDLJ4jsajcpiV1iTiv/E+WGiDejIyIgs0I1GoyzEfT6fdPIxGo3SzjQajU7YjVdy+sV91Wr1BPqQcrdf+bO4rXLCIe4jnpNarf5IlyGRzCug1DKIYDfxXMXzHh8fl6FuQtAbiURwOp3s3LmTaDTK8PAwJpOJSCSCw+GQwWhCGCxeG+Vrdswxx7Bq1SqysrIYHR3F5/Ph8Xg46qijCAQCmEwm/v73v9Pc3Ex2dja1tbUMDg5itVp59tlnee+99zCZTCxatIjc3FxMJhOrV6+WQvp58+bx6KOP8sEHH8g046qqKpYsWUJrayuLFy+WrlKwX1sTjUaZPXv2hOPifRKFuNFo/Fwnex8HlUpFdnY2brf7a5lhEI/H+dvf/sYPf/hD0tLSeOmll5I6tSQOCSQbgiSS+P+hVqs57bTTOP744/npT3/KySefzJIlS7jnnnsoKio62Mv7XPD/yhI4GBA7jS6Xi87OTrZv347dbqe0tFSO2lUqFUuWLPnI+8+fP5/58+eTSCRYvXo1jY2NhEIhnE4nS5YskdkA4+PjBINBbDYbqampzJs3j02bNhGJRGhqamLv3r04HA7mzJnD+vXr8fv96HQ6LBaLpBD19/cTDoell73D4aCgoICUlBS5kx+LxeRO/uDgIIODg6jVapmEK3akR0dHMRgM0ppUhKq1trYSiUQwm82o1WpZvIpJgiiCE4kE+fn5bNiwAdj/3gpMdoARxYnFYpHFdzgclsW3oNoAkp4joDyudBYSxwCpgwA+xO1XZitMnjCI5yWmBQCFhYXs3LlTag8ENUk4BimF1LBf27F3714ikQjDw8Po9XrpxqTRaKSzk8FgQKvVkpaWhsFgkPau4ncul4ucnBxsNhsGgwGDwUAwGKS3txeLxSJtaUUmhKDXvfHGG1JArtFosNlszJ07l3379klKkt/vx+fzUVNTw7x589i2bZtsdoRb1kehrKyMsrKyDx0Xzl2RSISpU6eSmZl50AtQofMQ056veoZBIpFgy5Yt3HTTTbS2tnLPPfdwwQUXJHUCSRwySKp+kkhiEsxmM7fffjs7d+7Ebrcze/Zsli9fPiEY6lDH2NgYmzZtYuvWrbhcLhYuXEheXt5BbwaUEAVFfX09FouF9evXs2PHjgmhVx8HlUrFxRdfzNVXX80999zDjTfeyLe+9S2ef/552tvbKS0tZfny5RQXF9Pd3c1bb72F2WymuLiY+vp61Go1Q0NDPPfcc8RiMXJycpg1axb9/f2sWbOGFStWoNfrSU1NpbS0lIaGBtavX8/rr79ORUUF9fX1XHLJJbJgFM5Hdrudc845RxbTkUiElJQUHA4HRx55pKS7BINB9Hq9tBwVO9diWiCaCmHfmUgk8Hg8kvcu6EeALIJhf16AOD55x10cV+oBlFMB4WQkXl+lzaq4LeznryudiQT9brKGQFh8qlQqxsfH5WM7nU4pQB4YGJDP2+FwyOAyocEQjYnBYJDNRigUkvqI+fPnk5qaitlslu5MeXl5HHfccdhsNgYGBuTrYLFYuOaaa5g7dy4FBQX84x//YNOmTezcuZPq6mrMZjMqlYo333yThoYGfD4fM2fOJD09nUAgICdGJpOJww47jMLCQiwWCy+88AIej4eZM2dyxx134HK52LZtG++88w4XX3wxN910E3fffTdXX301J5988ie6vsX7umXLFrZu3SodwL5svH2hE1q4cCFGo5F169axffv2D107hzJ6e3u57LLLOOqoo6ivr6epqYmLLroo2QwkcUjhy/Ptn0QSXzLk5ubyxz/+kXfeeYfVq1dTW1vLn//85wmuLIca/H4/DQ0NfPDBB1itVurr6ykuLv5Sf3HpdDrKysqYP38+kUiEVatWybCo/xeysrKor68nMzOT6upqjEYj1dXVVFVVsWzZMlpaWmhubkaj0VBRUYHL5ZLuMRkZGZIv3tnZSVtbG1arldTUVOx2O9nZ2TKTQIiLBU0lEonQ0dHBBx98IItUUbiPj4+zatUqudut0+mk6Hf37t3SQtPlckluO0BpaSl6vR6bzSZ3gJW0HLVaPWHCI5oGAeXuvXi/Y7GYLPCVnv+TBcPKXX2ltkZ5fp1ON6EJED8r+etC8CzuK86lFC6Lxkc8v9zcXCkeFmsUgXIWiwWj0Sg93IUWITU1Fb1ej9vtlhMWvV4vbU+HhobYunWrzEQQ9CO9Xs8777xDV1cXiURCBpv5fD7p5mS1WqUORaQRt7e3s2/fPvR6PU6nk8zMTHnf9PR0pk6dSjweZ/PmzXi9Xo455hgqKyspKSnBbrdTVVVFdnY2Cxcu/EShieFwmF27dskAsvr6egoLC7/Un2MRULhgwQIAVq9eTVNT04Sgu0MNwWCQBx98kNraWrxeL9u2beOBBx742htTJHFoItkQJJHEx0ClUjF37lxWrlzJgw8+yH333cfhhx/O6tWrJxRMX3aEQiF27tzJmjVrUKvVLFiwgKlTpx5SYUJms5np06czY8YM+vv7ZdjYf/o+HHfccdx///0sWbKEjRs3Mj4+zvTp07nyyivJyspiYGCAVatWYTKZKC8vZ9myZaSkpBCNRnnllVcYHh4mJSWFY489VhbmPT09GI1GHA4HFRUVbN68mdbWVpqbm6Uo+PDDDwf2FxFNTU0MDg4C+ykuwg6zq6sLnU5HSkoK8+bNkzvyoVAIv9+PxWKhuLhYWliKZkCv12O1WiVHXthmCveckpKSCXx7QenJzs6eoFMQNJjJLiipqamo1WpplSpgt9ulaHiy1ah4DCU9RKvVyscQBTPsbw7y8vJkFoNoVEKhkPTaNxgMcioQj8eprKzE7XZjNpvx+XxysmK1WqmqqpLZEQMDA4RCIXJzc0lJSSGRSNDV1SVzJsxmM3V1dZjNZhKJBLt27WLv3r00NDQwa9YsbDabDELT6XTk5OTwjW98A5PJREdHB6tWrZI0t+OPP56ysjIMBgNvv/024+PjVFRUcO2111JYWMjAwAA7d+7kzDPP5Ec/+hGzZ8/+j67deDxOe3s7q1atIhAIMHfuXCoqKg6pz7HJZKK6upo5c+bg9/tZuXIlra2tH9KgfJkRj8f5+9//Tl1dHc899xx///vf+dvf/saUKVMO9tKSSOJTI6khSCKJTwC1Wi2Tcn/yk59w0kkncdxxx/E///M/5OfnH+zlHRDKLIG0tLTPNEvgYEHw+nt7e9m9ezcdHR1MnTr1Y3dWt23bxvvvv099fT0zZsyQBdSxxx6L3W5nzpw5vPLKK7S0tOByuTjjjDPo7u6WhXRGRgapqamUlZXR0NBALBZjy5YtpKWlEYlEmDFjBl1dXQwODrJ27VrJQy8pKZE6g3Xr1kkuuggy83g8dHd34/V6ZSiV0WhkbGyM1atXk5qaOsGjf3R0lJ07d5KXl4dOp5NuOZFIhGg0ysaNG4H9jWxWVpZ8/krKUFpaGp2dnVKQbLVaGRsbIzc3V1KFotEo2dnZ7NixA6vVOoHfn5mZKZsAZWqx4NqHw2EyMzPl5MFoNJKamkpfXx9paWns27dP6hLEtahWq+VOcSKRIDc3l+3btwPw7rvvEggE0Gq15ObmyiZHXNfRaBS/34/ZbMbv9xOLxWhsbMTn85Geno7FYpFe/GNjY/IaslqtsilrbGwkHA5jsVjIzs5m165dxONxVq9eTSQSoaCggMrKSoaGhnA6naxZs4bu7m4cDgcLFixgeHiYtLQ0qqqqMJlMeDweTCYTjz32GOvWraOuro5zzz2X5uZmFixYIKcRAO+88w47duxg2bJlFBYWfuT1K+xid+/ejUajoaamRk4nDlUoMwxaWlrYt28fxcXFX+oMg0QiQUNDAzfddBO7du3i7rvv5qKLLvraOdIl8dXEl/NTl8RXCm1tbXz3u9+lqKgIk8lESUkJd9xxx4dGxdu2bWPRokUYjUby8vJ44IEHDtKKDwyLxcKdd97Jjh070Ov11NXVcffdd09wRfkyQFgPrlq1itHRUerq6pg+ffoh3wwIiIK3vr6e9PR0Nm/ePIECMhlvvfUWL730Em+99Zbk2icSCaZOncr5559PZWWltJmcOXMmdXV1ZGVlkZOTQygUIjU1lenTp3PMMceQnp6O2WymtbWV1tZWdDodxxxzDBkZGZhMJpm8LAphj8cjQ8WE7WheXp4s9qPR6ATHG5PJJIty4cKj0+kwGAwypVgk8Qp7UiEwdrlckmOv0WjkrrlwNhJpvOK8gUBACqSdTqcU84bDYcnXN5lMjI6OytyDlJQUNBqNLMwFVz8Wi2EwGNBoNKSmphKJREgkEgwPD2O1WuVxoQEZGxuTDYVWq5UWr8FgEKPRKJ+H0DwIulUikSAWi0lnpng8jt1ul88vGAxKNychJBb2ruJ1SU9PJyMjQ75P4rmNjo6SlpYm6UVWqxWLxUJOTg5HHnkk8XicxsZGhoeHsVgsuN1uTjjhBCorK7Hb7XKikZGRwWGHHUZFRQWJRAK/38+8efM499xzycrKIhaLMTY2RiQS4aWXXuKVV17hgw8++Mhr1+PxsGHDBnbt2kVhYSHz5s075JsBJRwOB7NmzaKqqoquri5WrVolU8y/TOjr6+PKK6/kyCOPZNasWTQ3N3PppZcess3AV+l7OYnPBofmlZzEIQWx2/bII48wZcoUtm/fzsUXX8z4+DgPPvggsL84OProo1myZAm//e1vaWho4MILLyQ1NZVLLrnkID+DDyM/P58nn3yS1atXc9111/HEE09w1113cfrppx/U3S2RJdDa2oper/9CswQOBjQajXRHam1tZc2aNeTl5VFUVDQhhGnRokUEg0EWL17Ma6+9xiuvvMLixYs59dRT5W1KSkrQ6XREo1FeffVV/va3v1FdXc1tt92GzWYjIyODtrY23G43GRkZzJ8/n97eXrKzs6X7UF5eHnPnzqWtrY19+/axceNGSacRwVKBQIDGxkZgPw2qpqaGrVu3Mjg4yOjoKP39/SQSCWw2G1OnTmXXrl2Ew2EZYmaz2WQRLopoUYjn5OQA+6+Dffv2oVarSSQSZGRkAPt3OHt7e+U1mpKSQmdnJ9FolObmZvma6fV6eXxkZGSCzmDv3r2Ew2HJ1xc2qENDQ5LS09PTI/n60WiUvr4+mcVgNpvxeDwyaEysSxS5arWaffv2SX1FcXExa9euRaPREAgEJM3IaDRKqtXo6CixWAy1Ws2MGTNoaWnB5/Oxdu1aAoEAKpWKKVOmEAqFGB4eJhgMMjg4KJ2gqqqqZBr1zp07SSQSuN1uZs6cSW9vLzqdjrS0NLKysgiHw8ydOxev14vT6cRqtXLFFVcQDAYpKCjgzjvvpLe3lzPPPJNYLIZOp5uw8x+Px3n44YfZvXs35557LkuWLJHhekoEAgFaWlro7++noKCAGTNmHLLF5/8LKpWK9PR0XC6X/Pslws0OdoZBKBTi4Ycf5v7772fx4sVs3rz5I52eDjV8Fb+Xk/jv8NX865LElwrHHnssxx57rPx3cXExTU1NPPzww/IPz1NPPUU4HObxxx9Hr9dTVVXFli1b+OlPf/ql/cOjUqmor69nzZo1PPHEE9x6660yv0D4hH9RmJwl8GWxHvyiYDAYqKyslMFmq1atmkA/mD17tuRrP/LIIzKJ2e/3s3PnToqKivB4PNKvXqS6Wq1WOjs7WbFiBdOmTSM7O1vagR5xxBFs2bKF/Px8hoaG2Lt3L0ajkUWLFrF27Vq8Xi95eXn09/ejVqvJzMwkEAiQSCQkT15MKywWCxqNBoPBMGHnX6Tu6nQ6Kc4VDj5Kl6FIJEIsFpOCYZVKJd1m4vG41BXA/ibko7IAhJXn5OPxeFzy6MVrLbQNFotF7uQ6HA5JORJuPiqVCrvdPsHVSHkeUeCK9QshcXp6uhQdh8Nhuf6UlBRpser1euVupphyiGwE0ShptVpMJpOkOInnJKheiURCpv4K+1m3201XVxfl5eXMmDGDv/71rzQ1NRGPx8nPzycWi3HMMcfQ0NCAVqslJSWFNWvWMDAwIKcO4n0R7kUjIyMyZ6C0tJT29nY6Ozvp7u7m+OOPZ+nSpfJajkajMlgsMzOT+vp6+b581fFlyjCIx+O8+uqr3HrrrRgMBp555hmOPvror8zf1K/q93ISnx7JhiCJgwKPx4PT6ZT/XrNmDYsXL54gjjvmmGO4//77GRkZ+UTOGwcLarWa8847j29/+9vcf//9LFu2jBNOOIG77rqL3Nzcz/3xv4xZAgcLNpuNmTNnMjg4KIPNSktLSU9Pl1/kJ554Ivn5+VRVVfHiiy/y0ksvMWPGDL73ve9JcevAwABqtZqBgQFWr17Nm2++yb59+7jggguIx+P4fD6ampoYGxtj3759TJs2jdLSUhwOh6T0OBwOFi1aRDgcJhgMUl1dLacFCxcu5OmnnyYUCtHX1yepObW1tezdu5f29nai0ajcxRMJugJarVYWu4JiFI/H6e/vlwVzRkaGfM6Dg4OyQBdOSoDc4QewWq2ywA6Hw/Ia0mq1+Hw+6Rwk3Ism7/B7vV45LRBUJVFwK12KlI+RmZkJ7P8MifwFURSKIr6/v1/mLQg6z+TE5Pz8fAwGA+Pj43zwwQeSIlVVVUV7e7ukWA0NDREKhfB6vdTV1dHS0oJWq2X27Nl88MEH5OXlUVNTw86dO2lvbyc9PZ3q6mrUajWdnZ309/ej1+tltoV4Dd5++20GBwdJT0/H5/Oh1WrJysri/PPPx+v1UlFRwY9//GO6uro477zzuPDCC2lvb5eOO+I17OrqorW1FbPZzKxZs762bjUflWHgcDiYMmXKhwTvnzUSiQQ7duzg5ptvZtu2bdx5551873vfmzBx/Kriq/S9nMR/jq9n1ZDEQUVLSwu//OUv+d73vieP9fb2yuJAQPy7t7f3C13fp4XNZuOee+6hsbGReDzOzJkzue+++w7Ia/9vocwSSE9P/1JmCRwMCPrBvHnzyM/PZ8eOHWzcuFEKSt1uN8cdd5wsIkVSrdfrZXR0lEgkgtFoxGazyaTijIwMsrOz2bt3Lzt27GD37t0UFhaSnp5OamoqlZWV0tVnYGBACozdbrfc/Rc0IJ1OJ3ewNRoNWVlZZGRkYLPZyM/Pl4FlDoeDtLQ0abMpNA5ms1nabIbDYfl7vV4vKTThcBiv1ystTcvKyqSd59DQkNzVF2uDf3v3A/J8gCyuBYQbDyBTo8VuvDiu3M1VBpMppwKxWExqb4QTkghe6+3tJRKJEAqFZHOg0+kYHx+XaywpKZFag6GhIdkk5ebmytdZFJZWq5Xc3FycTidqtZpIJIJGo5E6AUC+5nq9nuHhYbq7u6XuwGw2U15eLi1f09LS2L17Nw0NDYyPj5OamorL5aK0tBSTyYTFYkGv1xMMBhkeHiYUCslrTa/XU1FRIQXtAENDQ6xdu5a2tjbKy8u/1s2AEsoMA7PZzPr16z/XDIOBgQG+//3vs3jxYqqrq2lububKK6/8WjQDX9Xv5SQ+OZITgiQ+NW655Rbuv//+j73Nzp07KS8vl//u6uri2GOP5ZRTTuHiiy/+vJd4UFBYWMjTTz/NihUruPbaa/nzn//M3Xffzcknn/yZFOt+v5+WlhYGBgbIy8ujurr6kLId/KIgdvvdbjdtbW188MEHuN1uWUgCfPOb36S6upqcnBxeeOEFnnrqKaZPn869995Leno6TqeTLVu2MD4+zp49e8jJySE7O5vc3Fyi0SidnZ3odDoaGhqA/e+NcPwRXvHbtm0jGAxKEanQA5jNZqxWK7NmzeL111+X4liXy4XFYqGgoACv14vJZKKqqoqhoSHi8Tgmk4mCggIpkPX5fJJuZLPZZIEu6DlarXZCcrCgG6lUKhwOBz09PfK48ONX3l44JolzTc5/EM2OMsE4Go2i0+mIRCITiinhmDT5XEIbIZoTZbCZ1WqV4W7KBqisrAytVisdiPLy8vD7/RiNRnJzc/H7/aSnp+P1eonFYgwODlJdXU1rayupqakMDw8TjUZRqVTs27eP5uZmAoEAZrOZYDAoqUqCzrRt2zba29vxeDxYrVZKS0sJhUK0tbXR19cnNQw33nijdG/6xS9+QU9PD6mpqVxzzTUMDw9PSD33+Xw0Nzfj8XgoLi5ONvQHgF6vp6ysjPz8fFpbW1m9ejU5OTkUFxd/Jn/7wuEwjzzyCD/+8Y+ZN28eGzdupLKy8jNY+ReP5PdyEp8WyYYgiU+N66+/nvPPP/9jb1NcXCx/7u7u5ogjjmDBggU8+uijE27ndrvp6+ubcEz82+12fzYL/gKhUqlYvHgx69ev549//CM/+MEPePTRR7n//vuZOXPmp+KhhkIh9uzZQ3d3N263+2vFLf5voNPpKC0tJTc3l927d7N69WoKCgooLCyUvwOoqKigurqaWbNmsX37dtkcLFiwgPLycrKyspg+fTqvvfYaDoeD3t5eenp6MJvNVFZW8u677xKNRnG5XDidTpm8Ozw8zPj4OD6fj7S0NEZHRzEajVLAPDo6Knf1u7u76e3txefz0dfXR3p6uqTsCHGlEAzD/kJp2rRpvPvuu6SmppKZmSmLd5FVIOhDIhittLSUnTt3EgqFSE9PJyUlhcHBQbKysqRmwWq1kpWVJQt1l8slm468vDyZR5CTk4NOpyMej5OVlYXJZJKe/+Jnl8tFSkqKLND1er3MZigsLKStrQ2LxSLpB9FolKKiIrmbrqSJVFVV8frrr0uevaAY2e122XxYLBZ6enrwer0MDAzg8XgIh8Myy0FMLFwuF2azGafTycjICCMjI9hsNulslJGRIXfwnU4n2dnZjIyM4Pf78fv90oFo9uzZ7Nmzh3g8TkZGBs899xx9fX1ceOGFTJs2jdTUVEpKSkhNTZWTk3A4TGtrK93d3eTm5iab+k8IkWFQUFBAS0sLK1eupKCggIKCgk8luE4kErz22mvceuutqFQqnnzySZYuXXpI6wSS38tJfFokG4IkPjXS09Mn8Jo/Dl1dXRxxxBHU1dXxhz/84UO7YPPnz+e2226bsKP45ptvUlZWdkjzFDUaDd/97nc55ZRTuO+++zjmmGP4zne+w1133fWJ/6CKLIH29nZcLtdXIkvgYMBkMlFTU8Po6CjNzc10dXUxZcoUsrKyUKlUzJw5k9raWtRqNc8//zyNjY3EYjG+853vcN555+FyuWhsbCQYDDI0NIRGo6G8vFzyxpuamoD99I+KigqZTyB2vUdGRhgdHZXOSOI6F+m38Xicvr4+2traiEQiBINBcnJyZEKvSPmNRCIMDw9LKo/T6ZRBYEJYq1arZWiY4N8LEbMo7EXhL4TOsJ8OJIp1sUsfi8WkbagyWVicSzymXq+Xx6PRqCz8rVbrhKmF1WqVNBzhghQKheT69Xq9DDkTfydE45uWljbBdlQ8J0DalObk5BCLxYhEImzatEnqR1wuF2NjY6jVahwOhxTd9/f3yxwIjUZDfX09GzdulJOllpYWRkdHOeOMM6ipqSGRSDA2NobX65Wi5wsvvFAKlhsbGxkcHKSjo4NLLrlkwvQkFovR0dFBW1sbDoeDefPmYbFYvojL/yuF/zbDQATQ/eAHP2DDhg0sX76cyy+//CvRlCW/l5P4tEg2BEl87ujq6uLwww+noKCABx98kIGBAfk7URSfeeaZ3HXXXXz3u9/l5ptvZvv27fz85z/noYceOljL/kxht9v58Y9/zMUXX8xNN93E9OnTuf7667nqqquke8xkxGIx9u3bR1tbm6SWJHnF/z1SU1OZPXs2fX19E4LNBL8coL6+nmg0ypQpU1i/fj1PPPEEubm5XH311Zx22mnY7XZZfITDYcl5N5lM5OXlodVqZeOQm5vL8PAwRqORYDBIIBCgs7MTi8WCzWYjJSVFOuYEg0Gys7MZGBggJyeHjo4OxsfH6enpoa6uDoPBQGpqqnThAWhoaJBZB0I4rKQHJRIJBgcHCYVCxGIxPB6PnBx4vV4Z5uXxeHC5XMD+adTQ0BCxWIxAIDDBm7ynp0fusg8PD8vjfr9f6hB6e3slHUg4JoksALHrLtx3xGMIe1PRwMD+Il+sJZFI0NLSIgv/zMxMeS6bzcbAwABer5e+vj4cDgcDAwOUlpbS2dlJKBRicHCQwsJCLBYLBoOB7u5ugsEgwWCQtLQ0MjIyZFJ1LBZDr9eTkZGBwWCQCcEia2HGjBnSBtbhcPC///u/jI+Pc9lll3HqqacyPDwsJ4FCuyGuN51Ox/Tp0yeIN5P4dBAZBoODg7S0tNDe3k5JSYls8j8KQ0ND3Hffffzxj3/kggsu4C9/+Yu87r9OSH4vJzEZyYYgic8db775Ji0tLbS0tHzIdUfs7qWkpPDGG29wxRVXUFdXh8vlYvny5V85a7OSkhKee+453n33Xa699lr++Mc/cs8993DSSSfJAi8cDvPb3/6WkpIS0tLSmDZtGk6n85AeY3/ZIGw509PT6ejoYOvWraSmpkqvebfbzWmnnQbsv35DoRChUIhEIoHdbicjI4NoNCrpOdnZ2ZSUlJCSkkIikWDLli3Sg37KlCkMDw8zb948HnvsMdRqNfF4nIGBAcbHx+nr6yMlJQWj0ShpPiL0atu2bYTDYUm3MZlMMjBM7JQLMa9wGhK75qFQCI1GQzwelxMBUZwGg0FisRjBYFAeV6vVeDweeVyn08njPp+PaDRKKBTCbDbLa1Gj0UhLUGVDIsTN0WiUsbExeXu9Xi8bEK/XK/UEQg8htAU+n0+GhSmnACIADZDC70gkQlpamuT9C7efrq4usrKy8Pl8GI1GHA4HfX19+P1+uru7KS0tRaPRYLPZmD17NitWrKC6uhqPx0NTUxMjIyNccMEFTJkyBYvFIoPkxE5penq61BiIxw6HwxxxxBHyOgsEAvT399PX10cwGJwwkUris8FHZRisWLGCeDzOaaedJv+uRiIRfv/733PvvfdSV1fH+vXrqa6u/tq+F8nv5SQmI9kQJPG54/zzz/9/choBampqWLFixee/oIMMlUrFEUccwYYNG3jssce47rrreOSRR/jRj35EQ0MDP/rRj4hGozz66KPMnTv3a/uF9UVAo9FQVFRETk4Ozz//PM888wyVlZX88Ic/lDSVww8/HJfLhdvtZtOmTfz+97/H7XZz5513cvXVV2MwGKRrkMfjobW1VXLuU1NTGR0dZXh4mMbGRiloNhgMDA8Py6mC1WqVYuHe3l5pIVpcXMyuXbsoKipix44deL1eenp6OOqooyTPPyUlRWoLOjs7gX8nOYtGIRAISA1BSkqKTPIdHBzEYrEwNDSEw+Ggq6tL2qoqk4rF7r0Q9QpHH9EoCBqNyCgQ+gExRbBarXI60N7eTjwex+/3yyRhZXoyIDMUgAmptQUFBbhcLoLBIAaDgYGBAXw+H7t37yY3N1cmBXd0dMjmKDs7m8bGRpxOJz09PUQiEfr6+li4cKFMo25qamJ4eJiBgQHq6+ulk9DWrVsZHx9Hr9dTXFzMVVddhdlsJhAI8Mc//pFwOMw111zDNddcw/j4ONXV1fI5DA4Ocscdd9Df38/3vvc9jjjiiAlWqUl8tlBmGDz55JPccsst/OxnP+Puu+9Go9Fwyy23EI1G+cMf/sDxxx//tRdvJ7+Xk5iMZEOQRBIHCVqtlu9973ucdtppXHLJJdLv+aqrrpJhOEl8MdDr9VKX0dPTw7/+9S+i0SjTp0+XKbGwv8jTarVyp/tf//oX6enpLF68GIPBQCQSYdq0aeTn5wP7Gw7hXiMmCwMDA7KYj0aj2Gw2RkZGCAQC+P1+MjMzMRqNkh6m0+nQ6/UT3H2UlqBarVbSaFJTU+Vuu9ihF7cRvv6pqanodDqCwSBWq5Xx8XFJ6xE79kajkdHRUeLxOKFQiNTUVKllEJMJYaMqphUi7CsWi+H3++VjpKamysC8kZEROWEQLksqlUoKk0XTIZ6PcCUS/xYNDvzb/lRw/8V0Qdh+mkwmsrKy2LlzJ+Pj43R2dpKVlYXNZpMiVKvVSklJCaFQiN7eXrRaLampqWRnZ5Odnc3UqVOlDkKj0bB27VpUKhXHHHOMfG+EJa1AY2MjLS0thMNhPB6PtINNNgNfDNRqNeeeey7HH388N954o3R3u/rqq7nvvvuSf1eTSOIASDYESSRxELFp0yZ+8IMfsG7dOq699lp27tzJo48+SkpKCpdffnnSRegLxOGHHy7tPrdu3crvfvc7XC4X9957L3l5eZJuI3bGV69ezfvvv4/T6aSiooJoNEowGKSxsRGv10soFKKjo4OysjK8Xi/d3d1s3rxZBnjV1NRgtVqpra3lrbfeko5DQviak5MjrUZ9Ph/Tp09nzZo1lJSUsGvXLnw+H4ODg7hcLhwOB6mpqZJTL0K4BB3H4XBIus3IyAgmk4lAIIDT6ZSJvT6fD7vdLgW/ImU3EolIgbBer5dZAGq1WoaOxWIxaacaj8cZHx+XQWEGg0HSrYSzkUajwWQyMTY2JhsB0XSIQDihc8jPz5cOSzqdjpGRESKRCN3d3eTl5dHT00N6errMJzAYDKSnp9Pc3Mzo6KicbhiNRmbMmEFTUxNVVVUkEgl6e3t5//33WbZsmbT9FNMCo9Eom7lIJEJHRwfvv/++fD3F6yIQj8fZvHkzP/rRj4jFYlx//fXceOONeDweZs2adVCu6a8rRkZG+PGPf8wLL7zAGWecgdls5je/+Q0DAwPcddddE6xfk0giif34es/MkkjiIKGlpYXTTz+dhQsXMn36dFpbW/nf//1fXnnlFZ5//nn++te/MmvWLF588UUZ6pTE5wubzcaRRx5JSUkJbrebgoICsrKy2LhxI/feey8vvvgiZrOZlJQUbDYbU6dOJS0tDbvdTjgcprGxkdbWVtLT08nMzMRms5GTk4PX62VsbEzy6kdGRgiFQjgcDrm7Lzz4E4nEBG2BOH9mZqbk6nu9XiwWCzqdDpPJRDgcZnx8XKYGG41GjEYjLpdL6gPEzj3sd1sSO+o6nU66/Qj7TfEYaWlpsjkQjj6hUIiUlBQ5tdDr9YTDYaLRqHQW0mq1OJ1O/H4/8XicoaEhucsvin4xhdBqtRPSi8UUQtikms1mvF4v4+Pj0sbVaDTKxxaPodPpcDgc2O12nE4nfX19+Hw++vv7JwSQicd1u92MjIzIbAij0cjY2BjhcBi3243dbqeoqAiVSkVbWxvbtm2TE42MjAxKSkqwWq2kpKSgVqt54okn+NGPfsS+ffvIyckhLy+P9PR0pk+f/qGk1yQ+P0SjUX73u98xffp0tm/fzurVq3niiSd49NFH2blzJ2q1msrKSq655hr6+/sP9nKTSOJLheSEIIkkvmD86U9/4nvf+x7nnHMOzc3NEwRdKpWKJUuWsHnzZh555BGuvPJKfvvb33L//fd/rQVwXzTmz59PXl4eDoeDlStXsmLFCjZu3MgNN9zA1VdfTUpKCl1dXfj9foLBIG1tbRQUFKDX6zGZTDIv4sUXX5TFqsPhkOLk3t5eNm3axN69e2lvbwf2FzNDQ0M4nU4Z2tXV1SV3oh0OhyzEc3JysFqtZGZm0tfXJ5NbHQ6HTOkVxXcikWB0dFRScMxms9x9Fzv4gprT398vaTiicRAuO7BfbCiSlJW+74LGI7IVlJMt5blMJhM+n09OHiwWi1yXaGgASe0RlCTRDITDYRwOB+Pj4zLTQK/XS2vRYDDIvn37pPg3NTWVvXv3ytCwpqYmdu/eTWZmphRCC+qTzWYjHA7zyiuvsGPHDnQ6HYcddhjFxcWkpKSwfft26XaUkZHBTTfdRCQSYc2aNTz99NMYDAaOOeYY7rjjDkKhEFlZWZ/vRZqERCKR4L333uPmm2/G7/fzyCOP8K1vfWuCTqCwsJA//vGP3HDDDdx2222UlJTw6quvsmjRooO48iSS+PIgOSFIIokvGEceeSRbtmzhd7/73YfcHQS0Wi1XXHEFzc3N1NbWcvjhhyd3tb5AqFQq8vLysFqtlJeXM3/+fI499li8Xi933HEHP//5z3G5XEybNo1p06YxZ84c7HY7BoOBpqYmWlpaGB8fZ/HixRQUFKBSqSaIgI1GI0NDQwwNDTEwMEBGRgZWqxW32000GiUSieDz+RgfHycUCkl3HL/fz/DwsBTgCrEw7C+KOjs78Xg8jI6OyiZB5ByIqUAoFJKFsMlkkinA8Xgch8OBRqORGQZiNz8jIwONRiN358VxMS3Q6XRyt1ytVsvphVqtJi0tTb6mooAX9CExtRDnFnqA3t5exsbGGBwcZGxsTAaQiYwDgLGxMTweD+Pj4/JnMS0ZGxsjGo2i0WhwOBzyte3v72dwcJCuri4ZPOZ2u7Fareh0OmpraykrK8Pv97Nr1y46OzsxGo04nU7mzJnDtGnTqK2tJRqN8pOf/IR77rkHl8vFkUceyZw5cygqKsLpdCabgS8QYtp6xhlncNZZZ9HY2Mh3vvOdA4qGq6ur+cc//sHrr7/OzJkzv+DVJpHElxfJCUESSXzByMvL+8S3dTqd/OxnP+PSSy/l+uuvp7a2lptvvplLL700KY77glBYWMidd94JwHvvvSeLxXXr1rFo0SIKCwsZHR2V/42MjMiAM7fbzfbt2+nv72ffvn1MnToVs9nM7Nmzefnll4H9/v2i0XM6nXg8HplvkJ2dLQvs5uZmgsEgHo9H7pyLIl8Ejwk6khATA1LMK2xJQ6GQTBrW6/UyIyAYDMpwMOESJGhCBoMBrVaLTqeTRbkI3BLhZxqNRtKHhI+/OJewORUNjHhs4c4kphhCTxCNRiWNSOzKq1QqmdkhhL4iR2HPnj0ThNUiMM1ut+NwOIjH4/T09OD3++VtZs6cyfbt2yktLWXXrl3s2bMHi8XCNddcw4wZM7Db7bS0tNDZ2YlWq8VisXD22WfT39/PW2+9RXt7OzabDafTyfXXX/8FX5VJeDwe7r//fh599FHOOOMMmpqa/qP03AULFnyOq0siiUMPyYYgiSQOAZSXl/Pyyy/z2muvcf311/P4449z3333cdxxx33t7fO+SNTV1XHeeedJOs5PfvITDAYDp5xyirSrXLx4MY2NjQQCATo6OkgkEhgMBtLS0tBqtUSjUUZGRsjJyWFsbIzs7GzWrl1LIBCgq6sLq9WK1WolNzeXQCBAPB5ndHSUkpISDAYDKSkpDA0N4fP55E68+C8zM1PqBkTol0jpFdeJyCYQzkLC8394eBin0ymbhv7+fuLxOMFgUDYY8Xhcho4pGw2RbSCExd3d3RPyA0T2wNDQEKmpqTJ8TPxfp9Nht9ul3kFQhNRqNfn5+VgsFrRa7YTdf7/fj81mIx6PY7PZpAgawOVy0dvbi9Vqpbe3l0AgwPDwMMXFxWzfvh2Xy4XH4yGRSGCxWHA6neh0OsLhMJ2dnfKc559/Punp6QQCAV5//XX+9re/YTQaufXWW6Wz0NSpUw/Clfj1RTQa5YknnuDuu++mrKyM999/n7q6uiSdMokk/kskK4kkkjhEoFKpOO6449i6dStXXXUVl156KSeddBI7duyQhVASnw+E373VauXEE09k8eLFcsc9EokQDocxmUySHiOoMQ6Hg+LiYoqKisjNzWXr1q20trYyOjpKZWUlRUVF1NTUSKqOVqulq6tLBoZlZmai0+mkENZkMuF0OiVtaHx8nLS0NCl4FTvoiURCZgaIXXxRxPv9fjlZAKSdp+DqC+tPoRFQBpmJ6YKAWq2W4VzRaFTSekQ2QywWk5oBYMJEQ6QQx2IxGfIm1ioaApVKhc1mk8/PbDbLtOdwOIzNZsNisZCWlobRaESn05GVlSWbnY6ODjndyM7OZvr06RQWFlJTU0NnZye7d+9m48aNTJ06laKiIsrKyuR7p9PpMBgMOBwO+XxEY6TRaDj22GM59thjpfPR6OjoF3U5fi2RSCRYsWIFixYt4sEHH+SXv/wl7777LrNmzUo2A0kk8RkgOSFIIolDDDqdjquvvpqzzjqLO+64g0WLFnHeeedx2223yYI0ic8OjY2NPPLIIzgcDm688Ubi8Ti7d+8mHo9zxRVXUFxczMjICPfddx/hcJgrrriCK664gkgkgsvlIhwOEwgEaGhowOVyybCsLVu2MDIyQmtrK263m+zsbCoqKti7dy/RaJSenh7KysowGo1kZmYSCoWA/bvtgveenZ1NR0cHo6OjUlcgsgiKiopkIS7oOCqVitTUVAAp7LVarXI6IHbHvV6vtPo0m81yWiCchETzIixIE4kEXq9X5iXYbDZpNTo4OIjdbmd0dBSn0ym1DVqtVmYSCMtWMW2orq7GZrNht9ulJkKtVhONRklLS8Pv96PX66UWIhaLkZ6eLl+HkZERmaxcVlZGR0cHLpeLpqYmPB4Pw8PDFBUV4XA4MJvNNDU14ff7pe5D6AtefPFF/vznP5OZmcm9997LrFmzGBgYkGLvKVOmMDo6yk9/+lMArrvuuqR+4HPA3r17uf3223nrrbe4+eabuf7662Xzm0QSSXw2SE4IkkjiEEVaWhq//OUv2bBhA3v37qWmpoZf//rXknudxGcDj8eDx+NhcHCQDRs28OSTT9Lf38/ChQtZsmQJxcXFZGdnk5aWJovoRx99lBdeeEE62KhUKjkpcLvdOBwOWlpa6OvrIxgMMn36dPLy8sjLy5swCejo6JDi4pycHIxGI1arFZvNJrMBBPUmHo9LIa/QFAhbU1HAi9+JIl5w/dVqNQaDAYvFIq05BaUmEongcDikJah4vGg0Ki1LhTe/OK+YQgAyCE3kGIhJhdAmCI0EMEFbIJyChB2reEytViupU2azGbPZTGFhIcPDw3g8HgYGBrDZbBiNRnJycigqKiIvL4/KykrGxsbo6+tjx44duN1ucnJyqKqqwuVyodPpcLlc9Pf38+yzz/LHP/6RlJQUXC6XTC6eNm0aRx55JPPnz2fXrl089dRTbNmyReZHeL3eg3mpfuXg9XpZvnw5s2fPxm63s3PnTm6//fZkM5BEEp8DkhOCJJI4hKFSqaiqquK1117j5Zdf5oYbbuCxxx7jxz/+MUcddVRylP4ZoLa2lmXLljE+Pk5/fz/r1q1j586d1NbWyt3geDwuqTc+n4/Ozk62b98ud60DgQB79uxhcHCQkZER9uzZQ1FRERqNhilTpvDiiy+yZ88eGhsbKSoqorS0lNraWjZs2EAsFsPj8eDz+dBqtTIfQBT0IpjM4XAwNjbG8PCwLPwF/72srEw2DT6fT1J2bDab3JUPhUIyD8Fut0t3n1AoJG1D9Xq9zCoACIVCMmVYZBHE43E8Hg8Wi4VgMIjFYpE7+WLiIJoKQScSU4GUlBSysrIYHR3F4/EQDAax2Wy4XC4ALBaLbDpMJhN2ux2/309nZ6d8DJ1Ox4wZM4hGo2RnZ7N+/Xr27t0rHbsaGhrIzs6mtbWVoaEhurq6MJlM+P1+BgcHee6551i3bh1FRUWSKiXWLtDa2sobb7wBwIknnsjs2bPJzs6muLj4C746v5qIxWI89dRTMkTsnXfeYc6cOcm/Z0kk8Tki2RAkkcRXACqViuOPP55jjjmGX/3qV1x44YXMmTOH++67j/Ly8oO9vEMSsViMffv2sXfvXqZMmUJpaSm9vb2sWrUKq9UKwNNPP41er6e+vl6GcZWVlZGdnY3NZqO0tJTHHntMhmsVFhbi8XjIzc0lJSUFrVZLIpFg7969DAwMMDg4SHl5OUajURbsYme/t7eX0dFRuru7cblcpKamkpaWhkajkS5B8Xhc7rqLnAERhiaKabHbL+hEwsZTuVMPyMbDYrFIgXIwGMTpdEoXH6PRKAPTxLQhkUiQnp4OIJ2BRCEnaE9CSCyyFSwWC0NDQwQCAcbGxjAYDOj1eoxG44RkZKPRSHp6OqFQSFKZhoeHpWhZq9Vit9sZGRnBYDCQmZnJ4OAg/f397N69m6ysLAwGA1lZWWRkZMiU6T179rB7924ikQg/+MEP2LJli5wsuFwu0tLSCAaDvPDCC9hsNqqqqrBarej1eubOnYtarWb37t0ySTorKytZvH4KJBIJ1qxZw80338zAwAD/+7//y+mnn540TkgiiS8AyYYgiSS+QtDr9Vx33XWcc845/PCHP6S+vp7vfve73HLLLTidzoO9vEMCiUSC3t5eWlpa0Ol01NTUSG2GzWbjtttuw2Aw0NrayksvvYRer6e6upobbrhB8uZ9Ph8jIyMMDw8zbdo0uru7GRsbY/369XR3d7Nr1y78fj/hcFjy+8PhMH19fUQiEVpbW2lubpZTAK/Xi9lsRq/XYzAYZBiZ4M4LIazb7ZZNhFarxev1SgtPh8NBLBajsLBQFliBQEA2BgaDQTr1CDqQoO2I3fdEIoFWq5UUJLF7LkTMymAyQQ2KRCLodDo5FRDnAiguLpYZAYODgwSDQUZHR+XzEIJhsY7s7GxCoZB8fZW5BqIxiUQiNDU10drayrZt2xgeHpZNz+DgIOFwGK/Xy+DgIHv27GHlypUUFhaSn59PZWUlvb29Mh+itraW7OxsnE4n27Zt48UXX8Rut1NbW8ttt92GVquVmgyn0ymvm46ODkpLS5Oanv8A7e3tLF++nH/+85/ccMMN3HjjjVgsloO9rCSS+Nog2XYnkcRXEOnp6Tz88MOS3jJ9+nQeeeQRIpHIwV7alxpDQ0OsW7eOlpYWpkyZwty5cz9U1GVkZJCSkkJRUREzZsygrq4Oi8XCr371K373u9+h0WiYPXs2M2fOZPbs2TidTpxOJzU1NYyMjDA4OMjQ0JDMGDCbzeTk5JCSkkJ2djbt7e0MDAzQ3d0tJw3p6ekYDAYikYgU2Yri2ePxEAgE8Hq9DA8PA0g3IfGzsN0cHx9n37598rkIXr8o1oeGhqSoWBTxIq1Y6RQkdANKLrdSv6BWqyXdZmhoCEBqEwTdSKvV0tbWxvj4OD09PTI9Gfa7OgndwODgIH6/n0AgQHd3t5x6iOOxWAyLxUJqaqoMGuvs7KS/v5/e3l4pEM7NzcVsNqPVasnJyWFwcJDh4WFGRkaYOXMmDoeDvLw8Zs6cyZw5/197dx7fdH0/cPyVtEnbpPeRtEnvC1oKFFrKVRFRQUUdzon6A1SE/RCBKagtoIBMQUAFj58i4sSxqTgPRB1zHlPRgnKDXD2gtPS+76ZJm/z+8JfvDzadx4BA834+Hntsi23zbpvG7/v7eR9ZjBw5koqKCl544QXWr19PdHQ0gwcPJjMzE6PRqJzSOKlUKiIiIhgxYgTh4eEcPHiQvXv3Sl/Bj2hra+P3v/89mZmZaLVajhw5wsMPPyzJgBDnmZwQCNFLqVQqBgwYwMcff8yWLVvIycnhpZdeYuXKlVx22WVS0nCa1tZWCgsLaW5uVkpFnE2xPyQoKIj7778fgCNHjlBcXIzD4aC2tpbx48crNfmdnZ3KxbtzxGhoaChvvvkmpaWl5OfnEx8fT01NDQMGDKCiokIZyVlbW4vdbkev16PX65U75c4xpRqNhrKyMtra2rDZbEp9vsPhUOb6w3dThjo6Oujq6qKzs1P5mNNr5J0nCc6+gdMXk1ksFuVrOfcSAEqfAaDE4Pwc58d0dnaeMQ3I+RwqlYrW1lZlu3Bra6sy/jQkJETpB7BarbS1teHh4UFbW5uSdDgXkDnv0junDlVWVirjS/39/TGZTLS2thITE8Pu3bspLCzkww8/JCsri7S0NPr376+cuNTX15OYmMitt95KSEgI3377LUVFRTQ3N6PVasnNzf3R15KHhwexsbGYzWaKi4vZuXMnRqORhIQEaYY9jd1uZ9OmTSxZsoTIyEg++ugjRowYIe9LQriIJARC9HJqtZobbriBa665hqeffprJkyeTnZ3NsmXLSEpKcnV4LmWxWJRpP1FRUfTv3/+MOvqfKjk5mVtvvRWHw0FQUBCPP/44VquV2bNnM3nyZKqrqxk5ciTbt29XLmZ9fHyUhWA6nQ6Hw0FLSwtGo5GwsDAlSXDeQc/OziYgIACDwaCUx3R0dODp6Ym3tzc6nU4pp3EuJtPr9ajVasxms3KhZbVasdlsqFQqpVbfeUIQHBxMSUkJgYGByqjRzs5OwsLClKbitrY2pbFXo9EoTcUBAQHKrP66ujp8fHywWq0YjUbKy8sBzng+ZzIC311ER0ZG4uPjg5+fH+Xl5bS3tyunEM7ypY6ODuWUy+FwYDAY8PT0RKvVUldXpyQWERERNDY2EhYWRm1trfK7bmtro6enB51Op4xn1ev1XHnllfj6+pKcnMzXX3/NK6+8Qnh4OPfccw9TpkwhODhY6Yv4qTQaDcnJyURFRXH8+HG2b99OdHQ0sbGxv+g11ls4HA527dpFTk4OFRUVPPbYY0yePFn6BIRwMfkLFMJNeHl5kZOTQ35+PhEREQwfPpwFCxa45UIlm81GYWEheXl5OBwORowYQXJy8s++UKuvr6e+vh5PT0/Gjh3LuHHjUKvV9PT0KAu3nBe1zmVXPj4+eHl50b9/f1JSUhg0aBB5eXkcPnyY48eP069fP2JiYkhLSyMiIgKtVotOp1Muki0WC2azGS8vL7y9vYmIiECn0ykTgzo7O+ns7FSm8Dg38TrvrFssFuX0w1nz7yzPOX0EqTOBcPYInF4y5HT63dzTG5WdiYKzUfn0MafOn7Fz/KlzUVlYWJiy3M259bitrQ2dToder8fX15eIiAg0Gg1arZb4+HhaWlqUUaPOn2tERAQDBgwgJiaG5ORkCgoK+Pbbb9m5cycjRowgJSWFzMxM7HY73t7eSnO0s/nZ+btzliJdd911jBw5EpVKRWVlJS0tLT/rNeLj40NaWhpDhgyhpaWFvLw8SkpKlNIpd1JWVsb06dMZP348Y8eO5ejRo9x2222SDAhxAZATAiHcjNFo5MUXX2TmzJnMnTuX9PR0Fi1axO23365sp+2t7Ha7MjnIz89PmW/+S1RUVPDkk08CcN9992EymQCIiIhg7ty5WCwWAgICePTRR2lqakKn0zF79myqqqpISUnhs88+U7buRkVFUVlZSU9PD8eOHaO5uZnjx49jMBiIiIggMTFRKclpbGzEarWi1+sxGo1KCZDz1MDf31+ZAlRbW4vVaqWmpobg4GDsdjspKSn87W9/Uz7HWdqj0WiUUh673Y7BYECtVuPr60t1dbWyO0Cn06HRaPD09KSrq0spB2psbFRKYoKCgoDvLvqdDc6AcoLgnDKUkJDA9u3bMRgMlJSU0NraSllZGdHR0fj6+uLr60trays9PT1KIuJMGCoqKujs7FSWmiUkJKBSqfD19eXAgQO0tLSwb98+PD09CQgIICYmhoaGBiXRmDZtGqmpqcTHx/PFF1/wyiuvkJiYyNKlS5WyrtNLfL799lvWrVtHcHAwOTk5yqSpn8rf35/BgwdTX19PYWEhpaWlJCYmEh4e3uvLZDo6Onjqqad46qmnGD9+PIcPHyY2NtbVYQkhTtO7/+0vhPheKpWKwYMH89lnn/H222+Tm5vL+vXrWbVqFZdcckmvu0BxOBxUV1dTVFSEh4cHaWlphISE/EffZ3t7O+3t7cB3PQj79u3DZrORmZmpXOx0dHTg4+NDU1MTAQEBfPnll5w6dYqwsDDCwsLQaDQEBgYyYMAA6urqyM7OZtOmTZSUlFBSUkJmZiaRkZEkJiYq+wACAwOVCUY+Pj7Ex8fj4+ODj4+P0nx8+p1u551oLy8vPD09sdvteHp6Kg3DzmVjzpIc52mBc9yp84La+THOEaOAMh7VWTLkPIXw8vJS9h7Y7XblOZxL0pz/W6vV4unpiY+Pj/K8zh4E58mIwWDAx8cHb29vDAYD9fX1WCwWbDabMko1Pj6epqYmurq6iI2NZePGjZw4cYKamhpGjRpFe3s7qamp1NXVodVqMRgMlJaW8sknn5CRkaHsXwgKClJOb+C7Mam7du3CYDDQ1tam7ILo6ur62QkBfPd35xxjWllZSWFhISUlJSQnJ/fKKWB2u5233nqLxYsXExYWxtatW3vl+4sQvYEkBEK4MbVazU033cR1113H6tWrmThxIpdddhnLli3rNUuWGhoaKCwspKuri8TExLM2Iz4xMZGZM2cC3417ffrpp7FarXh7ezNgwADl45yjMI8dO8Znn31GRUUFqampWK1WOjs7KS8vp7y8nKamJsrLy+nXrx+1tbWYTCY++eQTCgsLCQkJYfTo0SQnJ5OWlqaU8NhsNqqqqtBqtQQEBCj1/PBdAuCc2W8ymZQJPc5+ia6uLlJTU9mzZ4/SSOw8IXAmFc4yH+coU+cGY+dz2Gw2tFqtsiX59LIiZ0Lh7FlwNgz36dOHoqIikpKSOH78OG1tbZw8eZIJEyYQEBBAeHg48N1+BJvNpmxmVqvVlJeX093drew8GDhwoNJ4nZ+fT2FhIR9//DExMTH09PTQt29fioqKaGxspKamhrKyMqXJedeuXfzjH/+gtraWfv36KUvVTi9fycvL4w9/+APh4eE89NBDzJo1S9n/8J9QqVSYTCaMRiOlpaUcOHCAwMBAEhMT8fPz+4++9oXA4XCwd+9ecnNzKS4uZtmyZdx+++0/2qgvhHAdKdwTQuDt7c3ChQs5duwYwcHBZGVlsWjRop9dL30haWtrY9++fRw4cACDwcDIkSMxmUxn7e6kSqVi4MCBDBw4ED8/PwICAggICMDX15d3332XjRs30tHRgcFgwGAwEB0dTWRkJHq9ntDQUI4cOaIkAn379lUahiMiIvD19SUpKYmOjg6qqqo4duwYer1eacoNCgpSynDa29upq6tTEgPn3X/n3fbu7m4aGhrw9vZGo9Hg5eVFa2srFouFhoYGZcGW8xTAmQT09PSccSffybmY7PQZ/MAZH9PV1aWMEdVoNMpz6PV6mpublWVp/v7+eHp64uXlpWxAdn6es5eho6OD2tpaampqsFgsynM5Jy15enri6+vLoUOHqKioQKPREBMTg16vJyIiApPJRGBgIAkJCdTX11NWVsbRo0cJDQ0lICCA1NRUQkNDMRqNGI1GKisreemll/jHP/5BUFCQMjZWp9MxZMiQs9qI7+HhQVxcHCNHjkSn07Fz504OHz6sfJ8Xo8rKSu666y7GjRvHqFGjyM/P584775RkQIgLnJwQCCEUJpOJl19+mZkzZzJv3jzS09NZsmQJkydPvmj+hW6xWDh+/DhVVVVERkbSr1+/My5Wz4XQ0FAWLFhAd3c37e3t/PWvf6WlpYWEhATmzJlDQ0MDRqORTZs20djYSEFBAQaDAbPZTFJSEocOHaKsrIzDhw/j7++P1WpVyltUKhVdXV18/PHHHD16FE9PT4xGo7LMrLu7W2lYLisrU6bqtLe3K0vFgoODCQoKwm63ExcXpywBc/6MysrKlLIbZzLhPAVwJghOzok/zhMAp9M/xsmZfDl7JOLi4vjmm2/o6uqisrKS4cOHK83C3t7eSm9BTU0NTU1NyimKs7TJmeA4exYKCwuprKzk448/Br7bbaDRaKiurqa7u5vGxka+/fZbysrKKC8vJzU1lYKCAvz9/SkoKKCpqYnq6mpuu+02+vXrh8lk4sMPP2TLli3Ex8fz2GOPsWjRInx9ffHy8jpnrx+tVkufPn2IioqiqKiIvLw8YmJiiImJuWgmEnV2dvLss8/y5JNPMnbsWL799lsSEhJcHZYQ4ieSEwIhzqLnnnuO2NhYvL29GTp0KDt37nR1SD+bSqUiKyuLbdu2sWbNGlasWMGoUaP46quvlJKQC1F3d7dyMdXT08Pw4cPp06fPOU8GnPz9/QkODsZoNDJ06FAyMzOJiYlh/fr1PPfcc5w6dYpLL72UYcOGMXjwYEwmk1L7X1ZWRkdHB2q1mujoaGUaUUxMDIGBgcTGxuLr60t9fT1HjhwBICAggODgYHx9fenp6cFisSgThJzLw5x7B+rr65V9AxUVFQDKCUJlZSUdHR2UlJSgVqvP2EjsnADU1NSkNO86Jyc5l485S4JaW1vPOH1xfh0PDw8qKyvp7OykrKxM6WtQqVTU1tbS09NDZ2cnLS0tytc6fRtyY2OjUnLk5+dHUFAQQUFBNDc3U1RURENDA5GRkYSHhxMYGIjZbMbb2xutVktMTIwynvXUqVPKtKLY2FiGDRvGsGHDyM7OZu/evTzzzDNs2rSJ1NRUhg4dyiWXXIKPjw8GgwGdTndeXkM6nY4BAwaQmZlJU1MTeXl5lJaWXtATiex2O++88w4ZGRm8++67vPfee7z11lsXfTLQG97Lhfg55IRAiLPkjTfeYN68ebzwwgsMHTqUp556inHjxpGfn4/BYHB1eD+bWq3m1ltv5frrr+fJJ5/kxhtvZOzYsTz66KPExMS4OjyF3W6nrKyMEydO4OvrS2ZmJgEBAS6LR6vVMn36dADq6uooKiqipqaG0tJSLrnkElJSUkhMTKSxsRGLxUJlZSVRUVFUV1fTt29fjh07xqlTpzh69KgyDtXZk+Dl5UVAQAAVFRW0tLTg7++vTBVSq9XK9ly1Wo2/v78ykchisSh3uJ3N1CqVCqvVSmNjI11dXbS2tip3/E8fNWq325UFZM7FYs5yora2NqXEp62t7V8SRmfJUWtrK11dXTQ0NChTjTw9PZXegICAAKqqqujs7KS6upq4uDj8/f0JCAhQpkA5F5Z1dXXR3t5OU1MTvr6+yu6H/v37Kx9//PhxTp06pYxxra6uxmw2U15erpQr3XDDDfj7+xMVFcXWrVspLCxEo9EwadIkHnroofPyWvkhAQEBZGRkUFdXp0wkSkpKwmAwXDANuQ6HgwMHDpCbm0tBQQGPPPIId955Z6+YVNbb3suF+CnkhECIs2T16tX89re/ZerUqaSmpvLCCy+g0+l4+eWXXR3af0Sv17N48WKOHDmCTqcjMzOTpUuX0tbW5tK4nJODtm/fTllZGf369SMjI8OlycA/CwkJYfLkydx2220MGDCAp556ilWrVvHVV18xadIkpk+fzpVXXolerwe+63tobm7G4XAoy8vgu3KM8PBwjEYjUVFRBAQEYLPZqK6uprCwUGnGdZb6dHd3U19fj16vV04hmpublbv0/v7+eHl5ER4erpwEnD6C1HnKAN9d1IeHhyvz+ltbW5Wtxl5eXsoI0tDQUOX7dn5NZ+OzM4Hw9PQkLCwMb29vAgIClCbf2tpaZUKSXq+noqJC+V68vb0xGo0EBwezY8cOWlpa6OnpISwsjOjoaMxmM3q9HpvNhlqtJjg4GK1WS09PDy0tLcqiNp1Ox8SJE5k2bRrXXnst77//PitXruTll19m9OjRTJs2jSlTplwwpXHO3QzDhw8nLi6O/Px8du7cSWNjo6tDo6qqitmzZ3PFFVcwdOhQ8vPz+e///u9ekQxA730vF+LfkYRAiLPAarWyZ88errjiCuUxtVrNFVdcwY4dO1wY2dkTFRXFxo0b+eSTT9i2bRvp6en8+c9//t7a8XOtsbGRXbt2cezYMaX8Iyws7IK5e+qkUqkYNmwY1157LXq9XinTcV4ge3t74+3trYzetNvt9O3bl6ioKFJTUykqKqK4uJiSkhLi4uKIiooiJSWFiIgIZYmXTqejtraWyspK5aJao9FgNpvx9fVVRpU679I7G519fHyIiIhQLoCdC9WcccP/nxQ4F5Y5R4Y6H3c+dnoC4SwTcp4WOD/O+RzOfgGTyURzczNWq5Xm5mYlJucOAOfPxMfHh+rqauUkxc/PD29vbxITE4mLiyMyMhKTyURxcTFFRUWUlJTQr18/oqKilLIVZ9+Dc3kZoEwrstlsGAwGJkyYQFpa2vl7cfxEKpUKs9nMyJEjCQsLY9++fezfv98lCbnFYmH16tUMGjSIhoYG9u/fzxNPPHFGc/nFzh3ey4X4Pr0jnRfCxerq6ujp6cFoNJ7xuNFo5NixYy6K6uxTqVQMHz6cvLw8Xn31VRYsWMD69etZuXIlQ4cOPecX5G1tbUrdeGxsLDExMRfMHd0f4+3tzezZs6mtrSUpKYmHH36Y/Px8Ojs7mTx5MiNGjCApKYk//elP2Gw2Tp48iUajQafTERERQWtrK52dnVRVVZGamkpkZCRRUVHKxbjNZiMvL09JMpzlPg6Hg7q6OgIDA7Hb7URHR/PXv/6VtrY2Tpw4gdFo5NSpU0RHR3Py5Eng//sL/nkTsbNsx7ls7Ptq651N0M7PVavVhIeHU1tbS2RkJIWFhbS1tVFcXExGRgbe3t4EBwcr40OtVivBwcHKGNWvvvpK2XDs4+NDQkICVquVpqYmWlpa6OrqwmKxEBYWRlNTE3a7nYqKCqU3YcaMGZSUlJCSksKLL77IJ598wujRo7nrrrvo06fPRbMgy8PDg/j4eCIjIzlx4gTffPMNERERJCQknNOGZ/ju9fDBBx+wcOFC9Ho9b7/9NpdffvkFl4CfDe7yXi7EP5OEQAjxs6nVaqZMmcINN9zAqlWruP766xk/fjy///3viYqKOuvP19XVxfHjx6msrMRsNpOdnX3emoXPpvDwcMLDw3E4HMTFxdHR0YHJZOLAgQN88803aLVaoqOjiYmJURqJzWYzcXFxnDp1ivLycnQ6HYmJiZhMJsxmM3369EGn06HX6+nbty9vvPEGdrsdi8Wi1Ng7Twva29txOBxYrVblol+v1yuJh7MXwbmADFD+vzPBgP8vKTr9gtBZJgT/nzyo1WrlQt55x98577+zsxNvb2+8vLzw9/c/44TAuVQsICCAzMxMPv74YzQaDampqeTl5WG1WklKSqK0tJTm5mZaW1uJjY2lvb2dhIQEZUOzyWTi2LFj5OXl4eHhQWxsLFFRUcTFxeHj40N6evp5fw38p7RarXKK5Gyij46OJjY29qyX7DgcDg4dOkRubi6HDx9m6dKlvao0SAjx/+SvWoizIDQ0FA8PD6qrq894vLq6Wlm01Bv5+vry+9//nmnTpjF//nwyMjL43e9+x9y5c5W6+P9Ed3e3srU3JCSEYcOGnZWv62oqlYrp06fT3t6Ov78/Dz30ELt37yY4OJg77riDtLQ0IiMj+fOf/0xLSwuFhYUMGjSIyMhIkpOTqaiooLy8HIfDQWdnJ6mpqfj7+yubg1UqFSUlJdhsNry9vfHx8aGrq0up/TebzXR1ddGnTx9ef/115eQlKSmJw4cPk5iYqJy8OMtqnBf5Go1GKQdyXvQ7k4zTS4yio6OVLcJ5eXnKc/Tp04eCggLi4+OVfgCLxUJQUBBarZb29nYaGxuVxueAgADS0tLQarXK+FBnj0SfPn2orq7GarUq05Jqa2v57W9/S21tLWazmaVLl7Jjxw58fX2ZMWMGo0aNUhqVL2Z6vZ6BAwfS1NREYWEh5eXlxMfHYzabzxgH+0vV1NTwyCOP8NprrzFjxgw2b95MUFDQWYj8wuau7+VCSEIgxFmg1WrJyMjg008/ZcKECcB3x+yffvops2fPdm1w50FMTAyvvfYaeXl5zJ07lz/96U8sXbqUiRMn/qKLE7vdTnl5OSdOnECn0zF48OBeVacM391ld16YXnXVVQQHBzN8+HC2bNnCp59+yrhx4xg6dCh1dXVkZmbicDiUcqDm5mba29vp6OggPj5eKeGJiIhQLlqSk5NpbW2lvb2dffv2KdNRDAaDMvqztbUVrVaLh4cHOp2O9vZ2rFYrra2tREZGotFolATMeUJw+sIy52PODb/e3t5KeU9ra6sy4cjb21sZI+qcTNTV1UV0dLQyqnX79u3K7oWUlBQMBgMhISGEhoYqiUh0dLQSo8ViQaPRoNVqSUpKwm63U1payoABA/jjH//IwYMHufnmmxk3bhx+fn5kZ2crCUZvEhgYSGZmJrW1tRQVFSkTiX5pT01XVxcvvPACK1euZOTIkezbt4++ffueg8gvTO7+Xi7clyQEQpwl8+bN4/bbbyczM5OsrCyeeuop2tvbmTp1qqtDOy9UKhXZ2dl8/fXXbNy4kQcffJAXX3yRlStXkpmZ+ZMuThwOB7W1tRQWFgKQkpJyQTYLn23Z2dlkZ2cD8OGHH1JWVkZpaSlXXHEFY8aMIS4ujm3btikjQIODg4mJiSE+Pp6qqirKy8tpaWnBbrcTHx+PWq3GbDbj5eWF3W4nMDCQ6upq2tralItotVqNp6cnUVFRlJeXk5CQwN69e+nq6qK6uprRo0ej1+sxm81KeZDzP6eXD51+J9850jQ2NlYZq1pSUkJ0dDQVFRUkJCRQXV2Nh4eHMhmora2Nqqoq+vbti1arxcvLi+TkZBITEwkJCaGhoYHy8nK8vLyw2WwkJiYq34fValX2JIwYMYL4+HhCQ0M5efIkZWVlVFRUMHHiRIYNG+bKX+85p1KpMBgMhIaGUlFRwdGjRzl58iTJyck/OZG22+387W9/Y+HChWg0Gl5//XWuuuqqXv+3933c/b1cuCdJCIQ4S26++WZqa2tZvHgxVVVVpKen8+GHH/5Lc1pv5+HhwdSpU7nxxhtZsWIF11xzDRMmTGDp0qWYTKYf/Dxn6UNHRwcJCQmYTKazUvpwsZk4cSJ9+/YlPT2dd999l61bt5KZmcnUqVPRaDTExMTQ0NCgNO865/9rNBqlZMjhcGCxWIiLi6O1tRWTyaTU7X/++ef4+voSFBREZGQkO3bswG63U1tbS0BAAFqtlqCgIMrLy7FYLNTU1CgjUJ0nGs6kQKPR4Ovrq4wrbWlpUXYr+Pv709bWRlBQEMXFxdjtdpqamoiJiSEgIAAPDw/27NmjLDtLTk5W+iWampqUsiRnjwNAQ0MDPT09qNVqDAYDU6dOpbm5mbS0NFatWkVZWRmTJ0/mjjvu4Pjx42RlZbnml+giarVaWdJWUlLC3r17CQkJITEx8QdL7RwOB0ePHmX+/Pns27ePJUuWMHPmzItmQ/K5IO/lwh1JQiDEWTR79mw5Vv4//v7+LF++nOnTp5Obm8ugQYOYO3cuv/vd786YTnPw4EF2796tTA0aNGiQWzctms1mzGYzwBljPbu6upRmYGe5kY+PD9HR0ZhMJsLDw1GpVOTn5+Pp6UlAQACRkZG0trbSr18/9Ho9nZ2dDBw4kG+//Zb6+npOnTpFSEgIXl5eBAUFodfrlbn/9fX1SsJhMpnw9vbG399f+d05Jw7pdDq6u7sJCQmhvb0di8VCe3s7wcHBNDY2EhERQWBgIF5eXoSGhlJWVkZjYyONjY3079+fvXv3EhwcTGJiImazmfj4eKxWK8XFxTQ0NBAUFITZbEalUinjVjUaDR4eHvT09Ci9Eac3RCclJZGUlOTKX6NLeXp6kpCQoEwk+vrrrykoKODaa689o+m/vr6eRx99lI0bNzJt2jTeeOMNQkJCXBj5hUPey4W7cd9/6wohzov4+Hj+8pe/8MUXXzBv3jz++Mc/8sgjj5CVlcXixYvZsmULU6ZMYdKkSed8fOLFZsKECQwYMIDo6Gi2bt3Kn/70J1JSUli2bBkhISEEBgZy/PhxZVNwdXU1oaGheHl5KRt9W1tbOXHiBMnJyfj6+hIZGUlPTw8Oh4Pi4mJl2o/RaOTQoUP09PTQ2NhIeno6Pj4+GI1GiouLaWtrQ61Wo9PplMVmzkVqPT091NTUEBwcTFNTE8HBwUqvQFNTk7KMrKGhgYqKChwOxxmnAjExMUrZU319PTqdjtDQUAICAjhx4gRWqxWNRoOXlxcPPPAA3d3d6HQ6nn76aWpra/Hx8eF3v/sdtbW1JCYmuvrXdsHw8vIiJSWFqKgonnnmGRYtWsSdd97JAw88wF/+8heWL19OVlYWu3fvJjU11S3Lg4QQ35GEQAhxzqlUKkaPHs2uXbtYu3Ytd999t3K3+tNPP2Xw4MGuDvGC5LygA4iNjSUhIYGUlBTKy8vZvHkz8fHxZGVlERsbi7+/P6mpqYSGhqLVagkICODkyZNYLBYCAgKUyUKRkZEYDAaamprIysri/fffp7GxkYMHDxIeHo6vr6+yPMxZhtTT00N3dzc2m00ZIarVatFqtcqCL7VarSxFCwwMJDQ0lJaWFgIDA/nyyy9pbGzEbreTlpbG8ePHiYqKIjw8HIPBQFJSEhaLhdraWrRaLWFhYcqCsrS0NL7++mu0Wi3+/v68//77tLe3M3HiROLi4tDpdERFRREcHExwcLCLf2MXJl9fX7Zs2cLf//537r33Xl544QVCQkLYsGEDv/rVryQREEJIQiCEOD+6u7vZsGEDy5cvJyUlhYSEBN577z3Wr1/PkiVLZKTfjxgyZAhpaWl4e3uzdetW8vLyOHXqFGPHjmXevHl4e3tz/PhxLBYLVquViooKpfwG4OTJk1RWVnLy5En69OkDoJSPqFQquru7qaurQ61Wo9frsVgsyj6DqKgoAgICCA8Pp6GhgaamJtrb2/Hw8CA0NBSbzUZoaKiyY6CjowNfX19UKhXV1dXKZCKVSkViYiJJSUnExsZy4sQJysrKOHr0KP369SMuLg6TycTJkyfp7Oykvb0djUbDvHnzUKvV1NfXs337djo6Ohg6dCj33nsv3d3dcrL0IxwOB/n5+axbt47m5mb+67/+i+3bt7NgwQLUajXXXXedJAVCuDn369gTQpxXDoeD999/nwEDBrBq1SqeeeYZdu7cyaZNmzh48CAtLS2kp6fzxBNPYLFYXB3uBc3HxweVSsXgwYO5+uqrueaaa6isrGT58uWsWbMGk8nE2LFjufLKKxk4cKCyS8DHx4e2tjZsNhuenp74+voqi8Li4uIwGAykp6fT3d1NY2Mj+/btw8fHh9DQUKKjo5XeBed/azQaNBoNFouFnp4epQTJZDIpCcLhw4dpbGxEq9XSr18/DAYDsbGx6HQ6NBqNMtO+p6eHjo4OvLy8lJKkzMxMxo0bx1VXXQXAqlWrWLlyJd7e3sr3l5KSgoeHhyQDP6KhoYGcnBxGjhxJbGwshYWFbNy4kaNHjzJ79mymT5/OpZdeyjfffOPqUIUQLiQJgRDinGloaOCyyy7jzjvv5O677+bw4cP85je/Ue5GJiYm8s4777B582beeustMjIyePfdd5WRluL7RUREcNddd3H11VdTV1dHbW2tcid+yJAhDB8+HKvVqjTatre3ExMTQ1RUFBERERw/fpzy8nJlmVVcXBxxcXH4+fnh5eVFWFgYzc3NNDc309LSgre3N56enmg0GhISEvD19VWalp1Nzz4+PjQ1NdHQ0IDNZlOalX19fUlMTCQuLo6YmBhOnDhBeXk5x48fJzo6mqioKKKjo2lsbATAarWi0+kYPnw4gwcPpqmpidraWmpra2ltbeXmm2/mzjvv7BXLxc4lm83GunXrGDhwIMeOHeObb75h7dq1hIWFAaDRaJg1axZFRUVceumljBkzhltuuYWenh4XRy6EcAUpGRJuy+FwcOWVV+Lh4cHf//73M/7Z888/z8KFCzl06BCRkZEuivDiFxQUxE033cR77733gxdwKpWKyy+/nL1797J+/XruueceXnjhBVatWkX//v2llOFHDBkyBJvNRkBAAE1NTTz99NN4enrywAMPcOedd9LR0UFaWhpvvfWW0uT7z1uHnduCo6KiMBqNJCUlKRN8SktLqaurU8aUVldXK5/T2dmJ2WympaWFI0eOUFdXR3d3N2q1WilXMpvNnDx5Ullq5uPjA3x3MtDe3q5sNx41ahReXl6YTCYKCwtZu3YtOp2OBQsWcOedd6JSqdx6ctBP5XA4+Oyzz8jNzcVqtfLSSy/xq1/96gdH+Pr7+/PII48wc+ZMPvroI+VUSfxyPT09XHLJJYSHh/POO+8ojztH5N52220sW7bMhREK8a/khEC4LZVKxYYNG/jmm29Yt26d8nhxcTE5OTk8++yzkgz8h1QqFbNmzfpJd3M9PT2ZOXMmBQUFZGZmMmbMGObMmUNNTc15iPTipdVqGT16NIMGDUKj0Shbiz08PGhtbaWjowP4rrE0MDAQX19f4uPjMZlMxMTEUFxcTGlpKZWVlSQlJWE2m+nTpw9hYWHodDqio6PR6XTU1tZy8uRJgoOD0Wq1StPxyZMnqa6uJi4ujpCQEHx8fDCbzSQkJGA2m4mOjqa8vJySkhLKy8tJTEzEZDKRnJyMl5cXAQEB+Pr6KqVDzqVjzv94enoyYsQIhg8f7pZ7KX6OwsJCbr75ZiZPnsztt9/OoUOHuOGGG37Sz81kMnHHHXec+yDdgIeHB6+88goffvghr776qvL4nDlzCA4OZsmSJS6MTojvJycEwq1FRUXx9NNPM3v2bMaOHUtsbCzTpk1j7NixTJkyxdXhuaWgoCBWr17NjBkzuP/++0lPTycnJ4eZM2dKvfiPSEhIICcnB09PTzo6Onjttdfo6urCaDQyb948mpqaiIyM5I033lA2Eut0Ovz8/AgJCaGmpoaWlhbKysqIj49XFoU5G5MtFguHDx9Gr9fj5eXF7t276enpwcPDg87OTpKTk6mqqkKv1yslPnV1dYSEhODn54ePjw8VFRVYrVbq6+u5/fbbSUxMJCIigh07dvDHP/4Rk8nE0qVLeeCBB/Dx8ZG5+D9BU1MTK1asYP369UyePJn8/HxZouViycnJrFixgjlz5jBmzBilb2rXrl1otVpXhyfEv5CEQLi922+/nc2bN3PnnXfy61//mkOHDnH48GFXh+X2+vTpw3vvvcdHH33EvHnzePnll1m+fDnXXHON3Cn+N5yTg1paWoiJiaGrqwuDwcDf/vY3qqurmTRpEqmpqQDExMRQW1tLcXExJpOJnTt3Ul9fT2NjIyaTCaPRSGxsLNHR0ej1egwGA0FBQVRXV+Pl5UVCQgJBQUFYrVZSU1PJz8/HarUSHR1NVVUVtbW1NDY2EhMTQ1hYGDExMfj4+FBQUEBKSgonTpzgnXfeYcCAAcTHxxMfH09UVBR+fn5K07H4Yd3d3cpej5SUFPLy8hg0aJCU2V0g5syZw+bNm5kyZQrffvstixcvZuDAga4OS4jvJQmBEMCLL75Iv3792LZtG2+//bbSeCdcS6VSMW7cOPbv388LL7zAzJkzGThwICtXrpRFSj/C39+f+fPn43A4qK+vJy8vj9raWgYNGsRtt91GQ0MDRqORd999l9bWVsrKyggLC8NsNhMZGcmpU6coLy+noKCAfv36ERsbi7e3N83NzUqzcn19PUajES8vLzo6OigvL6empoaysjJiY2Pp7OwkODiYPXv2KIvTpk2bRmpqKkajkbfffptt27ZRU1PDqlWreOSRR9BoNJLw/QiHw8GXX35JTk4ObW1tPPfcc9x4443yc7vAqFQq1q5dS0pKCv3792f+/PmuDkmIHyTvHkIABoOBGTNmkJKSwoQJE1wdjvgnGo2GOXPmUFhYSFpaGqNGjWLu3LnU1dW5OrQLmnMykMFgYNy4cYwdO5a0tDSef/55li1bxu7duxk/fjzXXnstl1xyCYGBgWg0GnQ6HR0dHdhsNlpaWigtLaWrqwuTycQll1yCyWQiKiqKMWPG4OfnR1tbG1VVVTQ1NWGxWJQFZhqNhoCAAOU5srOz+dvf/sby5cv5y1/+QlZWFuPHj+dXv/oVnp6eyuhR8cNOnDjBf/3XfzFx4kRuueUWjhw5wk033SQ/twvUyy+/jE6no7i4mLKyMleHI8QPkncQIf6PsxlTXLiCg4N5+umn2bNnD6dOnWLgwIE8++yzSo27+H5qtZoJEybw3//93/j7+1NWVkZlZSXV1dUkJyeTnZ1NbGwsra2twHfTUJwNyD4+PqjVamw2G7W1teh0OuLi4oiPj8disdDS0qIsHvP29sbPzw+9Xk97ezvwXelSnz59yM7OJiYmRhl3WlpaSmxsLLNmzeLSSy915Y/notDS0sJDDz1EVlYWwcHBHDt2jIULF+Lt7e3q0MQP2L59O2vWrOGDDz4gKyuLadOm4XA4XB2WEN9Lrn6EEBcVlUpFamoqW7duZevWrdx3331Kf8FVV10lZUQ/wtvbm2nTpnHq1CmGDRvGunXrOHDgANdffz0TJkzAZDKh0+nYvn07np6ehIeHKyV0Hh4edHd3o1KplHGharUatVpNREQEBoOB4uJiDh8+zOWXX85ll13GyJEjeeWVV9i1axdXX301v/rVr4iKiiItLc3FP4mLQ09PD3/+859ZunQpiYmJfP755wwZMkRe5xe4jo4O7rjjDmbOnMlll11GXFwc/fv3V0ofhbjQyAmBEOKipFKpGD9+PAcPHuSuu+7it7/9LTfccANHjx6Vu3A/om/fvlx55ZX4+fkpI0oBioqKOHjwIN3d3QwYMACTyYRer8dsNhMREUFUVBTd3d2cPHmSkpIS/Pz8CA8Px2g0Eh4ejr+/P1FRUfTv35+WlhYOHDhAaWkpKpVKWWBmMBi46qqrZKTvj3A4HHz11VeMGjWKFStWsGbNGrZt20ZWVpYkAxeBBQsW4HA4WLFiBQCxsbE88cQT5OTkcPLkSdcGJ8T3kBMCIcRFTavVMnfuXKZMmcLixYvJzs5m6tSpLFy4kODgYFeHd8GbNm0ae/fuxWazsWXLFg4dOoSXlxf33nsvffr0ISIigl27dtHd3U17ezsWi4XAwEBltGh3dzcOh4OOjg7mzp1Lc3MzMTExPPjgg8q0riFDhjB48GAyMjJc/N1eHE6ePMmiRYv46KOPeOCBB7j//vvR6XSuDkv8RF988QXPPfccn3/++Rm/txkzZvDOO+8wbdo0PvnkE0nsxAVFTgiE+D8PP/ww+/fvd3UY4hcKDQ3lueeeY+fOnRQWFjJgwADWrl2LzWZzdWgXrPr6eg4dOoSHhwf9+/dn9OjRJCYmkpSUxMmTJ9m6dSt79uzBbDYTGxtLXFwcCQkJBAcHExISQnJyMtHR0URHR2MwGNi2bRsffvghDQ0NJCUlkZyczJgxY0hKSsJms3H48GGlT0H8q7a2Nh5++GGGDBmCTqfjyJEjLF68WJKBi8yll15Kd3c32dnZ//LP/v73v/Ppp59KMiAuOCqHnK0LIXoZu93O+++/zwMPPICnpycrVqzg8ssvl38J/5/29nYKCgpoamoiLi6O6Oho1Go1DoeD9vZ29Ho9b7zxBhs3biQ1NZWVK1fS1NSEn58f+/fvZ82aNeh0OhYuXIjRaMRut2OxWFiyZAk1NTXMnDmTMWPG0NnZiV6vB8Bms1FcXMypU6cIDw8nMTFRFs39n56eHl5//XUefvhhYmJiWL16NcOGDZPXqxDivJGEQAjRa3V1dfHMM8+wbNkyRowYwfLly0lOTnZ1WC5jtVo5ceIE5eXlmM1m4uPjf3BralFREe+99x7p6elERETwhz/8AbPZzJQpU3j77bfR6XRcddVVPP/881itVu6++2527NhBZWUlEydO/MFNuR0dHRQWFlJfX09sbCwxMTFKD4O7cTgcfPPNN+Tm5lJVVcXy5cuZNGmSjBAVQpx3khAIIXq9mpoaFi1axMaNG5k+fTrz5893q024drud0tJSiouLCQwMJDk5Wblz/1N8/PHHvPjii5hMJh5++GGam5uVZWQrVqzAarVy7733MmjQoJ/8NRsbGykoKKCrq4vExEQiIiLc6o74qVOnWLRoEVu3bmXevHnk5OTg6+vr6rCEEG5KEgIhhFtwOBzs37+fefPmcejQIR566CGmTp3aq3dPOBwOampqKCwsxMPDg+TkZEJCQn7212lra+PLL7/EaDSi0+n4n//5H7y8vMjJySE/Px+r1cqll16KRqP52fFVVVVRVFSERqOhT58+vT5Ra29vZ82aNTzzzDNcd911rFixgpiYGFeHJYRwc5IQCCHcit1uZ/PmzeTk5KDT6Vi5ciWXXnppr7s73dzcTH5+Pp2dnSQmJmIymc7K93jo0CElIZg/fz4RERH/8dfs6elRTjBCQkJISkrqdY20drudv/zlLyxZsoTw8HDWrFnDyJEje93rTghxcZKEQAjhliwWC2vWrGHFihWMGjWK5cuXk5CQ4Oqw/mOdnZ0UFRVRU1Oj1OifzVMQh8NBfn4+3t7exMbGnrWvC9/1fBw/fpzKykoiIyOJj4//2acOFxqHw8Hu3bvJzc2ltLSUZcuWcdttt7lt34QQ4sIkCYEQwq1VVlby0EMP8frrrzNjxgxycnIICAhwdVg/W3d3N8XFxZSWlmI0GklMTMTb29vVYf0ibW1tFBQU0NLSQnx8PJGRkRdlo21FRQWLFy9my5Yt3HPPPSxYsAA/Pz9XhyWEEP/i4nuHFUKcV4899hhDhgzBz88Pg8HAhAkTyM/PP+NjLBYLs2bNIiQkBF9fX2688Uaqq6tdFPHPExERwUsvvcS2bdvYs2cP6enpbNiwge7ubleH9pPY7XbKysrIy8ujubmZIUOGkJaWdtEmAwC+vr4MHjyYtLQ0ysrK2LFjBzU1NRfNBmpns/WgQYOw2Wx8++23LF++/KJIBnr737sQ4vvJCYEQ4t+66qqruOWWWxgyZAjd3d0sXLiQQ4cOceTIEWVSzcyZM/nrX//KK6+8QkBAALNnz0atVpOXl+fi6H8eu93Om2++SW5uLgEBAaxatYrs7OwLts67rq6OgoICHA4HSUlJhIWFXbCx/lJ2u52KigqKiorw9fUlOTkZf39/V4f1vex2O++88w6LFi0iJCSE1atXX3T9Ke709y6E+H+SEAghfpba2loMBgNffPEFo0aNorm5mbCwMF577TV+85vfAHDs2DFSUlLYsWMHw4YNc3HEP19HRwdPPvkkq1at4oorruDRRx8lLi7O1WEpnCU1zc3NJCQkXLQlNT/HhVwS5ZxglZubS1FREY8++ihTp07tFX0C7vD3LoSQkiEhxM/U3NwMQHBwMAB79uzBZrNxxRVXKB/Tt29foqOj2bFjh0ti/E/pdDoWLVrE0aNH8fPzY8iQISxZsoTW1laXxtXV1cWRI0f45ptv0Ov1ZGdnK1uGeztPT0+SkpIYMWIEDoeDvLw8jh8/7vLSrqqqKmbOnMmVV17JiBEjyM/PZ/r06b0iGQD3+HsXQkhCIIT4Gex2O/feey8jR44kLS0N+O6CSKvVEhgYeMbHGo1GqqqqXBDl2RMZGckf//hHPvvsM/Ly8khPT2fjxo309PSc1zh6enooLi4mLy8Pm83GsGHD6NOnz0U/geeX8PHxoX///mRmZlJfX09eXh7l5eXnvb/AYrHwxBNPkJ6eTmtrKwcPHmTVqlUXZUP6D3G3v3ch3Fnv3cgjhDjrZs2axaFDh/jqq69cHcp5o1KpGDp0KF999RWvv/46CxYsYP369axcuZLhw4ef0/rwf17cNWjQoF6/uOunCggIYMiQIcritdLS0l+8eO3nsNvtvPfeezz44IP4+fmxefNmxowZc1H1CfxU7vj3LoS7khMCIcRPMnv2bD744AM+++wzIiMjlcfDw8OxWq00NTWd8fHV1dWEh4ef5yjPHbVazaRJkzh69CjXXnstEyZM4I477qC0tPScPF9TUxM7d+6ksLCQhIQEhg4dKsnAP1GpVBiNRkaMGEFERAQHDx5k3759tLe3n/XncjgcHDx4kGuuuYZ7772X3Nxc9u7dy+WXX94rkwF3/3sXwt1IQiCE+LccDgezZ89m8+bN/OMf//iX5tqMjAw0Gg2ffvqp8lh+fj6lpaUMHz78fId7zun1epYuXcqRI0fQarVkZGTwyCOPnLWL0I6ODg4cOMDevXsJCwtj5MiRZ23LcG+lVquJjY1l5MiR+Pj48PXXX3Ps2DGsVutZ+fo1NTXMnj2byy67jMzMTPLz87nrrrvO6sK3C4X8vQvhnmTKkBDi37r77rt57bXX2LJlC3369FEeDwgIwMfHB/huDOHWrVt55ZVX8Pf3Z86cOQBs377dJTGfLw6Hg+3btzNv3jzKy8t5+OGHueWWW35Rk6/NZqO4uJhTp04RHh5OYmIiXl5e5yDq3q+trY3CwkKampqIi4v7xY3XXV1drF27llWrVnHJJZfwxBNPnPE30BvJ37sQ7kkSAiHEv/VDd6Y3bNjAHXfcAXzXYHnffffx+uuv09XVxbhx43j++efdpoSgp6eHP//5zyxcuBCz2cyqVasYMmTIT7qr71wsduLECfz8/EhOTr4oFlhdDOrr6ykoKKCnp4ekpCQMBsNP/p1s3bqVhQsX4uXlxerVqxk7dqxbnNLI37sQ7kkSAiGEOEtaW1tZsWIFTz31FNdffz1Lly49o/76dA6HQ1ksplKpSEpKIjQ01C0uOs8nh8OhLDbT6XQkJyf/4CQgh8PBkSNHyM3N5cCBAyxdupQZM2a45TQnIYR7kR4CIYQ4S/z8/Fi2bBmHDh3CbrczePBgHnvsMTo6Os74uB07dvDcc89x+PBhoqOjGTZsWK/cMnwhUKlUmM1mRo4cSVBQELt37+bxxx+nsLDwjI+rq6tj7ty5jBo1irS0NAoLC5k9e7YkA0IItyAJgRBCnGVxcXFs2rSJrVu3snXrVjIyMnjzzTc5ceIEt9xyC9dccw1lZWWMHDmSqKgot1gs5mqenp4kJiYyYsQI9u3bR1ZWFnPmzKG6uppnn32WgQMHcurUKfbs2cMzzzyjLOISQgh3ICVDQghxDvX09LBu3Tpyc3Pp6OggIyODtWvXkpKS4urQ3Nq2bdu4++67KSkpISwsjBdffJHrrrtOTmmEEG5JbksJIcQ5YrfbefXVV1m+fDl9+/bl5ptv5tChQzz11FOy1dVFHA4HR48eZfXq1TQ0NHDbbbfh6+vLwoUL+eijj1wdnhBCuIQkBEIIcQ58/vnnDBkyhEWLFvHEE0+wc+dOXnvtNQ4ePEhHRwfp6ek8/vjjdHZ2ujpUt9HQ0MADDzxAdnY2iYmJFBUVsWHDBo4cOcL06dO59dZbufrqqzl8+LCrQxVCiPNKEgIhhDiLGhsbueGGG7j++uu56aabOHbsGLfccotSipKYmMhbb73Fli1b2Lx5MxkZGWzevBm73e7iyHsvm83G2rVrGTBgAIWFhezcuZPnnnuO0NBQALRaLffeey9FRUX06dOHzMxMZs6cSU9Pj4sjF0KI80N6CIQQ4izq6enh0Ucf5a677sJoNP7bj+3u7uYPf/gDixYtom/fvqxYsYKBAwdKHftZ4nA4+PTTT5k/fz7d3d08/vjjXHfddT/axF1QUMD777/Pfffdd54iFUII15KEQAghXKypqYlHHnmEtWvXcvPNN7N48eIfTSbEv1dQUMDChQvZsWMHDz74IHPmzJHNz0II8QOkZEgIIVwsMDCQJ598kv3799PQ0EB6ejpr1qyhq6vL1aFddBobG8nNzWX48OFERUWRn5/P/fffL8mAEEL8G5IQCCHEBSI5OZl3332XN998k02bNpGZmcn7778v/QU/QXd3N+vXryc9PZ1Dhw6xfft2XnjhBQwGg6tDE0KIC56UDAkhxAWou7ubdevWsWTJEvr378+KFStIS0uT/oJ/4nA4+OKLL5Q9D6tWreKGG26QZW9CCPEzyDumEEJcgDw9PZk1axYFBQUMGDCA0aNHc88991BbW+vq0C4Yx48f55ZbbuHWW29l0qRJHD58mBtvvFGSASGE+JnkXVMIIS5gwcHBPP300+zdu5fKykrS09N55plnsFqtrg7NZZqbm3nwwQcZOnQoBoOBY8eOMX/+fLy9vV0dmhBCXJQkIRBCiItASkoKH3zwAa+++iobN24kKyuLrVu34k5Vn93d3WzYsIH09HT27NnDtm3beOmll4iIiHB1aEIIcVGTHgIhhLjI2Gw2nn/+eZYuXUpGRgaPPfYYKSkpvba/wOFw8NVXX5GTk0NzczMrV67kpptuktIgIYQ4S+TdVAghLjIajYZ77rmHgoICkpOTueSSS7jvvvuor693dWhnXXFxMZMnT+Y3v/kNv/nNbzh69Cg333yzJANCCHEWyTuqEEJcpEJDQ/mf//kfdu3axYkTJxg4cCDPP/88NpvN1aH9x1pbW1myZAlDhgzB39+fo0ePsmjRInx8fFwdmhBC9DpSMiSEEL2Aw+Hggw8+4P7770etVrNixQquuOKKi66MqKenh1dffZWlS5cSFxfHmjVryMrKuui+DyGEuJhIQiCEEL2I1Wrl2Wef5dFHH2XYsGEsW7aMvn37ujqsH+VwONixYwe5ubnU1tby2GOPceutt0ppkBBCnAfyTiuEEL2IVqvlvvvuIz8/n5iYGEaOHElOTg6NjY2uDu0HlZaWcscddzBhwgSuvfZajh49yqRJkyQZEEKI80TebYUQohcyGAysXbuWHTt2cOTIEQYOHMiLL754QfUXtLe388gjj5CRkYFWq+XIkSMsXboUvV7v6tCEEMKtSMmQEEL0cna7nS1btpCTk4OXlxcrV65k9OjRLqvLt9vtbNq0iYcffhiz2czq1asZMWKE9AkIIYSLSEIghBBuoquri6eeeorly5czatQoHn30UZKSks7b8zscDnbt2kVOTg7l5eUsX76cKVOmSGmQEEK4mLwLCyGEm/Dy8iI3N5f8/HyMRiPDhg1jwYIFNDc3n/PnLisrY/r06YwfP54rr7ySY8eOcfvtt0syIIQQFwB5JxZCCDcTHh7O+vXr+eqrr9i/fz8DBw7k5Zdfpru7+6w/V0dHB4899hiDBw/Gbrdz6NAhli1bhp+f31l/LiGEEL+MJARCCPEjVqxYgUql4t5771Ues1gszJo1i5CQEHx9fbnxxhuprq52XZA/k0qlIiMjg88++4znnnuO1atXk52dzbZt2zgblaR2u50333yTjIwMtm7dytatW9m0aRNxcXFnIXrX6I2vAyGEAEkIhBDi39q1axfr1q1jwIABZzw+d+5c3n//fd58802++OILKioq+PWvf+2iKH85tVrNTTfdxJEjR7j55puZOHEikyZN4sSJE7/o6zkcDvbs2cPYsWOZP38+ixcvZufOnYwaNeqibhru7a8DIYR7k4RACCF+QFtbG5MmTWL9+vUEBQUpjzc3N/OHP/yB1atXM2bMGDIyMtiwYQPbt2/n66+/dmHEv5y3tzcPPvggR48eJTAwkKysLBYtWkRLS8tP/hpVVVXcddddjBs3jksuuYT8/HymTZuGh4fHOYz83HOn14EQwj1JQiCEED9g1qxZjB8/niuuuOKMx/fs2YPNZjvj8b59+xIdHc2OHTvOd5hnldlsZsOGDXz++ed8/fXXpKens3HjRnp6en7wczo7O3n88cdJT0+no6ODgwcPsnLlSvz9/c9j5OeOO74OhBDuxdPVAQghxIVo06ZN7N27l127dv3LP6uqqkKr1RIYGHjG40ajkaqqqvMU4bmjUqnIysriyy+/5I033mD+/PmsW7eOlStXMnLkSKX0x2638+677/LQQw8RGBjIli1bXLrf4Fxw59eBEMJ9yAmBEEL8k1OnTnHPPffw6quv4u3t7epwXEatVnPrrbdy5MgRJkyYwK9//Wtuu+02SkpK2L9/P1dffTXz5s1jwYIF7N69m8suu6xXJQPyOhBCuAtJCIQQ4p/s2bOHmpoaBg8ejKenJ56ennzxxRc888wzeHp6YjQasVqtNDU1nfF51dXVhIeHuyboc0iv17NkyRKOHj2Kj48PAwcOZPTo0WRlZVFQUMCMGTPw9Ox9B87yOhBCuAvZVCyEEP+ktbWVkpKSMx6bOnUqffv2JTc3l6ioKMLCwnj99de58cYbAcjPz6dv377s2LGDYcOGuSLs88LhcPDiiy8SHR3N1Vdf7epwzil5HQgh3EXvu6UjhBD/IT8/P9LS0s54TK/XExISojw+bdo05s2bR3BwMP7+/syZM4fhw4f3+otAlUrFjBkzXB3GeSGvAyGEu5CEQAghfoE1a9agVqu58cYb6erqYty4cTz//POuDkucZ/I6EEL0BlIyJIQQQgghhBuTpmIhhBBCCCHcmCQEQgghhBBCuDFJCIQQQgghhHBjkhAIIYQQQgjhxiQhEEIIIYQQwo1JQiCEEEIIIYQbk4RACCGEEEIINyYJgRBCCCGEEG5MEgIhhBBCCCHcmCQEQgghhBBCuDFJCIQQQgghhHBjkhAIIYQQQgjhxiQhEEIIIYQQwo1JQiCEEEIIIYQbk4RACCGEEEIINyYJgRBCCCGEEG5MEgIhhBBCCCHcmCQEQgghhBBCuDFJCIQQQgghhHBjkhAIIYQQQgjhxiQhEEIIIYQQwo1JQiCEEEIIIYQbk4RACCGEEEIINyYJgRBCCCGEEG5MEgIhhBBCCCHcmCQEQgghhBBCuDFJCIQQQgghhHBjkhAIIYQQQgjhxiQhEEIIIYQQwo1JQiCEEEIIIYQbk4RACCGEEEIINyYJgRBCCCGEEG5MEgIhhBBCCCHcmCQEQgghhBBCuDFJCIQQQgghhHBjkhAIIYQQQgjhxiQhEEIIIYQQwo1JQiCEEEIIIYQbk4RACCGEEEIINyYJgRBCCCGEEG5MEgIhhBBCCCHcmCQEQgghhBBCuDFJCIQQQgghhHBjkhAIIYQQQgjhxiQhEEIIIYQQwo1JQiCEEEIIIYQb+19RLxRZqvgwZQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "from mpl_toolkits.mplot3d import Axes3D\n", - "\n", - "\n", - "def generate_radial_equal_area_volume(\n", - " *,\n", - " width=20.0,\n", - " height=20.0,\n", - " thickness=10.0,\n", - " base_period=6.0,\n", - " grid_N=100,\n", - " layer_count=100,\n", - " area_fraction=0.30,\n", - " tol=1e-4,\n", - " max_iter=40\n", - "):\n", - " \"\"\"\n", - " Generates a 3D binary volume of the radial infill pattern\n", - " without perimeter shells. Volume shape: (Z, Y, X)\n", - " \"\"\"\n", - " xs = np.linspace(-width / 2, width / 2, grid_N)\n", - " ys = np.linspace(-height / 2, height / 2, grid_N)\n", - " zs = np.linspace(0.0, thickness, layer_count)\n", - " XX, YY = np.meshgrid(xs, ys)\n", - " r = np.hypot(XX, YY)\n", - "\n", - " inner_area = width * height\n", - " target_area = area_fraction * inner_area\n", - "\n", - " filled_volume = []\n", - "\n", - " for z in zs:\n", - " phi = 2.0 * np.pi * z / base_period\n", - " k = 2.0 * np.pi / base_period\n", - " F = np.sin(k * r + phi)\n", - "\n", - " # binary search for threshold\n", - " lo, hi = F.min(), F.max()\n", - " for _ in range(max_iter):\n", - " t = 0.5 * (lo + hi)\n", - " mask = (F >= t)\n", - " A = np.count_nonzero(mask) * (width / grid_N) * (height / grid_N)\n", - " if abs(A - target_area) < tol * inner_area:\n", - " break\n", - " if A > target_area:\n", - " lo = t\n", - " else:\n", - " hi = t\n", - "\n", - " filled_volume.append(mask.astype(np.uint8))\n", - "\n", - " return np.stack(filled_volume, axis=0) # shape: (Z, Y, X)\n", - "\n", - "\n", - "def plot_3d_binary_volume(volume, threshold=0.5, step=2):\n", - " \"\"\"\n", - " Uses matplotlib to render a 3D surface of the filled voxels.\n", - " \"\"\"\n", - " z_dim, y_dim, x_dim = volume.shape\n", - " fig = plt.figure(figsize=(10, 8))\n", - " ax = fig.add_subplot(111, projection=\"3d\")\n", - "\n", - " ax.set_title(\"Radial Equal-Area Infill – 3D View\")\n", - " ax.set_xlabel(\"X\")\n", - " ax.set_ylabel(\"Y\")\n", - " ax.set_zlabel(\"Z\")\n", - "\n", - " ax.view_init(elev=30, azim=45)\n", - "\n", - " for z in range(0, z_dim, step):\n", - " mask = volume[z]\n", - " y_idx, x_idx = np.nonzero(mask)\n", - " x = x_idx - x_dim / 2\n", - " y = y_idx - y_dim / 2\n", - " z_layer = np.full_like(x, z)\n", - " ax.scatter(x, y, z_layer, color='black', s=1, alpha=0.5)\n", - "\n", - " plt.tight_layout()\n", - " plt.show()\n", - "\n", - "\n", - "# -------------------------------\n", - "# Run the 3D visualization\n", - "# -------------------------------\n", - "if __name__ == \"__main__\":\n", - " volume = generate_radial_equal_area_volume(\n", - " width=20.0,\n", - " height=20.0,\n", - " thickness=10.0,\n", - " base_period=6.0,\n", - " area_fraction=0.60,\n", - " grid_N=100,\n", - " layer_count=100\n", - " )\n", - "\n", - " plot_3d_binary_volume(volume)\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "864d8b1e-6a0d-423b-9292-5deef913c351", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f39853ba-c914-4923-8e8c-263bcd88d933", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.13.3" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/software/infill_simulator.ipynb b/software/infill_simulator.ipynb index 253572f..d5346ed 100644 --- a/software/infill_simulator.ipynb +++ b/software/infill_simulator.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 4, + "execution_count": 1, "id": "cbaa6f21-27f8-41d9-8030-78f8b3a587b8", "metadata": {}, "outputs": [ @@ -142,7 +142,11 @@ "import matplotlib.pyplot as plt\n", "\n", "def compute_area_moments(XX, YY, mask):\n", - " dx = XX[0, 1] - XX[0, 0]\n", + " dx = XX[0, 1] -.\n", + "Suženi struk epruvete daje nam manju površinu poprečnog presjeka kako bi mogli garantirati\n", + "da će zona loma stati u suženi dio. Kako ne možemo pouzdano izraditi struk, a opet želimo\n", + "dobiti manju površinu poprečnog presjeka u sredini epruvete (zoni loma), možemo napraviti\n", + "kompromis sa varijacijom postotka ispune kroz dužinu epruv XX[0, 0]\n", " dy = YY[1, 0] - YY[0, 0]\n", " dA = dx * dy\n", "\n",